1
|
Dashti NK, Perret R, Balzer B, Naous R, Michal M, Dermawan JK, Antonescu CR. Vascular Neoplasms With NFATC1/C2 Gene Alterations : Expanding the Clinicopathologic and Molecular Characteristics of a Distinct Entity. Am J Surg Pathol 2024; 48:487-496. [PMID: 38189436 PMCID: PMC11591551 DOI: 10.1097/pas.0000000000002175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Despite significant advances in their molecular pathogenesis, skeletal vascular tumors remain diagnostically challenging due to their aggressive radiologic appearance and significant morphologic overlap. Within the epithelioid category and at the benign end of the spectrum, recurrent FOS/FOSB fusions have defined most epithelioid hemangiomas, distinguishing them from epithelioid hemangioendothelioma and angiosarcoma. More recently, the presence of EWSR1/FUS :: NFATC1/2 fusions emerged as the genetic hallmark of a novel group of unusual vascular proliferations, often displaying epithelioid morphology, with alternating vasoformative and solid growth, variable atypia, reminiscent of composite hemangioendothelioma. In this study, we further our understanding and morphologic spectrum of NFATC -fusion positive vascular neoplasms by describing 9 new cases, including soft tissue locations and novel fusion partners. Combining with the initial cohort of 5 cases, a total of 14 patients were analyzed, showing slight female predilection and an age range of 10 to 66 (mean 42 y). Twelve patients had solitary lesions, while 2 had multifocal polyostotic (pelvic bones) disease. Overall, 12 lesions were intra-osseous and 2 in soft tissue. By targeted RNA Fusion panels or FISH, there were 6 cases of EWSR1::NFATC1 , 4 EWSR1::NFATC2 , 2 FUS::NFATC2 , 1 EWSR1 rearrangement, and 1 with a novel FABP4::NFATC2 fusion. Follow-up was available in 4 patients. One patient experienced 2 local recurrences, 11 and 15 years postdiagnosis, and one patient experienced progressive disease despite multimodality treatment (curettings, embolization, radiation) over 3 years. In summary, our extended investigation confirms that NFATC -related fusions define a distinct group of vascular neoplasms with variable architecture, epithelioid phenotype, and cytologic atypia, commonly located in the bone, occasionally multifocal and with potential for local recurrence and aggressive behavior but no metastatic potential. Molecular analysis is recommended in diagnostically challenging cases with atypical histology to exclude malignancy.
Collapse
Affiliation(s)
- Nooshin K. Dashti
- Department of Pathology and Laboratory Medicine Dartmouth Health, Lebanon, NH, USA
- Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Raul Perret
- Department of Biopathology, Institut Bergonié, Comprehensive Cancer Center, Bordeaux, France
- Bordeaux Institute of Oncology, BRIC, INSERM, Bordeaux University, Bergonié Institute, Bordeaux, France
| | | | - Rana Naous
- University of Pittsburgh Medical Center, Shadyside, Pittsburgh, PA, USA
| | - Michael Michal
- Biopticka Laboratory, Pilsen, Czech Republic
- Department of Pathology, Charles University, Faculty of Medicine in Plzen, Czech Republic
| | - Josephine K. Dermawan
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Cristina R. Antonescu
- Department of Pathology and Lab Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
2
|
Grobbelaar S, Mercier AE, van den Bout I, Durandt C, Pepper MS. Considerations for enhanced mesenchymal stromal/stem cell myogenic commitment in vitro. Clin Transl Sci 2024; 17:e13703. [PMID: 38098144 PMCID: PMC10787211 DOI: 10.1111/cts.13703] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/16/2023] [Accepted: 12/09/2023] [Indexed: 01/15/2024] Open
Abstract
The generation of tissue from stem cells is an alluring concept as it holds a number of potential applications in clinical therapeutics and regenerative medicine. Mesenchymal stromal/stem cells (MSCs) can be isolated from a number of different somatic sources, and have the capacity to differentiate into adipogenic, osteogenic, chondrogenic, and myogenic lineages. Although the first three have been extensively investigated, there remains a paucity of literature on the latter. This review looks at the various strategies available in vitro to enhance harvested MSC commitment and differentiation into the myogenic pathway. These include chemical inducers, myogenic-enhancing cell culture substrates, and mechanical and dynamic culturing conditions. Drawing on information from embryonic and postnatal myogenesis from somites, satellite, and myogenic progenitor cells, the mechanisms behind the chemical and mechanical induction strategies can be studied, and the sequential gene and signaling cascades can be used to monitor the progression of myogenic differentiation in the laboratory. Increased understanding of the stimuli and signaling mechanisms in the initial stages of MSC myogenic commitment will provide tools with which we can enhance their differentiation efficacy and advance the process to clinical translation.
Collapse
Affiliation(s)
- Simone Grobbelaar
- Department of Physiology, School of Medicine, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
- Institute for Cellular and Molecular Medicine, Department of Immunology, and South African Medical Research Council Extramural Unit for Stem Cell Research and Therapy, School of Medicine, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Anne E. Mercier
- Department of Physiology, School of Medicine, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Iman van den Bout
- Department of Physiology, School of Medicine, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
- Centre for Neuroendocrinology, Department of Immunology, School of Medicine, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Chrisna Durandt
- Institute for Cellular and Molecular Medicine, Department of Immunology, and South African Medical Research Council Extramural Unit for Stem Cell Research and Therapy, School of Medicine, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Michael S. Pepper
- Institute for Cellular and Molecular Medicine, Department of Immunology, and South African Medical Research Council Extramural Unit for Stem Cell Research and Therapy, School of Medicine, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| |
Collapse
|
3
|
Schumacher T, Reyer H, Maak S, Röntgen M. Homer 1 genotype AA variant relates to congenital splay leg syndrome in piglets by repressing Pax7 in myogenic progenitors. Front Vet Sci 2023; 10:1028879. [PMID: 38099002 PMCID: PMC10719620 DOI: 10.3389/fvets.2023.1028879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/06/2023] [Indexed: 12/17/2023] Open
Abstract
Introduction Porcine congenital splay leg syndrome (PCS) is a major birth defect in piglets, resulting in lameness and high mortality rates. The multifactorial pathogenesis of PSC is not well understood but includes a polygenic inheritance. Methods Here, in addition to morphological investigations, we characterized the expression of myogenic genes and functional (proliferation and differentiation) properties of myogenic precursor/satellite cells (SATCs) in 1 day-old PCS piglets, non-affected littermates (LCs), and piglets from PCS-free healthy litters (HCs). In addition, PCS phenotypes were related to the SNP Homer1_rs325197091 within the Homer1 locus, which has been identified as a potential hereditary cause of PCS. Results and discussion Samples from musculus semitendinosus (ST) of PCS piglets had a higher proportion of type II fibers, reflecting myofiber immaturity. In addition, myofiber atrophy, a lower number of myonuclei per fiber (ST), and a higher apoptotic activity (in ST and longissimus dorsi muscle; LD) were found in the PCS group. A higher proportion of cycling committed myoblasts (Pax7+/Ki67+ cells) occurred in samples from PCS-affected piglets, and on the other hand, the mRNA expression of genes involved in differentiation (muscle differentiation 1; MyoD, myogenin; MyoG) was repressed compared with HCs. Cultured SATCs from PCS-affected animals showed a temporal shift in peak expression of Pax7, MyoD, and MyoG toward days 3 and 4 of their 7 days differentiation regime. In vitro experiments with isolated SATCs confirmed the lower differentiation potential and the delayed progression of the myogenic processes in cells from piglets with PCS phenotype. In addition, Pax7 and desmin were differently expressed in Homer1_rs325197091 genotype variants (GG, GA, and AA). Both genes showed the lowest expression in the homozygous AA-variant, which was most frequently found in PCS-affected animals. The homozygous AA-variant was also associated with lower expression of the truncated Homer1-subtype 205. Thus, we hypothesize that in PCS, the balance between Homer1 proteins and its signaling functions is changed in a way detrimental to the myogenic differentiation program. Our results demonstrated direct negative effects of the Homer1 AA genotype on Pax7 expression, but the exact mode of action still needs to be elucidated.
Collapse
Affiliation(s)
- Toni Schumacher
- Institute of Muscle Biology and Growth, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Henry Reyer
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Steffen Maak
- Institute of Muscle Biology and Growth, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Monika Röntgen
- Institute of Muscle Biology and Growth, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
4
|
Shen X, Zhao X, He H, Zhao J, Wei Y, Chen Y, Han S, Zhu Y, Zhang Y, Zhu Q, Yin H. Evolutionary conserved circular MEF2A RNAs regulate myogenic differentiation and skeletal muscle development. PLoS Genet 2023; 19:e1010923. [PMID: 37676887 PMCID: PMC10508632 DOI: 10.1371/journal.pgen.1010923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/19/2023] [Accepted: 08/16/2023] [Indexed: 09/09/2023] Open
Abstract
Circular RNAs (circRNAs) have been recognized as critical regulators of skeletal muscle development. Myocyte enhancer factor 2A (MEF2A) is an evolutionarily conserved transcriptional factor that regulates myogenesis. However, it remains unclear whether MEF2A produces functional circRNAs. In this study, we identified two evolutionarily conserved circular MEF2A RNAs (circMEF2As), namely circMEF2A1 and circMEF2A2, in chicken and mouse muscle stem cells. Our findings revealed that circMEF2A1 promotes myogenesis by regulating the miR-30a-3p/PPP3CA/NFATC1 axis, whereas circMEF2A2 facilitates myogenic differentiation by targeting the miR-148a-5p/SLIT3/ROBO2/β-catenin signaling pathway. Furthermore, in vivo experiments demonstrated that circMEF2As both promote skeletal muscle growth. We also discovered that the linear MEF2A mRNA-derived MEF2A protein binds to its own promoter region, accelerating the transcription of MEF2A and upregulating the expression of both linear MEF2A and circMEF2As, forming a MEF2A autoregulated positive feedback loop. Moreover, circMEF2As positively regulate the expression of linear MEF2A by adsorbing miR-30a-3p and miR-148a-5p, which directly contribute to the MEF2A autoregulated feedback loop. Importantly, we found that mouse circMEF2As are essential for the myogenic differentiation of C2C12 cells. Collectively, our results demonstrated the evolution, function, and underlying mechanisms of circMEF2As in animal myogenesis, which may provide novel insight for both the farm animal meat industry and human medicine.
Collapse
Affiliation(s)
- Xiaoxu Shen
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiyu Zhao
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Haorong He
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jing Zhao
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yuanhang Wei
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yuqi Chen
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shunshun Han
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yifeng Zhu
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yao Zhang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qing Zhu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Huadong Yin
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Lim JY, Kim E, Douglas CM, Wirianto M, Han C, Ono K, Kim SY, Ji JH, Tran CK, Chen Z, Esser KA, Yoo SH. The circadian E3 ligase FBXL21 regulates myoblast differentiation and sarcomere architecture via MYOZ1 ubiquitination and NFAT signaling. PLoS Genet 2022; 18:e1010574. [PMID: 36574402 PMCID: PMC9829178 DOI: 10.1371/journal.pgen.1010574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/09/2023] [Accepted: 12/14/2022] [Indexed: 12/28/2022] Open
Abstract
Numerous molecular and physiological processes in the skeletal muscle undergo circadian time-dependent oscillations in accordance with daily activity/rest cycles. The circadian regulatory mechanisms underlying these cyclic processes, especially at the post-transcriptional level, are not well defined. Previously, we reported that the circadian E3 ligase FBXL21 mediates rhythmic degradation of the sarcomere protein TCAP in conjunction with GSK-3β, and Psttm mice harboring an Fbxl21 hypomorph allele show reduced muscle fiber diameter and impaired muscle function. To further elucidate the regulatory function of FBXL21 in skeletal muscle, we investigated another sarcomere protein, Myozenin1 (MYOZ1), that we identified as an FBXL21-binding protein from yeast 2-hybrid screening. We show that FBXL21 binding to MYOZ1 led to ubiquitination-mediated proteasomal degradation. GSK-3β co-expression and inhibition were found to accelerate and decelerate FBXL21-mediated MYOZ1 degradation, respectively. Previously, MYOZ1 has been shown to inhibit calcineurin/NFAT signaling important for muscle differentiation. In accordance, Fbxl21 KO and MyoZ1 KO in C2C12 cells impaired and enhanced myogenic differentiation respectively compared with control C2C12 cells, concomitant with distinct effects on NFAT nuclear localization and NFAT target gene expression. Importantly, in Psttm mice, both the levels and diurnal rhythm of NFAT2 nuclear localization were significantly diminished relative to wild-type mice, and circadian expression of NFAT target genes associated with muscle differentiation was also markedly dampened. Furthermore, Psttm mice exhibited significant disruption of sarcomere structure with a considerable excess of MYOZ1 accumulation in the Z-line. Taken together, our study illustrates a pivotal role of FBXL21 in sarcomere structure and muscle differentiation by regulating MYOZ1 degradation and NFAT2 signaling.
Collapse
Affiliation(s)
- Ji Ye Lim
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Eunju Kim
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Collin M. Douglas
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Marvin Wirianto
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Chorong Han
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Kaori Ono
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Sun Young Kim
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Justin H. Ji
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Celia K. Tran
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Karyn A. Esser
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| |
Collapse
|
6
|
Asakura A, Kikyo N. Immunofluorescence analysis of myogenic differentiation. Methods Cell Biol 2022; 170:117-125. [PMID: 35811095 PMCID: PMC9699006 DOI: 10.1016/bs.mcb.2022.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Skeletal muscle is a highly regenerative tissue that can efficiently recover from various damages caused by injuries and excessive exercises. In adult muscle, stem cells termed satellite cells are mitotically quiescent but activated upon muscle damages to enter the cell cycle as myogenic precursor cells or myoblasts. After several rounds of cell cycles, they exist the cycle and fuse to each other to form multinucleated myotubes, and eventually mature to become contractile myofibers. Satellite cells can be readily isolated from mouse skeletal muscle with enzymatic digestion and magnetic separation with antibodies against specific surface markers. C2C12 cells are an immortalized mouse myoblast cell line that is commercially available and more readily expandable than primary myoblasts. Both primary myoblasts and C2C12 cells have been extensively used as useful in vitro models for myogenic differentiation. Proper examination of this process requires monitoring specific protein expression in subcellular compartments, which can be accomplished through immunofluorescence staining. This chapter describes the workflow for the isolation of satellite cells from mouse skeletal muscle and subsequent immunofluorescence staining to assess the proliferation and differentiation of primary myoblasts and C2C12 cells.
Collapse
Affiliation(s)
- Atsushi Asakura
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States; Paul & Sheila Wellstone Muscular Dystrophy Center, University of Minnesota, Minneapolis, MN, United States; Department of Neurology, University of Minnesota, Minneapolis, MN, United States.
| | - Nobuaki Kikyo
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States; Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
7
|
Liao MJ, Lin H, He YW, Zou C. NFATc3 deficiency protects against high fat diet (HFD)-induced hypothalamus inflammation and apoptosis via p38 and JNK suppression. Biochem Biophys Res Commun 2018; 499:743-750. [PMID: 29596828 DOI: 10.1016/j.bbrc.2018.03.182] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 03/24/2018] [Indexed: 12/18/2022]
Abstract
Hypothalamic inflammation and apoptosis cause neural injury, playing an important role in metabolic syndrome development. Nuclear Factors of Activated T cells (NFATc3) show many physiological and pathological effects. However, the function of NFATc3 in high fat diet (HFD)-induced hypothalamus injury remains unknown. The wild type (WT) and NFATc3-knockout (KO) mice were subjected to HFD feeding for 16 weeks to examine NFATc3 function in vivo. Astrocytes isolated from WT or KO mice were cultured and exposed to fructose (Fru) in vitro. The liver damage, hypothalamus injury, pro-inflammatory markers, NF-κB (p65), Caspase-3 and mitogen-activated protein kinases (MAPKs) pathways were evaluated. NFATc3 was significantly up-regulated in hypothalamus from mice challenged with HFD, and in astrocytes incubated with Fru. Both in vivo and in vitro studies indicated that NFATc3-deletion attenuated metabolism syndrome, reduced inflammatory regulators expression, inactivated NF-κB (p65), Caspase-3 and p38/JNK signaling pathway. Of note, we identified that promoting p38 or JNK activation could rescue inflammatory response and apoptosis in NFATc3-KO astrocytes stimulated by Fru. Together, these findings revealed an important role of NFATc3 NFATc3 for HFD-induced metabolic syndrome and particularly hypothalamus injury, and understanding of the regulatory molecular mechanism might provide new and effective therapeutic strategies for prevention and treatment of hypothalamic damage associated with dietary obesity-associated neuroinflammation and apoptosis.
Collapse
Affiliation(s)
- Meng-Jun Liao
- Department of Anesthesiology, South China Hospital Affiliated to University of South China, Hengyang 421001, China
| | - Hua Lin
- Department of Anesthesia & surgery, BaoJi Municipal Central hospital, Baoji 721008, China
| | - Yun-Wu He
- Department of Pain, The Second Hospital Affiliated to University of South China, Hengyang 421001, China
| | - Cong Zou
- Department of Pain, The Second Hospital Affiliated to University of South China, Hengyang 421001, China.
| |
Collapse
|
8
|
Regulation of Skeletal Muscle Myoblast Differentiation and Proliferation by Pannexins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 925:57-73. [PMID: 27518505 DOI: 10.1007/5584_2016_53] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Pannexins are newly discovered channels that are now recognized as mediators of adenosine triphosphate release from several cell types allowing communication with the extracellular environment. Pannexins have been associated with various physiological and pathological processes including apoptosis, inflammation, and cancer. However, it is only recently that our work has unveiled a role for Pannexin 1 and Pannexin 3 as novel regulators of skeletal muscle myoblast proliferation and differentiation. Myoblast differentiation is an ordered multistep process that includes withdrawal from the cell cycle and the expression of key myogenic factors leading to myoblast differentiation and fusion into multinucleated myotubes. Eventually, myotubes will give rise to the diverse muscle fiber types that build the complex skeletal muscle architecture essential for body movement, postural behavior, and breathing. Skeletal muscle cell proliferation and differentiation are crucial processes required for proper skeletal muscle development during embryogenesis, as well as for the postnatal skeletal muscle regeneration that is necessary for muscle repair after injury or exercise. However, defects in skeletal muscle cell differentiation and/or deregulation of cell proliferation are involved in various skeletal muscle pathologies. In this review, we will discuss the expression of pannexins and their post-translational modifications in skeletal muscle, their known functions in various steps of myogenesis, including myoblast proliferation and differentiation, as well as their possible roles in skeletal muscle development, regeneration, and diseases such as Duchenne muscular dystrophy.
Collapse
|
9
|
Perroud J, Bernheim L, Frieden M, Koenig S. Distinct roles of NFATc1 and NFATc4 in human primary myoblast differentiation and in the maintenance of reserve cells. J Cell Sci 2017; 130:3083-3093. [PMID: 28760926 DOI: 10.1242/jcs.198978] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 07/25/2017] [Indexed: 01/06/2023] Open
Abstract
Ca2+ signaling plays a key role during human myoblast differentiation. Among Ca2+-sensitive pathways, calcineurin is essential for myoblast differentiation and muscle regeneration. Nuclear factor of activated T-cell (NFAT) transcription factors are the major calcineurin targets. We investigated the expression and the role of each NFAT gene during human primary myoblast differentiation. We found that three NFAT isoforms are present, NFATc1, NFATc3 and NFATc4. Importantly, while their mRNA expression increases during differentiation, NFATc1 is more highly expressed in myotubes, whilst NFATc4 is specifically maintained in reserve cells. NFATc3 is present in both cell types, although no specific role during myoblast differentiation was observed. Knockdown of either NFATc1 or NFATc4 affects the differentiation process similarly, by decreasing the expression of late differentiation markers, but impairs myotube formation differently. Whereas NFATc1 knockdown strongly reduced the number and the surface area of myotubes, NFATc4 knockdown increased the surface area of myotubes and reduced the pool of reserve cells. We conclude that NFAT genes have specific roles in myotube formation and in the maintenance of the reserve cell pool during human postnatal myogenesis.
Collapse
Affiliation(s)
- Julie Perroud
- Department of Basic Neurosciences, University Medical Center, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Laurent Bernheim
- Department of Basic Neurosciences, University Medical Center, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Maud Frieden
- Department of Cell Physiology and Metabolism, University Medical Center, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Stephane Koenig
- Department of Basic Neurosciences, University Medical Center, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| |
Collapse
|
10
|
Roles of Peroxisome Proliferator-Activated Receptor β/δ in skeletal muscle physiology. Biochimie 2016; 136:42-48. [PMID: 27916646 DOI: 10.1016/j.biochi.2016.11.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/21/2016] [Indexed: 02/07/2023]
Abstract
More than two decades of studying Peroxisome Proliferator-Activated Receptors (PPARs) has led to an understanding of their implications in various physiological processes that are key for health and disease. All three PPAR isotypes, PPARα, PPARβ/δ, and PPARγ, are activated by a variety of molecules, including fatty acids, eicosanoids and phospholipids, and regulate a spectrum of genes involved in development, lipid and carbohydrate metabolism, inflammation, and proliferation and differentiation of many cell types in different tissues. The hypolipidemic and antidiabetic functions of PPARα and PPARγ in response to fibrate and thiazolidinedione treatment, respectively, are well documented. However, until more recently the functions of PPARβ/δ were less well defined, but are now becoming more recognized in fatty acid metabolism, energy expenditure, and tissue repair. Skeletal muscle is an active metabolic organ with high plasticity for adaptive responses to varying conditions such as fasting or physical exercise. It is the major site of energy expenditure resulting from lipid and glucose catabolism. Here, we review the multifaceted roles of PPARβ/δ in skeletal muscle physiology.
Collapse
|
11
|
Xiao T, Zhu JJ, Huang S, Peng C, He S, Du J, Hong R, Chen X, Bode AM, Jiang W, Dong Z, Zheng D. Phosphorylation of NFAT3 by CDK3 induces cell transformation and promotes tumor growth in skin cancer. Oncogene 2016; 36:2835-2845. [PMID: 27893713 PMCID: PMC5442426 DOI: 10.1038/onc.2016.434] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/30/2016] [Accepted: 10/04/2016] [Indexed: 12/21/2022]
Abstract
The nuclear factor of activated T cells (NFAT) family proteins are transcription factors that regulate the expression of pro-inflammatory cytokines and other genes during the immune response. Although the NFAT proteins have been extensively investigated in the immune system, their role in cancer progression remains controversial. Here, we report that NFAT3 is highly expressed in various skin cancer cell lines and tumor tissues. Knockdown of endogenous NFAT3 expression by short hairpin RNA (shRNA) significantly inhibited tumor cell proliferation, colony formation and anchorage-independent cell growth. Furthermore, results of the mammalian two-hybrid assay showed that cyclin-dependent kinase 3 (CDK3) directly interacted with NFAT3 and phosphorylated NFAT3 at serine 259 (Ser259), which enhanced the transactivation and transcriptional activity of NFAT3. The phosphorylation site of NFAT3 was critical for epidermal growth factor (EGF)-stimulated cell transformation of the HaCaT immortalized skin cell line and mutation of NFAT3 at Ser259 led to a reduction of colony formation in soft agar. We also found that overexpressing wildtype NFAT3, but not mutant NFAT3-S259A, promoted A431 xenograft tumor growth. Importantly, we showed that CDK3, NFAT3 and phosphorylated NFAT3-Ser259 were highly expressed in skin cancer compared with normal skin tissues. These results provided evidence supporting the oncogenic potential of NFAT3 and suggested that CDK3-mediated phosphorylation of NFAT3 has an important role in skin tumorigenesis.
Collapse
Affiliation(s)
- T Xiao
- Shenzhen Key Laboratory of Translational Medicine of Tumor, Department of Cell Biology and Genetics, Shenzhen University Health Sciences Center, Shenzhen, People's Republic of China
| | - J J Zhu
- Shenzhen Key Laboratory of Translational Medicine of Tumor, Department of Cell Biology and Genetics, Shenzhen University Health Sciences Center, Shenzhen, People's Republic of China
| | - S Huang
- Shenzhen Key Laboratory of Translational Medicine of Tumor, Department of Cell Biology and Genetics, Shenzhen University Health Sciences Center, Shenzhen, People's Republic of China
| | - C Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - S He
- Shenzhen Key Laboratory of Translational Medicine of Tumor, Department of Cell Biology and Genetics, Shenzhen University Health Sciences Center, Shenzhen, People's Republic of China
| | - J Du
- Shenzhen Key Laboratory of Translational Medicine of Tumor, Department of Cell Biology and Genetics, Shenzhen University Health Sciences Center, Shenzhen, People's Republic of China
| | - R Hong
- Shenzhen Key Laboratory of Translational Medicine of Tumor, Department of Cell Biology and Genetics, Shenzhen University Health Sciences Center, Shenzhen, People's Republic of China
| | - X Chen
- Shenzhen Key Laboratory of Translational Medicine of Tumor, Department of Cell Biology and Genetics, Shenzhen University Health Sciences Center, Shenzhen, People's Republic of China
| | - A M Bode
- Hormel Institute, University of Minnesota, Austin, MN, USA
| | - W Jiang
- Shenzhen Key Laboratory of Translational Medicine of Tumor, Department of Cell Biology and Genetics, Shenzhen University Health Sciences Center, Shenzhen, People's Republic of China
| | - Z Dong
- Hormel Institute, University of Minnesota, Austin, MN, USA
| | - D Zheng
- Shenzhen Key Laboratory of Translational Medicine of Tumor, Department of Cell Biology and Genetics, Shenzhen University Health Sciences Center, Shenzhen, People's Republic of China
| |
Collapse
|
12
|
Analysis of Mammalian Cell Proliferation and Macromolecule Synthesis Using Deuterated Water and Gas Chromatography-Mass Spectrometry. Metabolites 2016; 6:metabo6040034. [PMID: 27754354 PMCID: PMC5192440 DOI: 10.3390/metabo6040034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/10/2016] [Accepted: 10/10/2016] [Indexed: 11/16/2022] Open
Abstract
Deuterated water (²H₂O), a stable isotopic tracer, provides a convenient and reliable way to label multiple cellular biomass components (macromolecules), thus permitting the calculation of their synthesis rates. Here, we have combined ²H₂O labelling, GC-MS analysis and a novel cell fractionation method to extract multiple biomass components (DNA, protein and lipids) from the one biological sample, thus permitting the simultaneous measurement of DNA (cell proliferation), protein and lipid synthesis rates. We have used this approach to characterize the turnover rates and metabolism of a panel of mammalian cells in vitro (muscle C2C12 and colon cancer cell lines). Our data show that in actively-proliferating cells, biomass synthesis rates are strongly linked to the rate of cell division. Furthermore, in both proliferating and non-proliferating cells, it is the lipid pool that undergoes the most rapid turnover when compared to DNA and protein. Finally, our data in human colon cancer cell lines reveal a marked heterogeneity in the reliance on the de novo lipogenic pathway, with the cells being dependent on both 'self-made' and exogenously-derived fatty acid.
Collapse
|
13
|
Torgan CE, Daniels MP. Calcineurin Localization in Skeletal Muscle Offers Insights into Potential New Targets. J Histochem Cytochem 2016; 54:119-28. [PMID: 16174789 DOI: 10.1369/jhc.5a6769.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The Ca2+/calmodulin-activated protein phosphatase, calcineurin, is believed to regulate the development and function of skeletal and cardiac muscle. Striated muscle contains many calcineurin substrates, a few of which have been colocalized or found in molecular complexes with calcineurin. We examined the subcellular distribution of calcineurin in developing rat skeletal muscle cells and adult mouse skeletal muscle fibers by immunofluorescence microscopy. We found low levels of calcineurin immunoreactivity in the cytoplasm of myoblasts and higher levels in cytoplasmic vesicles of myotubes. Most of these vesicles were not immunoreactive for ryanodine receptors and, those that were, represented a small fraction of nascent triad junctions. In adult myofibers, calcineurin was largely associated with triads. Weaker calcineurin immunoreactivity occurred in the sarcoplasmic reticulum at the level of the M line. Unexpectedly, we found tiny clusters of calcineurin associated with nucleoli of developing myofiber nuclei. There were one to three clusters per nucleolus, either within or at the edges of fibrillar centers where ribosomal genes are transcribed. This suggests a role for calcineurin in regulating ribosome synthesis. Our findings suggest a variety of potential new targets and pathways through which calcineurin could regulate skeletal muscle development and plasticity and underscore the importance of spatial specificity in this regulation.
Collapse
Affiliation(s)
- Carol E Torgan
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, 50 South Drive, Bethesda, Maryland 20892-8017, USA
| | | |
Collapse
|
14
|
Tu MK, Levin JB, Hamilton AM, Borodinsky LN. Calcium signaling in skeletal muscle development, maintenance and regeneration. Cell Calcium 2016; 59:91-7. [PMID: 26944205 DOI: 10.1016/j.ceca.2016.02.005] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/06/2016] [Accepted: 02/10/2016] [Indexed: 12/28/2022]
Abstract
Skeletal muscle-specific stem cells are pivotal for tissue development and regeneration. Muscle plasticity, inherent in these processes, is also essential for daily life activities. Great advances and efforts have been made in understanding the function of the skeletal muscle-dedicated stem cells, called muscle satellite cells, and the specific signaling mechanisms that activate them for recruitment in the repair of the injured muscle. Elucidating these signaling mechanisms may contribute to devising therapies for muscular injury or disease. Here we review the studies that have contributed to our understanding of how calcium signaling regulates skeletal muscle development, homeostasis and regeneration, with a focus on the calcium dynamics and calcium-dependent effectors that participate in these processes.
Collapse
Affiliation(s)
- Michelle K Tu
- Department of Physiology and Membrane Biology and Shriners Hospital for Children Northern California, University of California Davis, Sacramento, CA 95817, United States
| | - Jacqueline B Levin
- Department of Physiology and Membrane Biology and Shriners Hospital for Children Northern California, University of California Davis, Sacramento, CA 95817, United States
| | - Andrew M Hamilton
- Department of Physiology and Membrane Biology and Shriners Hospital for Children Northern California, University of California Davis, Sacramento, CA 95817, United States
| | - Laura N Borodinsky
- Department of Physiology and Membrane Biology and Shriners Hospital for Children Northern California, University of California Davis, Sacramento, CA 95817, United States.
| |
Collapse
|
15
|
Sáez JC, Cisterna BA, Vargas A, Cardozo CP. Regulation of pannexin and connexin channels and their functional role in skeletal muscles. Cell Mol Life Sci 2015; 72:2929-35. [PMID: 26084874 PMCID: PMC11113819 DOI: 10.1007/s00018-015-1968-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/11/2015] [Indexed: 11/30/2022]
Abstract
Myogenic precursor cells express connexins (Cx) and pannexins (Panx), proteins that form different membrane channels involved in cell-cell communication. Cx channels connect either the cytoplasm of adjacent cells, called gap junction channels (GJC), or link the cytoplasm with the extracellular space, termed hemichannels (HC), while Panx channels only support the latter. In myoblasts, Panx1 HCs play a critical role in myogenic differentiation, and Cx GJCs and possibly Cx HCs coordinate metabolic responses during later steps of myogenesis. After innervation, myofibers do not express Cxs, but still express Panx1. In myotubes and innervated myofibers, Panx1 HCs allow release of adenosine triphosphate and thus they might be involved in skeletal muscle plasticity. In addition, Panx1 HCs present in adult myofibers mediate adenosine triphosphate release and glucose uptake required for potentiation of muscle contraction. Under pathological conditions, such as upon denervation and spinal cord injury, levels of Panx1 are upregulated. However, Panx1(-/-) mice show similar degree of atrophy as denervated wild-type muscles. Skeletal muscles also express Cx HCs in the sarcolemma after denervation or spinal cord injury, plus other non-selective membrane channels, including purinergic P2X7 receptors and transient receptor potential type V2 channels. The absence of Cx43 and Cx45 is sufficient to drastically reduce denervation atrophy. Moreover, inflammatory cytokines also induce the expression of Cxs in myofibers, suggesting the expression of these Cxs as a common factor for myofiber degeneration under diverse pathological conditions. Inhibitors of skeletal muscle Cx HCs could be promising tools to prevent muscle wasting induced by conditions associated with synaptic dysfunction and inflammation.
Collapse
Affiliation(s)
- Juan C Sáez
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile,
| | | | | | | |
Collapse
|
16
|
Riquelme MA, Cea LA, Vega JL, Puebla C, Vargas AA, Shoji KF, Subiabre M, Sáez JC. Pannexin channels mediate the acquisition of myogenic commitment in C2C12 reserve cells promoted by P2 receptor activation. Front Cell Dev Biol 2015; 3:25. [PMID: 26000275 PMCID: PMC4422085 DOI: 10.3389/fcell.2015.00025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/17/2015] [Indexed: 11/13/2022] Open
Abstract
The acquisition of myoblast commitment to the myogenic linage requires rises in intracellular free Ca2+ concentration ([Ca2+]i). Putative cell membrane pathways involved in these [Ca2+]i increments are P2 receptors (P2Rs) as well as connexin (Cx) and/or pannexin (Panx) hemichannels and channels (Cx HChs and Panx Chs), respectively, which are known to permeate Ca2+. Reserve cells (RCs) are uncommitted myoblasts obtained from differentiated C2C12 cell cultures, which acquire commitment upon replating. Regarding these cells, we found that extracellular ATP increases the [Ca2+]i via P2Rs. Moreover, ATP increases the plasma membrane permeability to small molecules and a non-selective membrane current, both of which were inhibited by Cx HCh/Panx1Ch blockers. However, RCs exposed to divalent cation-free saline solution, which is known to activate Cx HChs (but not Panx Chs), did not enhance membrane permeability, thus ruling out the possible involvement of Cx HChs. Moreover, ATP-induced membrane permeability was inhibited with blockers of P2Rs that activate Panx Chs. In addition, exogenous ATP induced the expression of myogenic commitment and increased MyoD levels, which was prevented by the inhibition of P2Rs or knockdown of Panx1 Chs. Similarly, increases in MyoD levels induced by ATP released by RCs were inhibited by Panx Ch/Cx HCh blockers. Myogenic commitment acquisition thus requires a feed-forward mechanism mediated by extracellular ATP, P2Rs, and Panx Chs.
Collapse
Affiliation(s)
- Manuel A Riquelme
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Luis A Cea
- Program of Anatomy and Developmental Biology, Institute of Biomedical Science, Faculty of Medicine, University of Chile Santiago, Chile
| | - José L Vega
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile ; Experimental Physiology Laboratory (EPhyL), Instituto Antofagasta, Universidad de Antofagasta Antofagasta, Chile
| | - Carlos Puebla
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Aníbal A Vargas
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Kenji F Shoji
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Mario Subiabre
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Juan C Sáez
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile ; Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto Milenio, Universidad de Valparaíso Valparaíso, Chile
| |
Collapse
|
17
|
Simionescu-Bankston A, Pichavant C, Canner JP, Apponi LH, Wang Y, Steeds C, Olthoff JT, Belanto JJ, Ervasti JM, Pavlath GK. Creatine kinase B is necessary to limit myoblast fusion during myogenesis. Am J Physiol Cell Physiol 2015; 308:C919-31. [PMID: 25810257 DOI: 10.1152/ajpcell.00029.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/19/2015] [Indexed: 11/22/2022]
Abstract
Myoblast fusion is critical for proper muscle growth and regeneration. During myoblast fusion, the localization of some molecules is spatially restricted; however, the exact reason for such localization is unknown. Creatine kinase B (CKB), which replenishes local ATP pools, localizes near the ends of cultured primary mouse myotubes. To gain insights into the function of CKB, we performed a yeast two-hybrid screen to identify CKB-interacting proteins. We identified molecules with a broad diversity of roles, including actin polymerization, intracellular protein trafficking, and alternative splicing, as well as sarcomeric components. In-depth studies of α-skeletal actin and α-cardiac actin, two predominant muscle actin isoforms, demonstrated their biochemical interaction and partial colocalization with CKB near the ends of myotubes in vitro. In contrast to other cell types, specific knockdown of CKB did not grossly affect actin polymerization in myotubes, suggesting other muscle-specific roles for CKB. Interestingly, knockdown of CKB resulted in significantly increased myoblast fusion and myotube size in vitro, whereas knockdown of creatine kinase M had no effect on these myogenic parameters. Our results suggest that localized CKB plays a key role in myotube formation by limiting myoblast fusion during myogenesis.
Collapse
Affiliation(s)
- Adriana Simionescu-Bankston
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University School of Medicine, Atlanta, Georgia; Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia; and
| | - Christophe Pichavant
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia; and
| | - James P Canner
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia; and
| | - Luciano H Apponi
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia; and
| | - Yanru Wang
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia; and
| | - Craig Steeds
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia; and
| | - John T Olthoff
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Joseph J Belanto
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - James M Ervasti
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Grace K Pavlath
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia; and
| |
Collapse
|
18
|
Oishi Y, Tsukamoto H, Yokokawa T, Hirotsu K, Shimazu M, Uchida K, Tomi H, Higashida K, Iwanaka N, Hashimoto T. Mixed lactate and caffeine compound increases satellite cell activity and anabolic signals for muscle hypertrophy. J Appl Physiol (1985) 2015; 118:742-9. [DOI: 10.1152/japplphysiol.00054.2014] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined whether a mixed lactate and caffeine compound (LC) could effectively elicit proliferation and differentiation of satellite cells or activate anabolic signals in skeletal muscles. We cultured C2C12 cells with either lactate or LC for 6 h. We found that lactate significantly increased myogenin and follistatin protein levels and phosphorylation of P70S6K while decreasing the levels of myostatin relative to the control. LC significantly increased protein levels of Pax7, MyoD, and Ki67 in addition to myogenin, relative to control. LC also significantly increased follistatin expression relative to control and stimulated phosphorylation of mTOR and P70S6K. In an in vivo study, male F344/DuCrlCrlj rats were assigned to control (Sed, n = 10), exercise (Ex, n = 12), and LC supplementation (LCEx, n = 13) groups. LC was orally administered daily. The LCEx and Ex groups were exercised on a treadmill, running for 30 min at low intensity every other day for 4 wk. The LCEx group experienced a significant increase in the mass of the gastrocnemius (GA) and tibialis anterior (TA) relative to both the Sed and Ex groups. Furthermore, the LCEx group showed a significant increase in the total DNA content of TA compared with the Sed group. The LCEx group experienced a significant increase in myogenin and follistatin expression of GA relative to the Ex group. These results suggest that administration of LC can effectively increase muscle mass concomitant with elevated numbers of myonuclei, even with low-intensity exercise training, via activated satellite cells and anabolic signals.
Collapse
Affiliation(s)
- Yoshimi Oishi
- Graduate school of Sport and Health Science, Ritsumeikan University, Shiga
| | - Hayato Tsukamoto
- Graduate school of Sport and Health Science, Ritsumeikan University, Shiga
| | | | - Keisuke Hirotsu
- Central Research and Development Laboratory, Kobayashi Pharmaceutical, Osaka
| | - Mariko Shimazu
- Central Research and Development Laboratory, Kobayashi Pharmaceutical, Osaka
| | - Kenji Uchida
- Central Research and Development Laboratory, Kobayashi Pharmaceutical, Osaka
| | - Hironori Tomi
- Central Research and Development Laboratory, Kobayashi Pharmaceutical, Osaka
| | - Kazuhiko Higashida
- Faculty of Sport Science, Waseda University, Saitama; and
- Faculty of Sport and Health Science, Ritsumeikan University, Shiga, Japan
| | - Nobumasa Iwanaka
- Faculty of Sport and Health Science, Ritsumeikan University, Shiga, Japan
| | - Takeshi Hashimoto
- Graduate school of Sport and Health Science, Ritsumeikan University, Shiga
- Faculty of Sport and Health Science, Ritsumeikan University, Shiga, Japan
| |
Collapse
|
19
|
Neels JG, Grimaldi PA. Physiological functions of peroxisome proliferator-activated receptor β. Physiol Rev 2014; 94:795-858. [PMID: 24987006 DOI: 10.1152/physrev.00027.2013] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The peroxisome proliferator-activated receptors, PPARα, PPARβ, and PPARγ, are a family of transcription factors activated by a diversity of molecules including fatty acids and fatty acid metabolites. PPARs regulate the transcription of a large variety of genes implicated in metabolism, inflammation, proliferation, and differentiation in different cell types. These transcriptional regulations involve both direct transactivation and interaction with other transcriptional regulatory pathways. The functions of PPARα and PPARγ have been extensively documented mainly because these isoforms are activated by molecules clinically used as hypolipidemic and antidiabetic compounds. The physiological functions of PPARβ remained for a while less investigated, but the finding that specific synthetic agonists exert beneficial actions in obese subjects uplifted the studies aimed to elucidate the roles of this PPAR isoform. Intensive work based on pharmacological and genetic approaches and on the use of both in vitro and in vivo models has considerably improved our knowledge on the physiological roles of PPARβ in various cell types. This review will summarize the accumulated evidence for the implication of PPARβ in the regulation of development, metabolism, and inflammation in several tissues, including skeletal muscle, heart, skin, and intestine. Some of these findings indicate that pharmacological activation of PPARβ could be envisioned as a therapeutic option for the correction of metabolic disorders and a variety of inflammatory conditions. However, other experimental data suggesting that activation of PPARβ could result in serious adverse effects, such as carcinogenesis and psoriasis, raise concerns about the clinical use of potent PPARβ agonists.
Collapse
Affiliation(s)
- Jaap G Neels
- Institut National de la Santé et de la Recherche Médicale U 1065, Mediterranean Center of Molecular Medicine (C3M), Team "Adaptive Responses to Immuno-metabolic Dysregulations," Nice, France; and Faculty of Medicine, University of Nice Sophia-Antipolis, Nice, France
| | - Paul A Grimaldi
- Institut National de la Santé et de la Recherche Médicale U 1065, Mediterranean Center of Molecular Medicine (C3M), Team "Adaptive Responses to Immuno-metabolic Dysregulations," Nice, France; and Faculty of Medicine, University of Nice Sophia-Antipolis, Nice, France
| |
Collapse
|
20
|
Cea LA, Riquelme MA, Vargas AA, Urrutia C, Sáez JC. Pannexin 1 channels in skeletal muscles. Front Physiol 2014; 5:139. [PMID: 24782784 PMCID: PMC3990038 DOI: 10.3389/fphys.2014.00139] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/21/2014] [Indexed: 11/13/2022] Open
Abstract
Normal myotubes and adult innervated skeletal myofibers express the glycoprotein pannexin1 (Panx1). Six of them form a “gap junction hemichannel-like” structure that connects the cytoplasm with the extracellular space; here they will be called Panx1 channels. These are poorly selective channels permeable to ions, small metabolic substrate, and signaling molecules. So far little is known about the role of Panx1 channels in muscles but skeletal muscles of Panx1−/− mice do not show an evident phenotype. Innervated adult fast and slow skeletal myofibers show Panx1 reactivity in close proximity to dihydropyridine receptors in the sarcolemma of T-tubules. These Panx1 channels are activated by electrical stimulation and extracellular ATP. Panx1 channels play a relevant role in potentiation of muscle contraction because they allow release of ATP and uptake of glucose, two molecules required for this response. In support of this notion, the absence of Panx1 abrogates the potentiation of muscle contraction elicited by repetitive electrical stimulation, which is reversed by exogenously applied ATP. Phosphorylation of Panx1 Thr and Ser residues might be involved in Panx1 channel activation since it is enhanced during potentiation of muscle contraction. Under denervation, Panx1 levels are upregulated and this partially explains the reduction in electrochemical gradient, however its absence does not prevent denervation-induced atrophy but prevents the higher oxidative state. Panx1 also forms functional channels at the cell surface of myotubes and their functional state has been associated with intracellular Ca2+ signals and regulation of myotube plasticity evoked by electrical stimulation. We proposed that Panx1 channels participate as ATP channels and help to keep a normal oxidative state in skeletal muscles.
Collapse
Affiliation(s)
- Luis A Cea
- Departamento de Fisiología, Pontificia Universidad Católica de Chile Santiago, Chile ; Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso Valparaíso, Chile
| | - Manuel A Riquelme
- Department of Biochemistry, University of Texas Health Science Center San Antonio, TX, USA
| | - Anibal A Vargas
- Departamento de Fisiología, Pontificia Universidad Católica de Chile Santiago, Chile ; Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso Valparaíso, Chile
| | - Carolina Urrutia
- Departamento de Fisiología, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Juan C Sáez
- Departamento de Fisiología, Pontificia Universidad Católica de Chile Santiago, Chile ; Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso Valparaíso, Chile
| |
Collapse
|
21
|
Hudson MB, Woodworth-Hobbs ME, Zheng B, Rahnert JA, Blount MA, Gooch JL, Searles CD, Price SR. miR-23a is decreased during muscle atrophy by a mechanism that includes calcineurin signaling and exosome-mediated export. Am J Physiol Cell Physiol 2013; 306:C551-8. [PMID: 24336651 DOI: 10.1152/ajpcell.00266.2013] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Skeletal muscle atrophy is prevalent in chronic diseases, and microRNAs (miRs) may play a key role in the wasting process. miR-23a was previously shown to inhibit the expression of atrogin-1 and muscle RING-finger protein-1 (MuRF1) in muscle. It also was reported to be regulated by cytoplasmic nuclear factor of activated T cells 3 (NFATc3) in cardiomyocytes. The objective of this study was to determine if miR-23a is regulated during muscle atrophy and to evaluate the relationship between calcineurin (Cn)/NFAT signaling and miR-23a expression in skeletal muscle cells during atrophy. miR-23a was decreased in the gastrocnemius of rats with acute streptozotocin-induced diabetes, a condition known to increase atrogin-1 and MuRF1 expression and cause atrophy. Treatment of C2C12 myotubes with dexamethasone (Dex) for 48 h also reduced miR-23a as well as RCAN1.4 mRNA, which is transcriptionally regulated by NFAT. NFATc3 nuclear localization and the amount of miR-23a decreased rapidly within 1 h of Dex administration, suggesting a link between Cn signaling and miR-23a. The level of miR-23a was lower in primary myotubes from mice lacking the α- or β-isoform of the CnA catalytic subunit than wild-type mice. Dex did not further suppress miR-23a in myotubes from Cn-deficient mice. Overexpression of CnAβ in C2C12 myotubes prevented Dex-induced suppression of miR-23a. Finally, miR-23a was present in exosomes isolated from the media of C2C12 myotubes, and Dex increased its exosomal abundance. Dex did not alter the number of exosomes released into the media. We conclude that atrophy-inducing conditions downregulate miR-23a in muscle by mechanisms involving attenuated Cn/NFAT signaling and selective packaging into exosomes.
Collapse
Affiliation(s)
- Matthew B Hudson
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Adams GR, Bamman MM. Characterization and regulation of mechanical loading-induced compensatory muscle hypertrophy. Compr Physiol 2013; 2:2829-70. [PMID: 23720267 DOI: 10.1002/cphy.c110066] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In mammalian systems, skeletal muscle exists in a dynamic state that monitors and regulates the physiological investment in muscle size to meet the current level of functional demand. This review attempts to consolidate current knowledge concerning development of the compensatory hypertrophy that occurs in response to a sustained increase in the mechanical loading of skeletal muscle. Topics covered include: defining and measuring compensatory hypertrophy, experimental models, loading stimulus parameters, acute responses to increased loading, hyperplasia, myofiber-type adaptations, the involvement of satellite cells, mRNA translational control, mechanotransduction, and endocrinology. The authors conclude with their impressions of current knowledge gaps in the field that are ripe for future study.
Collapse
Affiliation(s)
- Gregory R Adams
- Department of Physiology and Biophysics, University of California Irvine, Irvine, California, USA.
| | | |
Collapse
|
23
|
Skeletal muscle function during exercise-fine-tuning of diverse subsystems by nitric oxide. Int J Mol Sci 2013; 14:7109-39. [PMID: 23538841 PMCID: PMC3645679 DOI: 10.3390/ijms14047109] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/17/2013] [Accepted: 03/19/2013] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle is responsible for altered acute and chronic workload as induced by exercise. Skeletal muscle adaptations range from immediate change of contractility to structural adaptation to adjust the demanded performance capacities. These processes are regulated by mechanically and metabolically induced signaling pathways, which are more or less involved in all of these regulations. Nitric oxide is one of the central signaling molecules involved in functional and structural adaption in different cell types. It is mainly produced by nitric oxide synthases (NOS) and by non-enzymatic pathways also in skeletal muscle. The relevance of a NOS-dependent NO signaling in skeletal muscle is underlined by the differential subcellular expression of NOS1, NOS2, and NOS3, and the alteration of NO production provoked by changes of workload. In skeletal muscle, a variety of highly relevant tasks to maintain skeletal muscle integrity and proper signaling mechanisms during adaptation processes towards mechanical and metabolic stimulations are taken over by NO signaling. The NO signaling can be mediated by cGMP-dependent and -independent signaling, such as S-nitrosylation-dependent modulation of effector molecules involved in contractile and metabolic adaptation to exercise. In this review, we describe the most recent findings of NO signaling in skeletal muscle with a special emphasis on exercise conditions. However, to gain a more detailed understanding of the complex role of NO signaling for functional adaptation of skeletal muscle (during exercise), additional sophisticated studies are needed to provide deeper insights into NO-mediated signaling and the role of non-enzymatic-derived NO in skeletal muscle physiology.
Collapse
|
24
|
Mitochondria as a potential regulator of myogenesis. ScientificWorldJournal 2013; 2013:593267. [PMID: 23431256 PMCID: PMC3574753 DOI: 10.1155/2013/593267] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 01/16/2013] [Indexed: 12/24/2022] Open
Abstract
Recent studies have shown that mitochondria play a role in the regulation of myogenesis. Indeed, the abundance, morphology, and functional properties of mitochondria become altered when the myoblasts differentiate into myotubes. For example, mitochondrial mass/volume, mtDNA copy number, and mitochondrial respiration are markedly increased after the onset of myogenic differentiation. Besides, mitochondrial enzyme activity is also increased, suggesting that the metabolic shift from glycolysis to oxidative phosphorylation as the major energy source occurs during myogenic differentiation. Several lines of evidence suggest that impairment of mitochondrial function and activity blocks myogenic differentiation. However, yet little is known about the molecular mechanisms underlying the regulation of myogenesis by mitochondria. Understanding how mitochondria are involved in myogenesis will provide a valuable insight into the underlying mechanisms that regulate the maintenance of cellular homeostasis. Here, we will summarize the current knowledge regarding the role of mitochondria as a potential regulator of myogenesis.
Collapse
|
25
|
Abou-Khalil R, Le Grand F, Chazaud B. Human and murine skeletal muscle reserve cells. Methods Mol Biol 2013; 1035:165-77. [PMID: 23959990 DOI: 10.1007/978-1-62703-508-8_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Study of stem cell phenotype and functions requires their proper isolation. Stem cells isolated from skeletal muscle are a useful tool to explore molecular pathways involved in the regulation of myogenesis. Among progenitor cells, a subset of cells, called reserve cells, has been identified, in vitro, in myogenic cell cultures. This subset of cells remains undifferentiated while the main population of progenitor cells commits to terminal myogenic differentiation. When replated, these reserve cells grow as new colonies of progenitors. At the time of differentiation, they reform both differentiated myotubes and undifferentiated reserve cells. Here, we present a protocol to obtain and further isolate reserve cells from both human and murine myogenic cell cultures, together with techniques to analyze their cell cycle status.
Collapse
|
26
|
Li WX, Chen SF, Chen LP, Yang GY, Li JT, Liu HZ, Zhu W. Thimerosal-induced apoptosis in mouse C2C12 myoblast cells occurs through suppression of the PI3K/Akt/survivin pathway. PLoS One 2012; 7:e49064. [PMID: 23145070 PMCID: PMC3492179 DOI: 10.1371/journal.pone.0049064] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 10/09/2012] [Indexed: 12/04/2022] Open
Abstract
Background Thimerosal, a mercury-containing preservative, is one of the most widely used preservatives and found in a variety of biological products. Concerns over its possible toxicity have reemerged recently due to its use in vaccines. Thimerosal has also been reported to be markedly cytotoxic to neural tissue. However, little is known regarding thimerosal-induced toxicity in muscle tissue. Therefore, we investigated the cytotoxic effect of thimerosal and its possible mechanisms on mouse C2C12 myoblast cells. Methodology/Principal Findings The study showed that C2C12 myoblast cells underwent inhibition of proliferation and apoptosis after exposure to thimerosal (125–500 nM) for 24, 48 and 72 h. Thimerosal caused S phase arrest and induced apoptosis as assessed by flow cytometric analysis, Hoechst staining and immunoblotting. The data revealed that thimerosal could trigger the leakage of cytochrome c from mitochondria, followed by cleavage of caspase-9 and caspase-3, and that an inhibitor of caspase could suppress thimerosal-induced apoptosis. Thimerosal inhibited the phosphorylation of Aktser473 and survivin expression. Wortmannin, a PI3K inhibitor, inhibited Akt activity and decreased survivin expression, resulting in increased thimerosal-induced apoptosis in C2C12 cells, while the activation of PI3K/Akt pathway by mIGF-I (50 ng/ml) increased the expression of survivin and attenuated apoptosis. Furthermore, the inhibition of survivin expression by siRNA enhanced thimerosal-induced cell apoptosis, while overexpression of survivin prevented thimerosal-induced apoptosis. Taken together, the data show that the PI3K/Akt/survivin pathway plays an important role in the thimerosal-induced apoptosis in C2C12 cells. Conclusions/Significance Our results suggest that in C2C12 myoblast cells, thimerosal induces S phase arrest and finally causes apoptosis via inhibition of PI3K/Akt/survivin signaling followed by activation of the mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Wen-Xue Li
- Department of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Si-Fan Chen
- Department of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Li-Ping Chen
- Faculty of Toxicology, School of Public Health, Sun Yet-sen University, Guangzhou, China
| | - Guang-Yu Yang
- Department of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Jun-Tao Li
- Department of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Hua-Zhang Liu
- Department of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
- * E-mail:
| | - Wei Zhu
- Department of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| |
Collapse
|
27
|
Maltin CA. Muscle development and obesity: Is there a relationship? Organogenesis 2012; 4:158-69. [PMID: 19279728 DOI: 10.4161/org.4.3.6312] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 05/20/2008] [Indexed: 12/25/2022] Open
Abstract
The formation of skeletal muscle from the epithelial somites involves a series of events triggered by temporally and spatially discrete signals resulting in the generation of muscle fibers which vary in their contractile and metabolic nature. The fiber type composition of muscles varies between individuals and it has now been found that there are differences in fiber type proportions between lean and obese animals and humans. Amongst the possible causes of obesity, it has been suggested that inappropriate prenatal environments may 'program' the fetus and may lead to increased risks for disease in adult life. The characteristics of muscle are both heritable and plastic, giving the tissue some ability to adapt to signals and stimuli both pre and postnatally. Given that muscle is a site of fatty acid oxidation and carbohydrate metabolism and that its development can be changed by prenatal events, it is interesting to examine the possible relationship between muscle development and the risk of obesity.
Collapse
Affiliation(s)
- Charlotte A Maltin
- School of Pharmacy and Life Sciences; Robert Gordon University; Aberdeen UK
| |
Collapse
|
28
|
Cea LA, Riquelme MA, Cisterna BA, Puebla C, Vega JL, Rovegno M, Sáez JC. Connexin- and pannexin-based channels in normal skeletal muscles and their possible role in muscle atrophy. J Membr Biol 2012; 245:423-36. [PMID: 22850938 DOI: 10.1007/s00232-012-9485-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 06/28/2012] [Indexed: 12/13/2022]
Abstract
Precursor cells of skeletal muscles express connexins 39, 43 and 45 and pannexin1. In these cells, most connexins form two types of membrane channels, gap junction channels and hemichannels, whereas pannexin1 forms only hemichannels. All these channels are low-resistance pathways permeable to ions and small molecules that coordinate developmental events. During late stages of skeletal muscle differentiation, myofibers become innervated and stop expressing connexins but still express pannexin1 hemichannels that are potential pathways for the ATP release required for potentiation of the contraction response. Adult injured muscles undergo regeneration, and connexins are reexpressed and form membrane channels. In vivo, connexin reexpression occurs in undifferentiated cells that form new myofibers, favoring the healing process of injured muscle. However, differentiated myofibers maintained in culture for 48 h or treated with proinflammatory cytokines for less than 3 h also reexpress connexins and only form functional hemichannels at the cell surface. We propose that opening of these hemichannels contributes to drastic changes in electrochemical gradients, including reduction of membrane potential, increases in intracellular free Ca(2+) concentration and release of diverse metabolites (e.g., NAD(+) and ATP) to the extracellular milieu, contributing to multiple metabolic and physiologic alterations that characterize muscles undergoing atrophy in several acquired and genetic human diseases. Consequently, inhibition of connexin hemichannels expressed by injured or denervated skeletal muscles might reduce or prevent deleterious changes triggered by conditions that promote muscle atrophy.
Collapse
Affiliation(s)
- Luis A Cea
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile,
| | | | | | | | | | | | | |
Collapse
|
29
|
Bi P, Kuang S. Meat Science and Muscle Biology Symposium: stem cell niche and postnatal muscle growth. J Anim Sci 2012; 90:924-35. [PMID: 22100594 PMCID: PMC3437673 DOI: 10.2527/jas.2011-4594] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Stem cell niche plays a critical role in regulating the behavior and function of adult stem cells that underlie tissue growth, maintenance, and regeneration. In the skeletal muscle, stem cells, called satellite cells, contribute to postnatal muscle growth and hypertrophy, and thus, meat production in agricultural animals. Satellite cells are located adjacent to mature muscle fibers underneath a sheath of basal lamina. Microenvironmental signals from extracellular matrix mediated by the basal lamina and from the host myofiber both impinge on satellite cells to regulate their activity. Furthermore, several types of muscle interstitial cells, including intramuscular preadipocytes and connective tissue fibroblasts, have recently been shown to interact with satellite cells and actively regulate the growth and regeneration of postnatal skeletal muscles. From this regard, interstitial adipogenic cells are not only important for marbling and meat quality, but also represent an additional cellular component of the satellite cell niche. At the molecular level, these interstitial cells may interact with satellite cells through cell surface ligands, such as delta-like 1 homolog (Dlk1) protein whose overexpression is thought to be responsible for muscle hypertrophy in callipyge sheep. In fact, extracellular Dlk1 protein has been shown to promote the myogenic differentiation of satellite cells. Understanding the cellular and molecular mechanisms within the stem cell niche that regulate satellite cell differentiation and maintain muscle homeostasis may lead to promising approaches to optimizing muscle growth and composition, thus improving meat production and quality.
Collapse
Affiliation(s)
- P. Bi
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - S. Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
30
|
Inhibitors of tyrosine phosphatases and apoptosis reprogram lineage-marked differentiated muscle to myogenic progenitor cells. ACTA ACUST UNITED AC 2012; 18:1153-66. [PMID: 21944754 DOI: 10.1016/j.chembiol.2011.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 07/11/2011] [Accepted: 07/13/2011] [Indexed: 12/16/2022]
Abstract
Muscle regeneration declines with aging and myopathies, and reprogramming of differentiated muscle cells to their progenitors can serve as a robust source of therapeutic cells. Here, we used the Cre-Lox method to specifically label postmitotic primary multinucleated myotubes and then utilized small molecule inhibitors of tyrosine phosphatases and apoptosis to dedifferentiate these myotubes into proliferating myogenic cells, without gene overexpression. The reprogrammed, fusion competent, muscle precursor cells contributed to muscle regeneration in vitro and in vivo and were unequivocally distinguished from reactivated reserve cells because of the lineage marking method. The small molecule inhibitors downregulated cell cycle inhibitors and chromatin remodeling factors known to promote and maintain the cell fate of myotubes, facilitating cell fate reversal. Our findings enhance understanding of cell-fate determination and create novel therapeutic approaches for improved muscle repair.
Collapse
|
31
|
Minetti GC, Feige JN, Rosenstiel A, Bombard F, Meier V, Werner A, Bassilana F, Sailer AW, Kahle P, Lambert C, Glass DJ, Fornaro M. G i2 Signaling Promotes Skeletal Muscle Hypertrophy, Myoblast Differentiation, and Muscle Regeneration. Sci Signal 2011; 4:ra80. [DOI: 10.1126/scisignal.2002038] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Seyer P, Grandemange S, Rochard P, Busson M, Pessemesse L, Casas F, Cabello G, Wrutniak-Cabello C. P43-dependent mitochondrial activity regulates myoblast differentiation and slow myosin isoform expression by control of Calcineurin expression. Exp Cell Res 2011; 317:2059-71. [PMID: 21664352 DOI: 10.1016/j.yexcr.2011.05.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 05/17/2011] [Accepted: 05/19/2011] [Indexed: 11/18/2022]
Abstract
We have previously shown that mitochondrial protein synthesis regulates myoblast differentiation, partly through the control of c-Myc expression, a cellular oncogene regulating myogenin expression and myoblast withdrawal from the cell cycle. In this study we provide evidence of the involvement of Calcineurin in this regulation. In C2C12 myoblasts, inhibition of mitochondrial protein synthesis by chloramphenicol decreases Calcineurin expression. Conversely, stimulation of this process by overexpressing the T3 mitochondrial receptor (p43) increases Calcineurin expression. Moreover, expression of a constitutively active Calcineurin (ΔCN) stimulates myoblast differentiation, whereas a Calcineurin antisense has the opposite effect. Lastly, ΔCN expression or stimulation of mitochondrial protein synthesis specifically increases slow myosin heavy chain expression. In conclusion, these data clearly suggest that, partly via Calcineurin expression, mitochondrial protein synthesis is involved in muscle development through the control of myoblast differentiation and probably the acquisition of the contractile and metabolic phenotype of muscle fibres.
Collapse
Affiliation(s)
- Pascal Seyer
- UMR 866 Différenciation Cellulaire et Croissance (INRA-UMI-UMII), Unité d'Endocrinologie Cellulaire, Institut National de la Recherche Agronomique (INRA), 2 Place Viala, 34060 Montpellier Cedex 1, France
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Koning M, Werker PMN, van Luyn MJA, Harmsen MC. Hypoxia promotes proliferation of human myogenic satellite cells: a potential benefactor in tissue engineering of skeletal muscle. Tissue Eng Part A 2011; 17:1747-58. [PMID: 21438665 DOI: 10.1089/ten.tea.2010.0624] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Facial paralysis is a physically, psychologically, and socially disabling condition. Innovative treatment strategies based on regenerative medicine, in particular tissue engineering of skeletal muscle, are promising for treatment of patients with facial paralysis. The natural source for tissue-engineered muscle would be muscle stem cells, that is, human satellite cells (SC). In vivo, SC respond to hypoxic, ischemic muscle damage by activation, proliferation, differentiation to myotubes, and maturation to muscle fibers, while maintaining their reserve pool of SC. Therefore, our hypothesis is that hypoxia improves proliferation and differentiation of SC. During tissue engineering, a three-dimensional construct, or implanting SC in vivo, SC will encounter hypoxic environments. Thus, we set out to test our hypothesis on SC in vitro. During the first five passages, hypoxically cultured SC proliferated faster than their counterparts under normoxia. Moreover, also at higher passages, a switch from normoxia to hypoxia enhanced proliferation of SC. Hypoxia did not affect the expression of SC markers desmin and NCAM. However, the average surface expression per cell of NCAM was downregulated by hypoxia, and it also downregulated the gene expression of NCAM. The gene expression of the myogenic transcription factors PAX7, MYF5, and MYOD was upregulated by hypoxia. Moreover, gene expression of structural proteins α-sarcomeric actin, and myosins MYL1 and MYL3 was upregulated by hypoxia during differentiation. This indicates that hypoxia promotes a promyogenic shift in SC. Finally, Pax7 expression was not influenced by hypoxia and maintained in a subset of mononucleated cells, whereas these cells were devoid of structural muscle proteins. This suggests that during myogenesis in vitro, at least part of the SC adopt a quiescent, that is, reserve cells, phenotype. In conclusion, tissue engineering under hypoxic conditions would seem favorable in terms of myogenic proliferation, while maintaining the quiescent SC pool.
Collapse
Affiliation(s)
- Merel Koning
- Department of Plastic Surgery, University of Groningen, Groningen, The Netherlands
| | | | | | | |
Collapse
|
34
|
Abstract
The fate of stem cell is regulated by cues received from the surrounding area. Recently, the concept of "stem cell zone"--rather than a predefined niche--introduced the notion of dynamic and permanent interactions between stem cells and their microenvironment. In adult skeletal muscle, satellite cells are considered as the main stem cells responsible for muscle repair and maintenance. They are localized close to vessels regardless their state of activation and differentiation. Moreover, the number of satellite cells is positively correlated to the capillarization of the myofiber. Angiogenesis has been known for a long time to be essential for muscle repair. However, relationships between vessel cells and satellite/myogenic cells that govern myogenic cell expansion, myogenesis, and angiogenesis have been only recently investigated. In this chapter, we discuss the possible existence of a vascular amplifying/differentiating niche, in an attempt to reconciliate several recent observations showing that satellite/myogenic cells interact with various cell types during the time course of muscle regeneration. Indeed, endothelial cells (ECs) stimulate myogenic cell growth and, inversely, differentiating myogenic cells promote angiogenesis. However, stromal cells may also provide some proliferating or differentiating cues to satellite/myogenic cells in this vascular area. Although some molecular effectors have been identified, including growth factors and cytokines, molecular regulations that occur within this vascular amplifying/differentiating niche requires further investigation. At the end of muscle repair, maturation of newly formed vessels takes place. In this context, we discuss the potential quiescence niche of satellite cells and the specific role of periendothelial cells. Indeed, periendothelial cells promote the return to quiescence of a subset of satellite/myogenic cells and maintain their quiescence (through Angiopoietin-1/Tie-2 signaling). We ask to what extent the environment may control the fate choice of satellite/myogenic cells and we also question the "hypoxic niche" in skeletal muscle, such a quiescence niche having being observed in the bone marrow.
Collapse
|
35
|
Boldrin L, Muntoni F, Morgan JE. Are human and mouse satellite cells really the same? J Histochem Cytochem 2010; 58:941-55. [PMID: 20644208 DOI: 10.1369/jhc.2010.956201] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Satellite cells are quiescent cells located under the basal lamina of skeletal muscle fibers that contribute to muscle growth, maintenance, repair, and regeneration. Mouse satellite cells have been shown to be muscle stem cells that are able to regenerate muscle fibers and self-renew. As human skeletal muscle is also able to regenerate following injury, we assume that the human satellite cell is, like its murine equivalent, a muscle stem cell. In this review, we compare human and mouse satellite cells and highlight their similarities and differences. We discuss gaps in our knowledge of human satellite cells, compared with that of mouse satellite cells, and suggest ways in which we may advance studies on human satellite cells, particularly by finding new markers and attempting to re-create the human satellite cell niche in vitro.
Collapse
Affiliation(s)
- Luisa Boldrin
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health, 30 Guilford Street, London WC1N1EH, United Kingdom.
| | | | | |
Collapse
|
36
|
Furutani Y, Murakami M, Funaba M. Differential responses to oxidative stress and calcium influx on expression of the transforming growth factor-beta family in myoblasts and myotubes. Cell Biochem Funct 2010; 27:578-82. [PMID: 19918931 DOI: 10.1002/cbf.1614] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Changes in gene expression of TGF-beta family members and their receptors in response to treatment with H(2)O(2) and a calcium ionophore, A23187, were examined in C2C12 myoblasts and myotubes. The expression of Myf5, an initial regulator of myogenesis, was increased by A23187, and H(2)O(2) inhibited the up-regulation of Myf5. Treatment with H(2)O(2) decreased the expression of MHC IIb, a protein component of the myofibrils, irrespective of the presence of A23187, suggesting an inhibitory role of oxidative stress for myogenesis. Expression of ligands and receptors for the TGF-beta family was modulated in response to H(2)O(2) and A23187. Treatment with H(2)O(2) decreased expression of TGF-beta3, BMP-4, ALK4, ALK5, and ActRIIB, and increased expression of inhibin alpha and inhibin betaA in either the myoblast stage or the myotube stage, or both. A23187 potentiated down-regulation of BMP-4 and ALK4 expression, and up-regulation of TGF-beta1, TGF-beta2, inhibin alpha, inhibin betaA, ALK2, and ALK3 expression. These results indicate that oxidative stress and Ca(2+) influx affect expression of the TGF-beta family in C2C12 myoblasts and myotubes.
Collapse
Affiliation(s)
- Yuuma Furutani
- Division of Applied Biosciences, Kyoto University Graduate School of Agriculture, Kyoto, Japan
| | | | | |
Collapse
|
37
|
The depletion of skeletal muscle satellite cells with age is concomitant with reduced capacity of single progenitors to produce reserve progeny. Dev Biol 2010; 340:330-43. [PMID: 20079729 DOI: 10.1016/j.ydbio.2010.01.006] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 01/06/2010] [Accepted: 01/07/2010] [Indexed: 01/26/2023]
Abstract
Satellite cells are myogenic progenitors that reside on the myofiber surface and support skeletal muscle repair. We used mice in which satellite cells were detected by GFP expression driven by nestin gene regulatory elements to define age-related changes in both numbers of satellite cells that occupy hindlimb myofibers and their individual performance. We demonstrate a reduction in satellite cells per myofiber with age that is more prominent in females compared to males. Satellite cell loss also persists with age in myostatin-null mice regardless of increased muscle mass. Immunofluorescent analysis of isolated myofibers from nestin-GFP/Myf5(nLacZ/+) mice reveals a decline with age in the number of satellite cells that express detectable levels of betagal. Nestin-GFP expression typically diminishes in primary cultures of satellite cells as myogenic progeny proliferate and differentiate, but GFP subsequently reappears in the Pax7(+) reserve population. Clonal analysis of sorted GFP(+) satellite cells from hindlimb muscles shows heterogeneity in the extent of cell density and myotube formation among colonies. Reserve cells emerge primarily within high-density colonies, and the number of clones that produce reserve cells is reduced with age. Thus, satellite cell depletion with age could be attributed to a reduced capacity to generate a reserve population.
Collapse
|
38
|
MOR23 promotes muscle regeneration and regulates cell adhesion and migration. Dev Cell 2009; 17:649-61. [PMID: 19922870 DOI: 10.1016/j.devcel.2009.09.004] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2008] [Revised: 07/04/2009] [Accepted: 09/15/2009] [Indexed: 12/17/2022]
Abstract
Odorant receptors (ORs) in the olfactory epithelium bind to volatile small molecules leading to the perception of smell. ORs are expressed in many tissues but their functions are largely unknown. We show multiple ORs display distinct mRNA expression patterns during myogenesis in vitro and muscle regeneration in vivo. Mouse OR23 (MOR23) expression is induced during muscle regeneration when muscle cells are extensively fusing and plays a key role in regulating migration and adhesion of muscle cells in vitro, two processes common during tissue repair. A soluble ligand for MOR23 is secreted by muscle cells in vitro and muscle tissue in vivo. MOR23 is necessary for proper skeletal muscle regeneration as loss of MOR23 leads to increased myofiber branching, commonly associated with muscular dystrophy. Together these data identify a functional role for an OR outside of the nose and suggest a larger role for ORs during tissue repair.
Collapse
|
39
|
Wang C, Li JF, Zhao L, Liu J, Wan J, Wang YX, Wang J, Wang C. Inhibition of SOC/Ca2+/NFAT pathway is involved in the anti-proliferative effect of sildenafil on pulmonary artery smooth muscle cells. Respir Res 2009; 10:123. [PMID: 20003325 PMCID: PMC2797778 DOI: 10.1186/1465-9921-10-123] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Accepted: 12/11/2009] [Indexed: 12/02/2022] Open
Abstract
Background Sildenafil, a potent phosphodiesterase type 5 (PDE5) inhibitor, has been proposed as a treatment for pulmonary arterial hypertension (PAH). The mechanism of its anti-proliferative effect on pulmonary artery smooth muscle cells (PASMC) is unclear. Nuclear translocation of nuclear factor of activated T-cells (NFAT) is thought to be involved in PASMC proliferation and PAH. Increase in cytosolic free [Ca2+] ([Ca2+]i) is a prerequisite for NFAT nuclear translocation. Elevated [Ca2+]i in PASMC of PAH patients has been demonstrated through up-regulation of store-operated Ca2+ channels (SOC) which is encoded by the transient receptor potential (TRP) channel protein. Thus we investigated if: 1) up-regulation of TRPC1 channel expression which induces enhancement of SOC-mediated Ca2+ influx and increase in [Ca2+]i is involved in hypoxia-induced PASMC proliferation; 2) hypoxia-induced promotion of [Ca2+]i leads to nuclear translocation of NFAT and regulates PASMC proliferation and TRPC1 expression; 3) the anti-proliferative effect of sildenafil is mediated by inhibition of this SOC/Ca2+/NFAT pathway. Methods Human PASMC were cultured under hypoxia (3% O2) with or without sildenafil treatment for 72 h. Cell number and cell viability were determined with a hemocytometer and MTT assay respectively. [Ca2+]i was measured with a dynamic digital Ca2+ imaging system by loading PASMC with fura 2-AM. TRPC1 mRNA and protein level were detected by RT-PCR and Western blotting respectively. Nuclear translocation of NFAT was determined by immunofluoresence microscopy. Results Hypoxia induced PASMC proliferation with increases in basal [Ca2+]i and Ca2+ entry via SOC (SOCE). These were accompanied by up-regulation of TRPC1 gene and protein expression in PASMC. NFAT nuclear translocation was significantly enhanced by hypoxia, which was dependent on SOCE and sensitive to SOC inhibitor SKF96365 (SKF), as well as cGMP analogue, 8-brom-cGMP. Hypoxia-induced PASMC proliferation and TRPC1 up-regulation were inhibited by SKF and NFAT blocker (VIVIT and Cyclosporin A). Sildenafil treatment ameliorated hypoxia-induced PASMC proliferation and attenuated hypoxia-induced enhancement of basal [Ca2+]i, SOCE, up-regulation of TRPC1 expression, and NFAT nuclear translocation. Conclusion The SOC/Ca2+/NFAT pathway is, at least in part, a downstream mediator for the anti-proliferative effect of sildenafil, and may have therapeutic potential for PAH treatment.
Collapse
Affiliation(s)
- Cong Wang
- Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, PR China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abou-Khalil R, Le Grand F, Pallafacchina G, Valable S, Authier FJ, Rudnicki MA, Gherardi RK, Germain S, Chretien F, Sotiropoulos A, Lafuste P, Montarras D, Chazaud B. Autocrine and paracrine angiopoietin 1/Tie-2 signaling promotes muscle satellite cell self-renewal. Cell Stem Cell 2009; 5:298-309. [PMID: 19733541 DOI: 10.1016/j.stem.2009.06.001] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 05/05/2009] [Accepted: 06/05/2009] [Indexed: 11/19/2022]
Abstract
Mechanisms governing muscle satellite cell withdrawal from cell cycle to enter into quiescence remain poorly understood. We studied the role of angiopoietin 1 (Ang1) and its receptor Tie-2 in the regulation of myogenic precursor cell (mpc) fate. In human and mouse, Tie-2 was preferentially expressed by quiescent satellite cells in vivo and reserve cells (RCs) in vitro. Ang1/Tie-2 signaling, through ERK1/2 pathway, decreased mpc proliferation and differentiation, increased the number of cells in G0, increased expression of RC-associated markers (p130, Pax7, Myf-5, M-cadherin), and downregulated expression of differentiation-associated markers. Silencing Tie-2 had opposite effects. Cells located in the satellite cell neighborhood (smooth muscle cells, fibroblasts) upregulated RC-associated markers by secreting Ang1 in vitro. In vivo, Tie-2 blockade and Ang1 overexpression increased the number of cycling and quiescent satellite cells, respectively. We propose that Ang1/Tie-2 signaling regulates mpc self-renewal by controlling the return to quiescence of a subset of satellite cells.
Collapse
|
41
|
Day K, Paterson B, Yablonka-Reuveni Z. A distinct profile of myogenic regulatory factor detection within Pax7+ cells at S phase supports a unique role of Myf5 during posthatch chicken myogenesis. Dev Dyn 2009; 238:1001-9. [PMID: 19301399 DOI: 10.1002/dvdy.21903] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Satellite cells are skeletal muscle stem cells that provide myogenic progeny for myofiber growth and repair. Temporal expression of muscle regulatory factors (MRFs) and the paired box transcription factor Pax7 defines characteristic phases of proliferation (Pax7(+)/MyoD(+)/myogenin(-)) and differentiation (Pax7(-)/MyoD(+)/myogenin(+)) during myogenesis of satellite cells. Here, using bromodeoxyuridine (BrdU) labeling and triple immunodetection, we analyzed expression patterns of Pax7 and the MRFs MyoD, Myf5, or myogenin within S phase myoblasts prepared from posthatch chicken muscle. Essentially, all BrdU incorporation was restricted to Pax7(+) cells, of which the majority also expressed MyoD. The presence of a minor BrdU(+)/Pax7(+)/myogenin(+) population in proliferation stage cultures suggests that myogenin up-regulation is alone insufficient for terminal differentiation. Myf5 was detected strictly within Pax7(+) cells and decreased during S phase while MyoD presence persisted in cycling cells. This study provides novel data in support of a unique role for Myf5 during posthatch myogenesis.
Collapse
Affiliation(s)
- Kenneth Day
- Department of Biological Structure, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
42
|
Peroxisome proliferator-activated receptor beta activation promotes myonuclear accretion in skeletal muscle of adult and aged mice. Pflugers Arch 2009; 458:901-13. [PMID: 19415321 PMCID: PMC2719750 DOI: 10.1007/s00424-009-0676-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 04/01/2009] [Accepted: 04/21/2009] [Indexed: 11/01/2022]
Abstract
We reported recently that peroxisome proliferator-activated receptor beta (PPARbeta) activation promotes a calcineurin-dependent exercise-like remodelling characterised by increased numbers of oxidative fibres and capillaries. As physical exercise also induces myonuclear accretion, we investigated whether PPARbeta activation alters myonuclear density. Transgenic muscle-specific PPARbeta over-expression induced 14% increase of myonuclear density. Pharmacological PPARbeta activation promoted rapid and massive myonuclear accretion (20% increase after 48 h), which is dependent upon calcineurin/nuclear factor of activated T cells signalling pathway. In vivo bromodeoxyuridine labelling and proliferating cell nuclear antigen immunodetection revealed that PPARbeta activation did not promote cell proliferation, suggesting that the PPARbeta-promoted myonuclear accretion involves fusion of pre-existing muscle precursor cells to myofibres rather than cell division. Finally, we showed that in skeletal muscle, ageing led to a down-regulation of PPARbeta accompanied by decrease of both oxidative fibre number and myonuclear density. PPARbeta pharmacological activation counteracts, at least in part, the ageing-driven muscle remodelling.
Collapse
|
43
|
Wu Z, Sofronic-Milosavljevic L, Nagano I, Takahashi Y. Trichinella spiralis: nurse cell formation with emphasis on analogy to muscle cell repair. Parasit Vectors 2008; 1:27. [PMID: 18710582 PMCID: PMC2538513 DOI: 10.1186/1756-3305-1-27] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Accepted: 08/19/2008] [Indexed: 12/18/2022] Open
Abstract
Trichinella infection results in formation of a capsule in infected muscles. The capsule is a residence of the parasite which is composed of the nurse cell and fibrous wall. The process of nurse cell formation is complex and includes infected muscle cell response (de-differentiation, cell cycle re-entry and arrest) and satellite cell responses (activation, proliferation and differentiation). Some events that occur during the nurse cell formation are analogous to those occurring during muscle cell regeneration/repair. This article reviews capsule formation with emphasis on this analogy.
Collapse
Affiliation(s)
- Zhiliang Wu
- Department of Parasitology, Gifu University Graduate School of Medicine, Yanagido 1-1, Gifu, 501-1194, Japan.
| | | | | | | |
Collapse
|
44
|
van der Velden JLJ, Schols AMWJ, Willems J, Kelders MCJM, Langen RCJ. Glycogen synthase kinase 3 suppresses myogenic differentiation through negative regulation of NFATc3. J Biol Chem 2007; 283:358-366. [PMID: 17977834 DOI: 10.1074/jbc.m707812200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Skeletal muscle atrophy is a prominent and disabling feature in many chronic diseases. Prevention or reversal of muscle atrophy by stimulation of skeletal muscle growth could be an important therapeutic strategy. Glycogen synthase kinase 3beta (GSK-3beta) has been implicated in the negative regulation of skeletal muscle growth. Since myogenic differentiation is an essential part of muscle growth, we investigated if inhibition of GSK-3beta is sufficient to stimulate myogenic differentiation and whether this depended on regulation of the transcription factor nuclear factor of activated T-cells (NFAT). In both myogenically converted mouse embryonic fibroblasts and C2C12 myoblasts, deficiency of GSK-3beta protein (activity) resulted in enhanced myotube formation and muscle-specific gene expression during differentiation, which was reversed by reintroduction of wild type but not kinase-inactive (K85R) GSK-3beta. In addition, GSK-3beta inhibition restored myogenic differentiation following calcineurin blockade, which suggested the involvement of NFAT. GSK-3beta-deficient mouse embryonic fibroblasts or myoblasts displayed enhanced nuclear translocation of NFATc3 and elevated NFAT-sensitive promoter transactivation, which was reduced by reintroducing wild type, but not K85R GSK-3beta. Overexpression of NFATc3 increased muscle gene promoter transactivation, which was abolished by co-expression of wild type GSK-3beta. Finally, stimulation of muscle gene expression observed following GSK-3beta inhibition was strongly attenuated in NFATc3-deficient myoblasts, indicating that this response requires NFATc3. Collectively, our data demonstrate negative regulation of myogenic differentiation by GSK-3beta through a transcriptional mechanism that depends on NFATc3. Inhibition of GSK-3beta may be a potential strategy in prevention or treatment of muscle atrophy.
Collapse
Affiliation(s)
- Jos L J van der Velden
- Department of Respiratory Medicine, Nutrition and Toxicology Research Institute Maastricht, Maastricht University, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Annemie M W J Schols
- Department of Respiratory Medicine, Nutrition and Toxicology Research Institute Maastricht, Maastricht University, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Jodil Willems
- Department of Respiratory Medicine, Nutrition and Toxicology Research Institute Maastricht, Maastricht University, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Marco C J M Kelders
- Department of Respiratory Medicine, Nutrition and Toxicology Research Institute Maastricht, Maastricht University, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Ramon C J Langen
- Department of Respiratory Medicine, Nutrition and Toxicology Research Institute Maastricht, Maastricht University, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands.
| |
Collapse
|
45
|
Strasser EM, Wessner B, Roth E. [Cellular regulation of anabolism and catabolism in skeletal muscle during immobilisation, aging and critical illness]. Wien Klin Wochenschr 2007; 119:337-48. [PMID: 17634890 DOI: 10.1007/s00508-007-0817-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Accepted: 05/16/2007] [Indexed: 12/13/2022]
Abstract
Skeletal muscle atrophy is associated with situations of acute and chronical illness, such as sepsis, surgery, trauma and immobility. Additionally, it is a common problem during the physiological process of aging. The myofibrillar proteins myosin and actin, which are essential for muscle contraction, are the major targets during the process of protein degradation. This leads to a general loss of muscle mass, muscle strength and to increased muscle fatigue. In critically ill or immobile patients skeletal muscle atrophy is accompanied by enhanced inflammation, reduced wound healing, weaning complications and difficulties in mobilisation. During aging it results in falls, fractures, physical injuries and loss of mobility. Relating to the primary stimulators - hormones, muscle lengthening, stress, inflammation, neuronal activity - research is now focusing on the investigation of the signal transduction pathways, which influence protein synthesis and protein degradation during skeletal muscle atrophy.
Collapse
Affiliation(s)
- Eva-Maria Strasser
- Chirurgische Forschungslaboratorien, Medizinische Universität Wien, Wien, Austria
| | | | | |
Collapse
|
46
|
O'Connor RS, Mills ST, Jones KA, Ho SN, Pavlath GK. A combinatorial role for NFAT5 in both myoblast migration and differentiation during skeletal muscle myogenesis. J Cell Sci 2006; 120:149-59. [PMID: 17164296 DOI: 10.1242/jcs.03307] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Skeletal muscle regeneration depends on myoblast migration, differentiation and myofiber formation. Isoforms of the nuclear factor of activated T cells (NFAT) family of transcription factors display nonredundant roles in skeletal muscle. NFAT5, a new isoform of NFAT, displays many differences from NFATc1-c4. Here, we examine the role of NFAT5 in myogenesis. NFAT5+/- mice displayed a defect in muscle regeneration with fewer myofibers formed at early times after injury. NFAT5 has a muscle-intrinsic function because inhibition of NFAT5 transcriptional activity caused both a migratory and differentiation defect in cultured myoblasts. We identified Cyr61 as a target of NFAT5 signaling in skeletal muscle cells. Addition of Cyr61 to cells expressing inhibitory forms of NFAT5 rescued the migratory phenotype. These results demonstrate a role for NFAT5 in skeletal muscle cell migration and differentiation. Furthermore, as cell-cell interactions are crucial for myoblast differentiation, these data suggest that myoblast migration and differentiation are coupled and that NFAT5 is a key regulator.
Collapse
Affiliation(s)
- Roddy S O'Connor
- Graduate Program in Molecular and Systems Pharmacology, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
47
|
Abstract
Myoblast fusion is critical for the formation, growth, and maintenance of skeletal muscle. The initial formation of nascent myotubes requires myoblast-myoblast fusion, but further growth involves myoblast-myotube fusion. We demonstrate that the mannose receptor (MR), a type I transmembrane protein, is required for myoblast-myotube fusion. Mannose receptor (MR)-null myotubes were small in size and contained a decreased myonuclear number both in vitro and in vivo. We hypothesized that this defect may arise from a possible role of MR in cell migration. Time-lapse microscopy revealed that MR-null myoblasts migrated with decreased velocity during myotube growth and were unable to migrate in a directed manner up a chemoattractant gradient. Furthermore, collagen uptake was impaired in MR-null myoblasts, suggesting a role in extracellular matrix remodeling during cell motility. These data identify a novel function for MR during skeletal muscle growth and suggest that myoblast motility may be a key aspect of regulating myotube growth.
Collapse
MESH Headings
- Animals
- Cell Fusion
- Cell Movement
- Cell Nucleus/metabolism
- Collagen/metabolism
- Culture Media, Conditioned
- Female
- Gene Expression Regulation
- Lectins, C-Type/deficiency
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Mannose Receptor
- Mannose-Binding Lectins/deficiency
- Mannose-Binding Lectins/genetics
- Mannose-Binding Lectins/metabolism
- Mice
- Muscle Development/physiology
- Muscle Fibers, Skeletal/cytology
- Muscle, Skeletal/cytology
- Muscle, Skeletal/pathology
- Myoblasts/cytology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Cell Surface/deficiency
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Regeneration
Collapse
Affiliation(s)
- Katie M Jansen
- Department of Pharmacology and Program in Biochemistry, Cell, and Developmental Biology, Emory University, Atlanta, GA 30322, USA
| | | |
Collapse
|
48
|
van der Velden JLJ, Langen RCJ, Kelders MCJM, Wouters EFM, Janssen-Heininger YMW, Schols AMWJ. Inhibition of glycogen synthase kinase-3β activity is sufficient to stimulate myogenic differentiation. Am J Physiol Cell Physiol 2006; 290:C453-62. [PMID: 16162663 DOI: 10.1152/ajpcell.00068.2005] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Skeletal muscle atrophy is a prominent and disabling feature of chronic wasting diseases. Prevention or reversal of muscle atrophy by administration of skeletal muscle growth (hypertrophy)-stimulating agents such as insulin-like growth factor I (IGF-I) could be an important therapeutic strategy in these diseases. To elucidate the IGF-I signal transduction responsible for muscle formation (myogenesis) during muscle growth and regeneration, we applied IGF-I to differentiating C2C12myoblasts and evaluated the effects on phosphatidylinositol 3-kinase (PI3K)/Akt/glycogen synthase kinase-3β (GSK-3β) signaling and myogenesis. IGF-I caused phosphorylation and inactivation of GSK-3β activity via signaling through the PI3K/Akt pathway. We assessed whether pharmacological inhibition of GSK-3β with lithium chloride (LiCl) was sufficient to stimulate myogenesis. Addition of IGF-I or LiCl stimulated myogenesis, evidenced by increased myotube formation, muscle creatine kinase (MCK) activity, and troponin I (TnI) promoter transactivation during differentiation. Moreover, mRNAs encoding MyoD, Myf-5, myogenin, TnI-slow, TnI-fast, MCK, and myoglobin were upregulated in myoblasts differentiated in the presence of IGF-I or LiCl. Importantly, blockade of GSK-3β inhibition abrogated IGF-I- but not LiCl-dependent stimulation of myogenic mRNA accumulation, suggesting that the promyogenic effects of IGF-I require GSK-3β inactivation and revealing an important negative regulatory role for GSK-3β in myogenesis. Therefore, this study identifies GSK-3β as a potential target for pharmacological stimulation of muscle growth.
Collapse
|
49
|
Riuzzi F, Sorci G, Donato R. The amphoterin (HMGB1)/receptor for advanced glycation end products (RAGE) pair modulates myoblast proliferation, apoptosis, adhesiveness, migration, and invasiveness. Functional inactivation of RAGE in L6 myoblasts results in tumor formation in vivo. J Biol Chem 2006; 281:8242-53. [PMID: 16407300 DOI: 10.1074/jbc.m509436200] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We reported that RAGE (receptor for advanced glycation end products), a multiligand receptor of the immunoglobulin superfamily expressed in myoblasts, when activated by its ligand amphoterin (HMGB1), stimulates rat L6 myoblast differentiation via a Cdc42-Rac-MKK6-p38 mitogen-activated protein kinase pathway, and that RAGE expression in skeletal muscle tissue is developmentally regulated. We show here that inhibition of RAGE function via overexpression of a signaling deficient RAGE mutant (RAGE delta cyto) results in increased myoblast proliferation, migration, and invasiveness, and decreased apoptosis and adhesiveness, whereas myoblasts overexpressing RAGE behave the opposite, compared with mock-transfected myoblasts. These effects are accompanied by a decreased induction of the proliferation inhibitor, p21(Waf1), and increased induction of cyclin D1 and extent of Rb, ERK1/2, and JNK phosphorylation in L6/RAGE delta cyto myoblasts, the opposite occurring in L6/RAGE myoblasts. Neutralization of culture medium amphoterin negates effects of RAGE activation, suggesting that amphoterin is the RAGE ligand involved in RAGE-dependent effects in myoblasts. Finally, mice injected with L6/RAGE delta cyto myoblasts develop tumors as opposed to mice injected with L6/RAGE or L6/mock myoblasts that do not. Thus, the amphoterin/RAGE pair stimulates myoblast differentiation by the combined effect of stimulation of differentiation and inhibition of proliferation, and deregulation of RAGE expression in myoblasts might contribute to their neoplastic transformation.
Collapse
Affiliation(s)
- Francesca Riuzzi
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Casella Postale 81 Succursale 3, 06122 Perugia, Italy
| | | | | |
Collapse
|
50
|
Ducreux S, Zorzato F, Müller C, Sewry C, Muntoni F, Quinlivan R, Restagno G, Girard T, Treves S. Effect of Ryanodine Receptor Mutations on Interleukin-6 Release and Intracellular Calcium Homeostasis in Human Myotubes from Malignant Hyperthermia-susceptible Individuals and Patients Affected by Central Core Disease. J Biol Chem 2004; 279:43838-46. [PMID: 15299003 DOI: 10.1074/jbc.m403612200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study we report for the first time the functional properties of human myotubes isolated from patients harboring the native RYR1 I4898T and R4893W mutations linked to central core disease. We examined two aspects of myotube physiology, namely excitation-contraction and excitation-secretion coupling. Our results show that upon activation of the ryanodine receptor (RYR), myotubes release interleukin-6 (IL-6); this was dependent on de novo protein synthesis and could be blocked by dantrolene and cyclosporine. Myotubes from the two patients affected by central core disease showed a 4-fold increase in the release of the inflammatory cytokine IL-6, compared with cells derived from control or malignant hyperthermia susceptible individuals. All tested myotubes released calcium from intracellular stores upon stimulation via surface membrane depolarization or direct RYR activation by 4-chloro-m-cresol. The functional impact on calcium release of RYR1 mutations linked to central core disease or malignant hyperthermia is different: human myotubes carrying the malignant hyperthermia-linked RYR1 mutation V2168M had a shift in their sensitivity to the RYR agonist 4-chloro-m-cresol to lower concentrations, whereas human myotubes harboring C-terminal mutations linked to central core disease exhibited reduced [Ca2+]i increase in response to 4-chloro-m-cresol, caffeine, and KCl. Taken together, these results suggest that abnormal release of calcium via mutated RYR enhances the production of the inflammatory cytokine IL-6, which may in turn affect signaling pathways responsible for the trophic status of muscle fibers.
Collapse
Affiliation(s)
- Sylvie Ducreux
- Department of Anaesthesia, Kantonsspital Basel, 4031, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|