1
|
Ou YC, Huang CC, Kao YL, Ho PC, Tsai KJ. Stem Cell Therapy in Spinal Cord Injury-Induced Neurogenic Lower Urinary Tract Dysfunction. Stem Cell Rev Rep 2023; 19:1691-1708. [PMID: 37115409 DOI: 10.1007/s12015-023-10547-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2023] [Indexed: 04/29/2023]
Abstract
Spinal cord injury (SCI) is a devastating condition that enormously affects an individual's health and quality of life. Neurogenic lower urinary tract dysfunction (NLUTD) is one of the most important sequelae induced by SCI, causing complications including urinary tract infection, renal function deterioration, urinary incontinence, and voiding dysfunction. Current therapeutic methods for SCI-induced NLUTD mainly target on the urinary bladder, but the outcomes are still far from satisfactory. Stem cell therapy has gained increasing attention for years for its ability to rescue the injured spinal cord directly. Stem cell differentiation and their paracrine effects, including exosomes, are the proposed mechanisms to enhance the recovery from SCI. Several animal studies have demonstrated improvement in bladder function using mesenchymal stem cells (MSCs) and neural stem cells (NSCs). Human clinical trials also provide promising results in urodynamic parameters after MSC therapy. However, there is still uncertainty about the ideal treatment window and application protocol for stem cell therapy. Besides, data on the therapeutic effects regarding NSCs and stem cell-derived exosomes in SCI-related NLUTD are scarce. Therefore, there is a pressing need for further well-designed human clinical trials to translate the stem cell therapy into a formal therapeutic option for SCI-induced NLUTD.
Collapse
Affiliation(s)
- Yin-Chien Ou
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chi-Chen Huang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan
- Section of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yao-Lin Kao
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Chuan Ho
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan
| | - Kuen-Jer Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan.
- Research Center of Clinical Medicine, National Cheng Kung University Hospital , College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
2
|
Zdolińska-Malinowska I, Boruczkowski D, Hołowaty D, Krajewski P, Snarski E. Rationale for the Use of Cord Blood in Hypoxic-Ischaemic Encephalopathy. Stem Cells Int 2022; 2022:9125460. [PMID: 35599846 PMCID: PMC9117076 DOI: 10.1155/2022/9125460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 02/16/2022] [Accepted: 04/22/2022] [Indexed: 11/18/2022] Open
Abstract
Hypoxic-ischaemic encephalopathy (HIE) is a severe complication of asphyxia at birth. Therapeutic hypothermia, the standard method for HIE prevention, is effective in only 50% of the cases. As the understanding of the immunological basis of these changes increases, experiments have begun with the use of cord blood (CB) because of its neuroprotective properties. Mechanisms for the neuroprotective effects of CB stem cells include antiapoptotic and anti-inflammatory actions, stimulation of angiogenesis, production of trophic factors, and mitochondrial donation. In several animal models of HIE, CB decreased oxidative stress, cell death markers, CD4+ T cell infiltration, and microglial activation; restored normal brain metabolic activity; promoted neurogenesis; improved myelination; and increased the proportion of mature oligodendrocytes, neuron numbers in the motor cortex and somatosensory cortex, and brain weight. These observations translate into motor strength, limb function, gait, and cognitive function and behaviour. In humans, the efficacy and safety of CB administration were reported in a few early clinical studies which confirmed the feasibility and safety of this intervention for up to 10 years. The results of these studies showed an improvement in the developmental outcomes over hypothermia. Two phase-2 clinical studies are ongoing under the United States regulations, namely one controlled study and one blinded study.
Collapse
Affiliation(s)
| | - Dariusz Boruczkowski
- Polski Bank Komórek Macierzystych S.A. (FamiCord Group), Jana Pawła II 29, 00-86 Warsaw, Poland
| | - Dominika Hołowaty
- Department of Obstetrics and Gynecology, Medical University of Warsaw, Starynkiewicza Square 1/3, 02-015 Warsaw, Poland
| | - Paweł Krajewski
- Department of Obstetrics and Gynecology, Medical University of Warsaw, Starynkiewicza Square 1/3, 02-015 Warsaw, Poland
| | - Emilian Snarski
- Polski Bank Komórek Macierzystych S.A. (FamiCord Group), Jana Pawła II 29, 00-86 Warsaw, Poland
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
3
|
Mehdipour A, Ebrahimi A, Shiri-Shahsavar MR, Soleimani-Rad J, Roshangar L, Samiei M, Ebrahimi-Kalan A. The potentials of umbilical cord-derived mesenchymal stem cells in the treatment of multiple sclerosis. Rev Neurosci 2020; 30:857-868. [PMID: 31026226 DOI: 10.1515/revneuro-2018-0057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 02/15/2019] [Indexed: 12/12/2022]
Abstract
Stem cell therapy has indicated a promising treatment capacity for tissue regeneration. Multiple sclerosis is an autoimmune-based chronic disease, in which the myelin sheath of the central nervous system is destructed. Scientists have not discovered any cure for multiple sclerosis, and most of the treatments are rather palliative. The pursuit of a versatile treatment option, therefore, seems essential. The immunoregulatory and non-chronic rejection characteristics of mesenchymal stem cells, as well as their homing properties, recommend them as a prospective treatment option for multiple sclerosis. Different sources of mesenchymal stem cells have distinct characteristics and functional properties; in this regard, choosing the most suitable cell therapy approach seems to be challenging. In this review, we will discuss umbilical cord/blood-derived mesenchymal stem cells, their identified exclusive properties compared to another adult mesenchymal stem cells, and the expectations of their potential roles in the treatment of multiple sclerosis.
Collapse
Affiliation(s)
- Ahmad Mehdipour
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ayyub Ebrahimi
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Haliç University, Istanbul, Turkey
| | | | - Jafar Soleimani-Rad
- Department of Anatomical Sciences, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Department of Anatomical Sciences, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Samiei
- Endodontics Department of Dental Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Ebrahimi-Kalan
- Department of Neurosciences and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Radiology, School of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran,
| |
Collapse
|
4
|
Li J, Settivari R, LeBaron MJ, Marty MS. An industry perspective: A streamlined screening strategy using alternative models for chemical assessment of developmental neurotoxicity. Neurotoxicology 2019; 73:17-30. [DOI: 10.1016/j.neuro.2019.02.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/14/2019] [Accepted: 02/14/2019] [Indexed: 12/22/2022]
|
5
|
Zhang Y, Yu S, Tuazon JP, Lee JY, Corey S, Kvederis L, Kingsbury C, Kaneko Y, Borlongan CV. Neuroprotective effects of human bone marrow mesenchymal stem cells against cerebral ischemia are mediated in part by an anti-apoptotic mechanism. Neural Regen Res 2019; 14:597-604. [PMID: 30632499 PMCID: PMC6352592 DOI: 10.4103/1673-5374.247464] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/06/2018] [Indexed: 02/02/2023] Open
Abstract
Transplantation of human bone marrow mesenchymal stem cells (hMSCs) stands as a potent stroke therapy, but its exact mechanism remains unknown. This study investigated the anti-apoptotic mechanisms by which hMSCs exert neuroprotective effects on cerebral ischemia. Primary mixed cultures of rat neurons and astrocytes were cultured and exposed to oxygen-glucose deprivation. A two-hour period of "reperfusion" in standard medium and normoxic conditions was allowed and immediately followed by hMSCs and/or Bcl-2 antibody treatment. Cell viability of primary rat neurons and astrocytes was determined by 3-(4,5-dimethylthianol-2-yl)-2,5 diphenyl tetrazolium bromide and trypan blue exclusion methods. hMSC survival and differentiation were characterized by immunocytochemistry, while the concentration of Bcl-2 in the supernatant was measured by enzyme-linked immunosorbent assay to reveal the secretory anti-apoptotic function of hMSCs. Cultured hMSCs expressed embryonic-like stem cell phenotypic markers CXCR4, Oct4, SSEA4, and Nanog, as well as immature neural phenotypic marker Nestin. Primary rat neurons and astrocytes were protected from oxygen-glucose deprivation by hMSCs, which was antagonized by the Bcl-2 antibody. However, Bcl-2 levels in the supernatants did not differ between hMSC- and non-treated cells exposed to oxygen-glucose deprivation. Neuroprotective effects of hMSCs against cerebral ischemia were partially mediated by the anti-apoptotic mechanisms. However, further studies are warranted to fully elucidate this pathway.
Collapse
Affiliation(s)
- Yuyang Zhang
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida, Tampa, FL, USA
- Department of Pharmacology / School of Life Science and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Seongjin Yu
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Julian P. Tuazon
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Jea-Young Lee
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Sydney Corey
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Lauren Kvederis
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Chase Kingsbury
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Yuji Kaneko
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Cesar V. Borlongan
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida, Tampa, FL, USA
| |
Collapse
|
6
|
Basuodan R, Basu AP, Clowry GJ. Human neural stem cells dispersed in artificial ECM form cerebral organoids when grafted in vivo. J Anat 2018; 233:155-166. [PMID: 29745426 DOI: 10.1111/joa.12827] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2018] [Indexed: 12/11/2022] Open
Abstract
Human neural stem cells (hNSC) derived from induced pluripotent stem cells can be differentiated into neurons that could be used for transplantation to repair brain injury. In this study we dispersed such hNSC in a three-dimensional artificial extracellular matrix (aECM) and compared their differentiation in vitro and following grafting into the sensorimotor cortex (SMC) of postnatal day (P)14 rat pups lesioned by localised injection of endothelin-1 at P12. After 10-43 days of in vitro differentiation, a few cells remained as PAX6+ neuroprogenitors but many more resembled post-mitotic neurons expressing doublecortin, β-tubulin and MAP2. These cells remained dispersed throughout the ECM, but with extended long processes for over 50 μm. In vivo, by 1 month post grafting, cells expressing human specific markers instead organised into cerebral organoids: columns of tightly packed PAX6 co-expressing progenitor cells arranged around small tubular lumen in rosettes, with a looser network of cells with processes around the outside co-expressing markers of immature neurons including doublecortin, and CTIP2 characteristic of corticofugal neurons. Host cells also invaded the graft including microglia, astrocytes and endothelial cells forming blood vessels. By 10 weeks post-grafting, the organoids had disappeared and the aECM had started to break down with fewer transplanted cells remaining. In vitro, cerebral organoids form in rotating incubators that force oxygen and nutrients to the centre of the structures. We have shown that cerebral organoids can form in vivo; intrinsic factors may direct their organisation including infiltration by host blood vessels.
Collapse
Affiliation(s)
- Reem Basuodan
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK.,Health and Rehabilitation Sciences, Princess Noura bint Abdulrhman University, Riyadh, Saudi Arabia
| | - Anna P Basu
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Gavin J Clowry
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
7
|
Eve DJ, Sanberg PR, Buzanska L, Sarnowska A, Domanska-Janik K. Human Somatic Stem Cell Neural Differentiation Potential. Results Probl Cell Differ 2018; 66:21-87. [DOI: 10.1007/978-3-319-93485-3_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
8
|
Newcomb JD, Sanberg PR, Klasko SK, Willing AE. Umbilical Cord Blood Research: Current and Future Perspectives. Cell Transplant 2017. [DOI: 10.3727/000000007783464623] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Umbilical cord blood (UCB) banking has become a new obstetrical trend. It offers expectant parents a biological insurance policy that can be used in the event of a child or family member's life-threatening illness and puts patients in a position of control over their own treatment options. However, its graduation to conventional therapy in the clinical realm relies on breakthrough research that will prove its efficacy for a range of ailments. Expanding the multipotent cells found within the mononuclear fraction of UCB so that adequate dosing can be achieved, effectively expanding desired cells ex vivo, establishing its safety and limitations in HLA-mismatched recipients, defining its mechanisms of action, and proving its utility in a wide variety of both rare and common illnesses and diseases are a few of the challenges left to tackle. Nevertheless, the field is moving fast and new UCB-based therapies are on the horizon.
Collapse
Affiliation(s)
- Jennifer D. Newcomb
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida, College of Medicine, Tampa, FL 33612, USA
| | - Paul R. Sanberg
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida, College of Medicine, Tampa, FL 33612, USA
| | - Stephen K. Klasko
- Department of Obstetrics and Gynecology, University of South Florida, College of Medicine, Tampa, FL 33612, USA
| | - Alison E. Willing
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida, College of Medicine, Tampa, FL 33612, USA
| |
Collapse
|
9
|
Newcomb JD, Ajmo CT, Sanberg CD, Sanberg PR, Pennypacker KR, Willing AE. Timing of Cord Blood Treatment after Experimental Stroke Determines Therapeutic Efficacy. Cell Transplant 2017; 15:213-23. [PMID: 16719056 DOI: 10.3727/000000006783982043] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Embolic stroke is thought to cause irreparable damage in the brain immediately adjacent to the region of reduced blood perfusion. Therefore, much of the current research focuses on treatments such as anti-inflammatory, neuroprotective, and cell replacement strategies to minimize behavioral and physiological consequences. In the present study, intravenous delivery of human umbilical cord blood cells (HUCBC) 48 h after a middle cerebral artery occlusion (MCAo) in a rat resulted in both behavioral and physiological recovery. Nissl and TUNEL staining demonstrated that many of the neurons in the core were rescued, indicating that while both necrotic and apoptotic cell death occur in ischemia, it is clear that apoptosis plays a larger role than first anticipated. Further, immunohistochemical and histochemical analysis showed a diminished and/or lack of granulocyte and monocyte infiltration and astrocytic and microglial activation in the parenchyma in animals treated with HUCBC 48 h poststroke. Successful treatment at this time point should offer encouragement to clinicians that a therapy with a broader window of efficacy may soon be available to treat stroke.
Collapse
Affiliation(s)
- Jennifer D Newcomb
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | | | | | | | | | | |
Collapse
|
10
|
Garbuzova-Davis S, Ehrhart J, Sanberg PR. Cord blood as a potential therapeutic for amyotrophic lateral sclerosis. Expert Opin Biol Ther 2017; 17:837-851. [DOI: 10.1080/14712598.2017.1323862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Svitlana Garbuzova-Davis
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
- Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
- Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
- Department of Pathology and Cell Biology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Jared Ehrhart
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Paul R. Sanberg
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
- Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
- Department of Pathology and Cell Biology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
- Department of Psychiatry, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|
11
|
Vermilyea SC, Emborg ME. The role of nonhuman primate models in the development of cell-based therapies for Parkinson's disease. J Neural Transm (Vienna) 2017; 125:365-384. [PMID: 28326445 PMCID: PMC5847191 DOI: 10.1007/s00702-017-1708-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/12/2017] [Indexed: 12/23/2022]
Abstract
Through the course of over three decades, nonhuman primate (NHP) studies on cell-based therapies (CBTs) for Parkinson’s disease (PD) have provided insight into the feasibility, safety and efficacy of the approach, methods of cell collection and preparation, cell viability, as well as potential brain targets. Today, NHP research continues to be a vital source of information for improving cell grafts and analyzing how the host affects graft survival, integration and function. Overall, this article aims to discuss the role that NHP models of PD have played in CBT development and highlights specific issues that need to be considered to maximize the value of NHP studies for the successful clinical translation of CBTs.
Collapse
Affiliation(s)
- Scott C Vermilyea
- Neuroscience Training Program, University of Wisconsin, Madison, 1220 Capitol Court, Madison, WI, 53715, USA.,Wisconsin National Primate Research Center, University of Wisconsin, Madison, USA
| | - Marina E Emborg
- Neuroscience Training Program, University of Wisconsin, Madison, 1220 Capitol Court, Madison, WI, 53715, USA. .,Wisconsin National Primate Research Center, University of Wisconsin, Madison, USA. .,Department of Medical Physics, University of Wisconsin, Madison, USA.
| |
Collapse
|
12
|
Drela K, Lech W, Figiel-Dabrowska A, Zychowicz M, Mikula M, Sarnowska A, Domanska-Janik K. Enhanced neuro-therapeutic potential of Wharton's Jelly–derived mesenchymal stem cells in comparison with bone marrow mesenchymal stem cells culture. Cytotherapy 2016; 18:497-509. [DOI: 10.1016/j.jcyt.2016.01.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 01/04/2016] [Accepted: 01/09/2016] [Indexed: 01/01/2023]
|
13
|
Dziadosz M, Basch RS, Young BK. Human amniotic fluid: a source of stem cells for possible therapeutic use. Am J Obstet Gynecol 2016; 214:321-7. [PMID: 26767797 DOI: 10.1016/j.ajog.2015.12.061] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/22/2015] [Accepted: 12/31/2015] [Indexed: 12/23/2022]
Abstract
Stem cells are undifferentiated cells with the capacity for differentiation. Amniotic fluid cells have emerged only recently as a possible source of stem cells for clinical purposes. There are no ethical or sampling constraints for the use of amniocentesis as a standard clinical procedure for obtaining an abundant supply of amniotic fluid cells. Amniotic fluid cells of human origin proliferate rapidly and are multipotent with the potential for expansion in vitro to multiple cell lines. Tissue engineering technologies that use amniotic fluid cells are being explored. Amniotic fluid cells may be of clinical benefit for fetal therapies, degenerative disease, and regenerative medicine applications. We present a comprehensive review of the evolution of human amniotic fluid cells as a possible modality for therapeutic use.
Collapse
Affiliation(s)
- Margaret Dziadosz
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, New York University Langone Medical Center, New York, NY
| | - Ross S Basch
- Department of Pathology, New York University Langone Medical Center, New York, NY
| | - Bruce K Young
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, New York University Langone Medical Center, New York, NY.
| |
Collapse
|
14
|
Jawdat D. Banking of Human Umbilical Cord Blood Stem Cells and Their Clinical Applications. RECENT ADVANCES IN STEM CELLS 2016. [DOI: 10.1007/978-3-319-33270-3_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Sypecka J, Sarnowska A. Mesenchymal cells of umbilical cord and umbilical cord blood as a source of human oligodendrocyte progenitors. Life Sci 2015; 139:24-9. [PMID: 26285174 DOI: 10.1016/j.lfs.2015.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/06/2015] [Accepted: 08/11/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Joanna Sypecka
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5, Pawinskiego str., 02-106 Warsaw, Poland.
| | - Anna Sarnowska
- Translative Platform for Regenerative Medicine, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland; Stem Cell Bioengineering Laboratory, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland
| |
Collapse
|
16
|
Sypecka J, Ziemka-Nalecz M, Dragun-Szymczak P, Zalewska T. A simple, xeno-free method for oligodendrocyte generation from human neural stem cells derived from umbilical cord: engagement of gelatinases in cell commitment and differentiation. J Tissue Eng Regen Med 2015; 11:1442-1455. [DOI: 10.1002/term.2042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 02/03/2015] [Accepted: 04/29/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Joanna Sypecka
- Neurorepair Department, Mossakowski Medical Research Centre; Polish Academy of Sciences; Warsaw Poland
| | - Małgorzata Ziemka-Nalecz
- Neurorepair Department, Mossakowski Medical Research Centre; Polish Academy of Sciences; Warsaw Poland
| | - Patrycja Dragun-Szymczak
- Neurorepair Department, Mossakowski Medical Research Centre; Polish Academy of Sciences; Warsaw Poland
| | - Teresa Zalewska
- Neurorepair Department, Mossakowski Medical Research Centre; Polish Academy of Sciences; Warsaw Poland
| |
Collapse
|
17
|
An Overview on Human Umbilical Cord Blood Stem Cell-Based Alternative In Vitro Models for Developmental Neurotoxicity Assessment. Mol Neurobiol 2015; 53:3216-3226. [PMID: 26041658 DOI: 10.1007/s12035-015-9202-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/29/2015] [Indexed: 01/05/2023]
Abstract
The developing brain is found highly vulnerable towards the exposure of different environmental chemicals/drugs, even at concentrations, those are generally considered safe in mature brain. The brain development is a very complex phenomenon which involves several processes running in parallel such as cell proliferation, migration, differentiation, maturation and synaptogenesis. If any step of these cellular processes hampered due to exposure of any xenobiotic/drug, there is almost no chance of recovery which could finally result in a life-long disability. Therefore, the developmental neurotoxicity (DNT) assessment of newly discovered drugs/molecules is a very serious concern among the neurologists. Animal-based DNT models have their own limitations such as ethical concerns and lower sensitivity with less predictive values in humans. Furthermore, non-availability of human foetal brain tissues/cells makes job more difficult to understand about mechanisms involve in DNT in human beings. Although, the use of cell culture have been proven as a powerful tool for DNT assessment, but many in vitro models are currently utilizing genetically unstable cell lines. The interpretation of data generated using such terminally differentiated cells is hard to extrapolate with in vivo situations. However, human umbilical cord blood stem cells (hUCBSCs) have been proposed as an excellent tool for alternative DNT testing because neuronal development from undifferentiated state could exactly mimic the original pattern of neuronal development in foetus when hUCBSCs differentiated into neuronal cells. Additionally, less ethical concern, easy availability and high plasticity make them an attractive source for establishing in vitro model of DNT assessment. In this review, we are focusing towards recent advancements on hUCBSCs-based in vitro model to understand DNTs.
Collapse
|
18
|
Kim TH, Oh SH, An DB, Lee JY, Lee JH. Dual growth factor-immobilized microspheres for tissue reinnervation: in vitro and preliminary in vivo studies. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2015; 26:322-37. [PMID: 25597228 DOI: 10.1080/09205063.2015.1008882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Growth factors (GFs) (basic fibroblast growth factor (bFGF) and/or nerve growth factor (NGF))-immobilized polycaprolactone (PCL)/Pluronic F127 microspheres were prepared using an isolated particulate-melting method and the sequential binding of heparin and GFs onto the microspheres. The GFs immobilized on the microspheres were released in a sustained manner over 28 days, regardless of GF type. From the in vitro culture of muscle-derived stem cells, it was observed that the NGF-immobilized microspheres induced more neurogenic differentiation than the bFGF-immobilized microspheres, as evidenced by a quantitative real-time polymerase chain reaction using specific neurogenic markers (Nestin, GFAP, β-tubulin, and MAP2) and Western blot (Nestin and β-tubulin) analyses. The dual bFGF/NGF-immobilized microspheres showed better neurogenic differentiation than the microspheres immobilized with single bFGF or NGF. From the preliminary animal study, the dual bFGF/NGF-immobilized microsphere group also showed effective nerve regeneration, as evaluated by immunocytochemistry using a marker - β-tubulin. The dual bFGF/NGF-immobilized PCL/Pluronic F127 microspheres may be a promising candidate for nerve regeneration in certain target tissues (i.e. muscles) leading to sufficient reinnervation.
Collapse
Affiliation(s)
- Tae Ho Kim
- a Department of Advanced Materials , Hannam University , Daejeon 305-811 , Republic of Korea
| | | | | | | | | |
Collapse
|
19
|
Cotten CM, Murtha AP, Goldberg RN, Grotegut CA, Smith PB, Goldstein RF, Fisher KA, Gustafson KE, Waters-Pick B, Swamy GK, Rattray B, Tan S, Kurtzberg J. Feasibility of autologous cord blood cells for infants with hypoxic-ischemic encephalopathy. J Pediatr 2014; 164:973-979.e1. [PMID: 24388332 PMCID: PMC3992180 DOI: 10.1016/j.jpeds.2013.11.036] [Citation(s) in RCA: 232] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/25/2013] [Accepted: 11/14/2013] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To assess feasibility and safety of providing autologous umbilical cord blood (UCB) cells to neonates with hypoxic-ischemic encephalopathy (HIE). STUDY DESIGN We enrolled infants in the intensive care nursery who were cooled for HIE and had available UCB in an open-label study of non-cyropreserved autologous volume- and red blood cell-reduced UCB cells (up to 4 doses adjusted for volume and red blood cell content, 1-5 × 10(7) cells/dose). We recorded UCB collection and cell infusion characteristics, and pre- and post-infusion vital signs. As exploratory analyses, we compared cell recipients' hospital outcomes (mortality, oral feeds at discharge) and 1-year survival with Bayley Scales of Infant and Toddler Development, 3rd edition scores ≥85 in 3 domains (cognitive, language, and motor development) with cooled infants who did not have available cells. RESULTS Twenty-three infants were cooled and received cells. Median collection and infusion volumes were 36 and 4.3 mL. Vital signs including oxygen saturation were similar before and after infusions in the first 48 postnatal hours. Cell recipients and concurrent cooled infants had similar hospital outcomes. Thirteen of 18 (74%) cell recipients and 19 of 46 (41%) concurrent cooled infants with known 1-year outcomes survived with scores >85. CONCLUSIONS Collection, preparation, and infusion of fresh autologous UCB cells for use in infants with HIE is feasible. A randomized double-blind study is needed.
Collapse
MESH Headings
- Child, Preschool
- Combined Modality Therapy
- Cord Blood Stem Cell Transplantation/methods
- Developmental Disabilities/diagnosis
- Developmental Disabilities/etiology
- Feasibility Studies
- Female
- Follow-Up Studies
- Humans
- Hypothermia, Induced
- Hypoxia-Ischemia, Brain/complications
- Hypoxia-Ischemia, Brain/mortality
- Hypoxia-Ischemia, Brain/surgery
- Hypoxia-Ischemia, Brain/therapy
- Infant
- Infant, Newborn
- Infant, Premature
- Infant, Premature, Diseases/mortality
- Infant, Premature, Diseases/surgery
- Infant, Premature, Diseases/therapy
- Male
- Pilot Projects
- Severity of Illness Index
- Transplantation, Autologous/methods
- Treatment Outcome
Collapse
Affiliation(s)
| | - Amy P Murtha
- Department of Obstetrics and Gynecology, Duke University, Durham, NC
| | | | - Chad A Grotegut
- Department of Obstetrics and Gynecology, Duke University, Durham, NC
| | - P Brian Smith
- Department of Pediatrics, Duke University, Durham, NC
| | | | | | - Kathryn E Gustafson
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC
| | | | - Geeta K Swamy
- Department of Obstetrics and Gynecology, Duke University, Durham, NC
| | | | - Siddhartha Tan
- Department of Pediatrics, NorthShore University Health System and University of Chicago Pritzker School of Medicine, Chicago, IL
| | - Joanne Kurtzberg
- Robertson Cell and Translational Therapy Program, Duke University, Durham, NC
| |
Collapse
|
20
|
Lavasani M, Thompson SD, Pollett JB, Usas A, Lu A, Stolz DB, Clark KA, Sun B, Péault B, Huard J. Human muscle-derived stem/progenitor cells promote functional murine peripheral nerve regeneration. J Clin Invest 2014; 124:1745-56. [PMID: 24642464 DOI: 10.1172/jci44071] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 01/16/2014] [Indexed: 12/16/2022] Open
Abstract
Peripheral nerve injuries and neuropathies lead to profound functional deficits. Here, we have demonstrated that muscle-derived stem/progenitor cells (MDSPCs) isolated from adult human skeletal muscle (hMDSPCs) can adopt neuronal and glial phenotypes in vitro and ameliorate a critical-sized sciatic nerve injury and its associated defects in a murine model. Transplanted hMDSPCs surrounded the axonal growth cone, while hMDSPCs infiltrating the regenerating nerve differentiated into myelinating Schwann cells. Engraftment of hMDSPCs into the area of the damaged nerve promoted axonal regeneration, which led to functional recovery as measured by sustained gait improvement. Furthermore, no adverse effects were observed in these animals up to 18 months after transplantation. Following hMDSPC therapy, gastrocnemius muscles from mice exhibited substantially less muscle atrophy, an increase in muscle mass after denervation, and reorganization of motor endplates at the postsynaptic sites compared with those from PBS-treated mice. Evaluation of nerve defects in animals transplanted with vehicle-only or myoblast-like cells did not reveal histological or functional recovery. These data demonstrate the efficacy of hMDSPC-based therapy for peripheral nerve injury and suggest that hMDSPC transplantation has potential to be translated for use in human neuropathies.
Collapse
|
21
|
Human Stem/Progenitor Cell-Based Assays for Neurodevelopmental Toxicity Testing. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2014. [DOI: 10.1007/978-1-4939-0521-8_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Wang L, Lu M. Regulation and direction of umbilical cord blood mesenchymal stem cells to adopt neuronal fate. Int J Neurosci 2013; 124:149-59. [PMID: 23879374 DOI: 10.3109/00207454.2013.828055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Umbilical cord blood mesenchymal stem cells (UCB-MSCs) transplantation is becoming a promising and attractive cell-based treatment modality for repairing the damaged central nervous system due to its advantages of low immunogenicity, wide range of sources, and less ethical controversy. One of the limitations of this approach is that the proportion of neurons differentiated from UCB-MSCs still remains at low level. Thus, to induce UCB-MSCs to differentiate into neuron-like cells with a higher proportion is one of the key technologies of regenerative medicine and tissue engineering. Many induction protocols with remarkably higher differentiation rate to neurons have been reported. However, each protocol has its pros and cons and whether the neurons differentiated from UCB-MSCs under a certain protocol has normal nerve function remains controversial. Therefore, to guarantee the success of future clinical applications of UCB-MSCs, more investigations should be performed to improve the induction method and differentiation efficiency.
Collapse
Affiliation(s)
- Lei Wang
- 1Department of Neurosurgery, Second Affiliated Hospital of Hunan Normal University (163 Hospital of PLA) , Changsha, Hunan , China
| | | |
Collapse
|
23
|
Induction of differentiation by down-regulation of Nanog and Rex-1 in cord blood derived unrestricted somatic stem cells. Mol Biol Rep 2013; 40:4429-37. [DOI: 10.1007/s11033-013-2533-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 04/29/2013] [Indexed: 01/02/2023]
|
24
|
Autocrine signaling based selection of combinatorial antibodies that transdifferentiate human stem cells. Proc Natl Acad Sci U S A 2013; 110:8099-104. [PMID: 23613575 DOI: 10.1073/pnas.1306263110] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report here the generation of antibody agonists from intracellular combinatorial libraries that transdifferentiate human stem cells. Antibodies that are agonists for the granulocyte colony stimulating factor receptor were selected from intracellular libraries on the basis of their ability to activate signaling pathways in reporter cells. We used a specialized "near neighbor" approach in which the entire antibody library and its target receptor are cointegrated into the plasma membranes of a population of reporter cells. This format favors unusual interactions between receptors and their protein ligands and ensures that the antibody acts in an autocrine manner on the cells that produce it. Unlike the natural granulocyte-colony stimulating factor that activates cells to differentiate along a predetermined pathway, the isolated agonist antibodies transdifferentiated human myeloid lineage CD34+ bone marrow cells into neural progenitors. This transdifferentiation by agonist antibodies is different from more commonly used methods because initiation is agenetic. Antibodies that act at the plasma membrane may have therapeutic potential as agents that transdifferentiate autologous cells.
Collapse
|
25
|
Martini MM, Jeremias TDS, Kohler MC, Marostica LL, Trentin AG, Alvarez-Silva M. Human placenta-derived mesenchymal stem cells acquire neural phenotype under the appropriate niche conditions. DNA Cell Biol 2013; 32:58-65. [PMID: 23323927 DOI: 10.1089/dna.2012.1807] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells with clinical interest. It has been reported that MSCs can be isolated from the human term placenta. We investigated the ability of human placenta-derived MSCs to differentiate into a neural phenotype in coculture assays with astrocytes obtained from neonatal rats. Placenta-derived MSCs were cocultured on a confluent monolayer of astrocytes obtained from the rat cerebellum to evaluate the differences in morphology. The extracellular matrix (ECM) produced by astrocytes as well as the growth factors produced by the astrocyte-conditioned medium were evaluated. The expression of the neural markers glial fibrillate acid protein (GFAP) and Nestin was studied in MSCs by immunocytochemistry. MSCs were able to respond to the astrocyte niche in coculture assays. They expressed the neural markers GFAP, Nestin, or β-Tubulin III, followed by an outgrowth of cell processes. The ECM from astrocytes was not effective in inducing the neural phenotype in MSCs, although the expression of β-Tubulin III was observed. When MSCs were cocultured with cerebellar astrocytes from newborn rats, a neural phenotype was achieved. This was determined by immunocytochemistry to GFAP, Nestin, or β-Tubulin III and by morphological changes. It was achieved without the addition of exogenous differentiation factors. This demonstrates that placenta-derived MSCs may be able to differentiate into neural cell types when in direct contact with a neural environment.
Collapse
Affiliation(s)
- Maristela Maria Martini
- Laboratório de Células Tronco e Regeneração Tecidual, Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Campus Universitario, Florianópolis, SC, Brazil
| | | | | | | | | | | |
Collapse
|
26
|
Ratajczak MZ, Mierzejewska K, Ratajczak J, Kucia M. CD133 Expression Strongly Correlates with the Phenotype of Very Small Embryonic-/Epiblast-Like Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 777:125-41. [PMID: 23161080 DOI: 10.1007/978-1-4614-5894-4_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CD133 antigen (prominin-1) is a useful cell surface marker of very small embryonic-like stem cells (VSELs). Antibodies against it, conjugated to paramagnetic beads or fluorochromes, are thus powerful biological tools for their isolation from human umbilical cord blood, mobilized peripheral blood, and bone marrow. VSELs are described with the following characteristics: (1) are slightly smaller than red blood cells; (2) display a distinct morphology, typified by a high nuclear/cytoplasmic ratio and an unorganized euchromatin; (3) become mobilized during stress situations into peripheral blood; (4) are enriched in the CD133(+)Lin(-)CD45(-) cell fraction in humans; and (5) express markers of pluripotent stem cells (e.g., Oct-4, Nanog, and stage-specific embryonic antigen-4). The most recent in vivo data from our and other laboratories demonstrated that human VSELs exhibit some characteristics of long-term repopulating hematopoietic stem cells and are at the top of the hierarchy in the mesenchymal lineage. However, still more labor is needed to characterize better at a molecular level these rare cells.
Collapse
Affiliation(s)
- Mariusz Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, 40202 Rm. 107, Louisville, KY, USA,
| | | | | | | |
Collapse
|
27
|
Repairing neural injuries using human umbilical cord blood. Mol Neurobiol 2012; 47:938-45. [PMID: 23275174 DOI: 10.1007/s12035-012-8388-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 12/13/2012] [Indexed: 01/14/2023]
Abstract
Stem cells are promising sources for repairing damaged neurons and glial cells in neural injuries and for replacing dead cells in neurodegenerative diseases. An essential step for stem cell-based therapy is to generate large quantities of stem cells and develop reliable culture conditions to direct efficient differentiation of specific neuronal and glial subtypes. The human umbilical cord and umbilical cord blood (UCB) are rich sources of multiple stem cells, including hematopoietic stem cells, mesenchymal stem cells, unrestricted somatic stem cells, and embryonic-like stem cells. Human UC/UCB-derived cells are able to give rise to multiple cell types of neural lineages. Studies have shown that UCB and UCB-derived cells can survive in injured sites in animal models of ischemic brain damage and spinal cord injuries, and promote survival and prevent cell death of local neurons and glia. Human UCB is easy to harvest and purify. Moreover, unlike embryonic stem cells, the use of human UCB is not limited by ethical quandaries. Therefore, human UCB is an attractive source of stem cells for repairing neural injuries.
Collapse
|
28
|
Divya MS, Roshin GE, Divya TS, Rasheed VA, Santhoshkumar TR, Elizabeth KE, James J, Pillai RM. Umbilical cord blood-derived mesenchymal stem cells consist of a unique population of progenitors co-expressing mesenchymal stem cell and neuronal markers capable of instantaneous neuronal differentiation. Stem Cell Res Ther 2012; 3:57. [PMID: 23253356 PMCID: PMC3580487 DOI: 10.1186/scrt148] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 12/17/2012] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Umbilical cord blood (UCB)-derived mesenchymal stem cells (MSCs) are self-renewing multipotent progenitors with the potential to differentiate into multiple lineages of mesoderm, in addition to generating ectodermal and endodermal lineages by crossing the germline barrier. In the present study we have investigated the ability of UCB-MSCs to generate neurons, since we were able to observe varying degrees of neuronal differentiation from a few batches of UCB-MSCs with very simple neuronal induction protocols whereas other batches required extensive exposure to combination of growth factors in a stepwise protocol. Our hypothesis was therefore that the human UCB-MSCs would contain multiple types of progenitors with varying neurogenic potential and that the ratio of the progenitors with high and low neurogenic potentials varies in different batches of UCB. METHODS In total we collected 45 UCB samples, nine of which generated MSCs that were further expanded and characterized using immunofluorescence, fluorescence-activated cell sorting and RT-PCR analysis. The neuronal differentiation potential of the UCB-MSCs was analyzed with exposure to combination of growth factors. RESULTS We could identify two different populations of progenitors within the UCB-MSCs. One population represented progenitors with innate neurogenic potential that initially express pluripotent stem cell markers such as Oct4, Nanog, Sox2, ABCG2 and neuro-ectodermal marker nestin and are capable of expanding and differentiating into neurons with exposure to simple neuronal induction conditions. The remaining population of cells, typically expressing MSC markers, requires extensive exposure to a combination of growth factors to transdifferentiate into neurons. Interesting to note was that both of these cell populations were positive for CD29 and CD105, indicating their MSC lineage, but showed prominent difference in their neurogenic potential. CONCLUSION Our results suggest that the expanded UCB-derived MSCs harbor a small unique population of cells that express pluripotent stem cell markers along with MSC markers and possess an inherent neurogenic potential. These pluripotent progenitors later generate cells expressing neural progenitor markers and are responsible for the instantaneous neuronal differentiation; the ratio of these pluripotent marker expressing cells in a batch determines the innate neurogenic potential.
Collapse
|
29
|
Grabowska I, Brzoska E, Gawrysiak A, Streminska W, Moraczewski J, Polanski Z, Hoser G, Kawiak J, Machaj EK, Pojda Z, Ciemerych MA. Restricted Myogenic Potential of Mesenchymal Stromal Cells Isolated from Umbilical Cord. Cell Transplant 2012; 21:1711-26. [DOI: 10.3727/096368912x640493] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Nonhematopoietic cord blood cells and mesenchymal cells of umbilical cord Wharton's jelly have been shown to be able to differentiate into various cell types. Thus, as they are readily available and do not raise any ethical issues, these cells are considered to be a potential source of material that can be used in regenerative medicine. In our previous study, we tested the potential of whole mononucleated fraction of human umbilical cord blood cells and showed that they are able to participate in the regeneration of injured mouse skeletal muscle. In the current study, we focused at the umbilical cord mesenchymal stromal cells isolated from Wharton's jelly. We documented that limited fraction of these cells express markers of pluripotent and myogenic cells. Moreover, they are able to undergo myogenic differentiation in vitro, as proved by coculture with C2C12 myoblasts. They also colonize injured skeletal muscle and, with low frequency, participate in the formation of new muscle fibers. Pretreatment of Wharton's jelly mesenchymal stromal cells with SDF-1 has no impact on their incorporation into regenerating muscle fibers but significantly increased muscle mass. As a result, transplantation of mesenchymal stromal cells enhances the skeletal muscle regeneration.
Collapse
Affiliation(s)
- Iwona Grabowska
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Edyta Brzoska
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Agnieszka Gawrysiak
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Wladyslawa Streminska
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Jerzy Moraczewski
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Zbigniew Polanski
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Grazyna Hoser
- Department of Clinical Cytology, Medical Centre of Postgraduate Education, Warsaw, Poland
| | - Jerzy Kawiak
- Department of Clinical Cytology, Medical Centre of Postgraduate Education, Warsaw, Poland
| | - Eugeniusz K. Machaj
- Department of Cellular Engineering, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
- Department of Regenerative Medicine, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Zygmunt Pojda
- Department of Cellular Engineering, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
- Department of Regenerative Medicine, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Maria A. Ciemerych
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
30
|
Abstract
One of the most intriguing questions in stem cell biology is whether pluripotent stem cells exist in adult tissues. Several groups of investigators employing i) various isolation protocols, ii) detection of surface markers, and iii) experimental in vitro and in vivo models, have reported the presence of cells that possess a pluripotent character in adult tissues. Such cells were assigned various operational abbreviations and names in the literature that added confusion to the field and raised the basic question of whether these are truly distinct or overlapping populations of the same primitive stem cells. Unfortunately, these cells were never characterized side-by-side to address this important issue. Nevertheless, taking into consideration their common features described in the literature, it is very likely that various investigators have described overlapping populations of developmentally early stem cells that are closely related. These different populations of stem cells will be reviewed in this paper.
Collapse
|
31
|
Ponce-Regalado MD, Ortuño-Sahagún D, Zarate CB, Gudiño-Cabrera G. Ensheathing cell-conditioned medium directs the differentiation of human umbilical cord blood cells into aldynoglial phenotype cells. Hum Cell 2012; 25:51-60. [PMID: 22529032 DOI: 10.1007/s13577-012-0044-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 02/24/2012] [Indexed: 10/28/2022]
Abstract
Despite their similarities to bone marrow precursor cells (PC), human umbilical cord blood (HUCB) PCs are more immature and, thus, they exhibit greater plasticity. This plasticity is evident by their ability to proliferate and spontaneously differentiate into almost any cell type, depending on their environment. Moreover, HUCB-PCs yield an accessible cell population that can be grown in culture and differentiated into glial, neuronal and other cell phenotypes. HUCB-PCs offer many potential therapeutic benefits, particularly in the area of neural replacement. We sought to induce the differentiation of HUCB-PCs into glial cells, known as aldynoglia. These cells can promote neuronal regeneration after lesion and they can be transplanted into areas affected by several pathologies, which represents an important therapeutic strategy to treat central nervous system damage. To induce differentiation to the aldynoglia phenotype, HUCB-PCs were exposed to different culture media. Mononuclear cells from HUCB were isolated and purified by identification of CD34 and CD133 antigens, and after 12 days in culture, differentiation of CD34+ HUCB-PCs to an aldynoglia phenotypic, but not that of CD133+ cells, was induced in ensheathing cell (EC)-conditioned medium. Thus, we demonstrate that the differentiation of HUCB-PCs into aldynoglia cells in EC-conditioned medium can provide a new source of aldynoglial cells for use in transplants to treat injuries or neurodegenerative diseases.
Collapse
Affiliation(s)
- María Dolores Ponce-Regalado
- Laboratorio de Desarrollo y Regeneración Neural, Departamento de Biología Celular y Molecular, Instituto de Neurobiología, C.U.C.B.A, Universidad de Guadalajara, Apdo. Postal 52-126, 45021, Guadalajara, Jalisco, Mexico
| | | | | | | |
Collapse
|
32
|
Rosenkranz K, Kumbruch S, Tenbusch M, Marcus K, Marschner K, Dermietzel R, Meier C. Transplantation of human umbilical cord blood cells mediated beneficial effects on apoptosis, angiogenesis and neuronal survival after hypoxic-ischemic brain injury in rats. Cell Tissue Res 2012; 348:429-38. [PMID: 22526623 DOI: 10.1007/s00441-012-1401-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 03/07/2012] [Indexed: 12/31/2022]
Abstract
Transplantation of human umbilical cord blood (hucb) cells in a model of hypoxic-ischemic brain injury led to the amelioration of lesion-impaired neurological and motor functions. However, the mechanisms by which transplanted cells mediate functional recovery after brain injury are largely unknown. In this study, the effects of hucb cell transplantation were investigated in this experimental paradigm at the cellular and molecular level. As the pathological cascade in hypoxic-ischemic brain injury includes inflammation, reduced blood flow, and neuronal cell death, we analyzed the effects of peripherally administered hucb cells on these detrimental processes, investigating the expression of characteristic marker proteins. Application of hucb cells after perinatal hypoxic-ischemic brain injury correlated with an increased expression of the proteins Tie-2 and occludin, which are associated with angiogenesis. Lesion-induced apoptosis, determined by expression of cleaved caspase-3, decreased, whereas the number of vital neurons, identified by counting of NeuN-positive cells, increased. In addition, we observed an increase in the expression of neurotrophic and pro-angiogenic growth factors, namely BDNF and VEGF, in the lesioned brain upon hucb cell transplantation. The release of neurotrophic factors mediated by transplanted hucb cells might cause a lower number of neurons to undergo apoptosis and result in a higher number of living neurons. In parallel, the increase of VEGF might cause growth of blood vessels. Thus, hucb transplantation might contribute to functional recovery after brain injury mediated by systemic or local effects.
Collapse
Affiliation(s)
- Katja Rosenkranz
- Department of Functional Proteomics, Ruhr-University Bochum, Bochum, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Han H, Chang SK, Chang JJ, Hwang SH, Han SH, Chun BH. Intrathecal injection of human umbilical cord blood-derived mesenchymal stem cells for the treatment of basilar artery dissection: a case report. J Med Case Rep 2011; 5:562. [PMID: 22136528 PMCID: PMC3240835 DOI: 10.1186/1752-1947-5-562] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 12/04/2011] [Indexed: 11/10/2022] Open
Abstract
Introduction Basilar artery dissection is a rare occurrence, and is significantly associated with morbidity and mortality. To the best of our knowledge, we report the first case of basilar artery dissection treated with mesenchymal stem cells. Case presentation We present the case of a 17-year-old Korean man who was diagnosed with basilar artery dissection. Infarction of the bilateral pons, midbrain and right superior cerebellum due to his basilar artery dissection was partially recanalized by intrathecal injection of human umbilical cord blood-derived mesenchymal stem cells. No immunosuppressants were given to our patient, and human leukocyte antigen alloantibodies were not detected after cell therapy. Conclusions This case indicates that intrathecal injections of mesenchymal stem cells can be used in the treatment of basilar artery dissection.
Collapse
Affiliation(s)
- Hoon Han
- Seoul Cord Blood Bank, Histostem Ltd,, Seoul Life Foundation Building, 518-4, Dunchon-dong, Kang Dong-gu, Seoul 134-060, Korea.
| | | | | | | | | | | |
Collapse
|
35
|
Spitzer N, Sammons GS, Butts HM, Grover LM, Price EM. Multipotent progenitor cells derived from adult peripheral blood of swine have high neurogenic potential in vitro. J Cell Physiol 2011; 226:3156-68. [PMID: 21321934 DOI: 10.1002/jcp.22670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Peripheral blood-derived multipotent adult progenitor cells (PBD-MAPCs) are a novel population of stem cells, isolated from venous blood of green fluorescent protein transgenic swine, which proliferate as multicellular non-adherent spheroids. Using a simple differentiation protocol, a large proportion of these cells developed one of five distinct neural cell phenotypes, indicating that these primordial cells have high neurogenic potential. Cells exhibiting neural morphologies developed within 48 h of exposure to differentiation conditions, increased in percentage over 2 weeks, and stably maintained the neural phenotype for three additional weeks in the absence of neurogenic signaling molecules. Cells exhibited dynamic neural-like behaviors including extension and retraction of processes with growth cone-like structures rich in filamentous actin, cell migration following a leading process, and various cell-cell interactions. Differentiated cells expressed neural markers, NeuN, β-tubulin III and synaptic proteins, and progenitor cells expressed the stem cell markers nestin and NANOG. Neurally differentiated PBD-MAPCs exhibited voltage-dependent inward and outward currents and expressed voltage-gated sodium and potassium channels, suggestive of neural-like membrane properties. PBD-MAPCs expressed early neural markers and developed neural phenotypes when provided with an extracellular matrix of laminin without the addition of cytokines or growth factors, suggesting that these multipotent cells may be primed for neural differentiation. PBD-MAPCs provide a model for understanding the mechanisms of neural differentiation from non-neural sources of adult stem cells. A similar population of cells, from humans or xenogeneic sources, may offer the potential of an accessible, renewable and non-tumorigenic source of stem cells for treating neural disorders.
Collapse
Affiliation(s)
- Nadja Spitzer
- Department of Biological Sciences, Marshall University, Huntington, West Virginia 25755, USA.
| | | | | | | | | |
Collapse
|
36
|
Slovinska L, Novotna I, Kubes M, Radonak J, Jergova S, Cigankova V, Rosocha J, Cizkova D. Umbilical Cord Blood Cells CD133+/CD133− Cultivation in Neural Proliferation Media Differentiates Towards Neural Cell Lineages. Arch Med Res 2011; 42:555-62. [DOI: 10.1016/j.arcmed.2011.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 09/26/2011] [Indexed: 01/10/2023]
|
37
|
Zuba-Surma EK, Wojakowski W, Ratajczak MZ, Dawn B. Very small embryonic-like stem cells: biology and therapeutic potential for heart repair. Antioxid Redox Signal 2011; 15:1821-34. [PMID: 21194389 PMCID: PMC3159118 DOI: 10.1089/ars.2010.3817] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Very small embryonic-like stem cells (VSELs) represent a population of extremely small nonhematopoietic pluripotent cells that are negative for lineage markers and express Sca-1 in mice and CD133 in humans. Their embryonic-like characteristics include the expression of markers of pluripotency; the ability to give rise to cellular derivatives of all three germ-layers; and the ability to form embryoid-like bodies. Indeed, quiescent VSELs may represent the remnants of epiblast-derived cells in adult organs. After tissue injury, including acute myocardial infarction (MI), bone marrow-derived VSELs are mobilized into the peripheral blood and home to the damaged organ. Given the ability of VSELs to differentiate into cardiomyocytes and endothelial cells, and their ability to secrete various cardioprotective growth factors/cytokines, VSELs may serve as an ideal cellular source for cardiac repair. Consistently, transplantation of VSELs after an acute MI improves left ventricular (LV) structure and function, and these benefits remain stable during long-term follow-up. Although the mechanisms remain under investigation, effects of secreted factors, regeneration of cellular constituents, and stimulation of endogenous stem/progenitors may play combinatorial roles. The purpose of this review is to summarize the current evidence regarding the biologic features of VSELs, and to discuss their potential as cellular substrates for therapeutic cardiac repair.
Collapse
Affiliation(s)
- Ewa K Zuba-Surma
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | | | | | |
Collapse
|
38
|
Jurga M, Forraz N, Basford C, Atzeni G, Trevelyan AJ, Habibollah S, Ali H, Zwolinski SA, McGuckin CP. Neurogenic properties and a clinical relevance of multipotent stem cells derived from cord blood samples stored in the biobanks. Stem Cells Dev 2011; 21:923-36. [PMID: 21732816 DOI: 10.1089/scd.2011.0224] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Several innovative therapies with human umbilical cord blood stem cells (SCs) are currently developing to treat central nervous system (CNS) diseases. It has been shown that cord blood contains multipotent lineage-negative (LinNEG) SCs capable of neuronal differentiation. Clinically useful cord blood samples are stored in different biobanks worldwide, but the content and neurogenic properties of LinNEG cells are unknown. Here we have compared 5 major methods of blood processing: Sepax, Hetastarch, plasma depletion, Prepacyte-SC, and density gradient. We showed that Sepax-processed blood units contained 10-fold higher number of LinNEG cells after cryopreservation in comparison to all other methods. We showed in this study that multipotent SCs derived from fresh and frozen cord blood samples could be efficiently induced in defined serum-free medium toward neuronal progenitors (NF200+, Ki67+). During neuronal differentiation, the multipotent SCs underwent precise sequential changes at the molecular and cellular levels: Oct4 and Sox2 downregulation and Ngn1, NeuN, and PSD95 upregulation, similar to neurogenesis process in vivo. We expect that data presented here will be valuable for clinicians, researchers, biobanks, and patients and will contribute for better efficacy of future clinical trials in regeneration of CNS.
Collapse
Affiliation(s)
- Marcin Jurga
- Cell Therapy Research Institute (CTI-Lyon), Parc Technologique de Lyon-Saint Priest, Saint Priest, France
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Chua SJ, Casper RF, Rogers IM. Toward transgene-free induced pluripotent stem cells: lessons from transdifferentiation studies. Cell Reprogram 2011; 13:273-80. [PMID: 21599518 DOI: 10.1089/cell.2010.0108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Abstract Regenerative medicine has received much attention over the years due to its clinical and commercial potential. The excitement around regenerative medicine waxes and wanes as new discoveries add to its foundation but are not immediately clinically applicable. The recent discovery of induced pluripotent stem cells has lead to a sustained effort from many research groups to develop clinically relevant regenerative medicine therapies. A major focus of cellular reprogramming is to generate safe cellular products through the use of proteins or small molecules instead of transgenes. The successful reprogramming of somatic nuclei to generate pluripotential cells capable of embryo development was pioneered over 50 years ago by Briggs and King and followed by Gurdon in the early 1960s. The success of these studies, the cloning of Dolly, and more current studies involving adult stem cells and transdifferentiation provide us with a large repository of potential candidate molecules and experimental systems that will assist in the generation of safe, transgene-free pluripotential cells.
Collapse
Affiliation(s)
- Shawn J Chua
- Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | | | | |
Collapse
|
40
|
Park DH, Lee JH, Borlongan CV, Sanberg PR, Chung YG, Cho TH. Transplantation of umbilical cord blood stem cells for treating spinal cord injury. Stem Cell Rev Rep 2011; 7:181-94. [PMID: 20532836 DOI: 10.1007/s12015-010-9163-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Spinal cord injury (SCI) develops primary and secondary damage to neural tissue and this often results in permanent disability of the motor and sensory functions. However, there is currently no effective treatment except methylprednisolone, and the use of methylprednisolone has also been questioned due to its moderate efficacy and the drug's downside. Regenerative medicine has remarkably developed since the discovery of stem cells, and many studies have suggested the potential of cell-based therapies for neural injury. Especially, the therapeutic potential of human umbilical cord blood cells (hUCB cells) for intractable neurological disorders has been demonstrated using in vitro and vivo models. The hUCB cells are immune naïve and they are able to differentiate into other phenotypes, including the neural lineage. Their ability to produce several neurotropic factors and to modulate immune and inflammatory reactions has also been noted. Recent evidence has emerged suggesting alternative pathways of graft-mediated neural repair that involve neurotrophic effects. These effects are caused by the release of various growth factors that promote cell survival, angiogenesis and anti-inflammation, and this is all aside from a cell replacement mechanism. In this review, we present the recent findings on the stemness properties and the therapeutic potential of hUCB as a safe, feasible and effective cellular source for transplantation in SCI. These multifaceted protective and restorative effects from hUCB grafts may be interdependent and they act in harmony to promote therapeutic benefits for SCI. Nevertheless, clinical studies with hUCB are still rare because of the concerns about safety and efficiency. Among these concerns, the major histocompatibility in allogeneic transplantation is an important issue to be addressed in future clinical trials for treating SCI.
Collapse
Affiliation(s)
- Dong-Hyuk Park
- Department of Neurosurgery, Korea University Medical Center, Anam Hospital, Korea University College of Medicine, #126, 5-GA, Anam-Dong, Sungbuk-Ku, Seoul 136-705, Korea.
| | | | | | | | | | | |
Collapse
|
41
|
Rosenkranz K, Meier C. Umbilical cord blood cell transplantation after brain ischemia--from recovery of function to cellular mechanisms. Ann Anat 2011; 193:371-9. [PMID: 21514122 DOI: 10.1016/j.aanat.2011.03.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/10/2011] [Accepted: 03/10/2011] [Indexed: 01/14/2023]
Abstract
Cell transplantation has been proposed as a potential approach to the treatment of neurological disorders. One cell population of interest consists of human umbilical cord blood (hUCB) cells, which have previously been shown to be useful for reparative medicine in haematological diseases. However, hUCB cells are also capable of differentiating into various non-haematopoietic cells, including those of the neural lineage. Moreover, hUCB cells can secrete numerous neurotrophic factors and modulate immune function and inflammatory reaction. Several studies on animal models of ischemic brain injury have demonstrated the potential of hUCB cells to minimize damage and promote recovery after ischemic brain injury.This review focuses on the treatment of both stroke and perinatal hypoxic-ischemic brain injury using hUCB cells. We discuss the therapeutic effects demonstrated after hUCB cell transplantation and emphasize possible mechanisms counteracting pathophysiological events of ischemia, thus leading to the generation of a regenerative environment that allows neural plasticity and functional recovery. The therapeutic functional effects of hUCB cells observed in animal models make the transplantation of hUCB cells a promising experimental approach in the treatment of ischemic brain injury. Together with its availability, low risk of transplantation, immaturity of cells, and simple route of application, hUCB transplantation may stand a good chance of being translated into a clinical setting for the therapy of ischemic brain injury.
Collapse
Affiliation(s)
- Katja Rosenkranz
- Department of Functional Proteomics, Ruhr-University Bochum, Bochum, Germany
| | | |
Collapse
|
42
|
Markiewicz I, Sypecka J, Domanska-Janik K, Wyszomirski T, Lukomska B. Cellular environment directs differentiation of human umbilical cord blood-derived neural stem cells in vitro. J Histochem Cytochem 2011; 59:289-301. [PMID: 21378283 DOI: 10.1369/0022155410397997] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cord blood-derived neural stem cells (NSCs) are proposed as an alternative cell source to repair brain damage upon transplantation. However, there is a lack of data showing how these cells are driven to generate desired phenotypes by recipient nervous tissue. Previous research indicates that local environment provides signals driving the fate of stem cells. To investigate the impact of these local cues interaction, the authors used a model of cord blood-derived NSCs co-cultured with different rat brain-specific primary cultures, creating the neural-like microenvironment conditions in vitro. Neuronal and astro-, oligo-, and microglia cell cultures were obtained by the previously described methods. The CMFDA-labeled neural stem cells originated from, non-transformed human umbilical cord blood cell line (HUCB-NSCs) established in a laboratory. The authors show that the close vicinity of astrocytes and oligodendrocytes promotes neuronal differentiation of HUCB-NSCs, whereas postmitotic neurons induce oligodendrogliogenesis of these cells. In turn, microglia or endothelial cells do not favor any phenotypes of their neural commitment. Studies have confirmed that HUCB-NSCs can read cues from the neurogenic microenvironment, attaining features of neurons, astrocytes, or oligodendrocytes. The specific responses of neurally committed cord blood-derived cells, reported in this work, are very much similar to those described previously for NSCs derived from other "more typical" sources. This further proves their genuine neural nature. Apart from having a better insight into the neurogenesis in the adult brain, these findings might be important when predicting cord blood cell derivative behavior after their transplantation for neurological disorders.
Collapse
Affiliation(s)
- Inga Markiewicz
- Neurorepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | | | | | | | | |
Collapse
|
43
|
Tofighi R, Moors M, Bose R, Ibrahim WNW, Ceccatelli S. Neural stem cells for developmental neurotoxicity studies. Methods Mol Biol 2011; 758:67-80. [PMID: 21815059 DOI: 10.1007/978-1-61779-170-3_5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The developing nervous system is particularly susceptible to toxicants, and exposure during development may result in long-lasting neurological impairments. The damage can range from subtle to severe, and it may impose substantial burdens on affected individuals, their families, and society. Given the little information available on developmental neurotoxicity (DNT) and the growing number of chemicals that need to be tested, new testing strategies and approaches are necessary to identify developmental neurotoxic agents with speed, reliability, and respect for animal welfare. So far, there are no validated alternative methods for DNT testing. Recently, neural stem/progenitor cells have been proposed as relevant models for alternative DNT testing. In this chapter, we provide detailed protocols for culturing neural stem cells (NSCs), in vitro experimental models, including primary cultures of rat and human embryonic NSCs, rat and mouse adult NSCs, as well as the mouse NSC line C17.2 that we have implemented and successfully used for neurotoxicity studies.
Collapse
Affiliation(s)
- Roshan Tofighi
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
44
|
Schwann cell-like remyelination following transplantation of human umbilical cord blood (hUCB)-derived mesenchymal stem cells in dogs with acute spinal cord injury. J Neurol Sci 2010; 300:86-96. [PMID: 21071039 DOI: 10.1016/j.jns.2010.09.025] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 09/20/2010] [Accepted: 09/21/2010] [Indexed: 12/22/2022]
Abstract
Human umbilical cord blood derived mesenchymal stem cells (hUCB-MSCs) have significant therapeutic potential in cell-based therapies following spinal cord injury (SCI). To evaluate this potential, we conducted our preliminary investigations on the remyelination of injured spinal cords with hUCB-MSC transplantations and we observed its long term effects on dogs with SCI. Of the ten injured dogs, seven were transplanted with hUCB-MSCs 1 week after SCI, whereas the remaining three dogs were not transplanted. Two transplanted dogs died over the first month after transplantation because of urinary tract infection, bedsores and sepsis. The SCI dogs showed no improvement in motor and sensory functions and their urinary dysfunction persisted until they were euthanized (from 3 months to 1 year) while hind-limb recovery in 4 dogs among the five transplanted dogs was significantly improved. In the recovered dogs, functional recovery was sustained for three years following transplantation. Histological results from five transplanted dogs showed that many axons were remyelinated by P0-positive myelin sheaths after transplantation. Our results suggest that transplantation of hUCB-derived MSCs may have beneficial therapeutic effects. Furthermore, histological results provided the first in vivo evidence that hUCB-MSCs are able to enhance the remyelination of peripheral-type myelin sheaths following SCI.
Collapse
|
45
|
Jozwiak S, Habich A, Kotulska K, Sarnowska A, Kropiwnicki T, Janowski M, Jurkiewicz E, Lukomska B, Kmiec T, Walecki J, Roszkowski M, Litwin M, Oldak T, Boruczkowski D, Domanska-Janik K. Intracerebroventricular Transplantation of Cord Blood-Derived Neural Progenitors in a Child With Severe Global Brain Ischemic Injury. CELL MEDICINE 2010; 1:71-80. [PMID: 26966631 PMCID: PMC4776166 DOI: 10.3727/215517910x536618] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Transplantation of neural stem/precursor cells has recently been proposed as a promising, albeit still controversial, approach to brain repair. Human umbilical cord blood could be a source of such therapeutic cells, proven beneficial in several preclinical models of stroke. Intracerebroventricular infusion of neutrally committed cord blood-derived cells allows their broad distribution in the CNS, whereas additional labeling with iron oxide nanoparticles (SPIO) enables to follow the fate of engrafted cells by MRI. A 16-month-old child at 7 months after the onset of cardiac arrest-induced global hypoxic/ischemic brain injury, resulting in a permanent vegetative state, was subjected to intracerebroventricular transplantation of the autologous neutrally committed cord blood cells. These cells obtained by 10-day culture in vitro in neurogenic conditions were tagged with SPIO nanoparticles and grafted monthly by three serial injections (12 × 10(6) cells/0.5 ml) into lateral ventricle of the brain. Neural conversion of cord blood cells and superparamagnetic labeling efficiency was confirmed by gene expression, immunocytochemistry, and phantom study. MRI examination revealed the discrete hypointense areas appearing immediately after transplantation in the vicinity of lateral ventricles wall with subsequent lowering of the signal during entire period of observation. The child was followed up for 6 months after the last transplantation and his neurological status slightly but significantly improved. No clinically significant adverse events were noted. This report indicates that intracerebroventricular transplantation of autologous, neutrally committed cord blood cells is a feasible, well tolerated, and safe procedure, at least during 6 months of our observation period. Moreover, a cell-related MRI signal persisted at a wall of lateral ventricle for more than 4 months and could be monitored in transplanted brain hemisphere.
Collapse
Affiliation(s)
- Sergiusz Jozwiak
- *Department of Neurology and Epileptology, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Aleksandra Habich
- †NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Kotulska
- *Department of Neurology and Epileptology, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Anna Sarnowska
- †NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Kropiwnicki
- ‡Department of Neurosurgery, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Miroslaw Janowski
- †NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Elzbieta Jurkiewicz
- §Department of Radiology, MR Unit, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Barbara Lukomska
- †NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Kmiec
- *Department of Neurology and Epileptology, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Jerzy Walecki
- ¶Department of Radiology and Diagnostic Imaging, Postgraduate Medical Centre and Experimental Pharmacology Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Marcin Roszkowski
- ‡Department of Neurosurgery, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Mieczyslaw Litwin
- #Department of Nephrology, The Children’s Memorial Health Institute, Warsaw, Poland
| | | | | | - Krystyna Domanska-Janik
- †NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
46
|
Kaner T, Karadag T, Cirak B, Erken HA, Karabulut A, Kiroglu Y, Akkaya S, Acar F, Coskun E, Genc O, Colakoglu N. The effects of human umbilical cord blood transplantation in rats with experimentally induced spinal cord injury. J Neurosurg Spine 2010; 13:543-51. [PMID: 20887153 DOI: 10.3171/2010.4.spine09685] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Even though there have been many efforts to recover neuronal dysfunction following spinal cord injuries, there are limitations to the treatment of these injuries. The purpose of this laboratory investigation was to determine the clinical and neurophysiological effects of human umbilical cord blood (HUCB) transplantation in a rat hemisection model of spinal cord injury. METHODS In this study, experimental hemisection of the thoracic spinal cord was performed in rats. The rats were divided into 4 groups (6 rats in each group). One group of rats (Group 1) underwent thoracic laminectomy only. Rats in Group 2 underwent laminectomy and right hemisection of the thoracic spinal cord. Rats in Group 3 underwent right hemisection and implantation of freshly obtained HUCB on Day 0 postinjury. Rats in Group 4 underwent hemisection and implantation of freshly obtained HUCB on Day 4 postinjury. Clinical evaluations of rat motor function included the following: neurological examination, Rotarod performance, and inclined plane tests. Rats also underwent reflex evaluation. RESULTS The neurological examinations revealed that the frequency of plegic rats was 70.8% at the beginning of the study across all 4 groups; this value decreased to 20.8% by the end of the study. The percentage of rats with a normal examination increased from 25% to 50%. The results of Rotarod performance and 8-week inclined plane performance tests showed statistical significance (p < 0.05) in an overall group comparison across all time points. At the end of the 8 weeks, a statistically significant difference was found in the inclined plane test results between rats in Groups 1 and 2. There were no statistically significant differences between Groups 1, 3, and 4 (p < 0.05). When the reflex responses of the hemisectioned sides were compared, statistically significant differences were detected between groups (p < 0.05). All groups were significantly different with regard to the right-side reflex response score (p < 0.05). Spinal cord preparations of rats in all groups were examined for histopathological changes. CONCLUSIONS Human umbilical cord blood is stem cell rich and easily available, and it carries less risk of inducing a graft-versus-host reaction in the recipient. Human umbilical cord blood serum is also noted to contain stem cell–promoting factors, which is why cell isolation was not used in this study. Freshly obtained cord blood was also used because storage of cord blood has been reported to have some negative effects on stem cells. Transplantation of freshly obtained HUCB into the hemisectioned spinal cord experimental model demonstrated clinical and neurophysiological improvement.
Collapse
Affiliation(s)
- Tuncay Kaner
- Department of Neurosurgery, Pendik State Hospital, Istanbul, Turkey
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Betts KS. Growing knowledge: using stem cells to study developmental neurotoxicity. ENVIRONMENTAL HEALTH PERSPECTIVES 2010; 118:A432-7. [PMID: 20884390 PMCID: PMC2957950 DOI: 10.1289/ehp.118-a432] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
|
48
|
Arien-Zakay H, Lecht S, Nagler A, Lazarovici P. Human umbilical cord blood stem cells: rational for use as a neuroprotectant in ischemic brain disease. Int J Mol Sci 2010; 11:3513-28. [PMID: 20957109 PMCID: PMC2956109 DOI: 10.3390/ijms11093513] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 09/15/2010] [Accepted: 09/15/2010] [Indexed: 01/19/2023] Open
Abstract
The use of stem cells for reparative medicine was first proposed more than three decades ago. Hematopoietic stem cells from bone marrow, peripheral blood and human umbilical cord blood (CB) have gained major use for treatment of hematological indications. CB, however, is also a source of cells capable of differentiating into various non-hematopoietic cell types, including neural cells. Several animal model reports have shown that CB cells may be used for treatment of neurological injuries. This review summarizes the information available on the origin of CB-derived neuronal cells and the mechanisms proposed to explain their action. The potential use of stem/progenitor cells for treatment of ischemic brain injuries is discussed. Issues that remain to be resolved at the present stage of preclinical trials are addressed.
Collapse
Affiliation(s)
- Hadar Arien-Zakay
- The School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel; E-Mails: (H.A.-Z.); (S.L.)
- Division of Hematology and Cord Blood Bank, Chaim Sheba Medical Center, Tel-Hashomer, Israel; E-Mail: (A.N.)
| | - Shimon Lecht
- The School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel; E-Mails: (H.A.-Z.); (S.L.)
| | - Arnon Nagler
- Division of Hematology and Cord Blood Bank, Chaim Sheba Medical Center, Tel-Hashomer, Israel; E-Mail: (A.N.)
| | - Philip Lazarovici
- The School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel; E-Mails: (H.A.-Z.); (S.L.)
- * Author to whom correspondence should be addressed: E-Mail: ; Tel.: 972-2-6758-729; Fax: 972-2-6757-490
| |
Collapse
|
49
|
Bieback K, Brinkmann I. Mesenchymal stromal cells from human perinatal tissues: From biology to cell therapy. World J Stem Cells 2010; 2:81-92. [PMID: 21607124 PMCID: PMC3097927 DOI: 10.4252/wjsc.v2.i4.81] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 08/11/2010] [Accepted: 08/16/2010] [Indexed: 02/06/2023] Open
Abstract
Cell-based regenerative medicine is of growing interest in biomedical research. The role of stem cells in this context is under intense scrutiny and may help to define principles of organ regeneration and develop innovative therapeutics for organ failure. Utilizing stem and progenitor cells for organ replacement has been conducted for many years when performing hematopoietic stem cell transplantation. Since the first successful transplantation of umbilical cord blood to treat hematological malignancies, non-hematopoietic stem and progenitor cell populations have recently been identified within umbilical cord blood and other perinatal and fetal tissues. A cell population entitled mesenchymal stromal cells (MSCs) emerged as one of the most intensely studied as it subsumes a variety of capacities: MSCs can differentiate into various subtypes of the mesodermal lineage, they secrete a large array of trophic factors suitable of recruiting endogenous repair processes and they are immunomodulatory.Focusing on perinatal tissues to isolate MSCs, we will discuss some of the challenges associated with these cell types concentrating on concepts of isolation and expansion, the comparison with cells derived from other tissue sources, regarding phenotype and differentiation capacity and finally their therapeutic potential.
Collapse
Affiliation(s)
- Karen Bieback
- Karen Bieback, Irena Brinkmann, Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, DRK-Blutspendedienst Baden-Württemberg - Hessen gGmbH, Ludolf-Krehl-Str. 13-17, D-68167 Mannheim, Germany
| | | |
Collapse
|
50
|
Pulukuri SMK, Gorantla B, Dasari VR, Gondi CS, Rao JS. Epigenetic upregulation of urokinase plasminogen activator promotes the tropism of mesenchymal stem cells for tumor cells. Mol Cancer Res 2010; 8:1074-83. [PMID: 20663859 DOI: 10.1158/1541-7786.mcr-09-0495] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A major obstacle for the effective treatment of cancer is the invasive capacity of the tumor cells. Previous studies have shown the capability of mesenchymal stem cells (MSC) to target these disseminated tumor cells and to serve as therapeutic delivery vehicles. However, the molecular mechanisms that would enhance the migration of MSCs toward tumor areas are not well understood. In particular, very little is known about the role that epigenetic mechanisms play in cell migration and tropism of MSCs. In this study, we investigated whether histone deacetylation was involved in the repression of urokinase plasminogen activator (uPA) expression in MSCs derived from umbilical cord blood (CB) and bone marrow (BM). Induction of uPA expression by histone deacetylase inhibitors trichostatin A and sodium butyrate was observed in CB- and BM-derived MSCs examined. In vitro migration assays showed that induction of uPA expression by histone deacetylase inhibitors in CB- and BM-derived MSCs significantly enhanced tumor tropism of these cells. Furthermore, overexpression of uPA in CB-MSCs induced migration capacity toward human cancer cells in vitro. In addition, our results showed that uPA-uPAR knockdown in PC3 prostate cancer cells significantly inhibited tumor-specific migration of uPA-overexpressing MSCs. These results have significant implications for the development of MSC-mediated, tumor-selective gene therapies.
Collapse
Affiliation(s)
- Sai Murali Krishna Pulukuri
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, IL 61605, USA
| | | | | | | | | |
Collapse
|