1
|
Bolin AP, de Fatima Silva F, Salgueiro RB, Dos Santos BA, Komino ACM, Andreotti S, de Sousa É, de Castro É, Real CC, de Paula Faria D, Souza GP, Camara H, Sorgi CA, Tseng YH, Lima FB, Rodrigues AC. Glucocorticoid modulates oxidative and thermogenic function of rat brown adipose tissue and human brown adipocytes. J Cell Physiol 2024; 239:1-12. [PMID: 39091018 DOI: 10.1002/jcp.31397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/09/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
Chronic and excessive glucocorticoid (GC) exposure can cause Cushing's syndrome, resulting in fat accumulation in selected body areas. Particularly in the brown adipose tissue (BAT), GC acts negatively, resulting in whitening of the tissue. We hypothesized that dysregulation of microRNAs by GC could be an additional mechanism to explain its negative actions in BAT. Male Wistar rats were divided into two groups: (1) Control sham and (2) GC group that was administered dexamethasone 6.25 mg/200 μL via osmotic pump implantation over 28 days. After this period, the animals were euthanized and BAT tissue was properly stored. Human fat cells treated with dexamethasone were used to translate the experimental results found in animals to human biology. GC-treated rat BAT presented with large lipid droplets, severely impaired thermogenic activation, and reduced glucose uptake measured by 18F-FDG PET/CT. GC exposure induced a reduction in the mitochondrial OXPHOS system and oxygen consumption. MicroRNA profiling of BAT revealed five top-regulated microRNAs and among them miR-21-5p was the most significantly upregulated in GC-treated rats compared to the control group. Although upregulation of miR-21-5p in the tissue, differentiated primary brown adipocytes from GC-treated rats had decreased miR-21-5p levels compared to the control group. To translate these results to the clinic, human brown adipocytes were treated with dexamethasone and miR-21-5p inhibitor. In human brown cells, inhibition of miR-21-5p increased brown adipocyte differentiation and prevented GC-induced glucose uptake, resulting in a lower glycolysis rate. In conclusion, high-dose GC therapy significantly impacts brown adipose tissue function, with a notable association between glucose uptake and miR-21-5p.
Collapse
Affiliation(s)
- Anaysa Paola Bolin
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Flaviane de Fatima Silva
- Department of Physiology, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Rafael Barrera Salgueiro
- Department of Physiology, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Bruna Araújo Dos Santos
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | | | - Sandra Andreotti
- Department of Physiology, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Érica de Sousa
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Érique de Castro
- Department of Physiology, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Caroline Cristiano Real
- Department of Nuclear Medicine and PET, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Daniele de Paula Faria
- Department of Radiology and Oncology, Laboratory of Nuclear Medicine (LIM43), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Gerson Profeta Souza
- Department of Medicine, Section on Integrative Physiology and Metabolism, Joslin Diabetes Center Harvard Medical School, Boston, Massachusetts, USA
| | - Henrique Camara
- Department of Medicine, Section on Integrative Physiology and Metabolism, Joslin Diabetes Center Harvard Medical School, Boston, Massachusetts, USA
| | - Carlos Arterio Sorgi
- Department of Biochemistry and Immunology, Faculdade de Medicina de Ribeirão Preto - FMRP/USP, Ribeirão Preto, Brazil
- Department of Chemistry, Faculdade de Filosofia, Ciencias e Letras de Ribeirão Preto - FFCLRP/USP, Ribeirão Preto, Brazil
| | - Yu-Hua Tseng
- Department of Medicine, Section on Integrative Physiology and Metabolism, Joslin Diabetes Center Harvard Medical School, Boston, Massachusetts, USA
| | - Fábio Bessa Lima
- Department of Physiology, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Alice Cristina Rodrigues
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Halász H, Szatmári Z, Kovács K, Koppán M, Papp S, Szabó-Meleg E, Szatmári D. Changes of Ex Vivo Cervical Epithelial Cells Due to Electroporation with JMY. Int J Mol Sci 2023; 24:16863. [PMID: 38069185 PMCID: PMC10706833 DOI: 10.3390/ijms242316863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
The ionic environment within the nucleoplasm might diverge from the conditions found in the cytoplasm, potentially playing a role in the cellular stress response. As a result, it is conceivable that interactions of nuclear actin and actin-binding proteins (ABPs) with apoptosis factors may differ in the nucleoplasm and cytoplasm. The primary intracellular stress response is Ca2+ influx. The junctional mediating and regulating Y protein (JMY) is an actin-binding protein and has the capability to interact with the apoptosis factor p53 in a Ca2+-dependent manner, forming complexes that play a regulatory role in cytoskeletal remodelling and motility. JMY's presence is observed in both the cytoplasm and nucleoplasm. Here, we show that ex vivo ectocervical squamous cells subjected to electroporation with JMY protein exhibited varying morphological alterations. Specifically, the highly differentiated superficial and intermediate cells displayed reduced nuclear size. In inflamed samples, nuclear enlargement and simultaneous cytoplasmic reduction were observable and showed signs of apoptotic processes. In contrast, the less differentiated parabasal and metaplastic cells showed increased cytoplasmic activity and the formation of membrane protrusions. Surprisingly, in severe inflammation, vaginosis or ASC-US (Atypical Squamous Cells of Undetermined Significance), JMY appears to influence only the nuclear and perinuclear irregularities of differentiated cells, and cytoplasmic abnormalities still existed after the electroporation. Our observations can provide an appropriate basis for the exploration of the relationship between cytopathologically relevant morphological changes of epithelial cells and the function of ABPs. This is particularly important since ABPs are considered potential diagnostic and therapeutic biomarkers for both cancers and chronic inflammation.
Collapse
Affiliation(s)
- Henriett Halász
- Department of Biophysics, Medical School, University of Pécs, 7624 Pécs, Hungary; (H.H.); (E.S.-M.)
| | | | - Krisztina Kovács
- Department of Pathology, Medical School, University of Pécs, 7624 Pécs, Hungary;
| | | | - Szilárd Papp
- DaVinci Clinics, 7635 Pécs, Hungary; (M.K.); (S.P.)
| | - Edina Szabó-Meleg
- Department of Biophysics, Medical School, University of Pécs, 7624 Pécs, Hungary; (H.H.); (E.S.-M.)
| | - Dávid Szatmári
- Department of Biophysics, Medical School, University of Pécs, 7624 Pécs, Hungary; (H.H.); (E.S.-M.)
| |
Collapse
|
3
|
Lombardi G, Delvin E. Micro-RNA: A Future Approach to Personalized Diagnosis of Bone Diseases. Calcif Tissue Int 2023; 112:271-287. [PMID: 35182198 DOI: 10.1007/s00223-022-00959-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/07/2022] [Indexed: 01/25/2023]
Abstract
Osteoporosis is a highly prevalent bone disease worldwide and the most studied bone-associated pathological condition. Although its diagnosis makes use of advanced and clinically relevant imaging and biochemical tools, the information suffers from several limitations and has little or no prognostic value. In this context, circulating micro-RNAs represent a potentially attractive alternative or a useful addition to the diagnostic arsenal and offer a greater prognostic potential than the conventional approaches. These short non-coding RNA molecules act as inhibitors of gene expression by targeting messenger RNAs with different degrees of complementarity, establishing a complex multilevel network, the basis for the fine modulation of gene expression that finally regulates every single activity of a cell. Micro-RNAs may passively and/or actively be released in the circulation by source cells, and being measurable in biological fluids, their concentrations may be associated to specific pathophysiological conditions. Mounting, despite debatable, evidence supports the use of micro-RNAs as markers of bone cell metabolic activity and bone diseases. Indeed, several micro-RNAs have been associated with bone mineral density, fractures and osteoporosis. However, concerns such as absence of comparability between studies and, the lack of standardization and harmonization of the methods, limit their application. In this review, we describe the pathophysiological bases of the association between micro-RNAs and the deregulation of bone cells activity and the processes that led to the identification of potential micro-RNA-based markers associated with metabolic bone diseases.
Collapse
Affiliation(s)
- Giovanni Lombardi
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161, Milano, Italy.
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Królowej Jadwigi 27/39, 61-871, Poznań, Poland.
| | - Edgard Delvin
- Ste-Justine University Hospital Research Centre & Department of Biochemistry, Université de Montreal, Montreal, QC, H3T 1C5, Canada
| |
Collapse
|
4
|
Azzarito G, Kurmann L, Leeners B, Dubey RK. Micro-RNA193a-3p Inhibits Breast Cancer Cell Driven Growth of Vascular Endothelial Cells by Altering Secretome and Inhibiting Mitogenesis: Transcriptomic and Functional Evidence. Cells 2022; 11:cells11192967. [PMID: 36230929 PMCID: PMC9562882 DOI: 10.3390/cells11192967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/12/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022] Open
Abstract
Breast cancer (BC) cell secretome in the tumor microenvironment (TME) facilitates neo-angiogenesis by promoting vascular endothelial cell (VEC) growth. Drugs that block BC cell growth or angiogenesis can restrict tumor growth and are of clinical relevance. Molecules that can target both BC cell and VEC growth as well as BC secretome may be more effective in treating BC. Since small non-coding microRNAs (miRs) regulate cell growth and miR193a-3p has onco-suppressor activity, we investigated whether miR193a-3p inhibits MCF-7-driven growth (proliferation, migration, capillary formation, signal transduction) of VECs. Using BC cells and VECs grown in monolayers or 3D spheroids and gene microarrays, we demonstrate that: pro-growth effects of MCF-7 and MDA-MB231 conditioned medium (CM) are lost in CM collected from MCF-7/MDA-MB231 cells pre-transfected with miR193a-3p (miR193a-CM). Moreover, miR193a-CM inhibited MAPK and Akt phosphorylation in VECs. In microarray gene expression studies, miR193a-CM upregulated 553 genes and downregulated 543 genes in VECs. Transcriptomic and pathway enrichment analysis of differentially regulated genes revealed downregulation of interferon-associated genes and pathways that induce angiogenesis and BC/tumor growth. An angiogenesis proteome array confirmed the downregulation of 20 pro-angiogenesis proteins by miR193a-CM in VECs. Additionally, in MCF-7 cells and VECs, estradiol (E2) downregulated miR193a-3p expression and induced growth. Ectopic expression of miR193a-3p abrogated the growth stimulatory effects of estradiol E2 and serum in MCF-7 cells and VECs, as well as in MCF-7 and MCF-7+VEC 3D spheroids. Immunostaining of MCF-7+VEC spheroid sections with ki67 showed miR193a-3p inhibits cell proliferation. Taken together, our findings provide first evidence that miR193a-3p abrogates MCF-7-driven growth of VECs by altering MCF-7 secretome and downregulating pro-growth interferon signals and proangiogenic proteins. Additionally, miR193a-3p inhibits serum and E2-induced growth of MCF-7, VECs, and MCF-7+VEC spheroids. In conclusion, miRNA193a-3p can potentially target/inhibit BC tumor angiogenesis via a dual mechanism: (1) altering proangiogenic BC secretome/TME and (2) inhibiting VEC growth. It may represent a therapeutic molecule to target breast tumor growth.
Collapse
Affiliation(s)
- Giovanna Azzarito
- Department of Reproductive Endocrinology, University Hospital Zurich, 8952 Schlieren, Switzerland
| | - Lisa Kurmann
- Department of Reproductive Endocrinology, University Hospital Zurich, 8952 Schlieren, Switzerland
| | - Brigitte Leeners
- Department of Reproductive Endocrinology, University Hospital Zurich, 8952 Schlieren, Switzerland
| | - Raghvendra K. Dubey
- Department of Reproductive Endocrinology, University Hospital Zurich, 8952 Schlieren, Switzerland
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Correspondence:
| |
Collapse
|
5
|
Tan XG, Zhu J, Cui L. MicroRNA expression signature and target prediction in familial and sporadic primary macronodular adrenal hyperplasia (PMAH). BMC Endocr Disord 2022; 22:11. [PMID: 34986816 PMCID: PMC8729020 DOI: 10.1186/s12902-021-00910-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 12/05/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Primary macronodular adrenal hyperplasia (PMAH), previously termed ACTH-independent macronodular adrenal hyperplasia (AIMAH), is a rare cause of Cushing's syndrome usually characterized by functioning adrenal macronodules and increased cortisol production. METHODS To screen and analyse the microRNA (miRNA) profile of PMAH in order to elucidate its possible pathogenesis, a miRNA microarray was used to test tissue samples from patients with familial PMAH, patients with sporadic PMAH and normal control samples of other nontumour adrenocortical tissues and identify characteristic microRNA expression signatures. Randomly selected miRNAs were validated by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). Furthermore, the key signalling pathways and miRNAs involved in PMAH pathogenesis were determined by gene ontology and pathway analysis. RESULTS Characteristic microRNA expression signatures were identified for patients with familial PMAH (16 differentially expressed microRNAs) and patients with sporadic PMAH (8 differentially expressed microRNAs). The expression of the selected miRNAs was confirmed by qRT-PCR, suggesting the high reliability of the miRNA array analysis results. Pathway analysis showed that the most enriched pathway was the renal cell carcinoma pathway. Overexpression of miR-17, miR-20a and miR-130b may inhibit glucocorticoid-induced apoptosis in PMAH pathogenesis. CONCLUSION We identified the miRNA signatures in patients with familial and sporadic PMAH. The differentially expressed miRNAs may be involved in the mechanisms of PMAH pathogenesis. Specific miRNAs, such as miR-17, miR-20a and miR-130b, may be new targets for further functional studies of PMAH.
Collapse
Affiliation(s)
- Xiao-Gang Tan
- Department of Thoracic Surgery, Xuan Wu Hospital of Capital Medical University, Beijing, 100053, China
| | - Jie Zhu
- Department of Urology Surgery, Chinese PLA General Hospital, Beijing, 100082, China
| | - Liang Cui
- Department of Urology Surgery, Civil Aviation General Hospital, Beijing, 100123, China.
| |
Collapse
|
6
|
Sweat Y, Ries RJ, Sweat M, Su D, Shao F, Eliason S, Amendt BA. miR-17 acts as a tumor suppressor by negatively regulating the miR-17-92 cluster. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:1148-1158. [PMID: 34853714 PMCID: PMC8601969 DOI: 10.1016/j.omtn.2021.10.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/09/2021] [Accepted: 10/19/2021] [Indexed: 01/14/2023]
Abstract
Anaplastic thyroid cancer (ATC) is an aggressive, highly metastatic cancer that expresses high levels of the microRNA (miR)-17-92 cluster. We employ an miR inhibitor system to study the function of the different miRs within the miR-17-92 cluster based on seed sequence homology in the ATC SW579 cell line. While three of the four miR-17-92 families were oncogenic, we uncovered a novel role for miR-17 as a tumor suppressor in vitro and in vivo. Surprisingly, miR-17 inhibition increased expression of the miR-17-92 cluster and significantly increased the levels of the miR-18a and miR-19a mature miRs. miR-17 inhibition increased expression of the cell cycle activator CCND2, associated with increased cell proliferation and tumor growth in transplanted SW579 cells in xenograft mice. miR-17 regulates MYCN and c-MYC expression in SW579 cells, and the inhibition of miR-17 increased MYCN and c-MYC expression, which increased pri-miR-17-92 transcripts. Thus, inhibition of miR-17 activated the expression of the oncogenic miRs, miR-18a and miR-19a. While many cancers express high levels of miR-17, linking it with tumorigenesis, we demonstrate that miR-17 inhibition does not inhibit thyroid tumor growth in SW579 and MDA-T32 ATC cells but increases expression of the other miR-17-92 family members and genes to induce cancer progression.
Collapse
Affiliation(s)
- Yan Sweat
- Harvard University, Boston, MA 02115, USA
| | - Ryan J. Ries
- Weill-Cornell Medical College, Cornell University, New York, NY 10075, USA
| | | | - Dan Su
- The University of Iowa, Department of Anatomy and Cell Biology, Iowa City, IA 52242, USA
- Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Fan Shao
- The University of Iowa, Department of Anatomy and Cell Biology, Iowa City, IA 52242, USA
- Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Steven Eliason
- The University of Iowa, Department of Anatomy and Cell Biology, Iowa City, IA 52242, USA
- Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Brad A. Amendt
- The University of Iowa, Department of Anatomy and Cell Biology, Iowa City, IA 52242, USA
- Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
- Iowa Institute for Oral Health Research, The University of Iowa, Iowa City, IA 52242, USA
- Corresponding author: Brad A. Amendt, PhD, Carver College of Medicine, Department of Anatomy and Cell Biology, Craniofacial Anomalies Research Center, The University of Iowa, 51 Newton Road, Iowa City, IA 52242, USA.
| |
Collapse
|
7
|
Liu T, Cao Y, Han C, An F, Wang T, Sun M, Ma C, Dong Q, Wang J. Association of MIR17HG and MIR155HG gene variants with steroid-induced osteonecrosis of the femoral head in the population of northern China. J Orthop Surg Res 2021; 16:673. [PMID: 34781979 PMCID: PMC8594148 DOI: 10.1186/s13018-021-02669-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/11/2021] [Indexed: 01/05/2023] Open
Abstract
Introduction Steroid-induced osteonecrosis of the femoral head (ONFH) is a disease of the bone. Metabolism and genetic factors are generally considered to play an important role. The purpose of this study was to investigate the relationship between single-nucleotide polymorphisms (SNPs) in MIR17HG and MIR155HG and the risk of steroid-induced ONFH in the population of northern China. Methods A total of 199 steroid-induced ONFH patients and 506 healthy controls were recruited for the study. Four SNPs of MIR17HG and seven SNPs of MIR155HG were genotyped by Sequenom MassARRAY. ORs and 95% CIs were used to evaluate the relationship between these SNPs and steroid-induced ONFH. Results In the codominant model, patients with the MIR17HG SNPs (rs7318578) AA genotype had an increased risk of steroid-induced ONFH (OR = 1.79, p = 0.039); in the recessive model, patients with the MIR17HG SNP (rs7318578) AA genotype had an increased risk of steroid-induced ONFH (OR = 1.78, p = 0.032). Stratified analysis showed that a MIR17HG SNP (rs7318578) and the MIR155HG SNPs (rs77218221, rs11911469, rs34904192 and rs4143370) were closely related to different unornamented phenotypes of steroid-induced ONFH. Analysis of the clinical indicators revealed significant differences in high-density lipoprotein (HDL-C) levels between the ONFH group and the control group (p = 0.005). In the MIR17HG SNP (rs75267932), patients with different genotypes had different levels of triglyceride (TG). The MIR155HG SNPs (rs77699734, rs1893650, and rs34904192) showed differences in triglyceride (TG), high-density lipoprotein (HDL-C) and low-density lipoprotein (LDL-C) levels in patients with different genotypes. Conclusion Our results confirm that MIR17HG and MIR155HG gene mutations are associated with steroid-induced ONFH susceptibility in the population of northern China, providing new evidence for the early detection and prevention of ONFH.
Collapse
Affiliation(s)
- Tingting Liu
- Inner Mongolia Medical University, Hohhot, 010110, Jinshan Development Zone, China.,The Second Affiliated Hospital of Inner Mongolia Medical University, No. 1, Yingfang Road, Huhhot, 010030, Hui District, China
| | - Yuju Cao
- Zhengzhou Traditional Chinese Medicine (TCM) Traumatology Hospital, No.1266, First Street, Hanghai East Road, Zhengzhou, 450009, China
| | - Changxu Han
- The Second Affiliated Hospital of Inner Mongolia Medical University, No. 1, Yingfang Road, Huhhot, 010030, Hui District, China
| | - Feimeng An
- Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, No. 11, Xingcheng District, Hohhott, 010010, China
| | - Tiantian Wang
- Inner Mongolia Medical University, Hohhot, 010110, Jinshan Development Zone, China.,The Second Affiliated Hospital of Inner Mongolia Medical University, No. 1, Yingfang Road, Huhhot, 010030, Hui District, China
| | - Menghu Sun
- Inner Mongolia Medical University, Hohhot, 010110, Jinshan Development Zone, China.,The Second Affiliated Hospital of Inner Mongolia Medical University, No. 1, Yingfang Road, Huhhot, 010030, Hui District, China
| | - Chao Ma
- The Second Affiliated Hospital of Inner Mongolia Medical University, No. 1, Yingfang Road, Huhhot, 010030, Hui District, China
| | - Qiumei Dong
- College of Traditional Chinese Medicine, Inner Mongolia Medical University, Hohhot, 010110, Jinshan Development Zone, China.
| | - Jianzhong Wang
- The Second Affiliated Hospital of Inner Mongolia Medical University, No. 1, Yingfang Road, Huhhot, 010030, Hui District, China.
| |
Collapse
|
8
|
Ponzetti M, Rucci N. Osteoblast Differentiation and Signaling: Established Concepts and Emerging Topics. Int J Mol Sci 2021; 22:ijms22136651. [PMID: 34206294 PMCID: PMC8268587 DOI: 10.3390/ijms22136651] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023] Open
Abstract
Osteoblasts, the cells that build up our skeleton, are remarkably versatile and important cells that need tight regulation in all the phases of their differentiation to guarantee proper skeletal development and homeostasis. Although we know many of the key pathways involved in osteoblast differentiation and signaling, it is becoming clearer and clearer that this is just the tip of the iceberg, and we are constantly discovering novel concepts in osteoblast physiology. In this review, we discuss well-established pathways of osteoblastic differentiation, i.e., the classical ones committing mesenchymal stromal cells to osteoblast, and then osteocytes as well as recently emerged players. In particular, we discuss micro (mi)RNAs, long non-coding (lnc)RNAs, circular (circ)RNAs, and extracellular vesicles, focusing on the mechanisms through which osteoblasts are regulated by these factors, and conversely, how they use extracellular vesicles to communicate with the surrounding microenvironment.
Collapse
|
9
|
Li H, Xiao Z, Quarles LD, Li W. Osteoporosis: Mechanism, Molecular Target and Current Status on Drug Development. Curr Med Chem 2021; 28:1489-1507. [PMID: 32223730 PMCID: PMC7665836 DOI: 10.2174/0929867327666200330142432] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 11/22/2022]
Abstract
CDATA[Osteoporosis is a pathological loss of bone mass due to an imbalance in bone remodeling where osteoclast-mediated bone resorption exceeds osteoblast-mediated bone formation resulting in skeletal fragility and fractures. Anti-resorptive agents, such as bisphosphonates and SERMs, and anabolic drugs that stimulate bone formation, including PTH analogues and sclerostin inhibitors, are current treatments for osteoporosis. Despite their efficacy, severe side effects and loss of potency may limit the long term usage of a single drug. Sequential and combinational use of current drugs, such as switching from an anabolic to an anti-resorptive agent, may provide an alternative approach. Moreover, there are novel drugs being developed against emerging new targets such as Cathepsin K and 17β-HSD2 that may have less side effects. This review will summarize the molecular mechanisms of osteoporosis, current drugs for osteoporosis treatment, and new drug development strategies.
Collapse
Affiliation(s)
- Hanxuan Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Zhousheng Xiao
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38165, USA
| | - L. Darryl Quarles
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38165, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| |
Collapse
|
10
|
Estrogen Regulates the Satellite Cell Compartment in Females. Cell Rep 2020; 28:368-381.e6. [PMID: 31291574 PMCID: PMC6655560 DOI: 10.1016/j.celrep.2019.06.025] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 04/24/2019] [Accepted: 06/05/2019] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle mass, strength, and regenerative capacity decline with age, with many measures showing a greater deterioration in females around the time estrogen levels decrease at menopause. Here, we show that estrogen deficiency severely compromises the maintenance of muscle stem cells (i.e., satellite cells) as well as impairs self-renewal and differentiation into muscle fibers. Mechanistically, by hormone replacement, use of a selective estrogen-receptor modulator (bazedoxifene), and conditional estrogen receptor knockout, we implicate 17β-estradiol and satellite cell expression of estrogen receptor α and show that estrogen signaling through this receptor is necessary to prevent apoptosis of satellite cells. Early data from a biopsy study of women who transitioned from peri- to post-menopause are consistent with the loss of satellite cells coincident with the decline in estradiol in humans. Together, these results demonstrate an important role for estrogen in satellite cell maintenance and muscle regeneration in females. Collins et al. show the loss of estrogen in female mice and post-menopausal women leads to a decrease in skeletal muscle stem cells. Using muscle stem cell-specific mutants, it was demonstrated that ERα is necessary for satellite cell maintenance, self-renewal, and protection from apoptosis, thereby promoting optimal muscle regeneration.
Collapse
|
11
|
Otoukesh B, Abbasi M, Gorgani HOL, Farahini H, Moghtadaei M, Boddouhi B, Kaghazian P, Hosseinzadeh S, Alaee A. MicroRNAs signatures, bioinformatics analysis of miRNAs, miRNA mimics and antagonists, and miRNA therapeutics in osteosarcoma. Cancer Cell Int 2020; 20:254. [PMID: 32565738 PMCID: PMC7302353 DOI: 10.1186/s12935-020-01342-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) involved in key signaling pathways and aggressive phenotypes of osteosarcoma (OS) was discussed, including PI3K/AKT/MTOR, MTOR AND RAF-1 signaling, tumor suppressor P53- linked miRNAs, NOTCH- related miRNAs, miRNA -15/16 cluster, apoptosis related miRNAs, invasion-metastasis-related miRNAs, and 14Q32-associated miRNAs cluster. Herrin, we discussed insights into the targeted therapies including miRNAs (i.e., tumor-suppressive miRNAs and oncomiRNAs). Using bioinformatics tools, the interaction network of all OS-associated miRNAs and their targets was also depicted.
Collapse
Affiliation(s)
- Babak Otoukesh
- Orthopedic Surgery Fellowship in Département Hospitalo-Universitaire MAMUTH « Maladies musculo-squelettiques et innovations thérapeutiques » , Université Pierre et Marie-Curie, Sorbonne Université, Paris, France.,Department of Orthopedic Surgery, Bone and Joint Reconstruction Research Center, Iran University of Medical Science, Postal code : 1445613131 Tehran, Iran
| | - Mehdi Abbasi
- Brain Mapping Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Habib-O-Lah Gorgani
- Department of Orthopedic Surgery, Bone and Joint Reconstruction Research Center, Iran University of Medical Science, Postal code : 1445613131 Tehran, Iran
| | - Hossein Farahini
- Department of Orthopedic Surgery, Bone and Joint Reconstruction Research Center, Iran University of Medical Science, Postal code : 1445613131 Tehran, Iran
| | - Mehdi Moghtadaei
- Department of Orthopedic Surgery, Bone and Joint Reconstruction Research Center, Iran University of Medical Science, Postal code : 1445613131 Tehran, Iran
| | - Bahram Boddouhi
- Department of Orthopedic Surgery, Bone and Joint Reconstruction Research Center, Iran University of Medical Science, Postal code : 1445613131 Tehran, Iran
| | - Peyman Kaghazian
- Department of Orthopedic and Traumatology, Universitätsklinikum Bonn, Bonn, Germany
| | - Shayan Hosseinzadeh
- Department of Orthopedic Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA USA
| | - Atefe Alaee
- Department of Information Sciences, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Xie BP, Shi LY, Li JP, Zeng Y, Liu W, Tang SY, Jia LJ, Zhang J, Gan GX. Oleanolic acid inhibits RANKL-induced osteoclastogenesis via ER alpha/miR-503/RANK signaling pathway in RAW264.7 cells. Biomed Pharmacother 2019; 117:109045. [PMID: 31176167 DOI: 10.1016/j.biopha.2019.109045] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/24/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022] Open
Abstract
Oleanolic acid (OA) has recently become a research hotspot in the treatment of many human diseases, especially osteoporosis and arthritis. However, the mechanisms are not elucidated completely. We aimed to elucidate the target and the mechanism via which OA inhibited osteoclast differentiation. We used TRAP staining and toluidine blue dye to test OA effect on osteoclastogenesis and bone resorption respectively. We detected the expression level of osteoclast differentiation related genes, estrogen receptor alpha (ERα) and miR-503. We blocked ERα with its specific blocker, methylpiperidino pyrazole (MPP). We antagonized the function of miR-503 with antagomir-503-5p. RT-PCR and ELISA kits were used to investigate the effects of OA on miR-503 formation and maturation-relevant enzymes Dicer and Drosha at gene and protein levels. The data suggested that OA inhibited osteoclastogenesis and bone resorption. OA upregulated ERα and miR-503 expression levels, inhibited RANK expression. MPP significantly attenuated the OA effect including inhibiting osteoclastogenesis, inhibiting bone resorption and up-regulating miR-503 expression. It showed that ERα was the target of OA and OA up-regulated miR-503 expression through ERα. Antagomir-503-5p inhibited the function of miR-503 and attenuated the inhibition of OA on osteoclastogenesis, suggesting that OA inhibited osteoclast by up-regulating miR-503 expression. In addition, OA up-regulated miR-503 by up-regulating Dicer expression. In conclusion, OA inhibits RANKL-induced osteoclastogenesis via ERα/miR-503/RANK signaling pathway in RAW264.7 cells.
Collapse
Affiliation(s)
- Bao-Ping Xie
- Department of Pharmachemistry, Xiangya School of Pharmaceutical Sciences, Central South University, 172 Tong Zi Po Road, Changsha, Hunan, 410013, China
| | - Li-Ying Shi
- Department of Pharmachemistry, Xiangya School of Pharmaceutical Sciences, Central South University, 172 Tong Zi Po Road, Changsha, Hunan, 410013, China
| | - Jin-Ping Li
- Department of Pharmachemistry, Xiangya School of Pharmaceutical Sciences, Central South University, 172 Tong Zi Po Road, Changsha, Hunan, 410013, China.
| | - Ying Zeng
- The First Hospital of Hunan University of Traditional Chinese Medicine, 105 Shao Shan Road, Changsha, Hunan, 410007, China.
| | - Wei Liu
- School of Nursing of Central South University, 172 Tong Zi Po Road, Changsha, Hunan, 410013, China
| | - Si-Yuan Tang
- School of Nursing of Central South University, 172 Tong Zi Po Road, Changsha, Hunan, 410013, China
| | - Lu-Juan Jia
- Department of Pharmachemistry, Xiangya School of Pharmaceutical Sciences, Central South University, 172 Tong Zi Po Road, Changsha, Hunan, 410013, China
| | - Jie Zhang
- The Third Xiangya Hospital, Central South University, 172 Tong Zi Po Road, Changsha, Hunan, 410013, China
| | - Guo-Xing Gan
- Qing Yuan Hospital of Traditional Chinese Medicine, 10 Qiao Bei Road, Qing yuan, Guangdong, 511500, China
| |
Collapse
|
13
|
Collins BC, Laakkonen EK, Lowe DA. Aging of the musculoskeletal system: How the loss of estrogen impacts muscle strength. Bone 2019; 123:137-144. [PMID: 30930293 PMCID: PMC6491229 DOI: 10.1016/j.bone.2019.03.033] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 02/06/2023]
Abstract
Skeletal muscle weakness occurs with aging and in females this is compounded by the loss of estrogen with ovarian failure. Estrogen deficiency mediates decrements in muscle strength from both inadequate preservation of skeletal muscle mass and decrements in the quality of the remaining skeletal muscle. Processes and components of skeletal muscle that are affected by estrogens are beginning to be identified. This review focuses on mechanisms that contribute to the loss of muscle force generation when estrogen is low in females, and conversely the maintenance of strength by estrogen. Evidence is accumulating that estrogen deficiency induces apoptosis in skeletal muscle contributing to loss of mass and thus strength. Estrogen sensitive processes that affect quality, i.e., force generating capacity of muscle, include myosin phosphorylation and satellite cell function. Further detailing these mechanisms and identifying additional mechanisms that underlie estrogenic effects on skeletal muscle is important foundation for the design of therapeutic strategies to minimize skeletal muscle pathologies, such as sarcopenia and dynapenia.
Collapse
Affiliation(s)
- Brittany C Collins
- Department of Human Genetics, Medical School, University of Utah, United States of America
| | - Eija K Laakkonen
- Gerontology Research Center and Faculty of Sport and Health Sciences, University of Jyväskylä, Finland
| | - Dawn A Lowe
- Divisions of Rehabilitation Science and Physical Therapy, Department of Rehabilitation Medicine, Medical School, University of Minnesota, United States of America.
| |
Collapse
|
14
|
Du D, Zhou Z, Zhu L, Hu X, Lu J, Shi C, Chen F, Chen A. TNF-α suppresses osteogenic differentiation of MSCs by accelerating P2Y 2 receptor in estrogen-deficiency induced osteoporosis. Bone 2018; 117:161-170. [PMID: 30236554 DOI: 10.1016/j.bone.2018.09.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/13/2018] [Accepted: 09/16/2018] [Indexed: 12/12/2022]
Abstract
Tumor Necrosis Factor-α (TNF-α)-inhibited osteogenic differentiation of mesenchymal stem cells (MSCs) contributes to impaired bone formation, which plays a central role in the pathogenesis of postmenopausal osteoporosis. However, the exact mechanisms of TNF-α-inhibited osteoblast differentiation have not been fully elucidated. Multiple P2 purinoceptor subtypes are expressed in several species of osteoblasts and are confirmed to regulate bone metabolism. The purpose of this study is to investigate whether P2 purinoceptors are involved in TNF-α-inhibited osteoblast differentiation. This study shows TNF-α increased P2Y2 receptor expression in the differentiation of MSCs into osteoblasts in a noticeable manner. Overexpressing or silencing of the P2Y2 receptor either impaired or promoted osteogenic differentiation of MSCs significantly. Silencing of the P2Y2 receptor attenuated the inhibitory effects of TNF-α on osteoblastic differentiation of MSCs. In addition, silencing of the P2Y2 receptor evidently alleviated TNF-α-inhibited MSC proliferation. P2Y2 receptor expression was mechanistically upregulated by TNF-α mainly through extracellular regulated protein kinase (ERK) and c-Jun N-terminal kinase (JNK) signaling pathways. Overall, our results revealed a novel function of the P2Y2 receptor and suggested suppressing the P2Y2 receptor may be an effective strategy to promote bone formation in estrogen deficiency-induced osteoporosis.
Collapse
Affiliation(s)
- Di Du
- Department of Orthopedics and Trauma Surgery, Changzheng Hospital, the Second Military Medical University, Shanghai, China
| | - Zhibin Zhou
- Department of Orthopedics and Trauma Surgery, Changzheng Hospital, the Second Military Medical University, Shanghai, China
| | - Lei Zhu
- Department of Orthopedics and Trauma Surgery, Changzheng Hospital, the Second Military Medical University, Shanghai, China
| | - Xianteng Hu
- Department of Orthopedics and Trauma Surgery, Changzheng Hospital, the Second Military Medical University, Shanghai, China
| | - Jiajia Lu
- Department of Orthopedics and Trauma Surgery, Changzheng Hospital, the Second Military Medical University, Shanghai, China
| | - Changgui Shi
- Department of Spine Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Fangjing Chen
- Department of Orthopedics, General Hospital of Jinan Military Command, Jinan 250031, Shandong, China.
| | - Aimin Chen
- Department of Orthopedics and Trauma Surgery, Changzheng Hospital, the Second Military Medical University, Shanghai, China.
| |
Collapse
|
15
|
Zhao W, Shen G, Ren H, Liang D, Yu X, Zhang Z, Huang J, Qiu T, Tang J, Shang Q, Yu P, Wu Z, Jiang X. Therapeutic potential of microRNAs in osteoporosis function by regulating the biology of cells related to bone homeostasis. J Cell Physiol 2018; 233:9191-9208. [PMID: 30078225 DOI: 10.1002/jcp.26939] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/13/2018] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are novel regulatory factors that play important roles in numerous cellular processes through the posttranscriptional regulation of gene expression. Recently, deregulation of the miRNA-mediated mechanism has emerged as an important pathological factor in osteoporosis. However, a detailed molecular mechanism between miRNAs and osteoporosis is still not available. In this review, the roles of miRNAs in the regulation of cells related to bone homeostasis as well as miRNAs that deregulate in human or animal are discussed. Moreover, the miRNAs that act as clusters in the biology of cells in the bone microenvironment and the difference of some important miRNAs for bone homeostasis between bone and other organs are mentioned. Overall, miRNAs that contribute to the pathogenesis of osteoporosis and their therapeutic potential are considered.
Collapse
Affiliation(s)
- Wenhua Zhao
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gengyang Shen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui Ren
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - De Liang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiang Yu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhida Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinjing Huang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ting Qiu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingjing Tang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Shang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peiyuan Yu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zixian Wu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaobing Jiang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Laboratory Affiliated to National Key Discipline of Orthopaedic and Traumatology of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
16
|
Shao B, Fu X, Yu Y, Yang D. Regulatory effects of miRNA‑181a on FasL expression in bone marrow mesenchymal stem cells and its effect on CD4+T lymphocyte apoptosis in estrogen deficiency‑induced osteoporosis. Mol Med Rep 2018; 18:920-930. [PMID: 29845202 PMCID: PMC6059724 DOI: 10.3892/mmr.2018.9026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 04/19/2018] [Indexed: 12/29/2022] Open
Abstract
Post-menopausal osteoporosis is a bone formation disorder induced by estrogen deficiency. Estrogen deficiency facilitates the differentiation and maturation of osteoclasts by activating T lymphocytes. In our previous study, it was demonstrated that estrogen promotes bone marrow mesenchymal stem cell (BMMSC)‑induced osteoclast apoptosis through downregulation of microRNA (miR)‑181a and subsequent Fas ligand (FasL) protein accumulation. In the present study, the regulatory effects of miR‑181a on FasL expression in BMMSCs and the apoptotic effects of BMMSCs on cluster of differentiation (CD)4+T lymphocytes were investigated. An ovariectomized mouse model of osteoporosis (OVX) was established and CD4+T lymphocytes were isolated from the bones of these mice. The results demonstrated that the number of CD4+T lymphocytes was increased in the OVX group compared within the control group, thus suggesting that estrogen deficiency may increase CD4+T lymphocyte number. CD4+T lymphocytes were subsequently co‑cultured with estrogen‑treated BMMSCs, after which it was demonstrated that estrogen significantly promoted the apoptosis of CD4+T lymphocytes. Western blot analysis indicated that estrogen promoted the apoptosis of CD4+T lymphocytes through regulation of FasL expression in BMMSCs in a concentration‑dependent manner. Finally, miR‑181a was transfected into BMMSCs, which were co‑cultured with CD4+T lymphocytes in vitro and in vivo. The results revealed that miR‑181a exerted a negative regulatory effect on BMMSC‑induced CD4+T lymphocyte apoptosis by regulating FasL protein expression in BMMSCs; this maybe a key mechanism underlying the development of estrogen deficiency‑induced osteoporosis.
Collapse
Affiliation(s)
- Bingyi Shao
- Department of Operative Dentistry and Endodontics, Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing 401147, P.R. China
| | - Xiaohui Fu
- Department of Orthodontics, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Yang Yu
- Department of Operative Dentistry and Endodontics, Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing 401147, P.R. China
| | - Deqin Yang
- Department of Operative Dentistry and Endodontics, Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing 401147, P.R. China
| |
Collapse
|
17
|
Temporal Changes in Microrna Expression in Blood Leukocytes from Patients with the Acute Respiratory Distress Syndrome. Shock 2018; 47:688-695. [PMID: 27879560 DOI: 10.1097/shk.0000000000000806] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND MicroRNA (miRNA) control gene transcription by binding to and repressing the translation of messenger RNA (mRNA). Their role in the acute respiratory distress syndrome (ARDS) is undefined. METHODS Blood leukocytes from 51 patients enrolled in a prior randomized trial of corticosteroids for ARDS were analyzed. After screening eight patients with microarrays for altered miRNA expression, 25 miRNAs were selected for further analysis using RT-PCR in all 51 patients. RESULTS On day 0, the 51 patients had APACHE III score of 60.4 ± 17.7 and PaO2/FiO2 of 117 ± 49. 21 miRNA were expressed at increased levels in blood leukocytes at the onset of ARDS compared with healthy controls. These miRNA remained elevated at day 3 and increased further by day 7 (log2 fold change from 0.66 to 5.7 fold, P <0.05 compared to day 0). In a subgroup analysis (37 patients treated with corticosteroids and 14 treated with placebo), the interaction of miRNA expression over time and steroid administration was not significant suggesting that systemic corticosteroids had no effect on the miRNA detected in our study. In contrast, corticosteroids but not placebo decreased IL-6 and C-reactive protein at day 3 (P < 0.001) demonstrating an early systemic anti-inflammatory response whereas both treatment arms had decreased values by day 7 (P <0.001). CONCLUSIONS Expression of miRNA is increased in blood leukocytes of patients with ARDS at day 0 and day 3 and rises further by day 7, when systemic inflammation is subsiding. These effects appear independent of the administration of steroids, suggesting different inflammatory modifying roles for each in the resolving phases of ARDS.
Collapse
|
18
|
Clayton SA, Jones SW, Kurowska-Stolarska M, Clark AR. The role of microRNAs in glucocorticoid action. J Biol Chem 2018; 293:1865-1874. [PMID: 29301941 PMCID: PMC5808749 DOI: 10.1074/jbc.r117.000366] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Glucocorticoids (GCs) are steroids with profound anti-inflammatory and immunomodulatory activities. Synthetic GCs are widely used for managing chronic inflammatory and autoimmune conditions, as immunosuppressants in transplantation, and as anti-tumor agents in certain hematological cancers. However, prolonged GC exposure can cause adverse effects. A detailed understanding of GCs' mechanisms of action may enable harnessing of their desirable actions while minimizing harmful effects. Here, we review the impact on the GC biology of microRNAs, small non-coding RNAs that post-transcriptionally regulate gene expression. Emerging evidence indicates that microRNAs modulate GC production by the adrenal glands and the cells' responses to GCs. Furthermore, GCs influence cell proliferation, survival, and function at least in part by regulating microRNA expression. We propose that the beneficial effects of GCs may be enhanced through combination with reagents targeting specific microRNAs.
Collapse
Affiliation(s)
- Sally A Clayton
- From the Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2WB.,the Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Glasgow, Birmingham, and Newcastle Universities, Glasgow G12 8TA, Scotland, United Kingdom
| | - Simon W Jones
- From the Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2WB.,the Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Glasgow, Birmingham, and Newcastle Universities, Glasgow G12 8TA, Scotland, United Kingdom
| | - Mariola Kurowska-Stolarska
- the Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Glasgow, Birmingham, and Newcastle Universities, Glasgow G12 8TA, Scotland, United Kingdom.,the Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, Scotland, and
| | - Andrew R Clark
- From the Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2WB, .,the Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Glasgow, Birmingham, and Newcastle Universities, Glasgow G12 8TA, Scotland, United Kingdom
| |
Collapse
|
19
|
Zha X, Sun B, Zhang R, Li C, Yan Z, Chen J. Regulatory effect of microRNA-34a on osteogenesis and angiogenesis in glucocorticoid-induced osteonecrosis of the femoral head. J Orthop Res 2018; 36:417-424. [PMID: 28543623 DOI: 10.1002/jor.23613] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/08/2017] [Indexed: 02/04/2023]
Abstract
Glucocorticoid-induced osteonecrosis of the femoral head (GIOFH) is a common and devastating orthopedic disease, and its underlying mechanism remains unclear. The aim of this study was to determine the role of microRNA-34a (mir-34a) in GIOFH. C57 mouse mesenchymal stem cells (mMSCs) and human umbilical vein endothelial cells (HUVECs) were cultured with dexamethasone (Dex). A total of 48 adult rats were treated with glucocorticoids, and after the onset of GIOFH, each femoral head was removed. Mir-34a mimics, an inhibitor and over-expressing lentivirus were used in vitro and in vivo, respectively. Real-time PCR, immunohistochemistry, ELISA, cell proliferation assays, osteoblastic differentiation, and endothelial activity assays were employed to evaluate the effect of mir-34a on mMSCs, osteoblasts, and vascular endothelial cells in glucocorticoid-treated mice. We found that Dex inhibited mMSC proliferation and osteoblastic differentiation, as well as the viability and activity of endothelial cells. Dex also caused osteonecrosis and decreased new vessel formation in vivo. Mir-34a alleviated the inhibitory effects of Dex on mMSCs and osteoblasts, while facilitating its inhibitory effects on endothelial cells. Mir-34a is an important regulator in osteogenesis and angiogenesis, and it might be useful as a therapeutic target for GIOFH. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:417-424, 2018.
Collapse
Affiliation(s)
- Xiaolong Zha
- Department of Orthopedics, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Xuhui District, Shanghai, China
| | - Bolin Sun
- Department of Orthopedics, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Xuhui District, Shanghai, China
| | - Rufan Zhang
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chen Li
- Department of Orthopedics, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Xuhui District, Shanghai, China
| | - Zuoqin Yan
- Department of Orthopedics, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Xuhui District, Shanghai, China
| | - Jifei Chen
- Department of Orthopedics, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Xuhui District, Shanghai, China
| |
Collapse
|
20
|
Fu J, Hao L, Tian Y, Liu Y, Gu Y, Wu J. miR-199a-3p is involved in estrogen-mediated autophagy through the IGF-1/mTOR pathway in osteocyte-like MLO-Y4 cells. J Cell Physiol 2017; 233:2292-2303. [PMID: 28708244 DOI: 10.1002/jcp.26101] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/13/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Jiayao Fu
- Department of Prosthodontics, School and Hospital of Stomatology, Tongji University; Shanghai Engineering Research Center of Tooth Restoration and Regeneration; Shanghai China
| | - Lingyu Hao
- Department of Prosthodontics, School and Hospital of Stomatology, Tongji University; Shanghai Engineering Research Center of Tooth Restoration and Regeneration; Shanghai China
| | - Yawen Tian
- Department of Prosthodontics, School and Hospital of Stomatology, Tongji University; Shanghai Engineering Research Center of Tooth Restoration and Regeneration; Shanghai China
| | - Yang Liu
- Department of Prosthodontics, School and Hospital of Stomatology, Tongji University; Shanghai Engineering Research Center of Tooth Restoration and Regeneration; Shanghai China
| | - Yijing Gu
- Department of Prosthodontics, School and Hospital of Stomatology, Tongji University; Shanghai Engineering Research Center of Tooth Restoration and Regeneration; Shanghai China
| | - Junhua Wu
- Department of Prosthodontics, School and Hospital of Stomatology, Tongji University; Shanghai Engineering Research Center of Tooth Restoration and Regeneration; Shanghai China
| |
Collapse
|
21
|
Abstract
MicroRNAs are small, noncoding single-stranded RNAs that have emerged as important posttranscriptional regulators of gene expression, with an essential role in vertebrate development and different biological processes. This review highlights the recent advances in the function of miRNAs and their roles in bone remodeling and bone diseases. MicroRNAs (miRNAs) are a class of small (∼22 nt), noncoding single-stranded RNAs that have emerged as important posttranscriptional regulators of gene expression. They are essential for vertebrate development and play critical roles in different biological processes related to cell differentiation, activity, metabolism, and apoptosis. A rising number of experimental reports now indicate that miRNAs contribute to every step of osteogenesis and bone homeostasis, from embryonic skeletal development to maintenance of adult bone tissue, by regulating the growth, differentiation, and activity of different cell systems inside and outside the skeleton. Importantly, emerging information from animal studies suggests that targeting miRNAs might become an attractive and new therapeutic approach for osteoporosis or other skeletal diseases, even though there are still major concerns related to potential off target effects and the need of efficient delivery methods in vivo. Moreover, besides their recognized effects at the cellular level, evidence is also gathering that miRNAs are excreted and can circulate in the blood or other body fluids with potential paracrine or endocrine functions. Thus, they could represent suitable candidates for becoming sensitive disease biomarkers in different pathologic conditions, including skeletal disorders. Despite these promising perspectives more work remains to be done until miRNAs can serve as robust therapeutic targets or established diagnostic tools for precision medicine in skeletal disorders.
Collapse
Affiliation(s)
- L Gennari
- Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico Santa Maria alle Scotte, Viale Bracci, 53100, Siena, Italy.
| | - S Bianciardi
- Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico Santa Maria alle Scotte, Viale Bracci, 53100, Siena, Italy
| | - D Merlotti
- Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico Santa Maria alle Scotte, Viale Bracci, 53100, Siena, Italy
- Division of Genetics and Cell Biology, Age Related Diseases, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
22
|
Jin HY, Oda H, Chen P, Yang C, Zhou X, Kang SG, Valentine E, Kefauver JM, Liao L, Zhang Y, Gonzalez-Martin A, Shepherd J, Morgan GJ, Mondala TS, Head SR, Kim PH, Xiao N, Fu G, Liu WH, Han J, Williamson JR, Xiao C. Differential Sensitivity of Target Genes to Translational Repression by miR-17~92. PLoS Genet 2017; 13:e1006623. [PMID: 28241004 PMCID: PMC5348049 DOI: 10.1371/journal.pgen.1006623] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 03/13/2017] [Accepted: 02/08/2017] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are thought to exert their functions by modulating the expression of hundreds of target genes and each to a small degree, but it remains unclear how small changes in hundreds of target genes are translated into the specific function of a miRNA. Here, we conducted an integrated analysis of transcriptome and translatome of primary B cells from mutant mice expressing miR-17~92 at three different levels to address this issue. We found that target genes exhibit differential sensitivity to miRNA suppression and that only a small fraction of target genes are actually suppressed by a given concentration of miRNA under physiological conditions. Transgenic expression and deletion of the same miRNA gene regulate largely distinct sets of target genes. miR-17~92 controls target gene expression mainly through translational repression and 5’UTR plays an important role in regulating target gene sensitivity to miRNA suppression. These findings provide molecular insights into a model in which miRNAs exert their specific functions through a small number of key target genes. MicroRNAs (miRNAs) are small RNAs encoded by our genome. Each miRNA binds hundreds of target mRNAs and performs specific functions. It is thought that miRNAs exert their function by reducing the expression of all these target genes and each to a small degree. However, these target genes often have very diverse functions. It has been unclear how small changes in hundreds of target genes with diverse functions are translated into the specific function of a miRNA. Here we take advantage of recent technical advances to globally examine the mRNA and protein levels of 868 target genes regulated by miR-17~92, the first oncogenic miRNA, in mutant mice with transgenic overexpression or deletion of this miRNA gene. We show that miR-17~92 regulates target gene expression mainly at the protein level, with little effect on mRNA. Surprisingly, only a small fraction of target genes respond to miR-17~92 expression changes. Further studies show that the sensitivity of target genes to miR-17~92 is determined by a non-coding region of target mRNA. Our findings demonstrate that not every target gene is equal, and suggest that the function of a miRNA is mediated by a small number of key target genes.
Collapse
Affiliation(s)
- Hyun Yong Jin
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
- Kellogg School of Science and Technology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Hiroyo Oda
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Pengda Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Chao Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiaojuan Zhou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Seung Goo Kang
- Division of Biomedical Convergence/Institute of Bioscience & Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Elizabeth Valentine
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Jennifer M. Kefauver
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
- Kellogg School of Science and Technology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Lujian Liao
- Shanghai Key Laboratory of Regulatory Biology, Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Life Sciences, East China Normal University, Shanghai, China
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Alicia Gonzalez-Martin
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Jovan Shepherd
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Gareth J. Morgan
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Tony S. Mondala
- Next Generation Sequencing Core, The Scripps Research Institute, La Jolla, California, United States of America
| | - Steven R. Head
- Next Generation Sequencing Core, The Scripps Research Institute, La Jolla, California, United States of America
| | - Pyeung-Hyeun Kim
- Department of Molecular Bioscience/Institute of Bioscience & Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Nengming Xiao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Guo Fu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Wen-Hsien Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - James R. Williamson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Changchun Xiao
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- * E-mail:
| |
Collapse
|
23
|
Wang FS, Lian WS, Lee MS, Weng WT, Huang YH, Chen YS, Sun YC, Wu SL, Chuang PC, Ko JY. Histone demethylase UTX counteracts glucocorticoid deregulation of osteogenesis by modulating histone-dependent and -independent pathways. J Mol Med (Berl) 2017; 95:499-512. [PMID: 28130569 DOI: 10.1007/s00109-017-1512-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/27/2016] [Accepted: 01/18/2017] [Indexed: 12/24/2022]
Abstract
Excess glucocorticoid administration impairs osteogenic activities, which raises the risk of osteoporotic disorders. Epigenetic methylation of DNA and histone regulates the lineage commitment of progenitor cells. This study was undertaken to delineate the actions of histone lysine demethylase 6a (UTX) with regard to the glucocorticoid impediment of osteogenic differentiation. Osteogenic progenitor cells responded to supraphysiological glucocorticoid by elevating CpG dinucleotide methylation proximal to transcription start sites within Runx2 and osterix promoters and Wnt inhibitor Dickkopf-1 (Dkk1) expression concomitant with low UTX expression. 5'-Aza-deoxycystidine demethylation of Runx2 and osterix promoters abolished the glucocorticoid inhibition of mineralized matrix accumulation. Gain of UTX function attenuated the glucocorticoid-induced loss of osteogenic differentiation, whereas UTX silencing escalated adipogenic gene expression and adipocyte formation. UTX sustained osteogenic gene transcription through maintaining its occupancy to Runx2 and osterix promoters. It also mitigated the trimethylation of histone 3 at lysine 27 (H3K27me3), which reduced H3K27me3 enrichment to Dkk1 promoter and thereby lowered Dkk1 transcription. Modulation of β-catenin and Dkk1 actions restored UTX signaling in glucocorticoid-stressed cells. In vivo, UTX inhibition by exogenous methylprednisolone and GSK-J4 administration, an effect that disturbed H3K27me3, β-catenin, Dkk1, Runx2, and osterix levels, exacerbated trabecular microarchitecture loss and marrow adiposity. Taken together, glucocorticoid reduction of UTX function hindered osteogenic differentiation. Epigenetic hypomethylation of osteogenic transcription factor promoters and H3K27 contributed to the UXT alleviation of Dkk1 transcription and osteogenesis in glucocorticoid-stressed osteogenic progenitor cells. Control of UTX action has an epigenetic perspective of curtailing glucocorticoid impairment of osteogenic differentiation and bone mass. KEY MESSAGES UTX attenuates glucocorticoid deregulation of osteogenesis and adipogenesis. UTX reduces Runx2 promoter methylation and H3K27me3 enrichment in the Dkk1 promoter. β-catenin and Dkk1 modulate the glucocorticoid inhibition of UTX signaling. UTX inhibition exacerbates bone mass, trabecular microstructure and fatty marrow. UTX signaling is indispensable in fending off glucocorticoid-impaired osteogenesis.
Collapse
Affiliation(s)
- Feng-Sheng Wang
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, 123, Ta-Pei Road, Niao-Sung District, Kaohsiung, 83303, Taiwan.,Core Laboratory for Phenomics and Diagonistics, Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, 123, Ta-Pei Road, Niao-Sung District, Kaohsiung, 83303, Taiwan.,Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung Chang Gung Memorial Hospital, 123, Ta-Pei Road, Niao-Sung District, Kaohsiung, 83303, Taiwan
| | - Wei-Shiung Lian
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, 123, Ta-Pei Road, Niao-Sung District, Kaohsiung, 83303, Taiwan.,Core Laboratory for Phenomics and Diagonistics, Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, 123, Ta-Pei Road, Niao-Sung District, Kaohsiung, 83303, Taiwan
| | - Mel S Lee
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital, 123, Ta-Pei Road, Niao-Sung District, Kaohsiung, 83303, Taiwan
| | - Wen-Tsan Weng
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, 123, Ta-Pei Road, Niao-Sung District, Kaohsiung, 83303, Taiwan.,Core Laboratory for Phenomics and Diagonistics, Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, 123, Ta-Pei Road, Niao-Sung District, Kaohsiung, 83303, Taiwan
| | - Ying-Hsien Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, 123, Ta-Pei Road, Niao-Sung District, Kaohsiung, 83303, Taiwan
| | - Yu-Shan Chen
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, 123, Ta-Pei Road, Niao-Sung District, Kaohsiung, 83303, Taiwan.,Core Laboratory for Phenomics and Diagonistics, Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, 123, Ta-Pei Road, Niao-Sung District, Kaohsiung, 83303, Taiwan
| | - Yi-Chih Sun
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, 123, Ta-Pei Road, Niao-Sung District, Kaohsiung, 83303, Taiwan.,Core Laboratory for Phenomics and Diagonistics, Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, 123, Ta-Pei Road, Niao-Sung District, Kaohsiung, 83303, Taiwan
| | - Shing-Long Wu
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, 123, Ta-Pei Road, Niao-Sung District, Kaohsiung, 83303, Taiwan.,Core Laboratory for Phenomics and Diagonistics, Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, 123, Ta-Pei Road, Niao-Sung District, Kaohsiung, 83303, Taiwan
| | - Pei-Chin Chuang
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, 123, Ta-Pei Road, Niao-Sung District, Kaohsiung, 83303, Taiwan.
| | - Jih-Yang Ko
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung Chang Gung Memorial Hospital, 123, Ta-Pei Road, Niao-Sung District, Kaohsiung, 83303, Taiwan. .,Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital, 123, Ta-Pei Road, Niao-Sung District, Kaohsiung, 83303, Taiwan.
| |
Collapse
|
24
|
Pradhan AK, Talukdar S, Bhoopathi P, Shen XN, Emdad L, Das SK, Sarkar D, Fisher PB. mda-7/IL-24 Mediates Cancer Cell-Specific Death via Regulation of miR-221 and the Beclin-1 Axis. Cancer Res 2016; 77:949-959. [PMID: 27940575 DOI: 10.1158/0008-5472.can-16-1731] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 11/03/2016] [Accepted: 11/23/2016] [Indexed: 12/19/2022]
Abstract
Melanoma differentiation-associated gene-7/IL-24 (mda-7/IL-24) displays broad-spectrum anticancer activity in vitro, in vivo in preclinical animal models, and in a phase I/II clinical trial in patients with advanced cancers without harming normal cells or tissues. Here we demonstrate that mda-7/IL-24 regulates a specific subset of miRNAs, including cancer-associated miR-221. Either ectopic expression of mda-7/IL-24 or treatment with recombinant His-MDA-7 protein resulted in downregulation of miR-221 and upregulation of p27 and PUMA in a panel of cancer cells, culminating in cell death. Mda-7/IL-24-induced cancer cell death was dependent on reactive oxygen species induction and was rescued by overexpression of miR-221. Beclin-1 was identified as a new transcriptional target of miR-221, and mda-7/IL-24 regulated autophagy through a miR-221/beclin-1 feedback loop. In a human breast cancer xenograft model, miR-221-overexpressing MDA-MB-231 clones were more aggressive and resistant to mda-7/IL-24-mediated cell death than parental clones. This is the first demonstration that mda-7/IL-24 directly regulates miRNA expression in cancer cells and highlights the novelty of the mda-7/IL-24-miR-221-beclin-1 loop in mediating cancer cell-specific death. Cancer Res; 77(4); 949-59. ©2016 AACR.
Collapse
Affiliation(s)
- Anjan K Pradhan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Sarmistha Talukdar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Praveen Bhoopathi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Xue-Ning Shen
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia. .,VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| |
Collapse
|
25
|
Regulatory non-coding RNA: new instruments in the orchestration of cell death. Cell Death Dis 2016; 7:e2333. [PMID: 27512954 PMCID: PMC5108314 DOI: 10.1038/cddis.2016.210] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/10/2016] [Accepted: 06/20/2016] [Indexed: 01/17/2023]
Abstract
Non-coding RNA (ncRNA) comprises a substantial portion of primary transcripts that are generated by genomic transcription, but are not translated into protein. The possible functions of these once considered ‘junk' molecules have incited considerable interest and new insights have emerged. The two major members of ncRNAs, namely micro RNA (miRNA) and long non-coding RNA (lncRNA), have important regulatory roles in gene expression and many important physiological processes, which has recently been extended to programmed cell death. The previous paradigm of programmed cell death only by apoptosis has recently expanded to include modalities of regulated necrosis (RN), and particularly necroptosis. However, most research efforts in this field have been on protein regulators, leaving the role of ncRNAs largely unexplored. In this review, we discuss important findings concerning miRNAs and lncRNAs that modulate apoptosis and RN pathways, as well as the miRNA–lncRNA interactions that affect cell death regulation.
Collapse
|
26
|
Vinel A, Hay E, Valera MC, Buscato M, Adlanmerini M, Guillaume M, Cohen-Solal M, Ohlsson C, Lenfant F, Arnal JF, Fontaine C. Role of ERαMISS in the Effect of Estradiol on Cancellous and Cortical Femoral Bone in Growing Female Mice. Endocrinology 2016; 157:2533-44. [PMID: 27105385 DOI: 10.1210/en.2015-1994] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Estrogen receptor-α (ERα) acts primarily in the nucleus as a transcription factor involving two activation functions, AF1 and AF2, but it can also induce membrane-initiated steroid signaling (MISS) through the modulation of various kinase activities and/or secondary messenger levels. Previous work has demonstrated that nuclear ERα is required for the protective effect of the estrogen 17β-estradiol (E2), whereas the selective activation of ERαMISS is sufficient to confer protection in cortical but not cancellous bone. The aim of this study was to define whether ERαMISS is necessary for the beneficial actions of chronic E2 exposure on bone. We used a mouse model in which ERα membrane localization had been abrogated due to a point mutation of the palmitoylation site of ERα (ERα-C451A). Alterations of the sex hormones in ERα-C451A precluded the interpretation of bone parameters that were thus analyzed on ovariectomized and supplemented or not with E2 (8 μg/kg/d) to circumvent this bias. We found the beneficial action of E2 on femoral bone mineral density as well as in both cortical and cancellous bone was decreased in ERα-C451A mice compared with their wild-type littermates. Histological and biochemical approaches concurred with the results from bone marrow chimeras to demonstrate that ERαMISS signaling affects the osteoblast but not the osteoclast lineage in response to E2. Thus, in contrast to the uterine and endothelial effects of E2 that are specifically mediated by nuclear ERα and ERαMISS effects, respectively, bone protection is dependent on both, underlining the exquisite tissue-specific actions and interactions of membrane and nuclear ERα.
Collapse
Affiliation(s)
- Alexia Vinel
- INSERM Unité 1048 (A.V., M.C.V., M.B., M.A., M.G., F.L., J.F.A., C.F.), I2MC, University of Toulouse 3, F-31432 Toulouse, France; Unité Mixte de Recherche 1132 (E.H., M.C.-S.), Bone and Cartilage Biology, University of Paris 7, F-75006 Paris, France; and Centre for Bone and Arthritis Research (C.O.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Eric Hay
- INSERM Unité 1048 (A.V., M.C.V., M.B., M.A., M.G., F.L., J.F.A., C.F.), I2MC, University of Toulouse 3, F-31432 Toulouse, France; Unité Mixte de Recherche 1132 (E.H., M.C.-S.), Bone and Cartilage Biology, University of Paris 7, F-75006 Paris, France; and Centre for Bone and Arthritis Research (C.O.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Marie-Cécile Valera
- INSERM Unité 1048 (A.V., M.C.V., M.B., M.A., M.G., F.L., J.F.A., C.F.), I2MC, University of Toulouse 3, F-31432 Toulouse, France; Unité Mixte de Recherche 1132 (E.H., M.C.-S.), Bone and Cartilage Biology, University of Paris 7, F-75006 Paris, France; and Centre for Bone and Arthritis Research (C.O.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Mélissa Buscato
- INSERM Unité 1048 (A.V., M.C.V., M.B., M.A., M.G., F.L., J.F.A., C.F.), I2MC, University of Toulouse 3, F-31432 Toulouse, France; Unité Mixte de Recherche 1132 (E.H., M.C.-S.), Bone and Cartilage Biology, University of Paris 7, F-75006 Paris, France; and Centre for Bone and Arthritis Research (C.O.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Marine Adlanmerini
- INSERM Unité 1048 (A.V., M.C.V., M.B., M.A., M.G., F.L., J.F.A., C.F.), I2MC, University of Toulouse 3, F-31432 Toulouse, France; Unité Mixte de Recherche 1132 (E.H., M.C.-S.), Bone and Cartilage Biology, University of Paris 7, F-75006 Paris, France; and Centre for Bone and Arthritis Research (C.O.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Maeva Guillaume
- INSERM Unité 1048 (A.V., M.C.V., M.B., M.A., M.G., F.L., J.F.A., C.F.), I2MC, University of Toulouse 3, F-31432 Toulouse, France; Unité Mixte de Recherche 1132 (E.H., M.C.-S.), Bone and Cartilage Biology, University of Paris 7, F-75006 Paris, France; and Centre for Bone and Arthritis Research (C.O.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Martine Cohen-Solal
- INSERM Unité 1048 (A.V., M.C.V., M.B., M.A., M.G., F.L., J.F.A., C.F.), I2MC, University of Toulouse 3, F-31432 Toulouse, France; Unité Mixte de Recherche 1132 (E.H., M.C.-S.), Bone and Cartilage Biology, University of Paris 7, F-75006 Paris, France; and Centre for Bone and Arthritis Research (C.O.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Claes Ohlsson
- INSERM Unité 1048 (A.V., M.C.V., M.B., M.A., M.G., F.L., J.F.A., C.F.), I2MC, University of Toulouse 3, F-31432 Toulouse, France; Unité Mixte de Recherche 1132 (E.H., M.C.-S.), Bone and Cartilage Biology, University of Paris 7, F-75006 Paris, France; and Centre for Bone and Arthritis Research (C.O.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Françoise Lenfant
- INSERM Unité 1048 (A.V., M.C.V., M.B., M.A., M.G., F.L., J.F.A., C.F.), I2MC, University of Toulouse 3, F-31432 Toulouse, France; Unité Mixte de Recherche 1132 (E.H., M.C.-S.), Bone and Cartilage Biology, University of Paris 7, F-75006 Paris, France; and Centre for Bone and Arthritis Research (C.O.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Jean-François Arnal
- INSERM Unité 1048 (A.V., M.C.V., M.B., M.A., M.G., F.L., J.F.A., C.F.), I2MC, University of Toulouse 3, F-31432 Toulouse, France; Unité Mixte de Recherche 1132 (E.H., M.C.-S.), Bone and Cartilage Biology, University of Paris 7, F-75006 Paris, France; and Centre for Bone and Arthritis Research (C.O.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Coralie Fontaine
- INSERM Unité 1048 (A.V., M.C.V., M.B., M.A., M.G., F.L., J.F.A., C.F.), I2MC, University of Toulouse 3, F-31432 Toulouse, France; Unité Mixte de Recherche 1132 (E.H., M.C.-S.), Bone and Cartilage Biology, University of Paris 7, F-75006 Paris, France; and Centre for Bone and Arthritis Research (C.O.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| |
Collapse
|
27
|
Bavia L, Mosimann ALP, Aoki MN, Duarte Dos Santos CN. A glance at subgenomic flavivirus RNAs and microRNAs in flavivirus infections. Virol J 2016; 13:84. [PMID: 27233361 PMCID: PMC4884392 DOI: 10.1186/s12985-016-0541-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/17/2016] [Indexed: 11/10/2022] Open
Abstract
The family Flaviviridae comprises a wide variety of viruses that are distributed worldwide, some of which are associated with high rates of morbidity and mortality. There are neither vaccines nor antivirals for most flavivirus infections, reinforcing the importance of research on different aspects of the viral life cycle. During infection, cytoplasmic accumulation of RNA fragments mainly originating from the 3' UTRs, which have been designated subgenomic flavivirus RNAs (sfRNAs), has been detected. It has been shown that eukaryotic exoribonucleases are involved in viral sfRNA production. Additionally, viral and human small RNAs (sRNAs) have also been found in flavivirus-infected cells, especially microRNAs (miRNAs). miRNAs were first described in eukaryotic cells and in a mature and functional state present as single-stranded 18-24 nt RNA fragments. Their main function is the repression of translation through base pairing with cellular mRNAs, besides other functions, such as mRNA degradation. Canonical miRNA biogenesis involves Drosha and Dicer, however miRNA can also be generated by alternative pathways. In the case of flaviviruses, alternative pathways have been suggested. Both sfRNAs and miRNAs are involved in viral infection and host cell response modulation, representing interesting targets of antiviral strategies. In this review, we focus on the generation and function of viral sfRNAs, sRNAs and miRNAs in West Nile, dengue, Japanese encephalitis, Murray Valley encephalitis and yellow fever infections, as well as their roles in viral replication, translation and cell immune response evasion. We also give an overview regarding other flaviviruses and the generation of cellular miRNAs during infection.
Collapse
Affiliation(s)
- Lorena Bavia
- Laboratório de Virologia Molecular, Instituto Carlos Chagas (ICC/FIOCRUZ-PR), Rua Prof. Algacyr Munhoz Mader 3775, CIC, CEP: 81350-010, Curitiba, Paraná, Brazil
| | - Ana Luiza Pamplona Mosimann
- Laboratório de Virologia Molecular, Instituto Carlos Chagas (ICC/FIOCRUZ-PR), Rua Prof. Algacyr Munhoz Mader 3775, CIC, CEP: 81350-010, Curitiba, Paraná, Brazil
| | - Mateus Nóbrega Aoki
- Laboratório de Virologia Molecular, Instituto Carlos Chagas (ICC/FIOCRUZ-PR), Rua Prof. Algacyr Munhoz Mader 3775, CIC, CEP: 81350-010, Curitiba, Paraná, Brazil
| | - Claudia Nunes Duarte Dos Santos
- Laboratório de Virologia Molecular, Instituto Carlos Chagas (ICC/FIOCRUZ-PR), Rua Prof. Algacyr Munhoz Mader 3775, CIC, CEP: 81350-010, Curitiba, Paraná, Brazil.
| |
Collapse
|
28
|
Ahmadi S, Sharifi M, Salehi R. Locked nucleic acid inhibits miR-92a-3p in human colorectal cancer, induces apoptosis and inhibits cell proliferation. Cancer Gene Ther 2016; 23:199-205. [PMID: 27199220 DOI: 10.1038/cgt.2016.10] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 03/02/2016] [Accepted: 03/02/2016] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are a type of small noncoding RNAs that have a vital role in basic biological processes such as cellular growth, division and apoptosis. A change in the expression of miRNAs can induce many diseases. Recently, the role of miRNA in some of the cancers as a tumor suppressor and oncogene has been recognized. Several studies have proved that miR-92a-3p acts as an oncogene in colorectal cancer (CRC). We studied CRC by inhibiting miR-92a-3p in SW48 cells (human colorectal cancer cell line) that were transfected with locked nucleic acid (LNA). At different times, the expression level of miR-92a-3p, cell vitality, apoptosis and necrosis were studied by qRT-PCR, MTT, Annexin-V and propidiumiodide. Our results showed that the expression of miR-92a-3p and proliferation of SW48 cells were decreased, and also a high percentage of SW48 cells were exposed to apoptosis and necrosis (P⩽0.005). Our study showed that the inhibition of miR-92a-3p with LNA inhibited cell proliferation and induced apoptosis and necrosis in CRC.
Collapse
Affiliation(s)
- S Ahmadi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - M Sharifi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - R Salehi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
29
|
Kang H, Chen H, Huang P, Qi J, Qian N, Deng L, Guo L. Glucocorticoids impair bone formation of bone marrow stromal stem cells by reciprocally regulating microRNA-34a-5p. Osteoporos Int 2016; 27:1493-1505. [PMID: 26556739 DOI: 10.1007/s00198-015-3381-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/20/2015] [Indexed: 12/11/2022]
Abstract
UNLABELLED The inhibitory effects of glucocorticoids (GCs) on bone marrow stromal stem cell (BMSC) proliferation and osteoblastic differentiation are an important pathway through which GCs decrease bone formation. We found that microRNA-34a-5p was a critical player in dexamethasone (Dex)-inhibited BMSC proliferation and osteogenic differentiation. MicroRNA-34a-5p might be used as a therapeutic target for GC-impaired bone formation. INTRODUCTION The inhibitory effects of glucocorticoids (GCs) on bone marrow stromal stem cell (BMSC) proliferation and osteoblastic differentiation are an important pathway through which GCs decrease bone formation. The mechanisms of this process are still not completely understood. Recent studies implicated an important role of microRNAs in GC-mediated responses in various cellular processes, including cell proliferation and differentiation. Therefore, we hypothesized that these regulatory molecules might be implicated in the process of GC-decreased BMSC proliferation and osteoblastic differentiation. METHODS Western blot, quantitative real-time PCR, and cell proliferation and osteoblastic differentiation assays were employed to investigate the role of microRNAs in GC-inhibited BMSC proliferation and osteoblastic differentiation. RESULTS We found that microRNA-34a-5p was reciprocally regulated by Dex during the process of BMSC proliferation and osteoblastic differentiation. Furthermore, we confirmed that microRNA-34a-5p was a critical player in Dex-inhibited BMSC proliferation and osteogenic differentiation. Mechanistic studies showed that Dex inhibited BMSC proliferation by microRNA-34a-5p targeting cell cycle factors, including CDK4, CDK6, and Cyclin D1. Furthermore, downregulation of microRNA-34a-5p by Dex leads to Notch signaling activation, resulting in inhibition of BMSC osteogenic differentiation. CONCLUSIONS These results showed that microRNA-34a-5p, a crucial regulator for BMSC proliferation and osteogenic differentiation, might be used as a therapeutic target for GC-impaired bone formation.
Collapse
Affiliation(s)
- H Kang
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - H Chen
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - P Huang
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - J Qi
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - N Qian
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - L Deng
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No. 197, The Second Ruijin Road, Luwan District, Shanghai, 200025, People's Republic of China.
| | - L Guo
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No. 197, The Second Ruijin Road, Luwan District, Shanghai, 200025, People's Republic of China.
| |
Collapse
|
30
|
Sang C, Zhang Y, Chen F, Huang P, Qi J, Wang P, Zhou Q, Kang H, Cao X, Guo L. Tumor necrosis factor alpha suppresses osteogenic differentiation of MSCs by inhibiting semaphorin 3B via Wnt/β-catenin signaling in estrogen-deficiency induced osteoporosis. Bone 2016; 84:78-87. [PMID: 26723579 DOI: 10.1016/j.bone.2015.12.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/14/2015] [Accepted: 12/20/2015] [Indexed: 12/18/2022]
Abstract
The proinflammatory cytokines, especially tumor necrosis factor alpha (TNF-α), have been shown to inhibit osteogenic differentiation of mesenchymal stem cells (MSCs) and bone formation in estrogen-deficiency-induced osteoporosis, but the mechanisms of TNF-α impaired bone formation remain poorly understood. Semaphorins have been shown to regulate cell growth, cell migration, and cell differentiation in a variety of tissues, including bone tissue. Here, we identified a novel mechanism whereby TNF-α, suppressing Semaphorin3B expression contributes to estrogen-deficiency-induced osteoporosis. In this study, we found that TNF-α could decrease Semaphorin3B expression in osteogenic differentiation of MSCs. Overexpression of Semaphorin3B in MSCs attenuated the inhibitory effects of TNF-α on MSCs proliferation and osteoblastic differentiation. Mechanistically, activation of the Wnt/β-catenin signaling markedly rescued TNF-α-inhibited Semaphorin3B expression, suggesting that Wnt/β-catenin signaling was involved in the regulation of Semaphorin3B expression by TNF-α. Taken together, our results revealed a novel function for Semaphorin3B and suggested that suppressed Semaphorin3B may contribute to impaired bone formation by elevated TNF-α in estrogen-deficiency-induced osteoporosis. This study may indicate a therapeutic target gene of Semaphorin3B for osteoporosis.
Collapse
Affiliation(s)
- Chenglin Sang
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Department of Orthopaedics, Second Military Medical University's Jinan Clinical Medicine College, Jinan, China; Department of Orthaopedics, General Hospital of Jinan Military Command, Jinan 250031, Shandong, China
| | - Yongxian Zhang
- Department of Orthopaedics, Second Military Medical University's Jinan Clinical Medicine College, Jinan, China; Department of Orthaopedics, General Hospital of Jinan Military Command, Jinan 250031, Shandong, China
| | - Fangjing Chen
- Department of Orthopaedics, Second Military Medical University's Jinan Clinical Medicine College, Jinan, China; Department of Orthaopedics, General Hospital of Jinan Military Command, Jinan 250031, Shandong, China
| | - Ping Huang
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jin Qi
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Pingshan Wang
- Department of Orthopaedics, Second Military Medical University's Jinan Clinical Medicine College, Jinan, China; Department of Orthaopedics, General Hospital of Jinan Military Command, Jinan 250031, Shandong, China
| | - Qi Zhou
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hui Kang
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xuecheng Cao
- Department of Orthopaedics, Second Military Medical University's Jinan Clinical Medicine College, Jinan, China; Department of Orthaopedics, General Hospital of Jinan Military Command, Jinan 250031, Shandong, China.
| | - Lei Guo
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
31
|
Xie R, Lin X, Du T, Xu K, Shen H, Wei F, Hao W, Lin T, Lin X, Qin Y, Wang H, Chen L, Yang S, Yang J, Rong X, Yao K, Xiao D, Jia J, Sun Y. Targeted Disruption of miR-17-92 Impairs Mouse Spermatogenesis by Activating mTOR Signaling Pathway. Medicine (Baltimore) 2016; 95:e2713. [PMID: 26886608 PMCID: PMC4998608 DOI: 10.1097/md.0000000000002713] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The miR-17-92 cluster and its 6 different mature microRNAs, including miR-17, miR-18a, miR-19a, miR-20a, miR-19b-1, and miR-92a, play important roles in embryo development, immune system, kidney and heart development, adipose differentiation, aging, and tumorigenicity. Currently, increasing evidence indicates that some members of miR-17-92 cluster may be critical players in spermatogenesis, including miR-17, miR-18a, and miR-20a. However, the roles and underlying mechanisms of miR-17-92 in spermatogenesis remain largely unknown. Our results showed that the targeted disruption of miR-17-92 in the testes of adult mice resulted in severe testicular atrophy, empty seminiferous tubules, and depressed sperm production. This phenotype is partly because of the reduced number of spermatogonia and spermatogonial stem cells, and the significantly increased germ cell apoptosis in the testes of miR-17-92-deficient mice. In addition, overactivation of the mammalian target of rapamycin signaling pathway and upregulation of the pro-apoptotic protein Bim, Stat3, c-Kit, and Socs3 were also observed in miR-17-92-deficient mouse testes, which might be, at least partially if not all, responsible for the aforementioned phenotypic changes in mutant testes. Taken together, these findings suggest that miR-17-92 is essential for normal spermatogenesis in mice.
Collapse
Affiliation(s)
- Raoying Xie
- From the Cancer Research Institute, Southern Medical University (RX, XL, HS, FW, WH, TL, XL, YQ, HW, LC, SY, JY, KY, DX, JJ); Institute of Comparative Medicine and Laboratory Animal Center, Southern Medical University (RX, DX); Zhongshan School of Medicine, Sun Yat-sen University (YS); Department of Endocrinology, The Second Affiliated Hospital, Guangzhou Medical University (TD); Department of General Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou (KX); Department of Chemoradiotherapy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou (RX); Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University (KX); Department of Oncology, Nanfang Hospital, Southern Medical University (XR); and Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China (FW)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Zhou Y, Zhang L, Ji H, Lu X, Xia J, Li L, Chen F, Bu H, Shi Y. MiR-17~92 ablation impairs liver regeneration in an estrogen-dependent manner. J Cell Mol Med 2016; 20:939-48. [PMID: 26781774 PMCID: PMC4831359 DOI: 10.1111/jcmm.12782] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 12/07/2015] [Indexed: 02/05/2023] Open
Abstract
As one of the most important post‐transcriptional regulators, microRNAs (miRNAs) participate in diverse biological processes, including the regulation of cell proliferation. MiR‐17~92 has been found to act as an oncogene, and it is closely associated with cell proliferation. However, its role in liver regeneration is still unclear. We generated a hepatocyte‐specific miR‐17~92‐deficient mouse and used a mouse model with 70% partial hepatectomy (PH) or intraperitoneal injection of carbon tetrachloride to demonstrate the role of MiR‐17~92 in liver regeneration. In quiescent livers, the expression of the miR‐17~92 cluster showed a gender disparity, with much higher expression in female mice. The expression of four members of this cluster was found to be markedly reduced after 70% PH. The ablation of miR‐17~92 led to obvious regeneration impairment during the early‐stage regeneration in the female mice. Ovariectomy greatly reduced miR‐17~92 expression but significantly promoted liver regeneration in wild‐type mice. In addition, early regeneration impairment in miR‐17~92‐deficient livers could be largely restored following ovariectomy. The proliferation suppressors p21 and Pten were found to be the target effectors of miR‐17~92. MiR‐17~92 disruption resulted in elevated protein levels of p21 and Pten in regenerating livers. MiR‐17~92 functions as a proliferation stimulator and acts in an oestrogen‐dependent manner. The loss of this miRNA results in increases in p21 and Pten expression and therefore impairs liver regeneration in female mice.
Collapse
Affiliation(s)
- Yongjie Zhou
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Chengdu, China
| | - Lei Zhang
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Chengdu, China
| | - Hongjie Ji
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Chengdu, China
| | - Xufeng Lu
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Chengdu, China
| | - Jie Xia
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Chengdu, China
| | - Li Li
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Chen
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Bu
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Chengdu, China.,Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Yujun Shi
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Chengdu, China
| |
Collapse
|
33
|
Abstract
Non-coding RNAs (ncRNAs) have evolved in eukaryotes as epigenetic regulators of gene expression. The most abundant regulatory ncRNAs are the 20-24 nt small microRNAs (miRNAs) and long non-coding RNAs (lncRNAs, <200 nt). Each class of ncRNAs operates through distinct mechanisms, but their pathways to regulating gene expression are interrelated in ways that are just being recognized. While the importance of lncRNAs in epigenetic control of transcription, developmental processes and human traits is emerging, the identity of lncRNAs in skeletal biology is scarcely known. However, since the first profiling studies of miRNA at stages during osteoblast and osteoclast differentiation, over 1100 publications related to bone biology and pathologies can be found, as well as many recent comprehensive reviews summarizing miRNA in skeletal cells. Delineating the activities and targets of specific miRNAs regulating differentiation of osteogenic and resorptive bone cells, coupled with in vivo gain- and loss-of-function studies, discovered unique mechanisms that support bone development and bone homeostasis in adults. We present here "guiding principles" for addressing biological control of bone tissue formation by ncRNAs. This review emphasizes recent advances in understanding regulation of the process of miRNA biogenesis that impact on osteogenic lineage commitment, transcription factors and signaling pathways. Also discussed are the approaches to be pursued for an understanding of the role of lncRNAs in bone and the challenges in addressing their multiple and complex functions. Based on new knowledge of epigenetic control of gene expression to be gained for ncRNA regulation of the skeleton, new directions for translating the miRNAs and lncRNAs into therapeutic targets for skeletal disorders are possible. This article is part of a Special Issue entitled Epigenetics and Bone.
Collapse
Affiliation(s)
- Mohammad Q Hassan
- Department of Oral & Maxillofacial Surgery, School of Dentistry, The University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Coralee E Tye
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT, USA.
| | - Gary S Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT, USA.
| | - Jane B Lian
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT, USA.
| |
Collapse
|
34
|
Alvanegh AG, Edalat H, Fallah P, Tavallaei M. Decreased expression of miR-20a and miR-92a in the serum from sulfur mustard-exposed patients during the chronic phase of resulting illness. Inhal Toxicol 2015; 27:682-8. [PMID: 26525353 DOI: 10.3109/08958378.2015.1096982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
CONTEXT Sulfur mustard (SM), with extensive nucleophilic and alkylating properties, was employed during the Iran-Iraq war by Iraqi forces. The most critical complications attributed to SM are related to dangerous pulmonary disorders collectively known as "mustard lung". The symptoms gradually emerge over a long period, becoming chronic, and are dependent on time and the amount of exposed SM. Because of the unknown and complex nature of the disease, no differential diagnostic method or absolute treatment strategy has been formally developed. OBJECTIVE The aim of our study was to determine the expression pattern of the microRNAs (miRNAs) miR-92a and miR-20a in the serum of patients with mustard lung along with that of normal individuals. miRNAs have been shown to possess stable persistence in biofluids like plasma and serum and are considered non-aggressive biomarkers helpful for diagnosis and treatment of many diseases. MATERIALS AND METHODS A highly sensitive approach called stem-loop real-time quantitative polymerase chain reaction was employed to study the expression of miRNAs. RESULTS The expression of miR-92a and miR-20a was significantly down-regulated in the serum of patients with mustard lung compared to the control group. DISCUSSION Down-regulation of miR-92a and miR-20a may be due to chronic epigenetic alterations after SM exposure, which finally leads to changes in vital cellular processes such as differentiation, proliferation and so forth. CONCLUSION Our findings may provide a differential diagnostic method that is effective for diagnosing lung diseases caused by SM exposure. Additionally, these miRNAs may be regarded as probable targets for treatment of lung injuries.
Collapse
Affiliation(s)
- Akbar Ghorbani Alvanegh
- a Human Genetics Research Center, Baqiyatallah Medical Sciences University , Tehran , Iran and
| | - Houri Edalat
- a Human Genetics Research Center, Baqiyatallah Medical Sciences University , Tehran , Iran and
| | - Parviz Fallah
- b Laboratory Sciences Department , Alborz University of Medical Sciences , Karaj , Iran
| | - Mahmood Tavallaei
- a Human Genetics Research Center, Baqiyatallah Medical Sciences University , Tehran , Iran and
| |
Collapse
|
35
|
Shi C, Huang P, Kang H, Hu B, Qi J, Jiang M, Zhou H, Guo L, Deng L. Glucocorticoid inhibits cell proliferation in differentiating osteoblasts by microRNA-199a targeting of WNT signaling. J Mol Endocrinol 2015; 54:325-37. [PMID: 25878056 DOI: 10.1530/jme-14-0314] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/15/2015] [Indexed: 11/08/2022]
Abstract
The inhibition of osteoblast proliferation by glucocorticoids (GCs) is very important in the etiology of GC-induced osteoporosis. The mechanisms of this process are still not fully understood. The results of recent studies have indicated an important role for microRNAs in GC-mediated responses in various cellular processes, including cell proliferation and apoptosis. Therefore, we developed the hypothesis that these regulatory molecules might be involved in GC-decreased osteoblast proliferation. Western blotting, quantitative real-time PCR, cell proliferation assays, and luciferase assays were employed to investigate the role of miRNAs in GC-inhibited osteoblast proliferation. microRNA-199a-5p was significantly increased in osteoblasts treated with dexamethasone (Dex). To delineate the role of microRNA-199a-5p, we silenced and overexpressed microRNA-199a-5p in osteoblasts. We found that overexpressing microRNA-199a-5p remarkably increased the inhibition effect of Dex on osteoblast proliferation, and depleting microRNA-199a-5p significantly attenuated Dex-inhibited osteoblast proliferation. Results of mechanistic studies indicated that microRNA-199a-5p inhibited FZD4 and WNT2 expression through a microRNA-199a-5p binding site within the 3'-UTR of FZD4 and WNT2. The post-transcriptional repression of FZD4 and WNT2 were further confirmed by luciferase reporter assay. These results indicated that microRNA-199a-5p may play a significant role in GC-inhibited osteoblast proliferation by regulating the WNT signaling pathway.
Collapse
Affiliation(s)
- Changgui Shi
- Shanghai Key Laboratory for Bone and Joint DiseasesShanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197, The Second Ruijin Road, Luwan District, Shanghai 200025, People's Republic of ChinaDepartment of OrthopedicsChangzheng Hospital, The Second Military Medical University of China, Shanghai, People's Republic of China Shanghai Key Laboratory for Bone and Joint DiseasesShanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197, The Second Ruijin Road, Luwan District, Shanghai 200025, People's Republic of ChinaDepartment of OrthopedicsChangzheng Hospital, The Second Military Medical University of China, Shanghai, People's Republic of China
| | - Ping Huang
- Shanghai Key Laboratory for Bone and Joint DiseasesShanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197, The Second Ruijin Road, Luwan District, Shanghai 200025, People's Republic of ChinaDepartment of OrthopedicsChangzheng Hospital, The Second Military Medical University of China, Shanghai, People's Republic of China
| | - Hui Kang
- Shanghai Key Laboratory for Bone and Joint DiseasesShanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197, The Second Ruijin Road, Luwan District, Shanghai 200025, People's Republic of ChinaDepartment of OrthopedicsChangzheng Hospital, The Second Military Medical University of China, Shanghai, People's Republic of China
| | - Bo Hu
- Shanghai Key Laboratory for Bone and Joint DiseasesShanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197, The Second Ruijin Road, Luwan District, Shanghai 200025, People's Republic of ChinaDepartment of OrthopedicsChangzheng Hospital, The Second Military Medical University of China, Shanghai, People's Republic of China Shanghai Key Laboratory for Bone and Joint DiseasesShanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197, The Second Ruijin Road, Luwan District, Shanghai 200025, People's Republic of ChinaDepartment of OrthopedicsChangzheng Hospital, The Second Military Medical University of China, Shanghai, People's Republic of China
| | - Jin Qi
- Shanghai Key Laboratory for Bone and Joint DiseasesShanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197, The Second Ruijin Road, Luwan District, Shanghai 200025, People's Republic of ChinaDepartment of OrthopedicsChangzheng Hospital, The Second Military Medical University of China, Shanghai, People's Republic of China
| | - Min Jiang
- Shanghai Key Laboratory for Bone and Joint DiseasesShanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197, The Second Ruijin Road, Luwan District, Shanghai 200025, People's Republic of ChinaDepartment of OrthopedicsChangzheng Hospital, The Second Military Medical University of China, Shanghai, People's Republic of China
| | - Hanbing Zhou
- Shanghai Key Laboratory for Bone and Joint DiseasesShanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197, The Second Ruijin Road, Luwan District, Shanghai 200025, People's Republic of ChinaDepartment of OrthopedicsChangzheng Hospital, The Second Military Medical University of China, Shanghai, People's Republic of China
| | - Lei Guo
- Shanghai Key Laboratory for Bone and Joint DiseasesShanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197, The Second Ruijin Road, Luwan District, Shanghai 200025, People's Republic of ChinaDepartment of OrthopedicsChangzheng Hospital, The Second Military Medical University of China, Shanghai, People's Republic of China
| | - Lianfu Deng
- Shanghai Key Laboratory for Bone and Joint DiseasesShanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197, The Second Ruijin Road, Luwan District, Shanghai 200025, People's Republic of ChinaDepartment of OrthopedicsChangzheng Hospital, The Second Military Medical University of China, Shanghai, People's Republic of China
| |
Collapse
|
36
|
Mohan S, Wergedal JE, Das S, Kesavan C. Conditional disruption of miR17-92 cluster in collagen type I-producing osteoblasts results in reduced periosteal bone formation and bone anabolic response to exercise. Physiol Genomics 2014; 47:33-43. [PMID: 25492928 DOI: 10.1152/physiolgenomics.00107.2014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In this study, we evaluated the role of the microRNA (miR)17-92 cluster in osteoblast lineage cells using a Cre-loxP approach in which Cre expression is driven by the entire regulatory region of the type I collagen α2 gene. Conditional knockout (cKO) mice showed a 13-34% reduction in total body bone mineral content and area with little or no change in bone mineral density (BMD) by DXA at 2, 4, and 8 wk in both sexes. Micro-CT analyses of the femur revealed an 8% reduction in length and 25-27% reduction in total volume at the diaphyseal and metaphyseal sites. Neither cortical nor trabecular volumetric BMD was different in the cKO mice. Bone strength (maximum load) was reduced by 10% with no change in bone toughness. Quantitative histomorphometric analyses revealed a 28% reduction in the periosteal bone formation rate and in the mineral apposition rate but with no change in the resorbing surface. Expression levels of periostin, Elk3, Runx2 genes that are targeted by miRs from the cluster were decreased by 25-30% in the bones of cKO mice. To determine the contribution of the miR17-92 cluster to the mechanical strain effect on periosteal bone formation, we subjected cKO and control mice to 2 wk of mechanical loading by four-point bending. We found that the periosteal bone response to mechanical strain was significantly reduced in the cKO mice. We conclude that the miR17-92 cluster expressed in type I collagen-producing cells is a key regulator of periosteal bone formation in mice.
Collapse
Affiliation(s)
- Subburaman Mohan
- Musculoskeletal Disease Center, JLP VA Medical Center, Loma Linda, California; and Department of Medicine, Loma Linda University, Loma Linda, California
| | - Jon E Wergedal
- Musculoskeletal Disease Center, JLP VA Medical Center, Loma Linda, California; and Department of Medicine, Loma Linda University, Loma Linda, California
| | - Subhashri Das
- Musculoskeletal Disease Center, JLP VA Medical Center, Loma Linda, California; and
| | - Chandrasekhar Kesavan
- Musculoskeletal Disease Center, JLP VA Medical Center, Loma Linda, California; and Department of Medicine, Loma Linda University, Loma Linda, California
| |
Collapse
|
37
|
Shi C, Qi J, Huang P, Jiang M, Zhou Q, Zhou H, Kang H, Qian N, Yang Q, Guo L, Deng L. MicroRNA-17/20a inhibits glucocorticoid-induced osteoclast differentiation and function through targeting RANKL expression in osteoblast cells. Bone 2014; 68:67-75. [PMID: 25138550 DOI: 10.1016/j.bone.2014.08.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 08/12/2014] [Accepted: 08/12/2014] [Indexed: 12/26/2022]
Abstract
Glucocorticoids act on the osteoblasts to up-regulate the expression of RANKL, which is very important in the etiology of glucocorticoid-induced osteoclast differentiation and bone resorption. The mechanisms of this process are still not completely understood. Recent studies have shown that glucocorticoids mediate osteoblast function by decreasing the expression of microRNA-17-92a cluster. Coincidentally, we found that the microRNA-17/20a (microRNA-17, microRNA-20a) seed sequences were also complementary to a sequence conserved in the 3'- untranslated region of RANKL mRNA. Therefore, we hypothesized that glucocorticoids might promote osteoblast-derived RANKL expression by down-regulating microRNA-17/20a, which favors differentiation and function of the osteoclasts. In the present study, Western blot analysis showed that microRNA-17/20a markedly lowered the levels of RANKL protein and attenuated dexamethasone-induced RANKL expression in the osteoblasts. The post-transcriptional repression of RANKL by microRNA-17/20a was further confirmed by the luciferase reporter assay. Furthermore, we found that dexamethasone-induced osteoclast differentiation and function were significantly attenuated in co-culture with osteoblast over-expressed microRNA-17/20a and osteoclast progenitors. These results showed that microRNA-17/20a may play a significant role in glucocorticoid-induced osteoclast differentiation and function by targeting the RANKL expression in osteoblast cells.
Collapse
Affiliation(s)
- Changgui Shi
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University of China, Shanghai, China.
| | - Jin Qi
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China.
| | - Ping Huang
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Min Jiang
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Qi Zhou
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Hanbing Zhou
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Hui Kang
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Niandong Qian
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Qiumeng Yang
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Lei Guo
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China.
| | - Lianfu Deng
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
38
|
MicroRNAs involved in bone formation. Cell Mol Life Sci 2014; 71:4747-61. [PMID: 25108446 DOI: 10.1007/s00018-014-1700-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/31/2014] [Accepted: 08/04/2014] [Indexed: 12/21/2022]
Abstract
During skeletal development, mesenchymal progenitor cells undergo a multistage differentiation process in which they proliferate and become bone- and cartilage-forming cells. This process is tightly regulated by multiple levels of regulatory systems. The small non-coding RNAs, microRNAs (miRNAs), post-transcriptionally regulate gene expression. Recent studies have demonstrated that miRNAs play significant roles in all stages of bone formation, suggesting the possibility that miRNAs can be novel therapeutic targets for skeletal diseases. Here, we review the role and mechanism of action of miRNAs in bone formation. We discuss roles of specific miRNAs in major types of bone cells, osteoblasts, chondrocytes, osteoclasts, and their progenitors. Except a few, the current knowledge about miRNAs in bone formation has been obtained mainly by in vitro studies; further validation of these findings in vivo is awaited. We also discuss about several miRNAs of particular interest in the light of future therapies of bone diseases.
Collapse
|
39
|
Meza-Sosa KF, Pedraza-Alva G, Pérez-Martínez L. microRNAs: key triggers of neuronal cell fate. Front Cell Neurosci 2014; 8:175. [PMID: 25009466 PMCID: PMC4070303 DOI: 10.3389/fncel.2014.00175] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 06/06/2014] [Indexed: 01/31/2023] Open
Abstract
Development of the central nervous system (CNS) requires a precisely coordinated series of events. During embryonic development, different intra- and extracellular signals stimulate neural stem cells to become neural progenitors, which eventually irreversibly exit from the cell cycle to begin the first stage of neurogenesis. However, before this event occurs, the self-renewal and proliferative capacities of neural stem cells and neural progenitors must be tightly regulated. Accordingly, the participation of various evolutionary conserved microRNAs is key in distinct central nervous system (CNS) developmental processes of many organisms including human, mouse, chicken, frog, and zebrafish. microRNAs specifically recognize and regulate the expression of target mRNAs by sequence complementarity within the mRNAs 3′ untranslated region and importantly, a single microRNA can have several target mRNAs to regulate a process; likewise, a unique mRNA can be targeted by more than one microRNA. Thus, by regulating different target genes, microRNAs let-7, microRNA-124, and microRNA-9 have been shown to promote the differentiation of neural stem cells and neural progenitors into specific neural cell types while microRNA-134, microRNA-25 and microRNA-137 have been characterized as microRNAs that induce the proliferation of neural stem cells and neural progenitors. Here we review the mechanisms of action of these two sets of microRNAs and their functional implications during the transition from neural stem cells and neural progenitors to fully differentiated neurons. The genetic and epigenetic mechanisms that regulate the expression of these microRNAs as well as the role of the recently described natural RNA circles which act as natural microRNA sponges regulating post-transcriptional microRNA expression and function during the early stages of neurogenesis is also discussed.
Collapse
Affiliation(s)
- Karla F Meza-Sosa
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México Cuernavaca, México
| | - Gustavo Pedraza-Alva
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México Cuernavaca, México
| | - Leonor Pérez-Martínez
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México Cuernavaca, México
| |
Collapse
|
40
|
Arabi L, Gsponer JR, Smida J, Nathrath M, Perrina V, Jundt G, Ruiz C, Quagliata L, Baumhoer D. Upregulation of the miR-17-92 cluster and its two paraloga in osteosarcoma - reasons and consequences. Genes Cancer 2014; 5:56-63. [PMID: 24955218 PMCID: PMC4063253 DOI: 10.18632/genesandcancer.6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/06/2014] [Indexed: 12/25/2022] Open
Abstract
Osteosarcomas (OS) are aggressive bone tumors characterized by complex karyotypes with highly variable structural and numerical chromosomal aberrations. Although several genes and pathways commonly altered in malignant tumors have also been identified in OS, the molecular pathogenesis and driving genetic events eventually leading to tumor development are still poorly understood. The microRNA (miRNA) cluster 17-92 and its two paraloga 106a-363 and 106b-25 are known to have diverse oncogenic properties and have been shown to be constantly upregulated in several established OS cell lines. In this study we analyzed a series of 75 well characterized pretherapeutic OS samples for their expression of cluster-related miRNAs and correlated our findings with clinico-pathological parameters including prognosis, metastases and response to neoadjuvant therapy. Interestingly, higher expression levels of specific miRNAs were significantly associated with an adverse outcome of patients and were also higher in patients with systemic spread. We could furthermore show a direct correlation between the expression of cluster activators (MYC, E2F1-3), inhibitors (TP53), individual miRNAs, and pro-apoptotic targets (FAS, BIM). Our findings therefore underline a critical role of the miR-17-92 cluster and its two paraloga in OS biology with pathogenetic and prognostic impact.
Collapse
Affiliation(s)
- Leila Arabi
- Institute of Pathology, University Hospital Basel, Basel, Switzerland.,Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Joël R Gsponer
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Jan Smida
- Clinical Cooperation Group Osteosarcoma, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
| | - Michaela Nathrath
- Clinical Cooperation Group Osteosarcoma, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
| | - Valeria Perrina
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Gernot Jundt
- Institute of Pathology, University Hospital Basel, Basel, Switzerland.,Bone Tumor Reference Center at the Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Christian Ruiz
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Luca Quagliata
- Institute of Pathology, University Hospital Basel, Basel, Switzerland.,Shared senior authorship
| | - Daniel Baumhoer
- Institute of Pathology, University Hospital Basel, Basel, Switzerland.,Bone Tumor Reference Center at the Institute of Pathology, University Hospital Basel, Basel, Switzerland.,Shared senior authorship
| |
Collapse
|
41
|
Chen F, Zhang L, OuYang Y, Guan H, Liu Q, Ni B. Glucocorticoid induced osteoblast apoptosis by increasing E4BP4 expression via up-regulation of Bim. Calcif Tissue Int 2014; 94:640-7. [PMID: 24658772 DOI: 10.1007/s00223-014-9847-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/06/2014] [Indexed: 11/26/2022]
Abstract
It is well known that glucocorticoid (GC)-induced bone loss is caused primarily by hypofunction and apoptosis of osteoblasts. However, the precise molecular events underlying the effect of GC on osteoblast apoptosis are not fully understood. Recent studies implicated an important role of E4BP4 in the regulation of osteoblast apoptosis and differentiation. Furthermore, E4BP4 is a GC-regulated gene required for GC-induced apoptosis in many cells. Therefore, we hypothesize that E4BP4 may be implicated in the process of GC-induced osteoblast apoptosis. Western blot, reverse-transcription-PCR, flow cytometry, and Hoechst 33258 staining were employed to investigate the role of E4BP4 in dexamethasone (DEX)-induced osteoblast apoptosis. We found that the expression of E4BP4 is significantly up-regulated in osteoblasts exposed to DEX. Furthermore, the depletion of E4BP4 significantly decreased DEX-induced osteoblast apoptosis. In addition, E4BP4 plays a crucial role in GC-evoked apoptosis of osteoblasts by enabling induction of Bim. On the basis of these results above, we can draw the conclusion that E4BP4 may contribute to the process of DEX-induced osteoblast apoptosis.
Collapse
|
42
|
van der Eerden BCJ. MicroRNAs in the skeleton: cell-restricted or potent intercellular communicators? Arch Biochem Biophys 2014; 561:46-55. [PMID: 24832391 DOI: 10.1016/j.abb.2014.04.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/24/2014] [Accepted: 04/26/2014] [Indexed: 12/25/2022]
Abstract
MicroRNAs (miRNAs) play a fundamental role in cell proliferation, differentiation and apoptosis and have been associated with many diseases and physiological states. Within the skeleton, both the bone forming cells, osteoblasts, and the bone degrading cells, osteoclasts, are mostly being stimulated by miRNAs through downregulation of inhibitors of bone cell differentiation. Besides miRNAs affecting master genes of bone cell differentiation and function in a cell-restricted manner, evidence is gathering that miRNAs are excreted into the local environment but also into the circulation, implicating a role for miRNAs in nearby or even distant target cells. In this review, the most recent novel miRNAs implicated in bone cell differentiation regulation will be described but also their potential paracrine or endocrine role, thus reinforcing the concept that miRNAs may function as powerful communicators between cell types or tissues.
Collapse
|
43
|
Dong J, Cui X, Jiang Z, Sun J. MicroRNA-23a modulates tumor necrosis factor-alpha-induced osteoblasts apoptosis by directly targeting Fas. J Cell Biochem 2014; 114:2738-45. [PMID: 23804233 DOI: 10.1002/jcb.24622] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 06/20/2013] [Indexed: 01/18/2023]
Abstract
Tumor necrosis factor (TNF)-alpha is a key cytokine regulator of bone and mediates inflammatory bone loss. The molecular signaling that regulates bone loss downstream of TNF-alpha is poorly defined. Recent studies implicated an important role of microRNAs (miRNAs) in TNF-alpha-mediated bone metabolism, including osteoblasts differentiation, osteoclasts differentiation and apoptosis. However, there are very few studies on the complex regulation of miRNAs during TNF-alpha-induced osteoblasts apoptosis. In the present study, the clonal murine osteoblastic cell line, MC3T3-E1, was used. We screened for differentially expressed miRNAs during TNF-alpha induced MC3T3-E1 cell apoptosis and identified microRNA-23a as a potential inhibitor of apoptosis. To delineate the role of microRNA-23a in apoptosis, we respectively silenced and overexpressed microRNA-23a in MC3T3-E1 cells. We found that microRNA-23a depletion significantly enhances TNF-alpha-induced MC3T3-E1 cell apoptosis and over-expressing microRNA-23a remarkably attenuates this phenomenon. Mechanistic studies showed that microRNA-23a inhibits Fas expression through a microRNA-23a-binding site within the 3'-untranslational region of Fas. The post-transcriptional repression of Fas was further confirmed by luciferase reporter assay. These results showed that microRNA-23a, an important protecting factor, plays a significant role in the process of TNF-alpha induced MC3T3-E1 cell apoptosis, by regulating Fas expression.
Collapse
Affiliation(s)
- Jun Dong
- Department of Orthopaedics, Provincial Hospital Affiliated to Shandong University, Jinan, P.R. China
| | | | | | | |
Collapse
|
44
|
Zhou M, Ma J, Chen S, Chen X, Yu X. MicroRNA-17-92 cluster regulates osteoblast proliferation and differentiation. Endocrine 2014; 45:302-10. [PMID: 23673870 DOI: 10.1007/s12020-013-9986-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 05/07/2013] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) have been identified to play important functions during osteoblast proliferation, differentiation, and apoptosis. The miR-17~92 cluster is highly conserved in all vertebrates. Loss-of-function of the miR-17-92 cluster results in smaller embryos and immediate postnatal death of all animals. Germline hemizygous deletions of MIR17HG are accounted for microcephaly, short stature, and digital abnormalities in a few cases of Feingold syndrome. These reports indicate that miR-17~92 may play important function in skeletal development and mature. To determine the functional roles of miR-17~92 in bone metabolism as well as osteoblast proliferation and differentiation. Murine embryonic stem cells D3 and osteoprogenitor cell line MC3T3-E1 were induced to differentiate into osteoblasts; the expression of miR-17-92 was assayed by quantitative real-time RT-PCR. The skeletal phenotypes were assayed in mice heterozygous for miR-17~92 (miR-17~92 (+/Δ) ). To determine the possibly direct function of miR-17~92 in bone cells, osteoblasts from miR-17~92 (+/Δ) mice were investigated by ex vivo cell culture. miR-17, miR-92a, and miR-20a within miR-17-92 cluster were expressed at high level in bone tissue and osteoblasts. The expression of miR-17-92 was down-regulated along with osteoblast differentiation, the lowest level was found in mature osteoblasts. Compared to wildtype controls, miR-17-92 (+/Δ) mice showed significantly lower trabecular and cortical bone mineral density, bone volume and trabecular number at 10 weeks old. mRNA expression of Runx2 and type I collagen was significantly lower in bone from miR-17-92 (+/Δ) mice. Osteoblasts from miR-17-92 (+/Δ) mice showed lower proliferation rate, ALP activity and less calcification. Our research suggests that the miR-17-92 cluster critically regulates bone metabolism, and this regulation is mostly through its function in osteoblasts.
Collapse
Affiliation(s)
- Mingliang Zhou
- Laboratory of Endocrinology and Metabolism, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, People's Republic of China
| | | | | | | | | |
Collapse
|
45
|
Shin ES, Huang Q, Gurel Z, Palenski TL, Zaitoun I, Sorenson CM, Sheibani N. STAT1-mediated Bim expression promotes the apoptosis of retinal pericytes under high glucose conditions. Cell Death Dis 2014; 5:e986. [PMID: 24407239 PMCID: PMC4040686 DOI: 10.1038/cddis.2013.517] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/13/2013] [Accepted: 11/20/2013] [Indexed: 12/17/2022]
Abstract
Hyperglycemia impacts different vascular cell functions and promotes the development and progression of various vasculopathies including diabetic retinopathy. Although the increased rate of apoptosis in pericytes (PCs) has been linked to increased oxidative stress and activation of protein kinase C-δ (PKC-δ) and SHP-1 (Src homology region 2 domain-containing phosphatase-1) tyrosine phosphatase during diabetes, the detailed mechanisms require further elucidation. Here we show that the rate of apoptosis and expression of proapoptotic protein Bim were increased in the retinal PCs of diabetic Akita/+ mice and mouse retinal PCs cultured under high glucose conditions. Increased Bim expression in retinal PCs under high glucose conditions required the sustained activation of signal transducer and activator of transcription 1 (STAT1) through production of inflammatory cytokines. PCs cultured under high glucose conditions also exhibited increased oxidative stress and diminished migration. Inhibition of oxidative stress, PKC-δ or Rho-associated protein kinase I/II was sufficient to protect PCs against apoptosis under high glucose conditions. Furthermore, PCs deficient in Bim expression were protected from high glucose-mediated increased oxidative stress and apoptosis. However, only inhibition of PKC-δ lowered Bim levels. N-acetylcysteine did not affect STAT1 levels, suggesting that oxidative stress is downstream of Bim. PCs cultured under high glucose conditions disrupted capillary morphogenesis of retinal endothelial cells (ECs) in coculture experiments. In addition, conditioned medium prepared from PCs under high glucose conditions attenuated EC migration. Taken together, our results indicate that Bim has a pivotal role in the dysfunction of retinal PCs under high glucose conditions by increasing oxidative stress and death of PCs.
Collapse
Affiliation(s)
- E S Shin
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Q Huang
- 1] Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA [2]
| | - Z Gurel
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - T L Palenski
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - I Zaitoun
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - C M Sorenson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - N Sheibani
- 1] Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA [2] Mcpherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| |
Collapse
|
46
|
miR-320a regulates erythroid differentiation through MAR binding protein SMAR1. Int J Biochem Cell Biol 2013; 45:2519-29. [DOI: 10.1016/j.biocel.2013.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 07/07/2013] [Accepted: 07/12/2013] [Indexed: 02/05/2023]
|