1
|
Parker SS, Ly KT, Grant AD, Sweetland J, Wang AM, Parker JD, Roman MR, Saboda K, Roe DJ, Padi M, Wolgemuth CW, Langlais P, Mouneimne G. EVL and MIM/MTSS1 regulate actin cytoskeletal remodeling to promote dendritic filopodia in neurons. J Cell Biol 2023; 222:e202106081. [PMID: 36828364 PMCID: PMC9998662 DOI: 10.1083/jcb.202106081] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/22/2022] [Accepted: 01/20/2023] [Indexed: 02/25/2023] Open
Abstract
Dendritic spines are the postsynaptic compartment of a neuronal synapse and are critical for synaptic connectivity and plasticity. A developmental precursor to dendritic spines, dendritic filopodia (DF), facilitate synapse formation by sampling the environment for suitable axon partners during neurodevelopment and learning. Despite the significance of the actin cytoskeleton in driving these dynamic protrusions, the actin elongation factors involved are not well characterized. We identified the Ena/VASP protein EVL as uniquely required for the morphogenesis and dynamics of DF. Using a combination of genetic and optogenetic manipulations, we demonstrated that EVL promotes protrusive motility through membrane-direct actin polymerization at DF tips. EVL forms a complex at nascent protrusions and DF tips with MIM/MTSS1, an I-BAR protein important for the initiation of DF. We proposed a model in which EVL cooperates with MIM to coalesce and elongate branched actin filaments, establishing the dynamic lamellipodia-like architecture of DF.
Collapse
Affiliation(s)
- Sara S. Parker
- Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Kenneth Tran Ly
- Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Adam D. Grant
- Cancer Biology Program, University of Arizona Cancer Center, Tucson, AZ, USA
| | - Jillian Sweetland
- Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Ashley M. Wang
- Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - James D. Parker
- Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Mackenzie R. Roman
- Division of Endocrinology, Department of Medicine, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Kathylynn Saboda
- University of Arizona Cancer Center and Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Denise J. Roe
- University of Arizona Cancer Center and Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Megha Padi
- Cancer Biology Program, University of Arizona Cancer Center, Tucson, AZ, USA
- Department of Molecular and Cellular Biology, College of Science, University of Arizona, Tucson, AZ, USA
| | - Charles W. Wolgemuth
- University of Arizona Cancer Center and Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
- Department of Molecular and Cellular Biology, College of Science, University of Arizona, Tucson, AZ, USA
- Department of Physics, College of Science, University of Arizona, Tucson, AZ, USA
- Johns Hopkins Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD, USA
| | - Paul Langlais
- Division of Endocrinology, Department of Medicine, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Ghassan Mouneimne
- Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona, Tucson, AZ, USA
- Cancer Biology Program, University of Arizona Cancer Center, Tucson, AZ, USA
| |
Collapse
|
11
|
Zhang J, Li Y, Qi J, Yu X, Ren H, Zhao X, Xin W, He S, Zheng X, Ma C, Zhang L, Wu B, Zhu D. Circ- calm4 Serves as an miR-337-3p Sponge to Regulate Myo10 (Myosin 10) and Promote Pulmonary Artery Smooth Muscle Proliferation. Hypertension 2020; 75:668-679. [PMID: 32008463 DOI: 10.1161/hypertensionaha.119.13715] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Pulmonary artery smooth muscle cell proliferation is the pathological basis of pulmonary vascular remodeling in hypoxic pulmonary hypertension. Recent studies suggest that circular RNA (circRNA) can regulate various biological processes, including cell proliferation. Therefore, it is possible that circRNA may have important roles in pulmonary artery smooth muscle cell proliferation in hypoxic pulmonary hypertension. In the present study, we aimed to identify functional circRNAs and clarify their roles and mechanisms in pulmonary artery smooth muscle cell proliferation in pulmonary hypertension. RNA sequencing identified 67 circRNAs that were differentially expressed in hypoxic lung tissues of mice. Screening by bioinformatics and quantitative polymerase chain reaction revealed significant elevation of a circRNA derived from alternative splicing of the calmodulin 4 gene (designated circ-calm4). Notably, this circRNA absorbed miR-337-3p. We further identified Myo10 (myosin 10) as a target protein of miR-337-3p. miR-337-3p bound to the 3'-untranslated region of Myo10 mRNA, thereby attenuating the translation of Myo10. Using loss-of-function and gain-of-function approaches, we found that circ-calm4 regulated cell proliferation by regulating the cell cycle. Additionally, we verified the functions of miR-337-3p and Myo10 in hypoxic pulmonary artery smooth muscle. Our results suggested that the circ-calm4/miR-337-3p/Myo10 signal transduction axis modulated the proliferation of pulmonary artery smooth muscle cells at the molecular level, thus establishing potential targets for the early diagnosis and treatment of pulmonary hypertension.
Collapse
Affiliation(s)
- Junting Zhang
- From the College of Medical Laboratory Science and Technology (X.Y., X. Zhao, L.Z., C.M., D.Z.), Harbin Medical University (Daqing), China.,Department of Pharmacology, College of Pharmacy (J.Z., Y.L., J.Q., H.R.,W.X., S.H., D.Z.), Harbin Medical University (Daqing), China.,Central Laboratory of Harbin Medical University (Daqing), China (J.Z., Y.L., J.Q., X.Y., H.R., X. Zhao, W.X., S.H., C.M., L.Z., D.Z.).,College of Pharmacy (J.Z., Y.L., J.Q., X.Y., H.R., X. Zhao, W.X., S.H., X. Zheng, C.M., L.Z., D.Z.), Harbin Medical University, China
| | - Yiying Li
- Department of Pharmacology, College of Pharmacy (J.Z., Y.L., J.Q., H.R.,W.X., S.H., D.Z.), Harbin Medical University (Daqing), China.,Central Laboratory of Harbin Medical University (Daqing), China (J.Z., Y.L., J.Q., X.Y., H.R., X. Zhao, W.X., S.H., C.M., L.Z., D.Z.).,College of Pharmacy (J.Z., Y.L., J.Q., X.Y., H.R., X. Zhao, W.X., S.H., X. Zheng, C.M., L.Z., D.Z.), Harbin Medical University, China
| | - Jing Qi
- Department of Pharmacology, College of Pharmacy (J.Z., Y.L., J.Q., H.R.,W.X., S.H., D.Z.), Harbin Medical University (Daqing), China.,Central Laboratory of Harbin Medical University (Daqing), China (J.Z., Y.L., J.Q., X.Y., H.R., X. Zhao, W.X., S.H., C.M., L.Z., D.Z.).,College of Pharmacy (J.Z., Y.L., J.Q., X.Y., H.R., X. Zhao, W.X., S.H., X. Zheng, C.M., L.Z., D.Z.), Harbin Medical University, China
| | - Xiufeng Yu
- Central Laboratory of Harbin Medical University (Daqing), China (J.Z., Y.L., J.Q., X.Y., H.R., X. Zhao, W.X., S.H., C.M., L.Z., D.Z.).,College of Pharmacy (J.Z., Y.L., J.Q., X.Y., H.R., X. Zhao, W.X., S.H., X. Zheng, C.M., L.Z., D.Z.), Harbin Medical University, China
| | - Huanhuan Ren
- Department of Pharmacology, College of Pharmacy (J.Z., Y.L., J.Q., H.R.,W.X., S.H., D.Z.), Harbin Medical University (Daqing), China.,Central Laboratory of Harbin Medical University (Daqing), China (J.Z., Y.L., J.Q., X.Y., H.R., X. Zhao, W.X., S.H., C.M., L.Z., D.Z.).,College of Pharmacy (J.Z., Y.L., J.Q., X.Y., H.R., X. Zhao, W.X., S.H., X. Zheng, C.M., L.Z., D.Z.), Harbin Medical University, China
| | - Xijuan Zhao
- From the College of Medical Laboratory Science and Technology (X.Y., X. Zhao, L.Z., C.M., D.Z.), Harbin Medical University (Daqing), China.,Central Laboratory of Harbin Medical University (Daqing), China (J.Z., Y.L., J.Q., X.Y., H.R., X. Zhao, W.X., S.H., C.M., L.Z., D.Z.).,College of Pharmacy (J.Z., Y.L., J.Q., X.Y., H.R., X. Zhao, W.X., S.H., X. Zheng, C.M., L.Z., D.Z.), Harbin Medical University, China
| | - Wei Xin
- Department of Pharmacology, College of Pharmacy (J.Z., Y.L., J.Q., H.R.,W.X., S.H., D.Z.), Harbin Medical University (Daqing), China.,Central Laboratory of Harbin Medical University (Daqing), China (J.Z., Y.L., J.Q., X.Y., H.R., X. Zhao, W.X., S.H., C.M., L.Z., D.Z.).,College of Pharmacy (J.Z., Y.L., J.Q., X.Y., H.R., X. Zhao, W.X., S.H., X. Zheng, C.M., L.Z., D.Z.), Harbin Medical University, China
| | - Siyu He
- Department of Pharmacology, College of Pharmacy (J.Z., Y.L., J.Q., H.R.,W.X., S.H., D.Z.), Harbin Medical University (Daqing), China.,Central Laboratory of Harbin Medical University (Daqing), China (J.Z., Y.L., J.Q., X.Y., H.R., X. Zhao, W.X., S.H., C.M., L.Z., D.Z.).,College of Pharmacy (J.Z., Y.L., J.Q., X.Y., H.R., X. Zhao, W.X., S.H., X. Zheng, C.M., L.Z., D.Z.), Harbin Medical University, China
| | - Xiaodong Zheng
- Central Laboratory of Harbin Medical University (Daqing), China (J.Z., Y.L., J.Q., X.Y., H.R., X. Zhao, W.X., S.H., C.M., L.Z., D.Z.).,College of Pharmacy (J.Z., Y.L., J.Q., X.Y., H.R., X. Zhao, W.X., S.H., X. Zheng, C.M., L.Z., D.Z.), Harbin Medical University, China
| | - Cui Ma
- From the College of Medical Laboratory Science and Technology (X.Y., X. Zhao, L.Z., C.M., D.Z.), Harbin Medical University (Daqing), China.,Central Laboratory of Harbin Medical University (Daqing), China (J.Z., Y.L., J.Q., X.Y., H.R., X. Zhao, W.X., S.H., C.M., L.Z., D.Z.).,College of Pharmacy (J.Z., Y.L., J.Q., X.Y., H.R., X. Zhao, W.X., S.H., X. Zheng, C.M., L.Z., D.Z.), Harbin Medical University, China
| | - Lixin Zhang
- From the College of Medical Laboratory Science and Technology (X.Y., X. Zhao, L.Z., C.M., D.Z.), Harbin Medical University (Daqing), China.,Central Laboratory of Harbin Medical University (Daqing), China (J.Z., Y.L., J.Q., X.Y., H.R., X. Zhao, W.X., S.H., C.M., L.Z., D.Z.).,College of Pharmacy (J.Z., Y.L., J.Q., X.Y., H.R., X. Zhao, W.X., S.H., X. Zheng, C.M., L.Z., D.Z.), Harbin Medical University, China
| | - Bingxiang Wu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Harbin Medical University, China (B.W.)
| | - Daling Zhu
- From the College of Medical Laboratory Science and Technology (X.Y., X. Zhao, L.Z., C.M., D.Z.), Harbin Medical University (Daqing), China.,Department of Pharmacology, College of Pharmacy (J.Z., Y.L., J.Q., H.R.,W.X., S.H., D.Z.), Harbin Medical University (Daqing), China.,Central Laboratory of Harbin Medical University (Daqing), China (J.Z., Y.L., J.Q., X.Y., H.R., X. Zhao, W.X., S.H., C.M., L.Z., D.Z.).,College of Pharmacy (J.Z., Y.L., J.Q., X.Y., H.R., X. Zhao, W.X., S.H., X. Zheng, C.M., L.Z., D.Z.), Harbin Medical University, China.,Key Laboratory of Cardiovascular Medicine Research, Ministry of Education (D.Z.), Harbin Medical University, China.,State Province Key Laboratories of Biomedicine-Pharmaceutics of China (D.Z.)
| |
Collapse
|