1
|
Tao M, Chen J, Cui C, Xu Y, Xu J, Shi Z, Yun J, Zhang J, Ou GZ, Liu C, Chen Y, Zhu ZR, Pan R, Xu S, Chen XX, Rokas A, Zhao Y, Wang S, Huang J, Shen XX. Identification of a longevity gene through evolutionary rate covariation of insect mito-nuclear genomes. NATURE AGING 2024; 4:1076-1088. [PMID: 38834883 DOI: 10.1038/s43587-024-00641-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 05/02/2024] [Indexed: 06/06/2024]
Abstract
Oxidative phosphorylation, essential for energy metabolism and linked to the regulation of longevity, involves mitochondrial and nuclear genes. The functions of these genes and their evolutionary rate covariation (ERC) have been extensively studied, but little is known about whether other nuclear genes not targeted to mitochondria evolutionarily and functionally interact with mitochondrial genes. Here we systematically examined the ERC of mitochondrial and nuclear benchmarking universal single-copy ortholog (BUSCO) genes from 472 insects, identifying 75 non-mitochondria-targeted nuclear genes. We found that the uncharacterized gene CG11837-a putative ortholog of human DIMT1-regulates insect lifespan, as its knockdown reduces median lifespan in five diverse insect species and Caenorhabditis elegans, whereas its overexpression extends median lifespans in fruit flies and C. elegans and enhances oxidative phosphorylation gene activity. Additionally, DIMT1 overexpression protects human cells from cellular senescence. Together, these data provide insights into the ERC of mito-nuclear genes and suggest that CG11837 may regulate longevity across animals.
Collapse
Affiliation(s)
- Mei Tao
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, China
- Centre for Evolutionary and Organismal Biology, Zhejiang University, Hangzhou, China
| | - Jiani Chen
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Chunlai Cui
- New Cornerstone Science Laboratory, CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yandong Xu
- Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Lab of Genetic and Developmental Disorders, Hangzhou, China
| | - Jingxiu Xu
- Zhejiang University School of Medicine, Hangzhou, China
| | - Zheyi Shi
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jiaqi Yun
- New Cornerstone Science Laboratory, CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Junwei Zhang
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Guo-Zheng Ou
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Chao Liu
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yun Chen
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zeng-Rong Zhu
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Ronghui Pan
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Suhong Xu
- Zhejiang University School of Medicine, Hangzhou, China
| | - Xue-Xin Chen
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Antonis Rokas
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Yang Zhao
- Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Lab of Genetic and Developmental Disorders, Hangzhou, China
| | - Sibao Wang
- New Cornerstone Science Laboratory, CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| | - Jianhua Huang
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
| | - Xing-Xing Shen
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, China.
- Centre for Evolutionary and Organismal Biology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Cobbe N, Di Cara F, Spradling AC, Vass S. Margarete Heck (1959-2023): Cell biologist, geneticist, and incandescent social spark. J Cell Biol 2024; 223:e202311145. [PMID: 38060039 PMCID: PMC10702365 DOI: 10.1083/jcb.202311145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Margarete M.S. Heck, professor of cell biology and genetics, University of Edinburgh, died peacefully at home amid her loving family under a blue moon on August 30, 2023, after a long journey with ovarian cancer.
Collapse
Affiliation(s)
| | - Francesca Di Cara
- Department of Microbiology and Immunology, Department of Pediatrics, Dalhousie University, Halifax, Canada
| | - Allan C. Spradling
- Carnegie Institution for Science and Howard Hughes Medical Institute, Baltimore, MD, USA
| | - Sharron Vass
- School of Applied Sciences, Edinburgh Napier University, Scotland, UK
| |
Collapse
|
3
|
Everman ER, Macdonald SJ, Kelly JK. The genetic basis of adaptation to copper pollution in Drosophila melanogaster. Front Genet 2023; 14:1144221. [PMID: 37082199 PMCID: PMC10110907 DOI: 10.3389/fgene.2023.1144221] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/21/2023] [Indexed: 04/22/2023] Open
Abstract
Introduction: Heavy metal pollutants can have long lasting negative impacts on ecosystem health and can shape the evolution of species. The persistent and ubiquitous nature of heavy metal pollution provides an opportunity to characterize the genetic mechanisms that contribute to metal resistance in natural populations. Methods: We examined variation in resistance to copper, a common heavy metal contaminant, using wild collections of the model organism Drosophila melanogaster. Flies were collected from multiple sites that varied in copper contamination risk. We characterized phenotypic variation in copper resistance within and among populations using bulked segregant analysis to identify regions of the genome that contribute to copper resistance. Results and Discussion: Copper resistance varied among wild populations with a clear correspondence between resistance level and historical exposure to copper. We identified 288 SNPs distributed across the genome associated with copper resistance. Many SNPs had population-specific effects, but some had consistent effects on copper resistance in all populations. Significant SNPs map to several novel candidate genes involved in refolding disrupted proteins, energy production, and mitochondrial function. We also identified one SNP with consistent effects on copper resistance in all populations near CG11825, a gene involved in copper homeostasis and copper resistance. We compared the genetic signatures of copper resistance in the wild-derived populations to genetic control of copper resistance in the Drosophila Synthetic Population Resource (DSPR) and the Drosophila Genetic Reference Panel (DGRP), two copper-naïve laboratory populations. In addition to CG11825, which was identified as a candidate gene in the wild-derived populations and previously in the DSPR, there was modest overlap of copper-associated SNPs between the wild-derived populations and laboratory populations. Thirty-one SNPs associated with copper resistance in wild-derived populations fell within regions of the genome that were associated with copper resistance in the DSPR in a prior study. Collectively, our results demonstrate that the genetic control of copper resistance is highly polygenic, and that several loci can be clearly linked to genes involved in heavy metal toxicity response. The mixture of parallel and population-specific SNPs points to a complex interplay between genetic background and the selection regime that modifies the effects of genetic variation on copper resistance.
Collapse
Affiliation(s)
| | - Stuart J. Macdonald
- Molecular Biosciences, University of Kansas, Lawrence, KS, United States
- Center for Computational Biology, University of Kansas, Lawrence, KS, United States
| | - John K. Kelly
- Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
4
|
Zhao RZ, Wang XB, Jiang S, Ru NY, Jiao B, Wang YY, Yu ZB. Elevated ROS depress mitochondrial oxygen utilization efficiency in cardiomyocytes during acute hypoxia. Pflugers Arch 2020; 472:1619-1630. [PMID: 32940783 DOI: 10.1007/s00424-020-02463-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/24/2020] [Accepted: 09/07/2020] [Indexed: 11/28/2022]
Abstract
Mitochondria are important sites for the production of ATP and the generation of ROS in cells. However, whether acute hypoxia increases ROS generation in cells or affects ATP production remains unclear, and therefore, monitoring the changes in ATP and ROS in living cells in real time is important. In this study, cardiomyocytes were transfected with RoGFP for ROS detection and MitGO-Ateam2 for ATP detection, whereby ROS and ATP production in cardiomyocytes were respectively monitored in real time. Furthermore, the oxygen consumption rate (OCR) of cardiomyocytes was measured. Similar results were produced for adult and neonatal rat cardiomyocytes. Hypoxia (1% O2) reduced the basal OCR, ATP-linked OCR, and maximal OCR in cardiomyocytes compared with these OCR levels in the cardiomyocytes in the normoxic group (21% O2). However, ATP-linked OCR, normalized to maximal OCR, was increased during hypoxia, indicating that the electron leakage of complex III exacerbated the increase of ATP-linked oxygen consumption during hypoxia and vice versa. Combined with the result that cardiomyocytes expressing MitGO-Ateam2 showed a significant decrease in ATP production during hypoxia compared with that of normoxic group, acute hypoxia might depress the mitochondrial oxygen utilization efficiency of the cardiomyocytes. Moreover, cardiomyocytes expressing Cyto-RoGFP or IMS-RoGFP showed an increase in ROS generation in the cytosol and the mitochondrial intermembrane space (IMS) during hypoxia. All of these results indicate that acute hypoxia generated more ROS in complex III and increased mitochondrial oxygen consumption, leading to less ATP production. In conclusion, acute hypoxia depresses the mitochondrial oxygen utilization efficiency by decreasing ATP production and increasing oxygen consumption as a result of the enhanced ROS generation at mitochondrial complex III.
Collapse
Affiliation(s)
- Ru-Zhou Zhao
- Department of Aerospace Physiology, Fourth Military Medical University, 169# Changle West Road, Xi'an, 710032, China
| | - Xiao-Bo Wang
- Department of Aerospace Physiology, Fourth Military Medical University, 169# Changle West Road, Xi'an, 710032, China
| | - Shuai Jiang
- Department of Aerospace Physiology, Fourth Military Medical University, 169# Changle West Road, Xi'an, 710032, China
| | - Ning-Yu Ru
- Department of Aerospace Physiology, Fourth Military Medical University, 169# Changle West Road, Xi'an, 710032, China
| | - Bo Jiao
- Department of Aerospace Physiology, Fourth Military Medical University, 169# Changle West Road, Xi'an, 710032, China
| | - Yun-Ying Wang
- Department of Aerospace Physiology, Fourth Military Medical University, 169# Changle West Road, Xi'an, 710032, China.
| | - Zhi-Bin Yu
- Department of Aerospace Physiology, Fourth Military Medical University, 169# Changle West Road, Xi'an, 710032, China.
| |
Collapse
|
5
|
Parker GA, Kohn N, Spirina A, McMillen A, Huang W, Mackay TFC. Genetic Basis of Increased Lifespan and Postponed Senescence in Drosophila melanogaster. G3 (BETHESDA, MD.) 2020; 10:1087-1098. [PMID: 31969430 PMCID: PMC7056975 DOI: 10.1534/g3.120.401041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/21/2020] [Indexed: 01/14/2023]
Abstract
Limited lifespan and senescence are near-universal phenomena. These quantitative traits exhibit variation in natural populations due to the segregation of many interacting loci and from environmental effects. Due to the complexity of the genetic control of lifespan and senescence, our understanding of the genetic basis of variation in these traits is incomplete. Here, we analyzed the pattern of genetic divergence between long-lived (O) Drosophila melanogaster lines selected for postponed reproductive senescence and unselected control (B) lines. We quantified the productivity of the O and B lines and found that reproductive senescence is maternally controlled. We therefore chose 57 candidate genes that are expressed in ovaries, 49 of which have human orthologs, and assessed the effects of RNA interference in ovaries and accessary glands on lifespan and reproduction. All but one candidate gene affected at least one life history trait in one sex or productivity week. In addition, 23 genes had antagonistic pleiotropic effects on lifespan and productivity. Identifying evolutionarily conserved genes affecting increased lifespan and delayed reproductive senescence is the first step toward understanding the evolutionary forces that maintain segregating variation at these loci in nature and may provide potential targets for therapeutic intervention to delay senescence while increasing lifespan.
Collapse
Affiliation(s)
- Grace A Parker
- Department of Biological Sciences
- Program in Genetics
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, 27695 and
| | | | | | | | - Wen Huang
- Department of Animal Science, Michigan State University, East Lansing, Michigan, 48824
| | - Trudy F C Mackay
- Department of Biological Sciences,
- Program in Genetics
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, 27695 and
| |
Collapse
|
6
|
Abhinav K, Feng L, Morrison E, Jung Y, Dear J, Takahashi S, Heck MMS. The conserved metalloprotease invadolysin is present in invertebrate haemolymph and vertebrate blood. Biol Open 2019; 8:bio.044073. [PMID: 31615765 PMCID: PMC6899020 DOI: 10.1242/bio.044073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We identified invadolysin, a novel essential metalloprotease, for functions in chromosome structure, cell proliferation and migration. Invadolysin also plays an important metabolic role in insulin signalling and is the only protease known to localise to lipid droplets, the main lipid storage organelle in the cell. In silico examination of the protein sequence of invadolysin predicts not only protease and lipase catalytic motifs, but also post-translational modifications and the secretion of invadolysin. Here we show that the protease motif of invadolysin is important for its role in lipid accumulation, but not in glycogen accumulation. The lipase motif does not appear to be functionally important for the accumulation of lipids or glycogen. Post-translational modifications likely contribute to modulating the level, localisation or activity of invadolysin. We identified a secreted form of invadolysin in the soluble fraction of invertebrate hemolymph (where we observe sexually dimorphic forms) and also vertebrate plasma, including in the extracellular vesicle fraction. Biochemical analysis for various post-translational modifications demonstrated that secreted invadolysin is both N- and O-glycosylated, but not apparently GPI-linked. The discovery of invadolysin in the extracellular milieu suggests a role for invadolysin in normal organismal physiology. Summary: In this study, we show that the conserved metalloprotease invadolysin is present in invertebrate hemolymph and vertebrate blood, suggesting the protein may function in organismal physiology.
Collapse
Affiliation(s)
- Kanishk Abhinav
- University/BHF Center for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Linda Feng
- University/BHF Center for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Emma Morrison
- University/BHF Center for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Yunshin Jung
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki 305-0006, Japan
| | - James Dear
- University/BHF Center for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki 305-0006, Japan
| | - Margarete M S Heck
- University/BHF Center for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
7
|
Burke LC, Ezeribe HO, Kwon AY, Dockery D, Lyons PJ. Carboxypeptidase O is a lipid droplet-associated enzyme able to cleave both acidic and polar C-terminal amino acids. PLoS One 2018; 13:e0206824. [PMID: 30388170 PMCID: PMC6214572 DOI: 10.1371/journal.pone.0206824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 10/19/2018] [Indexed: 11/18/2022] Open
Abstract
Carboxypeptidase O (CPO) is a member of the M14 family of metallocarboxypeptidases with a preference for the cleavage of C-terminal acidic amino acids. CPO is largely expressed in the small intestine, although it has been detected in other tissues such as the brain and ovaries. CPO does not contain a prodomain, nor is it strongly regulated by pH, and hence appears to exist as a constitutively active enzyme. The goal of this study was to investigate the intracellular distribution and activity of CPO in order to predict physiological substrates and function. The distribution of CPO, when expressed in MDCK cells, was analyzed by immunofluorescence microscopy. Soon after addition of nutrient-rich media, CPO was found to associate with lipid droplets, causing an increase in lipid droplet quantity. As media became depleted, CPO moved to a broader ER distribution, no longer impacting lipid droplet numbers. Membrane cholesterol levels played a role in the distribution and in vitro enzymatic activity of CPO, with cholesterol enrichment leading to decreased lipid droplet association and enzymatic activity. The ability of CPO to cleave C-terminal amino acids within the early secretory pathway (in vivo) was examined using Gaussia luciferase as a substrate, C-terminally tagged with variants of an ER retention signal. While no effect of cholesterol was observed, these data show that CPO does function as an active enzyme within the ER where it removes C-terminal glutamates and aspartates, as well as a number of polar amino acids.
Collapse
Affiliation(s)
- Linnea C. Burke
- Department of Biology, Andrews University, Berrien Springs, Michigan, United States of America
| | - Hazel O. Ezeribe
- Department of Biology, Andrews University, Berrien Springs, Michigan, United States of America
| | - Anna Y. Kwon
- Department of Biology, Andrews University, Berrien Springs, Michigan, United States of America
| | - Donnel Dockery
- Department of Biology, Andrews University, Berrien Springs, Michigan, United States of America
| | - Peter J. Lyons
- Department of Biology, Andrews University, Berrien Springs, Michigan, United States of America
- * E-mail:
| |
Collapse
|
8
|
Garcia JF, Carbone MA, Mackay TFC, Anholt RRH. Regulation of Drosophila Lifespan by bellwether Promoter Alleles. Sci Rep 2017; 7:4109. [PMID: 28646164 PMCID: PMC5482829 DOI: 10.1038/s41598-017-04530-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/16/2017] [Indexed: 01/24/2023] Open
Abstract
Longevity varies among individuals, but how natural genetic variation contributes to variation in lifespan is poorly understood. Drosophila melanogaster presents an advantageous model system to explore the genetic underpinnings of longevity, since its generation time is brief and both the genetic background and rearing environment can be precisely controlled. The bellwether (blw) gene encodes the α subunit of mitochondrial ATP synthase. Since metabolic rate may influence lifespan, we investigated whether alternative haplotypes in the blw promoter affect lifespan when expressed in a co-isogenic background. We amplified 521 bp upstream promoter sequences containing alternative haplotypes and assessed promoter activity both in vitro and in vivo using a luciferase reporter system. The AG haplotype showed significantly greater expression of luciferase than the GT haplotype. We then overexpressed a blw cDNA construct driven by either the AG or GT haplotype promoter in transgenic flies and showed that the AG haplotype also results in greater blw cDNA expression and a significant decrease in lifespan relative to the GT promoter haplotype, in male flies only. Thus, our results show that naturally occurring regulatory variants of blw affect lifespan in a sex-specific manner.
Collapse
Affiliation(s)
- Júlia Frankenberg Garcia
- Program in Genetics, W. M. Keck Center for Behavioral Biology, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Mary Anna Carbone
- Program in Genetics, W. M. Keck Center for Behavioral Biology, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Trudy F C Mackay
- Program in Genetics, W. M. Keck Center for Behavioral Biology, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Robert R H Anholt
- Program in Genetics, W. M. Keck Center for Behavioral Biology, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA.
| |
Collapse
|
9
|
Chang CW, Abhinav K, Di Cara F, Panagakou I, Vass S, Heck MMS. A role for the metalloprotease invadolysin in insulin signaling and adipogenesis. Biol Chem 2016; 398:373-393. [PMID: 27622830 DOI: 10.1515/hsz-2016-0226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/04/2016] [Indexed: 01/24/2023]
Abstract
Invadolysin is a novel metalloprotease conserved amongst metazoans that is essential for life in Drosophila. We previously showed that invadolysin was essential for the cell cycle and cell migration, linking to metabolism through a role in lipid storage and interaction with mitochondrial proteins. In this study we demonstrate that invadolysin mutants exhibit increased autophagy and decreased glycogen storage - suggestive of a role for invadolysin in insulin signaling in Drosophila. Consistent with this, effectors of insulin signaling were decreased in invadolysin mutants. In addition, we discovered that invadolysin was deposited on newly synthesized lipid droplets in a PKC-dependent manner. We examined two in vitro models of adipogenesis for the expression and localization of invadolysin. The level of invadolysin increased during both murine 3T3-L1 and human Simpson-Golabi-Behmel syndrome (SGBS), adipogenesis. Invadolysin displayed a dynamic localization to lipid droplets over the course of adipogenesis, which may be due to the differential expression of distinct invadolysin variants. Pharmacological inhibition of adipogenesis abrogated the increase in invadolysin. In summary, our results on in vivo and in vitro systems highlight an important role for invadolysin in insulin signaling and adipogenesis.
Collapse
|
10
|
Transcriptional analysis of the dachsous gene uncovers novel isoforms expressed during development in Drosophila. FEBS Lett 2015; 589:3595-603. [PMID: 26497083 DOI: 10.1016/j.febslet.2015.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 09/27/2015] [Accepted: 10/14/2015] [Indexed: 11/23/2022]
Abstract
The Drosophila cadherin-related protein Dachsous (Ds) plays a prominent role in planar cell polarity (PCP) and growth. The regulation of these two processes is based on the interaction between Ds and Fat proteins, generating an intracellular response required for tissue polarization and modulation of Hippo pathway activity. Here we have performed a comprehensive molecular study of the ds gene during larval development that has shown an unexpected complexity in its transcriptional regulation and revealed the expression of hitherto unsuspected transcripts. Also, knockdown of several isoforms provides new evidence on the importance of the cytoplasmic domain in the mechanism of action of Ds during development.
Collapse
|
11
|
Gao H, Li L, Rao S, Shen G, Xi Q, Chen S, Zhang Z, Wang K, Ellis SG, Chen Q, Topol EJ, Wang QK. Genome-wide linkage scan identifies two novel genetic loci for coronary artery disease: in GeneQuest families. PLoS One 2014; 9:e113935. [PMID: 25485937 PMCID: PMC4259362 DOI: 10.1371/journal.pone.0113935] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/30/2014] [Indexed: 11/18/2022] Open
Abstract
Coronary artery disease (CAD) is the leading cause of death worldwide. Recent genome-wide association studies (GWAS) identified >50 common variants associated with CAD or its complication myocardial infarction (MI), but collectively they account for <20% of heritability, generating a phenomena of “missing heritability”. Rare variants with large effects may account for a large portion of missing heritability. Genome-wide linkage studies of large families and follow-up fine mapping and deep sequencing are particularly effective in identifying rare variants with large effects. Here we show results from a genome-wide linkage scan for CAD in multiplex GeneQuest families with early onset CAD and MI. Whole genome genotyping was carried out with 408 markers that span the human genome by every 10 cM and linkage analyses were performed using the affected relative pair analysis implemented in GENEHUNTER. Affected only nonparametric linkage (NPL) analysis identified two novel CAD loci with highly significant evidence of linkage on chromosome 3p25.1 (peak NPL = 5.49) and 3q29 (NPL = 6.84). We also identified four loci with suggestive linkage on 9q22.33, 9q34.11, 17p12, and 21q22.3 (NPL = 3.18–4.07). These results identify novel loci for CAD and provide a framework for fine mapping and deep sequencing to identify new susceptibility genes and novel variants associated with risk of CAD.
Collapse
Affiliation(s)
- Hanxiang Gao
- Heart Center, the First Affiliated Hospital, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
- Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, 9500 Euclid Ave., Cleveland, Ohio, 44195, United States of America
| | - Lin Li
- Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, 9500 Euclid Ave., Cleveland, Ohio, 44195, United States of America
| | - Shaoqi Rao
- Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, 9500 Euclid Ave., Cleveland, Ohio, 44195, United States of America
- Institute of Medical Systems Biology and School of Public Health, Guangdong Medical College, Dongguan, Guangdong, 523808, P. R. China
| | - Gongqing Shen
- Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, 9500 Euclid Ave., Cleveland, Ohio, 44195, United States of America
| | - Quansheng Xi
- Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, 9500 Euclid Ave., Cleveland, Ohio, 44195, United States of America
| | - Shenghan Chen
- Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, 9500 Euclid Ave., Cleveland, Ohio, 44195, United States of America
| | - Zheng Zhang
- Heart Center, the First Affiliated Hospital, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Kai Wang
- Center for Cardiovascular Genetics, Department of Cardiovascular Medicine, Sydell and Arnold Miller Family Heart and Vascular Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, Ohio, 44195, United States of America
| | - Stephen G. Ellis
- Center for Cardiovascular Genetics, Department of Cardiovascular Medicine, Sydell and Arnold Miller Family Heart and Vascular Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, Ohio, 44195, United States of America
| | - Qiuyun Chen
- Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, 9500 Euclid Ave., Cleveland, Ohio, 44195, United States of America
| | - Eric J. Topol
- Scripps Translational Science Institute, Scripps Research Institute, Scripps Clinic, La Jolla, California, 92037, United States of America
- * E-mail: (EJT); (QKW)
| | - Qing K. Wang
- Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, 9500 Euclid Ave., Cleveland, Ohio, 44195, United States of America
- Center for Cardiovascular Genetics, Department of Cardiovascular Medicine, Sydell and Arnold Miller Family Heart and Vascular Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, Ohio, 44195, United States of America
- Center for Sleep Medicine, Neurological Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, Ohio, United States of America
- Department of Genetics and Genome Sciences, Case Western Reserve University, 9500 Euclid Ave., Cleveland, Ohio, 44195, United States of America
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, P.R. China
- * E-mail: (EJT); (QKW)
| |
Collapse
|
12
|
Arrese EL, Saudale FZ, Soulages JL. Lipid Droplets as Signaling Platforms Linking Metabolic and Cellular Functions. Lipid Insights 2014; 7:7-16. [PMID: 25221429 PMCID: PMC4161058 DOI: 10.4137/lpi.s11128] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The main cells of the adipose tissue of animals, adipocytes, are characterized by the presence of large cytosolic lipid droplets (LDs) that store triglyceride (TG) and cholesterol. However, most cells have LDs and the ability to store lipids. LDs have a well-known central role in storage and provision of fatty acids and cholesterol. However, the complexity of the regulation of lipid metabolism on the surface of the LDs is still a matter of intense study. Beyond this role, a number of recent studies have suggested that LDs have major functions in other cellular processes, such as protein storage and degradation, infection, and immunity. Thus, our perception of LDs has been radically transformed from simple globules of fat to highly dynamic organelles of unexpected complexity. Here, we compiled some recent evidence supporting the emerging view that LDs act as platforms connecting a number of relevant metabolic and cellular functions.
Collapse
Affiliation(s)
- Estela L Arrese
- Department of Biochemistry and Molecular Biology; Oklahoma State University; Stillwater, OK, 74078, USA
| | - Fredy Z Saudale
- Department of Biochemistry and Molecular Biology; Oklahoma State University; Stillwater, OK, 74078, USA
| | - Jose L Soulages
- Department of Biochemistry and Molecular Biology; Oklahoma State University; Stillwater, OK, 74078, USA
| |
Collapse
|
13
|
Burr AA, Tsou WL, Ristic G, Todi SV. Using membrane-targeted green fluorescent protein to monitor neurotoxic protein-dependent degeneration of Drosophila eyes. J Neurosci Res 2014; 92:1100-9. [PMID: 24798551 DOI: 10.1002/jnr.23395] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/07/2014] [Accepted: 04/01/2014] [Indexed: 12/27/2022]
Abstract
Age-related neurodegeneration has been studied extensively through the use of model organisms, including the genetically versatile Drosophila melanogaster. Various neurotoxic proteins have been expressed in fly eyes to approximate degeneration occurring in humans, and much has been learned from this heterologous system. Although Drosophila expedites scientific research through rapid generational times and relative inexpensiveness, one factor that can hinder analyses is the examination of milder forms of degeneration caused by some toxic proteins in fly eyes. Whereas several disease proteins cause massive degeneration that is easily observed by examining the external structure of the fly eye, others cause mild degeneration that is difficult to observe externally and requires laborious histological preparation to assess and monitor. Here, we describe a sensitive fluorescence-based method to observe, monitor, and quantify mild Drosophila eye degeneration caused by various proteins, including the polyglutamine disease proteins ataxin-3 (spinocerebellar ataxia type 3) and huntingtin (Huntington's disease), mutant α-synuclein (Parkinson's disease), and Aβ42 (Alzheimer's disease). We show that membrane-targeted green fluorescent protein reports degeneration robustly and quantitatively. This simple yet powerful technique, which is amenable to large-scale screens, can help accelerate studies to understand age-related degeneration and to find factors that suppress it for therapeutic purposes.
Collapse
Affiliation(s)
- Aaron A Burr
- Graduate Program in Cancer Biology, Wayne State University School of Medicine, Detroit, Michigan; Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan
| | | | | | | |
Collapse
|