1
|
Mei J, Jiang XY, Tian HX, Rong DC, Song JN, Wang L, Chen YS, Wong RCB, Guo CX, Wang LS, Wang LY, Wang PY, Yin JY. Anoikis in cell fate, physiopathology, and therapeutic interventions. MedComm (Beijing) 2024; 5:e718. [PMID: 39286778 PMCID: PMC11401975 DOI: 10.1002/mco2.718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/19/2024] Open
Abstract
The extracellular matrix (ECM) governs a wide spectrum of cellular fate processes, with a particular emphasis on anoikis, an integrin-dependent form of cell death. Currently, anoikis is defined as an intrinsic apoptosis. In contrast to traditional apoptosis and necroptosis, integrin correlates ECM signaling with intracellular signaling cascades, describing the full process of anoikis. However, anoikis is frequently overlooked in physiological and pathological processes as well as traditional in vitro research models. In this review, we summarized the role of anoikis in physiological and pathological processes, spanning embryonic development, organ development, tissue repair, inflammatory responses, cardiovascular diseases, tumor metastasis, and so on. Similarly, in the realm of stem cell research focused on the functional evolution of cells, anoikis offers a potential solution to various challenges, including in vitro cell culture models, stem cell therapy, cell transplantation, and engineering applications, which are largely based on the regulation of cell fate by anoikis. More importantly, the regulatory mechanisms of anoikis based on molecular processes and ECM signaling will provide new strategies for therapeutic interventions (drug therapy and cell-based therapy) in disease. In summary, this review provides a systematic elaboration of anoikis, thus shedding light on its future research.
Collapse
Affiliation(s)
- Jie Mei
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
- Institute of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics Central South University Changsha Hunan China
- Engineering Research Center of Applied Technology of Pharmacogenomics Ministry of Education Changsha Hunan China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital, Central South University Changsha Hunan China
- Oujiang Laboratory Key Laboratory of Alzheimer's Disease of Zhejiang Province Institute of Aging Wenzhou Medical University Wenzhou Zhejiang China
| | - Xue-Yao Jiang
- Oujiang Laboratory Key Laboratory of Alzheimer's Disease of Zhejiang Province Institute of Aging Wenzhou Medical University Wenzhou Zhejiang China
| | - Hui-Xiang Tian
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
- Institute of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics Central South University Changsha Hunan China
- Engineering Research Center of Applied Technology of Pharmacogenomics Ministry of Education Changsha Hunan China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital, Central South University Changsha Hunan China
| | - Ding-Chao Rong
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
| | - Jia-Nan Song
- Oujiang Laboratory Key Laboratory of Alzheimer's Disease of Zhejiang Province Institute of Aging Wenzhou Medical University Wenzhou Zhejiang China
- School of Life Sciences Westlake University Hangzhou Zhejiang China
| | - Luozixian Wang
- Oujiang Laboratory Key Laboratory of Alzheimer's Disease of Zhejiang Province Institute of Aging Wenzhou Medical University Wenzhou Zhejiang China
- Centre for Eye Research Australia Royal Victorian Eye and Ear Hospital Melbourne Victoria Australia
- Ophthalmology Department of Surgery The University of Melbourne Melbourne Victoria Australia
| | - Yuan-Shen Chen
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
- Institute of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics Central South University Changsha Hunan China
- Engineering Research Center of Applied Technology of Pharmacogenomics Ministry of Education Changsha Hunan China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital, Central South University Changsha Hunan China
| | - Raymond C B Wong
- Centre for Eye Research Australia Royal Victorian Eye and Ear Hospital Melbourne Victoria Australia
- Ophthalmology Department of Surgery The University of Melbourne Melbourne Victoria Australia
| | - Cheng-Xian Guo
- Center of Clinical Pharmacology the Third Xiangya Hospital Central South University Changsha Hunan China
| | - Lian-Sheng Wang
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
- Institute of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics Central South University Changsha Hunan China
- Engineering Research Center of Applied Technology of Pharmacogenomics Ministry of Education Changsha Hunan China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital, Central South University Changsha Hunan China
| | - Lei-Yun Wang
- Department of Pharmacy Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology Wuhan Hubei Province China
| | - Peng-Yuan Wang
- Oujiang Laboratory Key Laboratory of Alzheimer's Disease of Zhejiang Province Institute of Aging Wenzhou Medical University Wenzhou Zhejiang China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
- Institute of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics Central South University Changsha Hunan China
- Engineering Research Center of Applied Technology of Pharmacogenomics Ministry of Education Changsha Hunan China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital, Central South University Changsha Hunan China
| |
Collapse
|
2
|
Kruschel RD, Barbosa MG, Almeida MJ, Xavier CPR, Vasconcelos MH, McCarthy FO. Discovery of Potent Isoquinolinequinone N-Oxides to Overcome Cancer Multidrug Resistance. J Med Chem 2024; 67:13909-13924. [PMID: 39093920 PMCID: PMC11345829 DOI: 10.1021/acs.jmedchem.4c00705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
Multidrug resistance (MDR) of human tumors has resulted in an immediate need to develop appropriate new drugs. This work outlines the development of 20 potent IQQ N-oxide derivatives in two isomeric families, both exhibiting nanomolar GI50 against human tumor cell lines. Preliminary NCI-60 tumor screening sees the C(6) isomers achieve a mean GI50 > 2 times lower than the corresponding C(7) isomers. MDR evaluation of nine selected compounds reveals that each presents lower GI50 concentrations in two MDR tumor cell lines. Four of the series display nanomolar GI50 values against MDR cells, having selectivity ratios up to 2.7 versus the sensitive (parental) cells. The most potent compound 25 inhibits the activity of drug efflux pumps in MDR cells, causes significant ROS accumulation, and potently inhibits cell proliferation, causing alterations in the cell cycle profile. Our findings are confirmed by 3D spheroid models, providing new candidates for studies against MDR cancers.
Collapse
Affiliation(s)
- Ryan D. Kruschel
- School
of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork, Cork T12 K8AF, Ireland
| | - Mélanie
A. G. Barbosa
- i3S−Instituto
de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto Portugal
- Cancer
Drug Resistance Group, IPATIMUP−Institute of Molecular Pathology
and Immunology, University of Porto, 4200-135 Porto Portugal
- FFUP−Faculty
of Pharmacy of the University of Porto, 4050-313 Porto Portugal
| | - Maria João Almeida
- i3S−Instituto
de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto Portugal
- Cancer
Drug Resistance Group, IPATIMUP−Institute of Molecular Pathology
and Immunology, University of Porto, 4200-135 Porto Portugal
| | - Cristina P. R. Xavier
- i3S−Instituto
de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto Portugal
- Cancer
Drug Resistance Group, IPATIMUP−Institute of Molecular Pathology
and Immunology, University of Porto, 4200-135 Porto Portugal
| | - M. Helena Vasconcelos
- i3S−Instituto
de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto Portugal
- Cancer
Drug Resistance Group, IPATIMUP−Institute of Molecular Pathology
and Immunology, University of Porto, 4200-135 Porto Portugal
- FFUP−Faculty
of Pharmacy of the University of Porto, 4050-313 Porto Portugal
| | - Florence O. McCarthy
- School
of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork, Cork T12 K8AF, Ireland
| |
Collapse
|
3
|
Longstreth JH, Wang K. The role of fibronectin in mediating cell migration. Am J Physiol Cell Physiol 2024; 326:C1212-C1225. [PMID: 38372136 DOI: 10.1152/ajpcell.00633.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 02/20/2024]
Abstract
Fibronectin (FN) is a major extracellular matrix (ECM) protein involved in a wide range of physiological processes, including cell migration. These FN-mediated cell migration events are essential to processes such as wound repair, cancer metastasis, and vertebrate development. This review synthesizes mainly current literature to provide an overview of the mechanoregulatory role of FN-mediated cell migration. Background on FN structure and role in mechanotransduction is provided. Cell migration concepts are introduced, including the general cell migration mechanism and classification of cell migration types. Then, FN-mediated events that directly affect cell migration are explored. Finally, a focus on FN in tissue repair and cancer migration is presented, as these topics represent a large amount of current research.
Collapse
Affiliation(s)
- Jessica H Longstreth
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania, United States
| | - Karin Wang
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania, United States
| |
Collapse
|
4
|
Eskandari E, Negri GL, Tan S, MacAldaz ME, Ding S, Long J, Nielsen K, Spencer SE, Morin GB, Eaves CJ. Dependence of human cell survival and proliferation on the CASP3 prodomain. Cell Death Discov 2024; 10:63. [PMID: 38321033 PMCID: PMC10847432 DOI: 10.1038/s41420-024-01826-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 02/08/2024] Open
Abstract
Mechanisms that regulate cell survival and proliferation are important for both the development and homeostasis of normal tissue, and as well as for the emergence and expansion of malignant cell populations. Caspase-3 (CASP3) has long been recognized for its proteolytic role in orchestrating cell death-initiated pathways and related processes; however, whether CASP3 has other functions in mammalian cells that do not depend on its known catalytic activity have remained unknown. To investigate this possibility, we examined the biological and molecular consequences of reducing CASP3 levels in normal and transformed human cells using lentiviral-mediated short hairpin-based knockdown experiments in combination with approaches designed to test the potential rescue capability of different components of the CASP3 protein. The results showed that a ≥50% reduction in CASP3 levels rapidly and consistently arrested cell cycle progression and survival in all cell types tested. Mass spectrometry-based proteomic analyses and more specific flow cytometric measurements strongly implicated CASP3 as playing an essential role in regulating intracellular protein aggregate clearance. Intriguingly, the rescue experiments utilizing different forms of the CASP3 protein showed its prosurvival function and effective removal of protein aggregates did not require its well-known catalytic capability, and pinpointed the N-terminal prodomain of CASP3 as the exclusive component needed in a diversity of human cell types. These findings identify a new mechanism that regulates human cell survival and proliferation and thus expands the complexity of how these processes can be controlled. The graphical abstract illustrates the critical role of CASP3 for sustained proliferation and survival of human cells through the clearance of protein aggregates.
Collapse
Affiliation(s)
- Ebrahim Eskandari
- Terry Fox Laboratory, British Columbia Cancer Research Institute, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Gian Luca Negri
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Susanna Tan
- Terry Fox Laboratory, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Margarita E MacAldaz
- Terry Fox Laboratory, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Shengsen Ding
- Terry Fox Laboratory, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Justin Long
- Terry Fox Laboratory, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Karina Nielsen
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Sandra E Spencer
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Gregg B Morin
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Connie J Eaves
- Terry Fox Laboratory, British Columbia Cancer Research Institute, Vancouver, BC, Canada.
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
5
|
Han YH, Wang Y, Lee SJ, Jin MH, Sun HN, Kwon T. Regulation of anoikis by extrinsic death receptor pathways. Cell Commun Signal 2023; 21:227. [PMID: 37667281 PMCID: PMC10478316 DOI: 10.1186/s12964-023-01247-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/26/2023] [Indexed: 09/06/2023] Open
Abstract
Metastatic cancer cells can develop anoikis resistance in the absence of substrate attachment and survive to fight tumors. Anoikis is mediated by endogenous mitochondria-dependent and exogenous death receptor pathways, and studies have shown that caspase-8-dependent external pathways appear to be more important than the activity of the intrinsic pathways. This paper reviews the regulation of anoikis by external pathways mediated by death receptors. Different death receptors bind to different ligands to activate downstream caspases. The possible mechanisms of Fas-associated death domain (FADD) recruitment by Fas and TNF receptor 1 associated-death domain (TRADD) recruitment by tumor necrosis factor receptor 1 (TNFR1), and DR4- and DR5-associated FADD to induce downstream caspase activation and regulate anoikis were reviewed. This review highlights the possible mechanism of the death receptor pathway mediation of anoikis and provides new insights and research directions for studying tumor metastasis mechanisms. Video Abstract.
Collapse
Affiliation(s)
- Ying-Hao Han
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Yuan Wang
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Seung-Jae Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, 56212, Republic of Korea
- Department of Applied Biological Engineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Mei-Hua Jin
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Hu-Nan Sun
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, 56216, Republic of Korea.
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
6
|
The Distinct Roles of LKB1 and AMPK in p53-Dependent Apoptosis Induced by Cisplatin. Int J Mol Sci 2022; 23:ijms231710064. [PMID: 36077459 PMCID: PMC9456506 DOI: 10.3390/ijms231710064] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/27/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Liver kinase B1 (LKB1) is a serine/threonine protein kinase that acts as a key tumor suppressor protein by activating its downstream kinases, such as AMP-activated protein kinase (AMPK). However, the regulatory actions of LKB1 and AMPK on DNA damage response (DDR) remain to be explored. In this study, we investigated the function of LKB1 in DDR induced by cisplatin, a representative DNA-damaging agent, and found that LKB1 stabilizes and activates p53 through the c-Jun N-terminal kinase (JNK) pathway, which promotes cisplatin-induced apoptosis in human fibrosarcoma cell line HT1080. On the other hand, we found that AMPKα1 and α2 double knockout (DKO) cells showed enhanced stabilization of p53 and increased susceptibility to apoptosis induced by cisplatin, suggesting that AMPK negatively regulates cisplatin-induced apoptosis. Moreover, the additional stabilization of p53 and subsequent apoptosis in AMPK DKO cells were clearly canceled by the treatment with the antioxidants, raising the possibility that AMPK suppresses the p53 activation mediated by oxidative stress. Thus, our findings unexpectedly demonstrate the reciprocal regulation of p53 by LKB1 and AMPK in DDR, which provides insights into the molecular mechanisms of DDR.
Collapse
|
7
|
Firouzi F, Echeagaray O, Esquer C, Gude NA, Sussman MA. 'Youthful' phenotype of c-Kit + cardiac fibroblasts. Cell Mol Life Sci 2022; 79:424. [PMID: 35841449 PMCID: PMC10544823 DOI: 10.1007/s00018-022-04449-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/04/2022] [Accepted: 06/24/2022] [Indexed: 01/10/2023]
Abstract
Cardiac fibroblast (CF) population heterogeneity and plasticity present a challenge for categorization of biological and functional properties. Distinct molecular markers and associated signaling pathways provide valuable insight for CF biology and interventional strategies to influence injury response and aging-associated remodeling. Receptor tyrosine kinase c-Kit mediates cell survival, proliferation, migration, and is activated by pathological injury. However, the biological significance of c-Kit within CF population has not been addressed. An inducible reporter mouse detects c-Kit promoter activation with Enhanced Green Fluorescent Protein (EGFP) expression in cardiac cells. Coincidence of EGFP and c-Kit with the DDR2 fibroblast marker was confirmed using flow cytometry and immunohistochemistry. Subsequently, CFs expressing DDR2 with or without c-Kit was isolated and characterized. A subset of DDR2+ CFs also express c-Kit with coincidence in ~ 8% of total cardiac interstitial cells (CICs). Aging is associated with decreased number of c-Kit expressing DDR2+ CFs, whereas pathological injury induces c-Kit and DDR2 as well as the frequency of coincident expression in CICs. scRNA-Seq profiling reveals the transcriptome of c-Kit expressing CFs as cells with transitional phenotype. Cultured cardiac DDR2+ fibroblasts that are c-Kit+ exhibit morphological and functional characteristics consistent with youthful phenotypes compared to c-Kit- cells. Mechanistically, c-Kit expression correlates with signaling implicated in proliferation and cell migration, including phospho-ERK and pro-caspase 3. The phenotype of c-kit+ on DDR2+ CFs correlates with multiple characteristics of 'youthful' cells. To our knowledge, this represents the first evaluation of c-Kit biology within DDR2+ CF population and provides a fundamental basis for future studies to influence myocardial biology, response to pathological injury and physiological aging.
Collapse
Affiliation(s)
- Fareheh Firouzi
- SDSU Integrated Regenerative Research Institute and Biology Department, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Oscar Echeagaray
- SDSU Integrated Regenerative Research Institute and Biology Department, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Carolina Esquer
- SDSU Integrated Regenerative Research Institute and Biology Department, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Natalie A Gude
- SDSU Integrated Regenerative Research Institute and Biology Department, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Mark A Sussman
- SDSU Integrated Regenerative Research Institute and Biology Department, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA.
| |
Collapse
|
8
|
Zhang L, Gu J, Wang S, He F, Gong K. Identification of key differential genes in intimal hyperplasia induced by left carotid artery ligation. PeerJ 2022; 10:e13436. [PMID: 35586138 PMCID: PMC9109685 DOI: 10.7717/peerj.13436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 04/22/2022] [Indexed: 01/14/2023] Open
Abstract
Background Intimal hyperplasia is a common pathological process of restenosis following angioplasty, atherosclerosis, pulmonary hypertension, vein graft stenosis, and other proliferative diseases. This study aims to screen for potential novel gene targets and mechanisms related to vascular intimal hyperplasia through an integrated microarray analysis of the Gene Expression Omnibus Database (GEO) database. Material and Methods The gene expression profile of the GSE56143 dataset was downloaded from the Gene Expression Omnibus database. Functional enrichment analysis, protein-protein interaction (PPI) network analysis, and the transcription factor (TF)-target gene regulatory network were used to reveal the biological functions of differential genes (DEGs). Furthermore, the expression levels of the top 10 key DEGs were verified at the mRNA and protein level in the carotid artery 7 days after ligation. Results A total of 373 DEGs (199 upregulated DEGs and 174 downregulated DEGs) were screened. These DEGs were significantly enriched in biological processes, including immune system process, cell adhesion, and several pathways, which were mainly associated with cell adhesion molecules and the regulation of the actin cytoskeleton. The top 10 key DEGs (Ptprc, Fn1, Tyrobp, Emr1, Itgb2, Itgax, CD44, Ctss, Ly86, and Aif1) acted as key genes in the PPI network. The verification of these key DEGs at the mRNA and protein levels was consistent with the results of the above-mentioned bioinformatics analysis. Conclusion The present study identified key genes and pathways involved in intimal hyperplasia induced by carotid artery ligation. These results improved our understanding of the mechanisms underlying the development of intimal hyperplasia and provided candidate targets.
Collapse
Affiliation(s)
- Lina Zhang
- Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jianjun Gu
- Department of Cardiology, Northern Jiangsu People’s Hospital, Yangzhou University, Yangzhou, Jiangsu, China
| | - Sichuan Wang
- Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Fuming He
- Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Kaizheng Gong
- Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
9
|
Eskandari E, Eaves CJ. Paradoxical roles of caspase-3 in regulating cell survival, proliferation, and tumorigenesis. J Cell Biol 2022; 221:213213. [PMID: 35551578 PMCID: PMC9106709 DOI: 10.1083/jcb.202201159] [Citation(s) in RCA: 121] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 11/22/2022] Open
Abstract
Caspase-3 is a widely expressed member of a conserved family of proteins, generally recognized for their activated proteolytic roles in the execution of apoptosis in cells responding to specific extrinsic or intrinsic inducers of this mode of cell death. However, accumulating evidence indicates that caspase-3 also plays key roles in regulating the growth and homeostatic maintenance of both normal and malignant cells and tissues in multicellular organisms. Given that yeast possess an ancestral caspase-like gene suggests that the caspase-3 protein may have acquired different functions later during evolution to better meet the needs of more complex multicellular organisms, but without necessarily losing all of the functions of its ancestral yeast precursor. This review provides an update on what has been learned about these interesting dichotomous roles of caspase-3, their evolution, and their potential relevance to malignant as well as normal cell biology.
Collapse
Affiliation(s)
- Ebrahim Eskandari
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Connie J. Eaves
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada,School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada,Correspondence to Connie J. Eaves:
| |
Collapse
|
10
|
Xia S, Wu J, Zhou W, Zhang M, Zhao K, Tian D, Liu J, Liao J. HRC promotes anoikis resistance and metastasis by suppressing endoplasmic reticulum stress in hepatocellular carcinoma. Int J Med Sci 2021; 18:3112-3124. [PMID: 34400882 PMCID: PMC8364458 DOI: 10.7150/ijms.60610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/24/2021] [Indexed: 01/03/2023] Open
Abstract
Histidine-rich calcium binding protein (HRC) is markedly overexpressed in hepatocellular carcinoma (HCC) and is significantly correlated with metastasis. Anoikis resistance and endoplasmic reticulum (ER) stress may have a critical effect on survival before metastasis. However, the potential functions of HRC in anoikis resistance in HCC remain unknown. Here, we uncovered the clinical value of HRC and its functional significance on anoikis in HCC. The positive expression of HRC was observably correlated with tumor size, tumor encapsulation, and tumor-node-metastasis (TNM) stage. The expression of HRC increased in HCC cells cultured in suspension. HRC enhanced the anoikis resistance of HCC, and promoted the HCC metastasis in vivo. Mechanistically, the anoikis resistance was probably dependent on endoplasmic reticulum stress. Modulating HRC level changed the ERS to affect anoikis resistance by acting protein kinase RNA-like ER kinase (PERK)-eIF2a-ATF4-CHOP signaling axis. In conclusion, we define HRC as a novel candidate oncogene involved in anoikis resistance and HCC metastasis, and provide a new potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Suhong Xia
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Jingwen Wu
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Wangdong Zhou
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Mingyu Zhang
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Kai Zhao
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Jingmei Liu
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Jiazhi Liao
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| |
Collapse
|
11
|
Pro-caspase-3 is constitutively expressed in luteinized granulosa cells from women undergoing controlled ovarian stimulation for in vitro fertilization. Acta Histochem 2021; 123:151670. [PMID: 33360490 DOI: 10.1016/j.acthis.2020.151670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 11/22/2022]
Abstract
Apoptosis regulation in luteinized granulosa cells (LGC) during assisted reproduction procedures is still controversial. Caspase-3 is a major apoptosis mediator encoded by CASP3 and formed through cleavage of its precursor pro-caspase-3. The aim of this study was to investigate the expression patterns of pro-caspase-3 (mRNA and protein) and cleaved caspase-3 in human LGC. Thirty-five women undergoing controlled ovarian stimulation for in vitro fertilization were prospectively enrolled in the study. LGC were isolated from follicular fluid during oocyte pickup and evaluated by immunocytochemistry for pro-caspase-3 and cleaved caspase-3, and by real-time PCR for CASP3 mRNA expression. We found a positive staining of pro-caspase-3 in 77 % of the LGC (95 % confidence interval [CI] 60%-84%), whereas cleaved caspase-3 was found in only 4% of the cells (95 % CI 3%-6%). The abundance of cells expressing pro-caspase-3 was independent from CASP3 mRNA levels (r = 0.24, p = 0.255) and did not correlate with the amount of cleaved caspase-3 (r = -0.24, p = 0.186). Multivariable logistic regression showed that pro-caspase-3 positivity was not influenced by clinical characteristics such as age, cause or length of infertility, antral follicle count or hormonal drugs used to induce ovulation. These findings suggest that pro-caspase-3 is constitutively expressed in LGC, allowing quick cleavage into active caspase-3 and apoptosis triggering whenever needed in the course of gonadotropin-induced follicular development.
Collapse
|
12
|
Tsuchida M, Yokosawa T, Noguchi T, Shimada T, Yamada M, Sekiguchi Y, Hirata Y, Matsuzawa A. Pro-apoptotic functions of TRAF2 in p53-mediated apoptosis induced by cisplatin. J Toxicol Sci 2020; 45:219-226. [PMID: 32238696 DOI: 10.2131/jts.45.219] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Tumor necrosis factor receptor-associated factor 2 (TRAF2) is an essential component of tumor necrosis factor-α (TNF-α) signaling that regulates nuclear factor-κB (NF-κB) and c-Jun N-terminal kinase (JNK) pathways, and compelling evidence has demonstrated that TRAF2 suppresses TNF-α-induced cytotoxicity. On the other hand, it has been reported that oxidative stress-induced cytotoxicity is potentiated by TRAF2, indicating that TRAF2 both positively and negatively regulates stress-induced cytotoxicity in a context-specific manner. However, the causal role of TRAF2 in DNA damage response (DDR) remains to be explored. In this study, we assessed the function of TRAF2 in DDR induced by cisplatin, a representative DNA-damaging agent, and found that TRAF2 exerts pro-apoptotic activity through p53-dependent mechanisms at least in human fibrosarcoma cell line HT1080. TRAF2 deficient cells exhibit significant resistance to cell death induced by cisplatin, accompanied by the reduction of both p53 protein level and caspase-3 activation. Moreover, cisplatin-induced JNK activation was attenuated in TRAF2-deficient cells, and pharmacological inhibition of JNK signaling suppressed p53 stabilization. These results suggest that TRAF2 promotes p53-dependent apoptosis by activating the JNK signaling cascade in HT1080 cells. Thus, our data demonstrate a novel function of TRAF2 in cisplatin-induced DDR as a pro-apoptotic protein.
Collapse
Affiliation(s)
- Mei Tsuchida
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Takumi Yokosawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Takuya Noguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Tatsuya Shimada
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Mayuka Yamada
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Yuto Sekiguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Yusuke Hirata
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Atsushi Matsuzawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| |
Collapse
|
13
|
Abstract
Alternative splicing of precursor mRNA is a key mediator of gene expression regulation leading to greater diversity of the proteome in complex organisms. Systematic sequencing of the human genome and transcriptome has led to our understanding of how alternative splicing of critical genes leads to multiple pathological conditions such as cancer. For many years, proteases were known only for their roles as proteolytic enzymes, acting to regulate/process proteins associated with diverse cellular functions. However, the differential expression and altered function of various protease isoforms, such as (i) anti-apoptotic activities, (ii) mediating intercellular adhesion, and (iii) modifying the extracellular matrix, are evidence of their specific contribution towards shaping the tumor microenvironment. Revealing the alternative splicing of protease genes and characterization of their protein products/isoforms with distinct and opposing functions creates a platform to understand how protease isoforms contribute to specific cancer hallmarks. Here, in this review, we address cancer-specific isoforms produced by the alternative splicing of proteases and their distinctive roles in the tumor microenvironment.
Collapse
Affiliation(s)
- Chamikara Liyanage
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Achala Fernando
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Translational Research Institute, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
14
|
Fibronectin in Cancer: Friend or Foe. Cells 2019; 9:cells9010027. [PMID: 31861892 PMCID: PMC7016990 DOI: 10.3390/cells9010027] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 01/10/2023] Open
Abstract
The role of fibronectin (FN) in tumorigenesis and malignant progression has been highly controversial. Cancerous FN plays a tumor-suppressive role, whereas it is pro-metastatic and associated with poor prognosis. Interestingly, FN matrix deposited in the tumor microenvironments (TMEs) promotes tumor progression but is paradoxically related to a better prognosis. Here, we justify how FN impacts tumor transformation and subsequently metastatic progression. Next, we try to reconcile and rationalize the seemingly conflicting roles of FN in cancer and TMEs. Finally, we propose future perspectives for potential FN-based therapeutic strategies.
Collapse
|
15
|
Yokosawa T, Yamada M, Noguchi T, Suzuki S, Hirata Y, Matsuzawa A. Pro-caspase-3 protects cells from polymyxin B-induced cytotoxicity by preventing ROS accumulation. J Antibiot (Tokyo) 2019; 72:848-852. [PMID: 31371783 DOI: 10.1038/s41429-019-0216-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/05/2019] [Accepted: 07/07/2019] [Indexed: 12/21/2022]
Abstract
Polymyxin B (PMB), a last-line antibiotic used against antibiotic-resistant superbugs, causes undesirable cytotoxic side effects. However, its mechanisms remain unknown. In this study, we unexpectedly found that caspase-3, a main executor of apoptosis, plays a protective role in PMB-induced cytotoxicity. Caspase-3 knockout (KO) cells exhibited higher susceptibility to PMB-induced cytotoxicity compared with wild-type (WT) cells, accompanied by increased levels of reactive oxygen species (ROS). Interestingly, co-treatment with the antioxidant N-acetylcysteine (NAC) rescued cell viability to a similar extent as WT cells. Furthermore, PMB failed to facilitate the processing of inactive caspase-3 (pro-caspase-3) into active forms, suggesting that pro-caspase-3 nonenzymatically suppresses PMB-driven ROS accumulation and its cytotoxicity. Thus, our findings that demonstrate the potential ability of PMB to stimulate ROS generation, but which is normally masked by pro-caspase-3-dependent mechanisms, may provide novel insights into the mechanisms of PMB-induced side effects.
Collapse
Affiliation(s)
- Takumi Yokosawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Mayuka Yamada
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Takuya Noguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| | - Saki Suzuki
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yusuke Hirata
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Atsushi Matsuzawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
16
|
Suresh K, Carino K, Johnston L, Servinsky L, Machamer CE, Kolb TM, Lam H, Dudek SM, An SS, Rane MJ, Shimoda LA, Damarla M. A nonapoptotic endothelial barrier-protective role for caspase-3. Am J Physiol Lung Cell Mol Physiol 2019; 316:L1118-L1126. [PMID: 30908935 PMCID: PMC6620669 DOI: 10.1152/ajplung.00487.2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/26/2019] [Accepted: 03/17/2019] [Indexed: 12/25/2022] Open
Abstract
Noncanonical roles for caspase-3 are emerging in the fields of cancer and developmental biology. However, little is known of nonapoptotic functions of caspase-3 in most cell types. We have recently demonstrated a disassociation between caspase-3 activation and execution of apoptosis with accompanying cytoplasmic caspase-3 sequestration and preserved endothelial barrier function. Therefore, we tested the hypothesis that nonapoptotic caspase-3 activation promotes endothelial barrier integrity. Human lung microvascular endothelial cells were exposed to thrombin, a nonapoptotic stimulus, and endothelial barrier function was assessed using electric cell-substrate impedance sensing. Actin cytoskeletal rearrangement and paracellular gap formation were assessed using phalloidin staining. Cell stiffness was evaluated using magnetic twisting cytometry. In addition, cell lysates were harvested for protein analyses. Caspase-3 was inhibited pharmacologically with pan-caspase and a caspase-3-specific inhibitor. Molecular inhibition of caspase-3 was achieved using RNA interference. Cells exposed to thrombin exhibited a cytoplasmic activation of caspase-3 with transient and nonapoptotic decrease in endothelial barrier function as measured by a drop in electrical resistance followed by a rapid recovery. Inhibition of caspases led to a more pronounced and rapid drop in thrombin-induced endothelial barrier function, accompanied by increased endothelial cell stiffness and paracellular gaps. Caspase-3-specific inhibition and caspase-3 knockdown both resulted in more pronounced thrombin-induced endothelial barrier disruption. Taken together, our results suggest cytoplasmic caspase-3 has nonapoptotic functions in human endothelium and can promote endothelial barrier integrity.
Collapse
Affiliation(s)
- Karthik Suresh
- Department of Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Kathleen Carino
- Department of Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Laura Johnston
- Department of Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Laura Servinsky
- Department of Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Carolyn E Machamer
- Department of Cell Biology, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Todd M Kolb
- Department of Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Hong Lam
- Department of Environmental Health and Engineering, Johns Hopkins University School of Public Health , Baltimore, Maryland
| | - Steven M Dudek
- Department of Medicine, College of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | - Steven S An
- Department of Environmental Health and Engineering, Johns Hopkins University School of Public Health , Baltimore, Maryland
| | - Madhavi J Rane
- Department of Medicine, School of Medicine, University of Louisville , Louisville, Kentucky
| | - Larissa A Shimoda
- Department of Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Mahendra Damarla
- Department of Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland
| |
Collapse
|
17
|
Berguetti T, Quintaes LSP, Hancio T, Robaina MC, Cruz ALS, Maia RC, de Souza PS. TNF-α Modulates P-Glycoprotein Expression and Contributes to Cellular Proliferation via Extracellular Vesicles. Cells 2019; 8:cells8050500. [PMID: 31137684 PMCID: PMC6562596 DOI: 10.3390/cells8050500] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 12/15/2022] Open
Abstract
P-glycoprotein (Pgp/ABCB1) overexpression is associated with multidrug resistance (MDR) phenotype and, consequently, failure in cancer chemotherapy. However, molecules involved in cell death deregulation may also support MDR. Tumor necrosis factor-alpha (TNF-α) is an important cytokine that may trigger either death or tumor growth. Here, we examined the role of cancer cells in self-maintenance and promotion of cellular malignancy through the transport of Pgp and TNF-α molecules by extracellular vesicles (membrane microparticles (MP)). By using a classical MDR model in vitro, we identified a positive correlation between endogenous TNF-α and Pgp, which possibly favored a non-cytotoxic effect of recombinant TNF-α (rTNF-α). We also found a positive feedback involving rTNF-α incubation and TNF-α regulation. On the other hand, rTNF-α induced a reduction in Pgp expression levels and contributed to a reduced Pgp efflux function. Our results also showed that parental and MDR cells spontaneously released MP containing endogenous TNF-α and Pgp. However, these MP were unable to transfer their content to non-cancer recipient cells. Nevertheless, MP released from parental and MDR cells elevated the proliferation index of non-tumor cells. Collectively, our results suggest that Pgp and endogenous TNF-α positively regulate cancer cell malignancy and contribute to changes in normal cell behavior through MP.
Collapse
Affiliation(s)
- Tandressa Berguetti
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Rio de Janeiro 20231-050, Brazil.
- Programa de Pós-Graduação Strictu Sensu em Oncologia, INCA, Rio de Janeiro 20231-050, Brazil.
| | - Lucas S P Quintaes
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Rio de Janeiro 20231-050, Brazil.
| | - Thais Hancio
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Rio de Janeiro 20231-050, Brazil.
- Programa de Pós-Graduação Strictu Sensu em Oncologia, INCA, Rio de Janeiro 20231-050, Brazil.
| | - Marcela C Robaina
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Rio de Janeiro 20231-050, Brazil.
| | - André L S Cruz
- Laboratório de Fisiopatologia, Polo Novo Cavaleiros, Campus UFRJ-Macaé, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil.
| | - Raquel C Maia
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Rio de Janeiro 20231-050, Brazil.
| | - Paloma Silva de Souza
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Rio de Janeiro 20231-050, Brazil.
| |
Collapse
|
18
|
The prodomain of caspase-3 regulates its own removal and caspase activation. Cell Death Discov 2019; 5:56. [PMID: 30701088 PMCID: PMC6349851 DOI: 10.1038/s41420-019-0142-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/08/2018] [Accepted: 10/16/2018] [Indexed: 12/28/2022] Open
Abstract
Caspase-3 is a cysteine–aspartic acid protease that cleaves cellular targets and executes cell death. Our current understanding is caspase-3 is activated by the cleavage of the interdomain linker and then subsequent cleavage of the N-terminal prodomain. However, previous reports have suggested that removal of the prodomain can result in the constitutive activation of caspase-3, although other studies have not observed this. To address this question in a more physiological setting, we developed an inducible doxycycline system to express a mutant form of caspase-3 that lacks the prodomain (∆28). We found that the removal of the prodomain renders the cells more susceptible to death signals, but the caspase is not constitutively active. To elucidate the regions of the prodomain that regulate activity, we created deletion constructs that remove 10 and 19 N-terminal amino acids. Surprisingly, removal of the first 10 amino acids renders caspase-3 inactive. Following serum withdrawal, the interdomain linker is cleaved, however, the remaining prodomain is not removed. Therefore, there is a specific amino acid or stretch of amino acids within the first 10 that are important for prodomain removal and caspase-3 function. We created different point mutations within the prodomain and found amino acid D9 is vital for caspase-3 function. We hypothesize that an initial cleavage event at D9 is required to allow cleavage at D28 that causes the complete removal of the prodomain allowing for full caspase activation. Together these findings demonstrate a previously unknown role of the prodomain in caspase activation.
Collapse
|
19
|
Conage-Pough JE, Boise LH. Phosphorylation alters Bim-mediated Mcl-1 stabilization and priming. FEBS J 2018; 285:2626-2640. [PMID: 29775995 DOI: 10.1111/febs.14505] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/15/2018] [Accepted: 05/14/2018] [Indexed: 12/18/2022]
Abstract
Mcl-1 is a highly labile protein, subject to extensive post-translational regulation. This distinguishes Mcl-1 from other antiapoptotic proteins and necessitates further study to better understand how interactions with proapoptotic Bcl-2 proteins affect its regulation. One such protein, Bim, is known to stabilize Mcl-1, and Bim phosphorylation has been associated with increased Mcl-1 binding. Consequently, we investigated the potential impact of Bim phosphorylation on Mcl-1 stability. We found that Bim stabilizes and primes Mcl-1 in RPCI-WM1 cells and is constitutively phosphorylated. Additionally, introduction of several phospho-mimetic and unphosphosphorylateable Bim mutations resulted in altered Mcl-1 stability and distinct Bim binding to antiapoptotic proteins. These findings suggest Bim phosphorylation not only regulates Mcl-1 stability but also is a potential mechanism for enforcing Mcl-1 dependence.
Collapse
Affiliation(s)
- Jason E Conage-Pough
- Cancer Biology Graduate Program, Winship Cancer Institute, Emory University, Atlanta, GA, USA.,Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Lawrence H Boise
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| |
Collapse
|
20
|
Xu DC, Arthurton L, Baena-Lopez LA. Learning on the Fly: The Interplay between Caspases and Cancer. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5473180. [PMID: 29854765 PMCID: PMC5949197 DOI: 10.1155/2018/5473180] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/14/2018] [Indexed: 02/07/2023]
Abstract
The ease of genetic manipulation, as well as the evolutionary conservation of gene function, has placed Drosophila melanogaster as one of the leading model organisms used to understand the implication of many proteins with disease development, including caspases and their relation to cancer. The family of proteases referred to as caspases have been studied over the years as the major regulators of apoptosis: the most common cellular mechanism involved in eliminating unwanted or defective cells, such as cancerous cells. Indeed, the evasion of the apoptotic programme resulting from caspase downregulation is considered one of the hallmarks of cancer. Recent investigations have also shown an instrumental role for caspases in non-lethal biological processes, such as cell proliferation, cell differentiation, intercellular communication, and cell migration. Importantly, malfunction of these essential biological tasks can deeply impact the initiation and progression of cancer. Here, we provide an extensive review of the literature surrounding caspase biology and its interplay with many aspects of cancer, emphasising some of the key findings obtained from Drosophila studies. We also briefly describe the therapeutic potential of caspase modulation in relation to cancer, highlighting shortcomings and hopeful promises.
Collapse
Affiliation(s)
- Derek Cui Xu
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX13RE, UK
- Cell Biology Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Lewis Arthurton
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX13RE, UK
| | | |
Collapse
|
21
|
Khoshnan A, Sabbaugh A, Calamini B, Marinero SA, Dunn DE, Yoo JH, Ko J, Lo DC, Patterson PH. IKKβ and mutant huntingtin interactions regulate the expression of IL-34: implications for microglial-mediated neurodegeneration in HD. Hum Mol Genet 2018; 26:4267-4277. [PMID: 28973132 DOI: 10.1093/hmg/ddx315] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/07/2017] [Indexed: 01/04/2023] Open
Abstract
Neuronal interleukin-34 (IL-34) promotes the expansion of microglia in the central nervous system-microglial activation and expansion are in turn implicated in the pathogenesis of Huntington's disease (HD). We thus examined whether the accumulation of an amyloidogenic exon-1 fragment of mutant huntingtin (mHTTx1) modulates the expression of IL-34 in dopaminergic neurons derived from a human embryonic stem cell line. We found that mHTTx1 aggregates induce IL-34 production selectively in post-mitotic neurons. Exposure of neurons to DNA damaging agents or the excitotoxin NMDA elicited similar results suggesting that IL-34 induction may be a general response to neuronal stress including the accumulation of misfolded mHTTx1. We further determined that knockdown or blocking the activity of IκB kinase beta (IKKβ) prevented the aggregation of mHTTx1 and subsequent IL-34 production. While elevated IL-34 itself had no effect on the aggregation or the toxicity of mHTTx1 in neuronal culture, IL-34 expression in a rodent brain slice model with intact neuron-microglial networks exacerbated mHTTx1-induced degeneration of striatal medium-sized spiny neurons. Conversely, an inhibitor of the IL-34 receptor reduced microglial numbers and ameliorated mHTTx1-mediated neurodegeneration. Together, these findings uncover a novel function for IKKβ/mHTTx1 interactions in regulating IL-34 production, and implicate a role for IL-34 in non-cell-autonomous, microglial-dependent neurodegeneration in HD.
Collapse
Affiliation(s)
- Ali Khoshnan
- Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Adam Sabbaugh
- Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Barbara Calamini
- Department of Neurobiology and Center for Drug Discovery, Duke University Medical Center, Durham, NC 27710, USA
| | - Steven A Marinero
- Department of Neurobiology and Center for Drug Discovery, Duke University Medical Center, Durham, NC 27710, USA
| | - Denise E Dunn
- Department of Neurobiology and Center for Drug Discovery, Duke University Medical Center, Durham, NC 27710, USA
| | - Jung Hyun Yoo
- Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jan Ko
- Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Donald C Lo
- Department of Neurobiology and Center for Drug Discovery, Duke University Medical Center, Durham, NC 27710, USA
| | - Paul H Patterson
- Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
22
|
El-Hachem N, Habel N, Naiken T, Bzioueche H, Cheli Y, Beranger GE, Jaune E, Rouaud F, Nottet N, Reinier F, Gaudel C, Colosetti P, Bertolotto C, Ballotti R. Uncovering and deciphering the pro-invasive role of HACE1 in melanoma cells. Cell Death Differ 2018. [PMID: 29515254 DOI: 10.1038/s41418-018-0090-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
HACE1 is an E3 ubiquitin ligase described as a tumour suppressor because HACE1-knockout mice develop multi-organ, late-onset cancers and because HACE1 expression is lost in several neoplasms, such as Wilms' tumours and colorectal cancer. However, a search of public databases indicated that HACE1 expression is maintained in melanomas. We demonstrated that HACE1 promoted melanoma cell migration and adhesion in vitro and was required for mouse lung colonisation by melanoma cells in vivo. Transcriptomic analysis of HACE1-depleted melanoma cells revealed an inhibition of ITGAV and ITGB1 as well changes in other genes involved in cell migration. We revealed that HACE1 promoted the K27 ubiquitination of fibronectin and regulated its secretion. Secreted fibronectin regulated ITGAV and ITGB1 expression, as well as melanoma cell adhesion and migration. Our findings disclose a novel molecular cascade involved in the regulation of fibronectin secretion, integrin expression and melanoma cell adhesion. By controlling this cascade, HACE1 displays pro-tumoural properties and is an important regulator of melanoma cell invasive properties.
Collapse
Affiliation(s)
- Najla El-Hachem
- Biology and pathologies of melanocytes, Team 1, Inserm U1065, Equipe labellisée ARC 2015, C3M, Université Nice Côte d'Azur, Nice, France
| | - Nadia Habel
- Biology and pathologies of melanocytes, Team 1, Inserm U1065, Equipe labellisée ARC 2015, C3M, Université Nice Côte d'Azur, Nice, France
| | - Tanesha Naiken
- Biology and pathologies of melanocytes, Team 1, Inserm U1065, Equipe labellisée ARC 2015, C3M, Université Nice Côte d'Azur, Nice, France
| | - Hanene Bzioueche
- Biology and pathologies of melanocytes, Team 1, Inserm U1065, Equipe labellisée ARC 2015, C3M, Université Nice Côte d'Azur, Nice, France
| | - Yann Cheli
- Biology and pathologies of melanocytes, Team 1, Inserm U1065, Equipe labellisée ARC 2015, C3M, Université Nice Côte d'Azur, Nice, France
| | - Guillaume E Beranger
- Biology and pathologies of melanocytes, Team 1, Inserm U1065, Equipe labellisée ARC 2015, C3M, Université Nice Côte d'Azur, Nice, France
| | - Emilie Jaune
- Biology and pathologies of melanocytes, Team 1, Inserm U1065, Equipe labellisée ARC 2015, C3M, Université Nice Côte d'Azur, Nice, France
| | - Florian Rouaud
- Biology and pathologies of melanocytes, Team 1, Inserm U1065, Equipe labellisée ARC 2015, C3M, Université Nice Côte d'Azur, Nice, France
| | - Nicolas Nottet
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Nice Côte d'Azur, Sophia Antipolis, France
| | - Frédéric Reinier
- Biology and pathologies of melanocytes, Team 1, Inserm U1065, Equipe labellisée ARC 2015, C3M, Université Nice Côte d'Azur, Nice, France
| | - Céline Gaudel
- Biology and pathologies of melanocytes, Team 1, Inserm U1065, Equipe labellisée ARC 2015, C3M, Université Nice Côte d'Azur, Nice, France
| | - Pascale Colosetti
- Inserm U1065, Team 2, C3M, Université Nice Côte d'Azur, Nice, France
| | - Corine Bertolotto
- Biology and pathologies of melanocytes, Team 1, Inserm U1065, Equipe labellisée ARC 2015, C3M, Université Nice Côte d'Azur, Nice, France
| | - Robert Ballotti
- Biology and pathologies of melanocytes, Team 1, Inserm U1065, Equipe labellisée ARC 2015, C3M, Université Nice Côte d'Azur, Nice, France.
| |
Collapse
|
23
|
Caspase-8 function, and phosphorylation, in cell migration. Semin Cell Dev Biol 2018; 82:105-117. [PMID: 29410361 DOI: 10.1016/j.semcdb.2018.01.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/17/2018] [Accepted: 01/21/2018] [Indexed: 11/22/2022]
Abstract
Caspase-8 is involved in a number of cellular functions, with the most well established being the control of cell death. Yet caspase-8 is unique among the caspases in that it acts as an environmental sensor, transducing a range of signals to cells, modulating responses that extend far beyond simple survival. Ranging from the control of apoptosis and necroptosis and gene regulation to cell adhesion and migration, caspase-8 uses proteolytic and non-proteolytic functions to alter cell behavior. Novel interacting partners provide mechanisms for caspase-8 to position itself at signaling nodes that affect a variety of signaling pathways. Here, we examine the catalytic and noncatalytic modes of action by which caspase-8 influences cell adhesion and migration. The mechanisms vary from post-cleavage remodeling of the cytoskeleton to signaling elements that control focal adhesion turnover. This is facilitated by caspase-8 interaction with a host of cell proteins ranging from the proteases caspase-3 and calpain-2 to adaptor proteins such as p85 and Crk, to the Src family of tyrosine kinases.
Collapse
|
24
|
Kim H, Park J, Kim Y, Sohn A, Yeo I, Jong Yu S, Yoon JH, Park T, Kim Y. Serum fibronectin distinguishes the early stages of hepatocellular carcinoma. Sci Rep 2017; 7:9449. [PMID: 28842594 PMCID: PMC5573357 DOI: 10.1038/s41598-017-09691-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/19/2017] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death, necessitating the discovery of serum markers for its early detection. In this study, a total of 180 serum samples from liver cirrhosis (LC), hepatocellular carcinoma (HCC) patients and paired samples of HCC patients who recovered (Recovery) were analyzed by multiple reaction monitoring-mass spectrometry (MRM-MS) to verify biomarkers. The three-fold crossvalidation was repeated 100 times in the training and test sets to evaluate statistical significance of 124 candidate proteins. This step resulted in 2 proteins that had an area under the receiver operating curve (AUROC) values ≥0.800 in the training (n = 90) and test sets (n = 90). Specifically, fibronectin (FN1, WCGTTQNYDADQK), distinguished HCC from LC patients, with an AUROC value of 0.926 by logistic regression. A FN1 protein was selected for validation in an independent sample (n = 60) using enzyme-linked immunosorbent assay (ELISA). The combination of alpha-fetoprotein (AFP) and FN1 improved the diagnostic performance and differentiated HCC patients with normal AFP levels. Our study has examined candidate markers for the benign disease state and malignancy and has followed up on the consequent recovery. Thus, improvement in the early detection of HCC by a 2-marker panel (AFP + FN1) might benefit HCC patients.
Collapse
Affiliation(s)
- Hyunsoo Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Yongon-Dong, Seoul, 110-799, Korea.,Department of Biomedical Engineering, Seoul National University College of Medicine, Yongon-Dong, Seoul, 110-799, Korea.,Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University College of Medicine, Yongon-Dong, Seoul, 110-799, Korea
| | - JiYoung Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Yongon-Dong, Seoul, 110-799, Korea
| | - Yongkang Kim
- Department of Statistics, Seoul National University, Daehak-dong, Seoul, 151-742, Korea
| | - Areum Sohn
- Department of Biomedical Sciences, Seoul National University College of Medicine, Yongon-Dong, Seoul, 110-799, Korea
| | - Injun Yeo
- Department of Biomedical Engineering, Seoul National University College of Medicine, Yongon-Dong, Seoul, 110-799, Korea
| | - Su Jong Yu
- Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, Yongon-Dong, Seoul, 110-799, Korea
| | - Jung-Hwan Yoon
- Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, Yongon-Dong, Seoul, 110-799, Korea
| | - Taesung Park
- Department of Statistics, Seoul National University, Daehak-dong, Seoul, 151-742, Korea.
| | - Youngsoo Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Yongon-Dong, Seoul, 110-799, Korea. .,Department of Biomedical Engineering, Seoul National University College of Medicine, Yongon-Dong, Seoul, 110-799, Korea. .,Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University College of Medicine, Yongon-Dong, Seoul, 110-799, Korea.
| |
Collapse
|
25
|
Kim JS, Ha JY, Yang SJ, Son JH. A Novel Non-Apoptotic Role of Procaspase-3 in the Regulation of Mitochondrial Biogenesis Activators. J Cell Biochem 2017; 119:347-357. [PMID: 28585712 DOI: 10.1002/jcb.26186] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/05/2017] [Indexed: 12/28/2022]
Abstract
The executioner caspase-3 has been proposed as a pharmacological intervention target to preserve degenerating dopaminergic (DA) neurons because apoptotic mechanisms involving caspase-3 contribute, at least in part, to the loss of DA neurons in patients and experimental models of Parkinson's disease (PD). Here, we determined that genetic intervention of caspase-3 was sufficient to prevent cell death against oxidative stress (OS), accompanied by unexpected severe mitochondrial dysfunction. Specifically, as we expected, caspase-3-deficient DA neuronal cells were very significantly resistant to OS-induced cell death, while the activation of the initiator caspase-9 by OS was preserved. Moreover, detailed phenotypic characterization of caspase-3-deficient DA cells revealed severe mitochondrial dysfunction, including an accumulation of damaged mitochondria with a characteristic swollen structure and broken cristae, reduced membrane potential, increased levels of reactive oxygen species (ROS), and deficits in mitochondrial oxidative phosphorylation (OXPHOS) enzymes. Of great interest, we found that mitochondrial biogenesis was dramatically decreased in caspase-3-deficient DA cells, whereas their capability of mitophagy was normal. In accordance with this observation, caspase-3 gene knock down (KD) resulted in dramatically decreased expression of the key transcriptional activators of mitochondrial biogenesis, such as Tfam and Nrf-1, implicating a non-apoptotic role of procaspase-3 in mitochondrial biogenesis. Therefore, a prolonged anti-apoptotic intervention targeting caspase-3 should be considered with caution due to the potential adverse effects in mitochondria dynamics resulting from a novel potential functional role of procaspase-3 in mitochondrial biogenesis via regulating the expression of mitochondrial biogenesis activators. J. Cell. Biochem. 119: 347-357, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ji-Soo Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha W. University, Seoul, 120-750, Republic of Korea
| | - Ji-Young Ha
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha W. University, Seoul, 120-750, Republic of Korea
| | - Sol-Ji Yang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha W. University, Seoul, 120-750, Republic of Korea
| | - Jin H Son
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha W. University, Seoul, 120-750, Republic of Korea
| |
Collapse
|
26
|
BOLKENT Ş, ÖZTAY F, GEZGİNCİ OKTAYOĞLU S, SANCAR BAŞ S, KARATUĞ A. A matter of regeneration and repair: caspases as the key molecules. Turk J Biol 2016. [DOI: 10.3906/biy-1507-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
27
|
Flusberg DA, Sorger PK. Surviving apoptosis: life-death signaling in single cells. Trends Cell Biol 2015; 25:446-58. [PMID: 25920803 PMCID: PMC4570028 DOI: 10.1016/j.tcb.2015.03.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/19/2015] [Accepted: 03/19/2015] [Indexed: 12/16/2022]
Abstract
Tissue development and homeostasis are regulated by opposing pro-survival and pro-death signals. An interesting feature of the Tumor Necrosis Factor (TNF) family of ligands is that they simultaneously activate opposing signals within a single cell via the same ligand-receptor complex. The magnitude of pro-death events such as caspase activation and pro-survival events such as Nuclear Factor (NF)-κB activation vary not only from one cell type to the next but also among individual cells of the same type due to intrinsic and extrinsic noise. The molecules involved in these pro-survival and/or pro-death pathways, and the different phenotypes that result from their activities, have been recently reviewed. Here we focus on the impact of cell-to-cell variability in the strength of these opposing signals on shaping cell fate decisions.
Collapse
Affiliation(s)
- Deborah A Flusberg
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
28
|
Cardona M, López JA, Serafín A, Rongvaux A, Inserte J, García-Dorado D, Flavell R, Llovera M, Cañas X, Vázquez J, Sanchis D. Executioner Caspase-3 and 7 Deficiency Reduces Myocyte Number in the Developing Mouse Heart. PLoS One 2015; 10:e0131411. [PMID: 26121671 PMCID: PMC4487935 DOI: 10.1371/journal.pone.0131411] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/01/2015] [Indexed: 01/29/2023] Open
Abstract
Executioner caspase-3 and -7 are proteases promoting cell death but non-apoptotic roles are being discovered. The heart expresses caspases only during development, suggesting they contribute to the organ maturation process. Therefore, we aimed at identifying novel functions of caspases in heart development. We induced simultaneous deletion of executioner caspase-3 and -7 in the mouse myocardium and studied its effects. Caspase knockout hearts are hypoplastic at birth, reaching normal weight progressively through myocyte hypertrophy. To identify the molecular pathways involved in these effects, we used microarray-based transcriptomics and multiplexed quantitative proteomics to compare wild type and executioner caspase-deficient myocardium at different developmental stages. Transcriptomics showed reduced expression of genes promoting DNA replication and cell cycle progression in the neonatal caspase-deficient heart suggesting reduced myocyte proliferation, and expression of non-cardiac isoforms of structural proteins in the adult null myocardium. Proteomics showed reduced abundance of proteins involved in oxidative phosphorylation accompanied by increased abundance of glycolytic enzymes underscoring retarded metabolic maturation of the caspase-null myocardium. Correlation between mRNA expression and protein abundance of relevant genes was confirmed, but transcriptomics and proteomics indentified complementary molecular pathways influenced by caspases in the developing heart. Forced expression of wild type or proteolytically inactive caspases in cultured cardiomyocytes induced expression of genes promoting cell division. The results reveal that executioner caspases can modulate heart’s cellularity and maturation during development, contributing novel information about caspase biology and heart development.
Collapse
Affiliation(s)
- Maria Cardona
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida–IRBLLEIDA, Av. Rovira Roure, 80, Lleida, 25198, Spain
| | - Juan Antonio López
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, Madrid, 28029, Spain
| | - Anna Serafín
- PCB-PRBB Animal Facility Alliance-Parc Científic de Barcelona, Baldiri Reixac, 4–6, Torre R, 4ª planta, Barcelona, 08028, Spain
| | - Anthony Rongvaux
- Department of Immunobiology and Howard Hughes Medical Institute, Yale University School of Medicine, 300 Cedar St., New Haven, CT 06520, United States of America
| | - Javier Inserte
- Institut de Recerca Hospital Universitari Vall d’Hebron—UAB, Passeig de la Vall d’Hebron, 119, Barcelona, 08035, Spain
| | - David García-Dorado
- Institut de Recerca Hospital Universitari Vall d’Hebron—UAB, Passeig de la Vall d’Hebron, 119, Barcelona, 08035, Spain
| | - Richard Flavell
- Department of Immunobiology and Howard Hughes Medical Institute, Yale University School of Medicine, 300 Cedar St., New Haven, CT 06520, United States of America
| | - Marta Llovera
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida–IRBLLEIDA, Av. Rovira Roure, 80, Lleida, 25198, Spain
| | - Xavier Cañas
- PCB-PRBB Animal Facility Alliance-Parc Científic de Barcelona, Baldiri Reixac, 4–6, Torre R, 4ª planta, Barcelona, 08028, Spain
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, Madrid, 28029, Spain
| | - Daniel Sanchis
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida–IRBLLEIDA, Av. Rovira Roure, 80, Lleida, 25198, Spain
- * E-mail:
| |
Collapse
|