1
|
Cai C, Sun H, Hu L, Fan Z. Visualization of integrin molecules by fluorescence imaging and techniques. ACTA ACUST UNITED AC 2021; 45:229-257. [PMID: 34219865 PMCID: PMC8249084 DOI: 10.32604/biocell.2021.014338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Integrin molecules are transmembrane αβ heterodimers involved in cell adhesion, trafficking, and signaling. Upon activation, integrins undergo dynamic conformational changes that regulate their affinity to ligands. The physiological functions and activation mechanisms of integrins have been heavily discussed in previous studies and reviews, but the fluorescence imaging techniques -which are powerful tools for biological studies- have not. Here we review the fluorescence labeling methods, imaging techniques, as well as Förster resonance energy transfer assays used to study integrin expression, localization, activation, and functions.
Collapse
Affiliation(s)
- Chen Cai
- Department of Immunology, School of Medicine, UConn Health, Farmington, 06030, USA
| | - Hao Sun
- Department of Medicine, University of California, San Diego, La Jolla, 92093, USA
| | - Liang Hu
- Cardiovascular Institute of Zhengzhou University, Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450051, China
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health, Farmington, 06030, USA
| |
Collapse
|
2
|
Measurement of Integrin Activation and Conformational Changes on the Cell Surface by Soluble Ligand and Antibody Binding Assays. Methods Mol Biol 2020. [PMID: 33215372 DOI: 10.1007/978-1-0716-0962-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Soluble ligand and conformation-dependent antibody binding assay of integrins on the cell surface is an effective approach to evaluate the activation status of integrins in live cells. The ligands or antibodies are usually labeled with biotin or a fluorescent dye and incubated with integrin-expressing cells in suspension. The cell-bound ligands and antibodies are then detected by flow cytometry. Here we describe the detailed protocols of soluble ligand or antibody binding assay for αIIbβ3, αVβ3, α5β1, and αLβ2 integrins that are transiently or stably expressed in the model cell lines such as HEK293 or CHO-k1 cells.
Collapse
|
3
|
Mao D, Lü S, Zhang X, Long M. Mechanically Regulated Outside-In Activation of an I-Domain-Containing Integrin. Biophys J 2020; 119:966-977. [PMID: 32814058 DOI: 10.1016/j.bpj.2020.07.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/18/2020] [Accepted: 07/27/2020] [Indexed: 10/23/2022] Open
Abstract
Integrins are heterodimeric transmembrane proteins that mediate cellular adhesion and bidirectional mechanotransductions through their conformational allostery. The allosteric pathway of an I-domain-containing integrin remains unclear because of its complexity and lack of effective experiments. For a typical I-domain-containing integrin αXβ2, molecular dynamics simulations were employed here to investigate the conformational dynamics in the first two steps of outside-in activation, the bindings of both the external and internal ligands. Results showed that the internal ligand binding is a prerequisite to the allosteric transmission from the α- to β-subunits and the exertion of external force to integrin-ligand complex. The opening state of αI domain with downward movement and lower half unfolding of α7-helix ensures the stable intersubunit conformational transmission through external ligand binding first and internal ligand binding later. Reverse binding order induces a, to our knowledge, novel but unstable swingout of β-subunit Hybrid domain with the retained close states of both αI and βI domains. Prebinding of external ligand greatly facilitates the following internal ligand binding and vice versa. These simulations furthered the understanding in the outside-in activation of I-domain-containing integrins from the viewpoint of internal allosteric pathways.
Collapse
Affiliation(s)
- Debin Mao
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China; School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Shouqin Lü
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China; School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China.
| | - Xiao Zhang
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China; School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Mian Long
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China; School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Pan L, Lu Y, Zuo Y, Qu K, Ma W, Liu J. Production of integrin αIIbβ3 in stably transfected and clonal Chinese hamster ovary cells for functional and structural studies. Acta Biochim Biophys Sin (Shanghai) 2020; 52:907-909. [PMID: 32445462 DOI: 10.1093/abbs/gmaa055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Li Pan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Ying Lu
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Yongmei Zuo
- Heilongjiang Institute of Animal Health Inspection, Harbin 150006, China
| | - Kechang Qu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Wenlei Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jiafu Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
5
|
Abstract
Integrins are heterodimeric cell surface receptors ensuring the mechanical connection between cells and the extracellular matrix. In addition to the anchorage of cells to the extracellular matrix, these receptors have critical functions in intracellular signaling, but are also taking center stage in many physiological and pathological conditions. In this review, we provide some historical, structural, and physiological notes so that the diverse functions of these receptors can be appreciated and put into the context of the emerging field of mechanobiology. We propose that the exciting journey of the exploration of these receptors will continue for at least another new generation of researchers.
Collapse
Affiliation(s)
- Michael Bachmann
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire , Geneva , Switzerland ; and Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories , Tampere , Finland
| | - Sampo Kukkurainen
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire , Geneva , Switzerland ; and Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories , Tampere , Finland
| | - Vesa P Hytönen
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire , Geneva , Switzerland ; and Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories , Tampere , Finland
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire , Geneva , Switzerland ; and Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories , Tampere , Finland
| |
Collapse
|
6
|
Chen Y, Ju LA, Zhou F, Liao J, Xue L, Su QP, Jin D, Yuan Y, Lu H, Jackson SP, Zhu C. An integrin α IIbβ 3 intermediate affinity state mediates biomechanical platelet aggregation. NATURE MATERIALS 2019; 18:760-769. [PMID: 30911119 PMCID: PMC6586518 DOI: 10.1038/s41563-019-0323-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 02/19/2019] [Indexed: 05/20/2023]
Abstract
Integrins are membrane receptors that mediate cell adhesion and mechanosensing. The structure-function relationship of integrins remains incompletely understood, despite the extensive studies carried out because of its importance to basic cell biology and translational medicine. Using a fluorescence dual biomembrane force probe, microfluidics and cone-and-plate rheometry, we applied precisely controlled mechanical stimulations to platelets and identified an intermediate state of integrin αIIbβ3 that is characterized by an ectodomain conformation, ligand affinity and bond lifetimes that are all intermediate between the well-known inactive and active states. This intermediate state is induced by ligand engagement of glycoprotein (GP) Ibα via a mechanosignalling pathway and potentiates the outside-in mechanosignalling of αIIbβ3 for further transition to the active state during integrin mechanical affinity maturation. Our work reveals distinct αIIbβ3 state transitions in response to biomechanical and biochemical stimuli, and identifies a role for the αIIbβ3 intermediate state in promoting biomechanical platelet aggregation.
Collapse
Affiliation(s)
- Yunfeng Chen
- Woodruff School of Mechanical Engineering and Georgia Institute of Technology, Atlanta, GA, USA
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Molecular Medicine, MERU-Roon Research Center on Vascular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Lining Arnold Ju
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Heart Research Institute, The University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Camperdown, New South Wales, Australia
| | - Fangyuan Zhou
- Woodruff School of Mechanical Engineering and Georgia Institute of Technology, Atlanta, GA, USA
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jiexi Liao
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Lingzhou Xue
- Department of Statistics, Pennsylvania State University, University Park, PA, USA
| | - Qian Peter Su
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Dayong Jin
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Yuping Yuan
- Heart Research Institute, The University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Hang Lu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Shaun P Jackson
- Department of Molecular Medicine, MERU-Roon Research Center on Vascular Biology, The Scripps Research Institute, La Jolla, CA, USA.
- Heart Research Institute, The University of Sydney, Camperdown, New South Wales, Australia.
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia.
| | - Cheng Zhu
- Woodruff School of Mechanical Engineering and Georgia Institute of Technology, Atlanta, GA, USA.
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA.
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
- Heart Research Institute, The University of Sydney, Camperdown, New South Wales, Australia.
| |
Collapse
|
7
|
Two purified proteins from royal jelly with in vitro dual anti-hepatic damage potency: Major royal jelly protein 2 and its novel isoform X1. Int J Biol Macromol 2019; 128:782-795. [PMID: 30711561 DOI: 10.1016/j.ijbiomac.2019.01.210] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 01/01/2023]
Abstract
Liver diseases are serious life-threating conditions that should be controlled. Here, we identify a protein fraction from royal-jelly (RJ) that represents the most effective composite against CCl4-induced hepatotoxicity and HepG2 cell growth. Two closely related proteins were purified from this fraction by a new simple method and identified by MALDI-TOF MS as major RJ protein 2 (MRJP2) and its predicted isoform X1. The in silico assessment (3D structures and functions) of these proteins were performed using Iterative Threading ASSEmbly Refinement (I-TASSER) analysis and RAMPAGE program. These two purified proteins were able to relieve the necrotic hepatocytes (by 60.4%) via reducing tumor necrosis factor (TNF)-α, mixed lineage kinase domain-like protein (MLKL) and intracellular reactive species. The latter effects associated with improving hepatocyte functions. Furthermore, they revealed the potent anticancer effect via induction of caspase-dependent apoptosis and controlling the expression of both Bcl-2 and p53 in HepG2 cells. Thus, MRJP2 and its isoform X1 can be a promising dual strategy for fighting hepatic injury and cancer in future animal and human studies.
Collapse
|
8
|
Autonomous conformational regulation of β 3 integrin and the conformation-dependent property of HPA-1a alloantibodies. Proc Natl Acad Sci U S A 2018; 115:E9105-E9114. [PMID: 30209215 DOI: 10.1073/pnas.1806205115] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Integrin α/β heterodimer adopts a compact bent conformation in the resting state, and upon activation undergoes a large-scale conformational rearrangement. During the inside-out activation, signals impinging on the cytoplasmic tail of β subunit induce the α/β separation at the transmembrane and cytoplasmic domains, leading to the extended conformation of the ectodomain with the separated leg and the opening headpiece that is required for the high-affinity ligand binding. It remains enigmatic which integrin subunit drives the bent-to-extended conformational rearrangement in the inside-out activation. The β3 integrins, including αIIbβ3 and αVβ3, are the prototypes for understanding integrin structural regulation. The Leu33Pro polymorphism located at the β3 PSI domain defines the human platelet-specific alloantigen (HPA) 1a/b, which provokes the alloimmune response leading to clinically important bleeding disorders. Some, but not all, anti-HPA-1a alloantibodies can distinguish the αIIbβ3 from αVβ3 and affect their functions with unknown mechanisms. Here we designed a single-chain β3 subunit that mimics a separation of α/β heterodimer on inside-out activation. Our crystallographic and functional studies show that the single-chain β3 integrin folds into a bent conformation in solution but spontaneously extends on the cell surface. This demonstrates that the β3 subunit autonomously drives the membrane-dependent conformational rearrangement during integrin activation. Using the single-chain β3 integrin, we identified the conformation-dependent property of anti-HPA-1a alloantibodies, which enables them to differently recognize the β3 in the bent state vs. the extended state and in the complex with αIIb vs. αV This study provides deeper understandings of integrin conformational activation on the cell surface.
Collapse
|
9
|
Zhou D, Thinn AMM, Zhao Y, Wang Z, Zhu J. Structure of an extended β 3 integrin. Blood 2018; 132:962-972. [PMID: 30018079 PMCID: PMC6117741 DOI: 10.1182/blood-2018-01-829572] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 07/10/2018] [Indexed: 12/23/2022] Open
Abstract
Cells use adhesion receptor integrins to communicate with their surroundings. Integrin activation and cellular signaling are coupled with change from bent to extended conformation. β3 integrins, including αIIbβ3, which is essential for the function of platelets in hemostasis and thrombosis, and αVβ3, which plays multiple roles in diverse cell types, have been prototypes in understanding integrin structure and function. Despite extensive structural studies, a high-resolution integrin structure in an extended conformation remains to be determined. The human β3 Leu33Pro polymorphism, located at the PSI domain, defines human platelet-specific alloantigens 1a and 1b (HPA-1a/b), immune response to which is a cause of posttransfusion purpura and fetal/neonatal alloimmune thrombocytopenia. Leu33Pro substitution has also been suggested to be a risk factor for thrombosis. Here we report the crystal structure of the β3 headpiece in either Leu33 or Pro33 form, both of which reveal intermediate and fully extended conformations coexisting in 1 crystal. These were used to build high-resolution structures of full-length β3 integrin in the intermediate and fully extended states, agreeing well with the corresponding conformations observed by electron microscopy. Our structures reveal how β3 integrin becomes extended at its β-knee region and how the flexibility of β-leg domains is determined. In addition, our structures reveal conformational changes of the PSI and I-EGF1 domains upon β3 extension, which may affect the binding of conformation-dependent anti-HPA-1a alloantibodies. Our structural and functional data show that Leu33Pro substitution does not directly alter the conformation or ligand binding of β3 integrin.
Collapse
Affiliation(s)
- Dongwen Zhou
- Blood Research Institute, BloodCenter of Wisconsin, part of Versiti, Milwaukee, WI
| | - Aye Myat Myat Thinn
- Blood Research Institute, BloodCenter of Wisconsin, part of Versiti, Milwaukee, WI
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI; and
| | - Yan Zhao
- Blood Research Institute, BloodCenter of Wisconsin, part of Versiti, Milwaukee, WI
- Department of Physiology, School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhengli Wang
- Blood Research Institute, BloodCenter of Wisconsin, part of Versiti, Milwaukee, WI
| | - Jieqing Zhu
- Blood Research Institute, BloodCenter of Wisconsin, part of Versiti, Milwaukee, WI
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI; and
| |
Collapse
|
10
|
Thinn AMM, Wang Z, Zhu J. The membrane-distal regions of integrin α cytoplasmic domains contribute differently to integrin inside-out activation. Sci Rep 2018; 8:5067. [PMID: 29568062 PMCID: PMC5864728 DOI: 10.1038/s41598-018-23444-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/13/2018] [Indexed: 12/20/2022] Open
Abstract
Functioning as signal receivers and transmitters, the integrin α/β cytoplasmic tails (CT) are pivotal in integrin activation and signaling. 18 α integrin subunits share a conserved membrane-proximal region but have a highly diverse membrane-distal (MD) region at their CTs. Recent studies demonstrated that the presence of α CTMD region is essential for talin-induced integrin inside-out activation. However, it remains unknown whether the non-conserved α CTMD regions differently regulate the inside-out activation of integrin. Using αIIbβ3, αLβ2, and α5β1 as model integrins and by replacing their α CTMD regions with those of α subunits that pair with β3, β2, and β1 subunits, we analyzed the function of CTMD regions of 17 α subunits in talin-mediated integrin activation. We found that the α CTMD regions play two roles on integrin, which are activation-supportive and activation-regulatory. The regulatory but not the supportive function depends on the sequence identity of α CTMD region. A membrane-proximal tyrosine residue present in the CTMD regions of a subset of α integrins was identified to negatively regulate integrin inside-out activation. Our study provides a useful resource for investigating the function of α integrin CTMD regions.
Collapse
Affiliation(s)
- Aye Myat Myat Thinn
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, 53226, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Zhengli Wang
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, 53226, USA
| | - Jieqing Zhu
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, 53226, USA.
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
11
|
Wang Z, Thinn AMM, Zhu J. A pivotal role for a conserved bulky residue at the α1-helix of the αI integrin domain in ligand binding. J Biol Chem 2017; 292:20756-20768. [PMID: 29079572 DOI: 10.1074/jbc.m117.790519] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 10/12/2017] [Indexed: 11/06/2022] Open
Abstract
The ligand-binding βI and αI domains of integrin are the best-studied von Willebrand factor A domains undergoing significant conformational changes for affinity regulation. In both βI and αI domains, the α1- and α7-helixes work in concert to shift the metal-ion-dependent adhesion site between the resting and active states. An absolutely conserved Gly in the middle of the α1-helix of βI helps maintain the resting βI conformation, whereas the homologous position in the αI α1-helix contains a conserved Phe. A functional role of this Phe is structurally unpredictable. Using αLβ2 integrin as a model, we found that the residue volume at the Phe position in the α1-helix is critical for αLβ2 activation because trimming the Phe by small amino acid substitutions abolished αLβ2 binding with soluble and immobilized intercellular cell adhesion molecule 1. Similar results were obtained for αMβ2 integrin. Our experimental and molecular dynamics simulation data suggested that the bulky Phe acts as a pawl that stabilizes the downward ratchet-like movement of β6-α7 loop and α7-helix, required for high-affinity ligand binding. This mechanism may apply to other von Willebrand factor A domains undergoing large conformational changes. We further demonstrated that the conformational cross-talk between αL αI and β2 βI could be uncoupled because the β2 extension and headpiece opening could occur independently of the αI activation. Reciprocally, the αI activation does not inevitably lead to the conformational changes of the β2 subunit. Such loose linkage between the αI and βI is attributed to the αI flexibility and could accommodate the αLβ2-mediated rolling adhesion of leukocytes.
Collapse
Affiliation(s)
- Zhengli Wang
- From the Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Aye Myat Myat Thinn
- From the Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin 53226 and.,the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Jieqing Zhu
- From the Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin 53226 and .,the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|
12
|
Chen Y, Ju L, Rushdi M, Ge C, Zhu C. Receptor-mediated cell mechanosensing. Mol Biol Cell 2017; 28:3134-3155. [PMID: 28954860 PMCID: PMC5687017 DOI: 10.1091/mbc.e17-04-0228] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 09/06/2017] [Accepted: 09/19/2017] [Indexed: 12/22/2022] Open
Abstract
Mechanosensing depicts the ability of a cell to sense mechanical cues, which under some circumstances is mediated by the surface receptors. In this review, a four-step model is described for receptor-mediated mechanosensing. Platelet GPIb, T-cell receptor, and integrins are used as examples to illustrate the key concepts and players in this process. Mechanosensing describes the ability of a cell to sense mechanical cues of its microenvironment, including not only all components of force, stress, and strain but also substrate rigidity, topology, and adhesiveness. This ability is crucial for the cell to respond to the surrounding mechanical cues and adapt to the changing environment. Examples of responses and adaptation include (de)activation, proliferation/apoptosis, and (de)differentiation. Receptor-mediated cell mechanosensing is a multistep process that is initiated by binding of cell surface receptors to their ligands on the extracellular matrix or the surface of adjacent cells. Mechanical cues are presented by the ligand and received by the receptor at the binding interface; but their transmission over space and time and their conversion into biochemical signals may involve other domains and additional molecules. In this review, a four-step model is described for the receptor-mediated cell mechanosensing process. Platelet glycoprotein Ib, T-cell receptor, and integrins are used as examples to illustrate the key concepts and players in this process.
Collapse
Affiliation(s)
- Yunfeng Chen
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332.,Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - Lining Ju
- Charles Perkins Centre and Heart Research Institute, University of Sydney, Camperdown, NSW 2006, Australia
| | - Muaz Rushdi
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332.,Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Chenghao Ge
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332.,Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Cheng Zhu
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 .,Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332.,Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| |
Collapse
|
13
|
The importance of N-glycosylation on β 3 integrin ligand binding and conformational regulation. Sci Rep 2017; 7:4656. [PMID: 28680094 PMCID: PMC5498496 DOI: 10.1038/s41598-017-04844-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/19/2017] [Indexed: 11/25/2022] Open
Abstract
N-glycosylations can regulate the adhesive function of integrins. Great variations in both the number and distribution of N-glycosylation sites are found in the 18 α and 8 β integrin subunits. Crystal structures of αIIbβ3 and αVβ3 have resolved the precise structural location of each N-glycan site, but the structural consequences of individual N-glycan site on integrin activation remain unclear. By site-directed mutagenesis and structure-guided analyses, we dissected the function of individual N-glycan sites in β3 integrin activation. We found that the N-glycan site, β3-N320 at the headpiece and leg domain interface positively regulates αIIbβ3 but not αVβ3 activation. The β3-N559 N-glycan at the β3-I-EGF3 and αIIb-calf-1 domain interface, and the β3-N654 N-glycan at the β3-β-tail and αIIb-calf-2 domain interface positively regulate the activation of both αIIbβ3 and αVβ3 integrins. In contrast, removal of the β3-N371 N-glycan near the β3 hybrid and I-EGF3 interface, or the β3-N452 N-glycan at the I-EGF1 domain rendered β3 integrin more active than the wild type. We identified one unique N-glycan at the βI domain of β1 subunit that negatively regulates α5β1 activation. Our study suggests that the bulky N-glycans influence the large-scale conformational rearrangement by potentially stabilizing or destabilizing the domain interfaces of integrin.
Collapse
|
14
|
CD99-Derived Agonist Ligands Inhibit Fibronectin-Induced Activation of β1 Integrin through the Protein Kinase A/SHP2/Extracellular Signal-Regulated Kinase/PTPN12/Focal Adhesion Kinase Signaling Pathway. Mol Cell Biol 2017; 37:MCB.00675-16. [PMID: 28483911 DOI: 10.1128/mcb.00675-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/26/2017] [Indexed: 01/13/2023] Open
Abstract
The human CD99 protein is a 32-kDa glycosylated transmembrane protein that regulates various cellular responses, including cell adhesion and leukocyte extravasation. We previously reported that CD99 activation suppresses β1 integrin activity through dephosphorylation of focal adhesion kinase (FAK) at Y397. We explored a molecular mechanism underlying the suppression of β1 integrin activity by CD99 agonists and its relevance to tumor growth in vivo CD99-Fc fusion proteins or a series of CD99-derived peptides suppressed β1 integrin activity by specifically interacting with three conserved motifs of the CD99 extracellular domain. CD99CRIII3, a representative CD99-derived 3-mer peptide, facilitated protein kinase A-SHP2 interaction and subsequent activation of the HRAS/RAF1/MEK/ERK signaling pathway. Subsequently, CD99CRIII3 induced FAK phosphorylation at S910, which led to the recruitment of PTPN12 and PIN1 to FAK, followed by FAK dephosphorylation at Y397. Taken together, these results indicate that CD99-derived agonist ligands inhibit fibronectin-mediated β1 integrin activation through the SHP2/ERK/PTPN12/FAK signaling pathway.
Collapse
|
15
|
Mould AP, Askari JA, Byron A, Takada Y, Jowitt TA, Humphries MJ. Ligand-induced Epitope Masking: DISSOCIATION OF INTEGRIN α5β1-FIBRONECTIN COMPLEXES ONLY BY MONOCLONAL ANTIBODIES WITH AN ALLOSTERIC MODE OF ACTION. J Biol Chem 2016; 291:20993-21007. [PMID: 27484800 PMCID: PMC5076510 DOI: 10.1074/jbc.m116.736942] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/29/2016] [Indexed: 11/06/2022] Open
Abstract
We previously demonstrated that Arg-Gly-Asp (RGD)-containing ligand-mimetic inhibitors of integrins are unable to dissociate pre-formed integrin-fibronectin complexes (IFCs). These observations suggested that amino acid residues involved in integrin-fibronectin binding become obscured in the ligand-occupied state. Because the epitopes of some function-blocking anti-integrin monoclonal antibodies (mAbs) lie near the ligand-binding pocket, it follows that the epitopes of these mAbs may become shielded in the ligand-occupied state. Here, we tested whether function-blocking mAbs directed against α5β1 can interact with the integrin after it forms a complex with an RGD-containing fragment of fibronectin. We showed that the anti-α5 subunit mAbs JBS5, SNAKA52, 16, and P1D6 failed to disrupt IFCs and hence appeared unable to bind to the ligand-occupied state. In contrast, the allosteric anti-β1 subunit mAbs 13, 4B4, and AIIB2 could dissociate IFCs and therefore were able to interact with the ligand-bound state. However, another class of function-blocking anti-β1 mAbs, exemplified by Lia1/2, could not disrupt IFCs. This second class of mAbs was also distinguished from 13, 4B4, and AIIB2 by their ability to induce homotypic cell aggregation. Although the epitope of Lia1/2 was closely overlapping with those of 13, 4B4, and AIIB2, it appeared to lie closer to the ligand-binding pocket. A new model of the α5β1-fibronectin complex supports our hypothesis that the epitopes of mAbs that fail to bind to the ligand-occupied state lie within, or very close to, the integrin-fibronectin interface. Importantly, our findings imply that the efficacy of some therapeutic anti-integrin mAbs could be limited by epitope masking.
Collapse
Affiliation(s)
- A Paul Mould
- From the Biomolecular Analysis Core Facility and
| | - Janet A Askari
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Adam Byron
- the Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, Scotland, United Kingdom, and
| | - Yoshikazu Takada
- the Department of Vascular Biology, VB-1, The Scripps Research Institute, La Jolla, California 92037
| | | | - Martin J Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom,
| |
Collapse
|
16
|
Guan S, Tan SM, Li Y, Torres J, Alex Law S. Function and conformation analyses of an aspartate substitution of the invariant glycine in the integrin βI domain α1-α1′ helix. Biochem Biophys Rep 2016; 7:214-217. [PMID: 28955909 PMCID: PMC5613341 DOI: 10.1016/j.bbrep.2016.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 06/01/2016] [Accepted: 06/17/2016] [Indexed: 11/30/2022] Open
Abstract
We showed that the αLβ2 integrin with the non-functional mutation G150D cannot be induced with Mg/EGTA to express the mAb KIM127 epitope, which reports the leg-extended conformation. We extended the study to the αIIbβ3, an integrin without an αI domain. The equivalent mutation, i.e. G161D, also resulted in an expressible, but non-adhesive αIIbβ3 integrin. An NMR study of synthetic peptides spanning the α1-α1′ helix of the β3 I domain shows that both wild-type and mutant peptides are α-helical. However, whereas in the wild-type peptide this helix is continuous, the mutant presents a discontinuity, or kink, precisely at the site of mutation G161D. Our results suggest that the mutation may lock integrin heterodimers in a bent conformation that prevents integrin activation via conformational extension. Integrin αLβ2-G150D cannot be activated to an extended conformation. Integrin αIIbβ3-G161D can be expressed on transfectants. Transfectants expressing the αIIbβ3-G161D integrin cannot adhere to fibrinogen. The Asp locks the α1-α1′ helices to into a kinked structure.
Collapse
|
17
|
Chen Y, Lee H, Tong H, Schwartz M, Zhu C. Force regulated conformational change of integrin α Vβ 3. Matrix Biol 2016; 60-61:70-85. [PMID: 27423389 DOI: 10.1016/j.matbio.2016.07.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 06/18/2016] [Accepted: 07/08/2016] [Indexed: 11/28/2022]
Abstract
Integrins mediate cell adhesion to extracellular matrix and transduce signals bidirectionally across the membrane. Integrin αVβ3 has been shown to play an essential role in tumor metastasis, angiogenesis, hemostasis and phagocytosis. Integrins can take several conformations, including the bent and extended conformations of the ectodomain, which regulate integrin functions. Using a biomembrane force probe, we characterized the bending and unbending conformational changes of single αVβ3 integrins on living cell surfaces in real-time. We measured the probabilities of conformational changes, rates and speeds of conformational transitions, and the dynamic equilibrium between the two conformations, which were regulated by tensile force, dependent on the ligand, and altered by point mutations. These findings provide insights into how αVβ3 acts as a molecular machine and how its physiological function and molecular structure are coupled at the single-molecule level.
Collapse
Affiliation(s)
- Yunfeng Chen
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Hyunjung Lee
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Haibin Tong
- Yale Cardiovascular Research Center, Departments of Internal Medicine (Section of Cardiovascular Medicine), Cell Biology and Biomedical Engineering, Yale University, New Haven, CT 06511, USA; Current address: Life Science Research Center, Beihua University, Jilin 132013, China
| | - Martin Schwartz
- Yale Cardiovascular Research Center, Departments of Internal Medicine (Section of Cardiovascular Medicine), Cell Biology and Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Cheng Zhu
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA; Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
18
|
Cantor DI, Cheruku HR, Nice EC, Baker MS. Integrin αvβ6 sets the stage for colorectal cancer metastasis. Cancer Metastasis Rev 2015; 34:715-34. [DOI: 10.1007/s10555-015-9591-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Liu J, Wang Z, Thinn AMM, Ma YQ, Zhu J. The dual structural roles of the membrane distal region of the α-integrin cytoplasmic tail during integrin inside-out activation. J Cell Sci 2015; 128:1718-31. [PMID: 25749862 DOI: 10.1242/jcs.160663] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 03/02/2015] [Indexed: 12/22/2022] Open
Abstract
Studies on the mechanism of integrin inside-out activation have been focused on the role of β-integrin cytoplasmic tails, which are relatively conserved and bear binding sites for the intracellular activators including talin and kindlin. Cytoplasmic tails for α-integrins share a conserved GFFKR motif at the membrane-proximal region and this forms a specific interface with the β-integrin membrane-proximal region to keep the integrin inactive. The α-integrin membrane-distal regions, after the GFFKR motif, are diverse both in length and sequence and their roles in integrin activation have not been well-defined. In this study, we report that the α-integrin cytoplasmic membrane-distal region contributes to maintaining integrin in the resting state and to integrin inside-out activation. Complete deletion of the α-integrin membrane-distal region diminished talin- and kindlin-mediated integrin ligand binding and conformational change. A proper length and suitable amino acids in α-integrin membrane-distal region was found to be important for integrin inside-out activation. Our data establish an essential role for the α-integrin cytoplasmic membrane-distal region in integrin activation and provide new insights into how talin and kindlin induce the high-affinity integrin conformation that is required for fully functional integrins.
Collapse
Affiliation(s)
- Jiafu Liu
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53226, USA
| | - Zhengli Wang
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53226, USA College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Aye Myat Myat Thinn
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53226, USA Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Yan-Qing Ma
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53226, USA Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jieqing Zhu
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53226, USA Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
20
|
Disruption of integrin-fibronectin complexes by allosteric but not ligand-mimetic inhibitors. Biochem J 2015; 464:301-13. [PMID: 25333419 DOI: 10.1042/bj20141047] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Failure of Arg-Gly-Asp (RGD)-based inhibitors to reverse integrin-ligand binding has been reported, but the prevalence of this phenomenon among integrin heterodimers is currently unknown. In the present study we have investigated the interaction of four different RGD-binding integrins (α5β1, αVβ1, αVβ3 and αVβ6) with fibronectin (FN) using surface plasmon resonance. The ability of inhibitors to reverse ligand binding was assessed by their capacity to increase the dissociation rate of pre-formed integrin-FN complexes. For all four receptors we showed that RGD-based inhibitors (such as cilengitide) were completely unable to increase the dissociation rate. Formation of the non-reversible state occurred very rapidly and did not rely on the time-dependent formation of a high-affinity state of the integrin, or the integrin leg regions. In contrast with RGD-based inhibitors, Ca2+ (but not Mg2+) was able to greatly increase the dissociation rate of integrin-FN complexes, with a half-maximal response at ~0.4 mM Ca2+ for αVβ3-FN. The effect of Ca2+ was overcome by co-addition of Mn2+, but not Mg2+. A stimulatory anti-β1 monoclonal antibody (mAb) abrogated the effect of Ca2+ on α5β1-FN complexes; conversely, a function-blocking mAb mimicked the effect of Ca2+. These results imply that Ca2+ acts allosterically, probably through binding to the adjacent metal-ion-dependent adhesion site (ADMIDAS), and that the α1 helix in the β subunit I domain is the key element affected by allosteric modulators. The data suggest an explanation for the limited clinical efficacy of RGD-based integrin antagonists, and we propose that allosteric antagonists could prove to be of greater therapeutic benefit.
Collapse
|