1
|
Isoliquiritigenin Induces Mitochondrial Dysfunction and Apoptosis by Inhibiting mitoNEET in a Reactive Oxygen Species-Dependent Manner in A375 Human Melanoma Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9817576. [PMID: 30805086 PMCID: PMC6360568 DOI: 10.1155/2019/9817576] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/22/2018] [Accepted: 11/04/2018] [Indexed: 11/25/2022]
Abstract
The mitochondrial protein mitoNEET is a type of iron-sulfur protein localized to the outer membrane of mitochondria and is involved in a variety of human pathologies including cystic fibrosis, diabetes, muscle atrophy, and neurodegeneration. In the current study, we found that isoliquiritigenin (ISL), one of the components of the root of Glycyrrhiza glabra L., could decrease the expression of mitoNEET in A375 melanoma cells. We also demonstrated that mitoNEET could regulate the content of reactive oxygen species (ROS), by showing that the ISL-mediated increase in the cellular ROS content could be mitigated by the mitoNEET overexpression. We also confirmed the important role of ROS in ISL-treated A375 cells. The increased apoptosis rate and the decreased mitochondrial membrane potential were mitigated by the overexpression of mitoNEET in A375 cells. These findings indicated that ISL could decrease the expression of mitoNEET, which regulated ROS content and subsequently induced mitochondrial dysfunction and apoptosis in A375 cells. Our findings also highlight mitoNEET as a promising mitochondrial target for cancer therapy.
Collapse
|
2
|
Alwahsh SM, Dwyer BJ, Forbes S, Thiel DHV, Lewis PJS, Ramadori G. Insulin Production and Resistance in Different Models of Diet-Induced Obesity and Metabolic Syndrome. Int J Mol Sci 2017; 18:ijms18020285. [PMID: 28134848 PMCID: PMC5343821 DOI: 10.3390/ijms18020285] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/13/2017] [Accepted: 01/17/2017] [Indexed: 12/18/2022] Open
Abstract
The role of the liver and the endocrine pancreas in development of hyperinsulinemia in different types of obesity remains unclear. Sedentary rats (160 g) were fed a low-fat-diet (LFD, chow 13% kcal fat), high-fat-diet (HFD, 35% fat), or HFD+ 30% ethanol+ 30% fructose (HF-EFr, 22% fat). Overnight-fasted rats were culled after one, four or eight weeks. Pancreatic and hepatic mRNAs were isolated for subsequent RT-PCR analysis. After eight weeks, body weights increased three-fold in the LFD group, 2.8-fold in the HFD group, and 2.4-fold in the HF-EFr (p < 0.01). HF-EFr-fed rats had the greatest liver weights and consumed less food during Weeks 4–8 (p < 0.05). Hepatic-triglyceride content increased progressively in all groups. At Week 8, HOMA-IR values, fasting serum glucose, C-peptide, and triglycerides levels were significantly increased in LFD-fed rats compared to that at earlier time points. The greatest plasma levels of glucose, triglycerides and leptin were observed in the HF-EFr at Week 8. Gene expression of pancreatic-insulin was significantly greater in the HFD and HF-EFr groups versus the LFD. Nevertheless, insulin: C-peptide ratios and HOMA-IR values were substantially higher in HF-EFr. Hepatic gene-expression of insulin-receptor-substrate-1/2 was downregulated in the HF-EFr. The expression of phospho-ERK-1/2 and inflammatory-mediators were greatest in the HF-EFr-fed rats. Chronic intake of both LFD and HFD induced obesity, MetS, and intrahepatic-fat accumulation. The hyperinsulinemia is the strongest in rats with the lowest body weights, but having the highest liver weights. This accompanies the strongest increase of pancreatic insulin production and the maximal decrease of hepatic insulin signaling, which is possibly secondary to hepatic fat deposition, inflammation and other factors.
Collapse
Affiliation(s)
- Salamah M Alwahsh
- Clinic for Gastroenterology and Endocrinology, University Medical Center, Georg-August-University Goettingen, Goettingen D-37075, Germany.
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK.
| | - Benjamin J Dwyer
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK.
| | - Shareen Forbes
- Endocrinology Unit, University/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK.
| | - David H van Thiel
- Advanced Liver and Gastrointestinal Disease Center, Chicago, IL 60611, USA.
| | | | - Giuliano Ramadori
- Clinic for Gastroenterology and Endocrinology, University Medical Center, Georg-August-University Goettingen, Goettingen D-37075, Germany.
| |
Collapse
|
3
|
Stiban J, So M, Kaguni LS. Iron-Sulfur Clusters in Mitochondrial Metabolism: Multifaceted Roles of a Simple Cofactor. BIOCHEMISTRY (MOSCOW) 2017; 81:1066-1080. [PMID: 27908232 DOI: 10.1134/s0006297916100059] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Iron-sulfur metabolism is essential for cellular function and is a key process in mitochondria. In this review, we focus on the structure and assembly of mitochondrial iron-sulfur clusters and their roles in various metabolic processes that occur in mitochondria. Iron-sulfur clusters are crucial in mitochondrial respiration, in which they are required for the assembly, stability, and function of respiratory complexes I, II, and III. They also serve important functions in the citric acid cycle, DNA metabolism, and apoptosis. Whereas the identification of iron-sulfur containing proteins and their roles in numerous aspects of cellular function has been a long-standing research area, that in mitochondria is comparatively recent, and it is likely that their roles within mitochondria have been only partially revealed. We review the status of the field and provide examples of other cellular iron-sulfur proteins to highlight their multifarious roles.
Collapse
Affiliation(s)
- Johnny Stiban
- Birzeit University, Department of Biology and Biochemistry, West Bank Birzeit, 627, Palestine.
| | | | | |
Collapse
|
4
|
Alwahsh SM, Gebhardt R. Dietary fructose as a risk factor for non-alcoholic fatty liver disease (NAFLD). Arch Toxicol 2016; 91:1545-1563. [PMID: 27995280 DOI: 10.1007/s00204-016-1892-7] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/08/2016] [Indexed: 12/16/2022]
Abstract
Glucose is a major energy source for the entire body, while fructose metabolism occurs mainly in the liver. Fructose consumption has increased over the last decade globally and is suspected to contribute to the increased incidence of non-alcoholic fatty liver disease (NAFLD). NAFLD is a manifestation of metabolic syndrome affecting about one-third of the population worldwide and has progressive pathological potential for liver cirrhosis and cancer through non-alcoholic steatohepatitis (NASH). Here we have reviewed the possible contribution of fructose to the pathophysiology of NAFLD. We critically summarize the current findings about several regulators, and their potential mechanisms, that have been studied in humans and animal models in response to fructose exposure. A novel hypothesis on fructose-dependent perturbation of liver regeneration and metabolism is advanced. Fructose intake could affect inflammatory and metabolic processes, liver function, gut microbiota, and portal endotoxin influx. The role of the brain in controlling fructose ingestion and the subsequent development of NAFLD is highlighted. Although the importance for fructose (over)consumption for NAFLD in humans is still debated and comprehensive intervention studies are invited, understanding of how fructose intake can favor these pathological processes is crucial for the development of appropriate noninvasive diagnostic and therapeutic approaches to detect and treat these metabolic effects. Still, lifestyle modification, to lessen the consumption of fructose-containing products, and physical exercise are major measures against NAFLD. Finally, promising drugs against fructose-induced insulin resistance and hepatic dysfunction that are emerging from studies in rodents are reviewed, but need further validation in human patients.
Collapse
Affiliation(s)
- Salamah Mohammad Alwahsh
- Faculty of Medicine, Institute of Biochemistry, University of Leipzig, Johannisallee 30, 04103, Leipzig, Germany. .,MCR Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Dr, EH16 4UU Edinburgh, UK.
| | - Rolf Gebhardt
- Faculty of Medicine, Institute of Biochemistry, University of Leipzig, Johannisallee 30, 04103, Leipzig, Germany.
| |
Collapse
|
5
|
Lu C, Xu W, Zhang F, Shao J, Zheng S. Nrf2 Knockdown Disrupts the Protective Effect of Curcumin on Alcohol-Induced Hepatocyte Necroptosis. Mol Pharm 2016; 13:4043-4053. [PMID: 27764939 DOI: 10.1021/acs.molpharmaceut.6b00562] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It has emerged that hepatocyte necroptosis plays a critical role in chronic alcoholic liver disease (ALD). Our previous study has identified that the beneficial therapeutic effect of curcumin on alcohol-caused liver injury might be attributed to activation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2), whereas the role of curcumin in regulating necroptosis and the underlying mechanism remain to be determined. We first found that chronic alcohol consumption triggered obvious hepatocyte necroptosis, leading to increased expression of receptor-interacting protein 1, receptor-interacting protein 3, high-mobility group box 1, and phosphorylated mixed lineage kinase domain-like in murine livers. Curcumin dose-dependently ameliorated hepatocyte necroptosis and alleviated alcohol-caused decrease in hepatic Nrf2 expression in alcoholic mice. Then Nrf2 shRNA lentivirus was introduced to generate Nrf2-knockdown mice. Our results indicated that Nrf2 knockdown aggravated the effects of alcohol on liver injury and necroptosis and even abrogated the inhibitory effect of curcumin on necroptosis. Further, activated Nrf2 by curcumin inhibited p53 expression in both livers and cultured hepatocytes under alcohol stimulation. The next in vitro experiments, similar to in vivo ones, revealed that although Nrf2 knockdown abolished the suppression of curcumin on necroptosis of hepatocytes exposed to ethanol, p53 siRNA could clearly rescued the relative effect of curcumin. In summary, for the first time, we concluded that curcumin attenuated alcohol-induced hepatocyte necroptosis in a Nrf2/p53-dependent mechanism. These findings make curcumin an excellent candidate for ALD treatment and advance the understanding of ALD mechanisms associated with hepatocyte necroptosis.
Collapse
Affiliation(s)
- Chunfeng Lu
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine , Nanjing, Jiangsu, China
| | - Wenxuan Xu
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine , Nanjing, Jiangsu, China
| | - Feng Zhang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine , Nanjing, Jiangsu, China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine , Nanjing, Jiangsu, China
| | - Jiangjuan Shao
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine , Nanjing, Jiangsu, China
| | - Shizhong Zheng
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine , Nanjing, Jiangsu, China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine , Nanjing, Jiangsu, China
| |
Collapse
|
6
|
MicroRNA-127 targeting of mitoNEET inhibits neurite outgrowth, induces cell apoptosis and contributes to physiological dysfunction after spinal cord transection. Sci Rep 2016; 6:35205. [PMID: 27748416 PMCID: PMC5066253 DOI: 10.1038/srep35205] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 09/26/2016] [Indexed: 02/05/2023] Open
Abstract
Neuroregeneration and apoptosis are two important pathophysiologic changes after spinal cord injury (SCI), but their underlying mechanisms remain unclear. MicroRNAs (miRNAs) play a crucial role in the regulation of neuroregeneration and neuronal apoptosis, research areas that have been greatly expanded in recent years. Here, using miRNA arrays to profile miRNA transcriptomes, we demonstrated that miR-127-3p was significantly down-regulated after spinal cord transection (SCT). Then, bioinformatics analyses and experimental detection showed that miR-127-3p exhibited specific effects on the regulation of neurite outgrowth and the induction of neuronal apoptosis by regulating the expression of the mitochondrial membrane protein mitoNEET. Moreover, knockdown of MitoNEET leaded to neuronal loss and apoptosis in primary cultured spinal neurons. This study therefore revealed that miR-127-3p, which targets mitoNEET, plays a vital role in regulating neurite outgrowth and neuronal apoptosis after SCT. Thus, modificatioin of the mitoNEET expression, such as mitoNEET activition may provide a new strategy for the treatment of SCI in preclinical trials.
Collapse
|
7
|
Wu CH, Huang CC, Hung CH, Yao FY, Wang CJ, Chang YC. Delphinidin-rich extracts of Hibiscus sabdariffa L. trigger mitochondria-derived autophagy and necrosis through reactive oxygen species in human breast cancer cells. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.05.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
8
|
Andreini C, Banci L, Rosato A. Exploiting Bacterial Operons To Illuminate Human Iron–Sulfur Proteins. J Proteome Res 2016; 15:1308-22. [DOI: 10.1021/acs.jproteome.6b00045] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Claudia Andreini
- Magnetic Resonance Center and ‡Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Lucia Banci
- Magnetic Resonance Center and ‡Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Antonio Rosato
- Magnetic Resonance Center and ‡Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
9
|
Yang R, Rincon M. Mitochondrial Stat3, the Need for Design Thinking. Int J Biol Sci 2016; 12:532-44. [PMID: 27019635 PMCID: PMC4807418 DOI: 10.7150/ijbs.15153] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 02/12/2016] [Indexed: 12/20/2022] Open
Abstract
Stat3 has been studied extensively as a transcription factor, however the finding that Stat3 also localizes to mitochondria has opened a new area to discover non-classical functions. Here we review the current knowledge of mitochondrial Stat3 as a regulator of the electron transport chain (ETC) and its impact on mitochondrial production of ATP and ROS. We also describe recent findings identifying Stat3 as a regulator of mitochondrial Ca(2+) homeostasis through its effect on the ETC. It is becoming evident that these non-classical functions of Stat3 can have a major impact on cancer progression, cardiovascular diseases, and inflammatory diseases. Therefore, mitochondrial Stat3 functions challenge the current design of therapies that solely target Stat3 as a transcription factor and suggest the need for "design thinking," which leads to the development of novel strategies, to intervene the Stat3 pathway.
Collapse
|
10
|
Urquhart KR, Zhao Y, Baker JA, Lu Y, Yan L, Cook MN, Jones BC, Hamre KM, Lu L. A novel heat shock protein alpha 8 (Hspa8) molecular network mediating responses to stress- and ethanol-related behaviors. Neurogenetics 2016; 17:91-105. [PMID: 26780340 DOI: 10.1007/s10048-015-0470-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 12/10/2015] [Indexed: 12/15/2022]
Abstract
Genetic differences mediate individual differences in susceptibility and responses to stress and ethanol, although, the specific molecular pathways that control these responses are not fully understood. Heat shock protein alpha 8 (Hspa8) is a molecular chaperone and member of the heat shock protein family that plays an integral role in the stress response and that has been implicated as an ethanol-responsive gene. Therefore, we assessed its role in mediating responses to stress and ethanol across varying genetic backgrounds. The hippocampus is an important mediator of these responses, and thus, was examined in the BXD family of mice in this study. We conducted bioinformatic analyses to dissect genetic factors modulating Hspa8 expression, identify downstream targets of Hspa8, and examined its role. Hspa8 is trans-regulated by a gene or genes on chromosome 14 and is part of a molecular network that regulates stress- and ethanol-related behaviors. To determine additional components of this network, we identified direct or indirect targets of Hspa8 and show that these genes, as predicted, participate in processes such as protein folding and organic substance metabolic processes. Two phenotypes that map to the Hspa8 locus are anxiety-related and numerous other anxiety- and/or ethanol-related behaviors significantly correlate with Hspa8 expression. To more directly assay this relationship, we examined differences in gene expression following exposure to stress or alcohol and showed treatment-related differential expression of Hspa8 and a subset of the members of its network. Our findings suggest that Hspa8 plays a vital role in genetic differences in responses to stress and ethanol and their interactions.
Collapse
Affiliation(s)
- Kyle R Urquhart
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Yinghong Zhao
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jessica A Baker
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Ye Lu
- The International Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Lei Yan
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Melloni N Cook
- Department of Psychology, University of Memphis, Memphis, TN, 38152, USA
| | - Byron C Jones
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Kristin M Hamre
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| | - Lu Lu
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA. .,Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, 38163, USA. .,Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, China.
| |
Collapse
|
11
|
His-87 ligand in mitoNEET is crucial for the transfer of iron sulfur clusters from mitochondria to cytosolic aconitase. Biochem Biophys Res Commun 2016; 470:226-232. [PMID: 26778000 DOI: 10.1016/j.bbrc.2016.01.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 01/07/2016] [Indexed: 01/25/2023]
Abstract
MitoNEET is the first identified iron sulfur protein that located in the mitochondrial outer membrane. We showed that knockdown of mitoNEET did not affect the iron sulfur protein expression in mitochondria and cytoplasm, but significantly reduced the cytosolic aconitase activity. The reduction of aconitase activity was rescued by transfection of wild type mitoNEET, but not by mitoNEET mutants H87C and H87S. Our results confirm the observation that mitoNEET is important in transferring the iron sulfur clusters to the cytosolic aconitase in living cells and the His-87 ligand in mitoNEET plays important role in this process.
Collapse
|
12
|
Ding W, Shang L, Huang JF, Li N, Chen D, Xue LX, Xiong K. Receptor interacting protein 3-induced RGC-5 cell necroptosis following oxygen glucose deprivation. BMC Neurosci 2015; 16:49. [PMID: 26238997 PMCID: PMC4524047 DOI: 10.1186/s12868-015-0187-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 07/15/2015] [Indexed: 11/22/2022] Open
Abstract
Background Necroptosis is a type of regulated form of cell death that has been implicated in the pathogenesis of various diseases. Receptor-interacting protein 3 (RIP3), a member of the RIP family of proteins, has been reported as an important necroptotic pathway mediator in regulating a variety of human diseases, such as myocardial ischemia, inflammatory bowel disease, and ischemic brain injury. Our previous study showed that RIP3 was expressed in rat retinal ganglion cells (RGCs), where it was significantly upregulated during the early stage of acute high intraocular pressure. Furthermore, RIP3 expression was co-localized with propidium iodide (PI)-positive staining (necrotic cells). These results suggested that RIP3 up-regulation might be involved in the necrosis of injured RGCs. In this study, we aimed to reveal the possible involvement of RIP3 in oxygen glucose deprivation (OGD)-induced retinal ganglion cell-5 (RGC-5) necroptosis. Methods RGC-5 cells were cultured in Dulbecco’s-modified essential medium and necroptosis was induced by 8 h OGD. PI staining and flow cytometry were performed to detect RGC-5 necrosis. RIP3 expression was detected by western blot and flow cytometry was used to detect the effect of RIP3 on RGC-5 necroptosis following OGD in rip3 knockdown cells. Malondialdehyde (MDA) lipid peroxidation assay was performed to determine the degree of oxidative stress. Results PI staining showed that necrosis was present in the early stage of OGD-induced RGC-5 cell death. The presence of RGC-5 necroptosis after OGD was detected by flow cytometry using necrostatin-1, a necroptosis inhibitor. Western blot demonstrated that RIP3 up-regulation may be involved in RGC-5 necroptosis. Flow cytometry revealed that the number of OGD-induced necrotic RGC-5 cells was reduced after rip3 knockdown. Furthermore, MDA levels in the normal RGC-5 cells were much higher than in the rip3-knockdown cells after OGD. Conclusions Our findings suggest that RGC-5 cell necroptosis following OGD is mediated by a RIP3-induced increase in oxidative stress.
Collapse
Affiliation(s)
- Wei Ding
- Department of Anatomy and Neurobiology, Morphological Sciences Building, School of Basic Medical Sciences, Central South University, 172 Tongzi Po Road, Changsha, 410013, Hunan, China.
| | - Lei Shang
- Department of Anatomy and Neurobiology, Morphological Sciences Building, School of Basic Medical Sciences, Central South University, 172 Tongzi Po Road, Changsha, 410013, Hunan, China.
| | - Ju-Fang Huang
- Department of Anatomy and Neurobiology, Morphological Sciences Building, School of Basic Medical Sciences, Central South University, 172 Tongzi Po Road, Changsha, 410013, Hunan, China.
| | - Na Li
- Department of Anatomy and Neurobiology, Morphological Sciences Building, School of Basic Medical Sciences, Central South University, 172 Tongzi Po Road, Changsha, 410013, Hunan, China.
| | - Dan Chen
- Department of Anatomy and Neurobiology, Morphological Sciences Building, School of Basic Medical Sciences, Central South University, 172 Tongzi Po Road, Changsha, 410013, Hunan, China.
| | - Li-Xiang Xue
- Department of Biochemistry and Molecular Biology, Health Science Center, Peking University, Beijing, 100191, China.
| | - Kun Xiong
- Department of Anatomy and Neurobiology, Morphological Sciences Building, School of Basic Medical Sciences, Central South University, 172 Tongzi Po Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
13
|
Reactive oxygen species regulate Smac mimetic/TNFα-induced necroptotic signaling and cell death. Oncogene 2015; 34:5796-806. [PMID: 25867066 DOI: 10.1038/onc.2015.35] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 01/12/2015] [Accepted: 01/20/2015] [Indexed: 12/18/2022]
Abstract
Necroptosis represents a key programmed cell death pathway involved in various physiological and pathophysiological conditions. However, the role of reactive oxygen species (ROS) in necroptotic signaling has remained unclear. In the present study, we identify ROS as critical regulators of BV6/tumor necrosis factor-α (TNFα)-induced necroptotic signaling and cell death. We show that BV6/TNFα-induced cell death depends on ROS production, as several ROS scavengers such as butylated hydroxyanisole, N-acetylcysteine, α-tocopherol and ethyl pyruvate significantly rescue cell death. Before cell death, BV6/TNFα-stimulated ROS generation promotes stabilization of the receptor-interacting protein kinase 1 (RIP1)/RIP3 necrosome complex via a potential positive feedback loop, as on the one hand radical scavengers attenuate RIP1/RIP3 necrosome assembly and phosphorylation of mixed lineage kinase domain like (MLKL), but on the other hand silencing of RIP1 or RIP3 reduces ROS production. Although MLKL knockdown effectively decreases BV6/TNFα-induced cell death, it does not affect RIP1/RIP3 interaction and only partly reduces ROS generation. Moreover, the deubiquitinase cylindromatosis (CYLD) promotes BV6/TNFα-induced ROS generation and necrosome assembly even in the presence of BV6, as CYLD silencing attenuates these events. Genetic silencing of phosphoglycerate mutase 5 or dynamin-related protein 1 (Drp1) fails to protect against BV6/TNFα-induced cell death. By demonstrating that ROS are involved in regulating BV6/TNFα-induced necroptotic signaling, our study provides new insights into redox regulation of necroptosis.
Collapse
|
14
|
Landry AP, Cheng Z, Ding H. Reduction of mitochondrial protein mitoNEET [2Fe-2S] clusters by human glutathione reductase. Free Radic Biol Med 2015; 81:119-27. [PMID: 25645953 PMCID: PMC4365936 DOI: 10.1016/j.freeradbiomed.2015.01.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/09/2015] [Accepted: 01/21/2015] [Indexed: 11/27/2022]
Abstract
The human mitochondrial outer membrane protein mitoNEET is a newly discovered target of the type 2 diabetes drug pioglitazone. Structurally, mitoNEET is a homodimer with each monomer containing an N-terminal transmembrane α helix tethered to the mitochondrial outer membrane and a C-terminal cytosolic domain hosting a redox-active [2Fe-2S] cluster. Genetic studies have shown that mitoNEET has a central role in regulating energy metabolism in mitochondria. However, the specific function of mitoNEET remains largely elusive. Here we find that the mitoNEET [2Fe-2S] clusters can be efficiently reduced by Escherichia coli thioredoxin reductase and glutathione reductase in an NADPH-dependent reaction. Purified human glutathione reductase has the same activity as E. coli thioredoxin reductase and glutathione reductase to reduce the mitoNEET [2Fe-2S] clusters. However, rat thioredoxin reductase, a human thioredoxin reductase homolog that contains selenocysteine in the catalytic center, has very little or no activity to reduce the mitoNEET [2Fe-2S] clusters. N-ethylmaleimide, a potent thiol modifier, completely inhibits human glutathione reductase from reducing the mitoNEET [2Fe-2S] clusters, indicating that the redox-active disulfide in the catalytic center of human glutathione reductase may be directly involved in reducing the mitoNEET [2Fe-2S] clusters. Additional studies reveal that the reduced mitoNEET [2Fe-2S] clusters in mouse heart cell extracts can be reversibly oxidized by hydrogen peroxide without disruption of the clusters, suggesting that the mitoNEET [2Fe-2S] clusters may undergo redox transition to regulate energy metabolism in mitochondria in response to oxidative signals.
Collapse
Affiliation(s)
- Aaron P Landry
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Zishuo Cheng
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Huangen Ding
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
15
|
Jiang SH, Shang L, Xue LX, Ding W, Chen S, Ma RF, Huang JF, Xiong K. The effect and underlying mechanism of Timosaponin B-II on RGC-5 necroptosis induced by hydrogen peroxide. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:459. [PMID: 25439561 PMCID: PMC4258277 DOI: 10.1186/1472-6882-14-459] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 11/26/2014] [Indexed: 11/15/2022]
Abstract
Background Necroptosis is an important mode of cell death, which is due to oxidant stress accumulation. Our previous study indicated that oxidant stresses could be reduced by Timosaponin B-II (TBII), a kind of Chinese herb RhizomaAnemarrhenae monomer extraction. We wonder the possible effect of Timosaponin B-II, whether it can protect cells from necroptosis via reducing the oxidant stress, in RGC-5 following hydrogen peroxide (H2O2) insult. Methods RGC-5 cells were grown in DMEM, the model group was exposed in H2O2 with the concentration of 300 μM, and the experimental group was pre-treated with Timosaponin B-II at different concentrations (1 μM, 10 μM, 100 μM and 1000 μM) for 24 hrs. MTT assay was carried out to measure the cytotoxicity of H2O2, MDA concentration assay was executed to evaluate the degree of oxidative stress, TNF-α ELISA Assay was used to measure the concentration of TNF-α, finally, the degree of necrosis were analyzed using flow cytometry. Results We first constructed the cell injury model of necroptosis in RGC-5 upon H2O2 exposure. Morphological observation and MTT assay were used to evaluate the degree of RGC-5 death. MDA assay were carried out to describe the degree of oxidant stress. Annexin V/PI staining was used to detect necroptotic cells pre-treated with or without Timosaponin B-II following H2O2 injury. TNF-α ELISA was carried out to detect the TNF-α accumulation in RGC-5. Upon using Timosaponin B-II with concentration of 100 μM, the percentage of cell viability was increased from 50% to 75%, and the necrosis of cells was reduced from 35% to 20% comparing with H2O2 injury group. Oxidant stress and TNF-α was reduced upon injury which decreased the ratio of RGC-5 necroptosis. Conclusion Our study found out that Timosaponin B-II might reduce necroptosis via inhibition of ROS and TNF-α accumulation in RGC-5 following H2O2 injury.
Collapse
|
16
|
Alwahsh SM, Xu M, Schultze FC, Wilting J, Mihm S, Raddatz D, Ramadori G. Combination of alcohol and fructose exacerbates metabolic imbalance in terms of hepatic damage, dyslipidemia, and insulin resistance in rats. PLoS One 2014; 9:e104220. [PMID: 25101998 PMCID: PMC4125190 DOI: 10.1371/journal.pone.0104220] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 07/11/2014] [Indexed: 12/13/2022] Open
Abstract
Although both alcohol and fructose are particularly steatogenic, their long-term effect in the development of a metabolic syndrome has not been studied in vivo. Consumption of fructose generally leads to obesity, whereas ethanol can induce liver damage in the absence of overweight. Here, Sprague-Dawley rats were fed ad libitum for 28 days on five diets: chow (control), liquid Lieber-DeCarli (LDC) diet, LDC +30%J of ethanol (L-Et) or fructose (L-Fr), and LDC combined with 30%J ethanol and 30%J fructose (L-EF). Body weight (BW) and liver weight (LW) were measured. Blood and liver samples were harvested and subjected to biochemical tests, histopathological examinations, and RT-PCR. Alcohol-containing diets substantially reduced the food intake and BW (≤3rd week), whereas fructose-fed animals had higher LW than controls (P<0.05). Additionally, leukocytes, plasma AST and leptin levels were the highest in the fructose-administered rats. Compared to the chow and LDC diets, the L-EF diet significantly elevated blood glucose, insulin, and total-cholesterol levels (also vs. the L-Et group). The albumin and Quick-test levels were the lowest, whereas ALT activity was the highest in the L-EF group. Moreover, the L-EF diet aggravated plasma triglyceride and reduced HDL-cholesterol levels more than 2.7-fold compared to the sum of the effects of the L-Et and L-Fr diets. The decreased hepatic insulin clearance in the L-EF group vs. control and LDC groups was reflected by a significantly decreased C-peptide:insulin ratio. All diets except the control caused hepatosteatosis, as evidenced by Nile red and H&E staining. Hepatic transcription of insulin receptor substrate-1/2 was mainly suppressed by the L-Fr and L-EF diets. The L-EF diet did not enhance the mitochondrial β-oxidation of fatty acids (Cpt1α and Ppar-α expressions) compared to the L-Et or L-Fr diet. Together, our data provide evidence for the coaction of ethanol and fructose with a high-fat-diet on dyslipidemia and insulin resistance-accompanied liver damage.
Collapse
Affiliation(s)
- Salamah Mohammad Alwahsh
- Department Gastroenterology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
- * E-mail:
| | - Min Xu
- Department of General, Visceral, and Pediatric Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - Frank Christian Schultze
- Department Gastroenterology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
| | - Jörg Wilting
- Institute of Anatomy and Cell Biology, University Medical Center Goettingen, Goettingen, Germany
| | - Sabine Mihm
- Department Gastroenterology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
| | - Dirk Raddatz
- Department Gastroenterology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
| | - Giuliano Ramadori
- Department Gastroenterology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
| |
Collapse
|
17
|
Geldenhuys WJ, Leeper TC, Carroll RT. mitoNEET as a novel drug target for mitochondrial dysfunction. Drug Discov Today 2014; 19:1601-6. [PMID: 24814435 DOI: 10.1016/j.drudis.2014.05.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 03/31/2014] [Accepted: 05/01/2014] [Indexed: 01/17/2023]
Abstract
Mitochondrial dysfunction plays an important part in the pathology of several diseases, including Alzheimer's disease and Parkinson's disease. Targeting mitochondrial proteins shows promise in treating and attenuating the neurodegeneration seen in these diseases, especially considering their complex and pleiotropic origins. Recently, the mitochondrial protein mitoNEET [also referred to as CDGSH iron sulfur domain 1 (CISD1)] has emerged as the mitochondrial target of thiazolidinedione drugs such as the antidiabetic pioglitazone. In this review, we evaluate the current understanding regarding how mitoNEET regulates cellular bioenergetics as well as the structural requirements for drug compound association with mitoNEET. With a clear understanding of mitoNEET function, it might be possible to develop therapeutic agents useful in several different diseases including neurodegeneration, breast cancer, diabetes and inflammation.
Collapse
Affiliation(s)
- Werner J Geldenhuys
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH 44272, USA.
| | - Thomas C Leeper
- Department of Chemistry, University of Akron, Akron, OH, USA
| | - Richard T Carroll
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| |
Collapse
|