1
|
Abstract
Anti-Müllerian Hormone (AMH) is a secreted glycoprotein hormone with critical roles in reproductive development and regulation. Its chemical and mechanistic similarities to members of the Transforming Growth Factor β (TGF-β) family have led to its placement within this signaling family. As a member of the TGF-β family, AMH exists as a noncovalent complex of a large N-terminal prodomain and smaller C-terminal mature signaling domain. To produce a signal, the mature domain will bind to the extracellular domains of two type I and two type II receptors which results in an intracellular SMAD signal. Interestingly, as will be discussed in this review, AMH possesses several unique characteristics which set it apart from other ligands within the TGF-β family. In particular, AMH has a dedicated type II receptor, Anti-Müllerian Hormone Receptor Type II (AMHR2), making this interaction intriguing mechanistically as well as therapeutically. Further, the prodomain of AMH has remained largely uncharacterized, despite being the largest prodomain within the family. Recent advancements in the field have provided valuable insight into the molecular mechanisms of AMH signaling, however there are still many areas of AMH signaling not understood. Herein, we will discuss what is known about the biochemistry of AMH and AMHR2, focusing on recent advances in understanding the unique characteristics of AMH signaling and the molecular mechanisms of receptor engagement.
Collapse
Affiliation(s)
- James A. Howard
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH, United States
| | - Kaitlin N. Hart
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH, United States
| | - Thomas B. Thompson
- Department of Molecular Genetics, Biochemistry, & Microbiology, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
2
|
Ferdousy RN, Kadokawa H. Anti-Müllerian hormone stimulates expression of the collagen-specific chaperone 47-kDa heat shock protein in bovine uterine epithelial cells. Anim Sci J 2022; 93:e13787. [PMID: 36507591 DOI: 10.1111/asj.13787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/25/2022] [Accepted: 11/07/2022] [Indexed: 12/14/2022]
Abstract
Uterine collagen is the most abundant component of the uterine extracellular matrix and plays a critical role in pregnancy. The 47-kDa heat shock protein (HSP47) is the sole collagen-specific molecular chaperone. We investigated the mechanisms regulating the expression of HSP47 in the uterus by assessing the effect of anti-Müllerian hormone (AMH) stimulation on HSP47 expression in cultured bovine uterine epithelial cells. AMH receptor type 2 (AMHR2), AMH, and HSP47 expression was assessed by fluorescence immunocytochemistry in uterine epithelial layers of the uteri of Japanese Black cows. The effect of AMH on HSP47 expression was assessed in cultured epithelial cells. The effect of MEK/ERK inhibitor on AMH-induced HSP47 expression was also assessed. We confirmed the expression of AMHR2, AMH, and HSP47 in the uterine epithelial layers. We confirmed the expression of AMHR2, AMH, HSP47, and type IV collagen in cultured uterine epithelial cells. AMH treatment at 10 or 100 ng/ml promoted significant HSP47 expression (p < 0.05). MEK/ERK inhibitor U0126 pretreatment suppressed such AMH stimulation on HSP47. These findings indicate that AMH induced HSP47 protein expression through the ERK pathway in bovine uterine epithelial cells.
Collapse
Affiliation(s)
| | - Hiroya Kadokawa
- Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
3
|
Cate RL. Anti-Müllerian Hormone Signal Transduction involved in Müllerian Duct Regression. Front Endocrinol (Lausanne) 2022; 13:905324. [PMID: 35721723 PMCID: PMC9201060 DOI: 10.3389/fendo.2022.905324] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Over seventy years ago it was proposed that the fetal testis produces a hormone distinct from testosterone that is required for complete male sexual development. At the time the hormone had not yet been identified but was invoked by Alfred Jost to explain why the Müllerian duct, which develops into the female reproductive tract, regresses in the male fetus. That hormone, anti-Müllerian hormone (AMH), and its specific receptor, AMHR2, have now been extensively characterized and belong to the transforming growth factor-β families of protein ligands and receptors involved in growth and differentiation. Much is now known about the downstream events set in motion after AMH engages AMHR2 at the surface of specific Müllerian duct cells and initiates a cascade of molecular interactions that ultimately terminate in the nucleus as activated transcription factors. The signals generated by the AMH signaling pathway are then integrated with signals coming from other pathways and culminate in a complex gene regulatory program that redirects cellular functions and fates and leads to Müllerian duct regression.
Collapse
|
4
|
Bertho S, Neyroud AS, Brun T, Jaillard S, Bonnet F, Ravel C. Anti-Müllerian hormone: A function beyond the Müllerian structures. Morphologie 2021; 106:252-259. [PMID: 34924282 DOI: 10.1016/j.morpho.2021.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/11/2021] [Accepted: 11/14/2021] [Indexed: 10/19/2022]
Abstract
The anti-Müllerian hormone (AMH) is a heterodimeric glycoprotein belonging to the TGFb superfamily implicated in human embryonic development. This hormone was first described as allowing regression of the epithelial embryonic Müllerian structures in males, which would otherwise differentiate into the uterus and fallopian tubes. It activates a signaling pathway mediated by two transmembrane receptors. Binding of AMH to its receptor induces morphological changes leading to the degeneration of Müllerian ducts. Recently, new data has shown the role played by this hormone on structures other than the genital tract. If testicular AMH expression decreases in humans over the course of a lifetime, synthesis may persist in other tissues in adulthood. The mechanisms underlying its production have been unveiled. The aim of this review is to describe the different pathways in which AMH has been identified and plays a pivotal role.
Collapse
Affiliation(s)
- S Bertho
- CHU Rennes, Département de Gynécologie-Obstétrique-Reproduction-CECOS, 35000 Rennes, France.
| | - A S Neyroud
- CHU Rennes, Département de Gynécologie-Obstétrique-Reproduction-CECOS, 35000 Rennes, France; Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 35000 Rennes, France
| | - T Brun
- CHU Rennes, Département de Gynécologie-Obstétrique-Reproduction-CECOS, 35000 Rennes, France
| | - S Jaillard
- CHU Rennes, Département de Gynécologie-Obstétrique-Reproduction-CECOS, 35000 Rennes, France; Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 35000 Rennes, France
| | - F Bonnet
- CHU Rennes, Service d'Endocrinologie, 35000 Rennes, France
| | - C Ravel
- CHU Rennes, Département de Gynécologie-Obstétrique-Reproduction-CECOS, 35000 Rennes, France; Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 35000 Rennes, France
| |
Collapse
|
5
|
Cate RL, di Clemente N, Racine C, Groome NP, Pepinsky RB, Whitty A. The anti-Müllerian hormone prodomain is displaced from the hormone/prodomain complex upon bivalent binding to the hormone receptor. J Biol Chem 2021; 298:101429. [PMID: 34801555 PMCID: PMC8801479 DOI: 10.1016/j.jbc.2021.101429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/03/2021] [Accepted: 11/16/2021] [Indexed: 11/28/2022] Open
Abstract
Noncovalent complexes of transforming growth factor-β family growth/differentiation factors with their prodomains are classified as latent or active, depending on whether the complexes can bind their respective receptors. For the anti-Müllerian hormone (AMH), the hormone-prodomain complex is active, and the prodomain is displaced upon binding to its type II receptor, AMH receptor type-2 (AMHR2), on the cell surface. However, the mechanism by which this displacement occurs is unclear. Here, we used ELISA assays to measure the dependence of prodomain displacement on AMH concentration and analyzed results with respect to the behavior expected for reversible binding in combination with ligand-induced receptor dimerization. We found that, in solution, the prodomain has a high affinity for the growth factor (GF) (Kd = 0.4 pM). Binding of the AMH complex to a single AMHR2 molecule does not affect this Kd and does not induce prodomain displacement, indicating that the receptor binding site in the AMH complex is fully accessible to AMHR2. However, recruitment of a second AMHR2 molecule to bind the ligand bivalently leads to a 1000-fold increase in the Kd for the AMH complex, resulting in rapid release of the prodomain. Displacement occurs only if the AMHR2 is presented on a surface, indicating that prodomain displacement is caused by a conformational change in the GF induced by bivalent binding to AMHR2. In addition, we demonstrate that the bone morphogenetic protein 7 prodomain is displaced from the complex with its GF by a similar process, suggesting that this may represent a general mechanism for receptor-mediated prodomain displacement in this ligand family.
Collapse
Affiliation(s)
- Richard L Cate
- Department of Chemistry, Boston University, Boston, Massachusetts, USA.
| | - Nathalie di Clemente
- INSERM, Centre de Recherche Saint Antoine (CRSA), IHU ICAN, Sorbonne Université, Paris, France
| | - Chrystèle Racine
- INSERM, Centre de Recherche Saint Antoine (CRSA), IHU ICAN, Sorbonne Université, Paris, France
| | - Nigel P Groome
- School of Biological and Molecular Sciences, Oxford Brookes University, Headington, Oxford, UK
| | - R Blake Pepinsky
- Department of Biotherapeutic and Medicinal Sciences, Biogen, Cambridge, Massachusetts, USA
| | - Adrian Whitty
- Department of Chemistry, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
6
|
di Clemente N, Racine C, Pierre A, Taieb J. Anti-Müllerian Hormone in Female Reproduction. Endocr Rev 2021; 42:753-782. [PMID: 33851994 DOI: 10.1210/endrev/bnab012] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Indexed: 12/26/2022]
Abstract
Anti-Müllerian hormone (AMH), also called Müllerian inhibiting substance, was shown to be synthesized by the ovary in the 1980s. This article reviews the main findings of the past 20 years on the regulation of the expression of AMH and its specific receptor AMHR2 by granulosa cells, the mechanism of action of AMH, the different roles it plays in the reproductive organs, its clinical utility, and its involvement in the principal pathological conditions affecting women. The findings in respect of regulation tell us that AMH and AMHR2 expression is mainly regulated by bone morphogenetic proteins, gonadotropins, and estrogens. It has now been established that AMH regulates the different steps of folliculogenesis and that it has neuroendocrine effects. On the other hand, the importance of serum AMH as a reliable marker of ovarian reserve and as a useful tool in the prediction of the polycystic ovary syndrome (PCOS) and primary ovarian failure has also been acknowledged. Last but not least, a large body of evidence points to the involvement of AMH in the pathogenesis of PCOS.
Collapse
Affiliation(s)
- Nathalie di Clemente
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Chrystèle Racine
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Institut Hospitalo-Universitaire ICAN, Paris, France.,Sorbonne Paris Cité, Paris-Diderot Université, Paris, France
| | - Alice Pierre
- Sorbonne Paris Cité, Université Paris-Diderot, CNRS, INSERM, Biologie Fonctionnelle et Adaptative UMR 8251, Physiologie de l'Axe Gonadotrope U1133, Paris, France
| | - Joëlle Taieb
- Sorbonne Paris Cité, Université Paris-Diderot, CNRS, INSERM, Biologie Fonctionnelle et Adaptative UMR 8251, Physiologie de l'Axe Gonadotrope U1133, Paris, France
| |
Collapse
|
7
|
The Expression of Anti-Müllerian Hormone Type II Receptor (AMHRII) in Non-Gynecological Solid Tumors Offers Potential for Broad Therapeutic Intervention in Cancer. BIOLOGY 2021; 10:biology10040305. [PMID: 33917111 PMCID: PMC8067808 DOI: 10.3390/biology10040305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary Until now, only a few studies have examined the AMHRII expression in tumors. Here, with more than 1000 tumor samples and using several complementary techniques we confirmed AMHRII expression in gynecological cancer and demonstrated AMHRII expression in certain non-gynecological cancers such as colorectal cancers. These findings open the way for new therapeutic approaches targeting AMHRII and emphasize the need to better understand the role of AMH/AMHRII in cancer. Abstract The anti-Müllerian hormone (AMH) belongs to the TGF-β family and plays a key role during fetal sexual development. Various reports have described the expression of AMH type II receptor (AMHRII) in human gynecological cancers including ovarian tumors. According to qRT-PCR results confirmed by specific In-Situ Hybridization (ISH) experiments, AMHRII mRNA is expressed in an extremely restricted number of normal tissues. By performing ISH on tissue microarray of solid tumor samples AMHRII mRNA was unexpectedly detected in several non-gynecological primary cancers including lung, breast, head and neck, and colorectal cancers. AMHRII protein expression, evaluated by immunohistochemistry (IHC) was detected in approximately 70% of epithelial ovarian cancers. Using the same IHC protocol on more than 900 frozen samples covering 18 different cancer types we detected AMHRII expression in more than 50% of hepato-carcinomas, colorectal, lung, and renal cancer samples. AMHRII expression was not observed in neuroendocrine lung tumor samples nor in non-Hodgkin lymphoma samples. Complementary analyses by immunofluorescence and flow cytometry confirmed the detection of AMHRII on a panel of ovarian and colorectal cancers displaying comparable expression levels with mean values of 39,000 and 50,000 AMHRII receptors per cell, respectively. Overall, our results suggest that this embryonic receptor could be a suitable target for treating AMHRII-expressing tumors with an anti-AMHRII selective agent such as murlentamab, also named 3C23K or GM102. This potential therapeutic intervention was confirmed in vivo by showing antitumor activity of murlentamab against AMHRII-expressing colorectal cancer and hepatocarcinoma Patient-Derived tumor Xenografts (PDX) models.
Collapse
|
8
|
Ferdousy RN, Kereilwe O, Kadokawa H. Anti-Müllerian hormone receptor type 2 (AMHR2) expression in bovine oviducts and endometria: comparison of AMHR2 mRNA and protein abundance between old Holstein and young and old Wagyu females. Reprod Fertil Dev 2021; 32:738-747. [PMID: 32336320 DOI: 10.1071/rd19121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 12/02/2019] [Indexed: 12/14/2022] Open
Abstract
Anti-Müllerian hormone (AMH) is a glycoprotein produced by granulosa cells of preantral and small antral follicles that has multiple important roles in the ovaries. Recent studies have revealed extragonadal AMH regulation of gonadotrophin secretion from bovine gonadotrophs. In this study we investigated whether the primary receptor for AMH, AMH receptor type 2 (AMHR2), is expressed in bovine oviducts and endometria. Reverse transcription-polymerase chain reaction detected expression of AMHR2 mRNA in oviductal and endometrial specimens. Western blotting and immunohistochemistry were performed to analyse AMHR2 protein expression using anti-bovine AMHR2 antibody. Immunohistochemistry revealed robust AMHR2 expression in the tunica mucosa of the ampulla and isthmus, as well as in the glandular and luminal epithelium of the endometrium. AMHR2 mRNA (measured by real-time polymerase chain reaction) and AMHR2 protein expression in these layers did not significantly differ among oestrous phases in adult Wagyu cows (P>0.1). In addition, AMHR2 mRNA and protein expression in these layers did not differ among old Holsteins (mean (±s.e.m.) age 91.9±6.4 months) and young (26.6±0.8 months) and old (98.8±10.2 months) Wagyu cows. Therefore, AMHR2 is expressed in bovine oviducts and endometria.
Collapse
Affiliation(s)
- Raihana Nasrin Ferdousy
- Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi-shi, Yamaguchi-ken 1677-1, Japan
| | - Onalenna Kereilwe
- Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi-shi, Yamaguchi-ken 1677-1, Japan
| | - Hiroya Kadokawa
- Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi-shi, Yamaguchi-ken 1677-1, Japan; and Corresponding author. Email address:
| |
Collapse
|
9
|
Dilaver N, Pellatt L, Jameson E, Ogunjimi M, Bano G, Homburg R, D Mason H, Rice S. The regulation and signalling of anti-Müllerian hormone in human granulosa cells: relevance to polycystic ovary syndrome. Hum Reprod 2020; 34:2467-2479. [PMID: 31735954 DOI: 10.1093/humrep/dez214] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 09/02/2019] [Indexed: 01/14/2023] Open
Abstract
STUDY QUESTION What prevents the fall in anti-Müllerian hormone (AMH) levels in polycystic ovary syndrome (PCOS) and what are the consequences of this for follicle progression in these ovaries? SUMMARY ANSWER Exposure of granulosa cells (GCs) to high levels of androgens, equivalent to that found in PCOS, prevented the fall in AMH and was associated with dysregulated AMH-SMAD signalling leading to stalled follicle progression in PCOS. WHAT IS KNOWN ALREADY In normal ovaries, AMH exerts an inhibitory role on antral follicle development and a fall in AMH levels is a prerequisite for ovulation. Levels of AMH are high in PCOS, contributing to the dysregulated follicle growth that is a common cause of anovulatory infertility in these women. STUDY DESIGN, SIZE, DURATION Human KGN-GC (the cell line that corresponds to immature GC from smaller antral follicles (AF)) were cultured with a range of doses of various androgens to determine the effects on AMH production. KGN-GC were also treated with PHTPP (an oestrogen receptor β (ERβ) antagonist) to examine the relationship between AMH expression and the ratio of ERα:ERβ. The differential dose-related effect of AMH on gene expression and SMAD signalling was investigated in human granulosa-luteal cells (hGLC) from women with normal ovaries, with polycystic ovarian morphology (PCOM) and with PCOS. KGN-GC were also cultured for a prolonged period with AMH at different doses to assess the effect on cell proliferation and viability. PARTICIPANTS/MATERIALS, SETTING, METHODS AMH protein production by cells exposed to androgens was measured by ELISA. The effect of PHTPP on the mRNA expression levels of AMH, ERα and ERβ was assessed by real-time quantitative PCR (qPCR). The influence of AMH on the relative mRNA expression levels of aromatase, AMH and its receptor AMHRII, and the FSH and LH receptor (FSHR and LHR) in control, PCOM and PCOS hGLCs was quantified by qPCR. Western blotting was used to assess changes in levels of SMAD proteins (pSMAD-1/5/8; SMAD-4; SMAD-6 and SMAD-7) after exposure of hGLCs from healthy women and women with PCOS to AMH. The ApoTox-Glo Triplex assay was used to evaluate the effect of AMH on cell viability, cytotoxicity and apoptosis. MAIN RESULTS AND THE ROLE OF CHANCE Testosterone reduced AMH protein secreted from KGN-GC at 10-9-10-7 M (P < 0.05; P < 0.005, multiple uncorrected comparisons Fishers least squares difference), but at equivalent hyperandrogenemic levels no change was seen in AMH levels. 5α-DHT produced a significant dose-related increase in AMH protein secreted into the media (P = 0.022, ANOVA). Increasing the mRNA ratio of ERα:ERβ produced a corresponding increase in AMH mRNA expression (P = 0.015, two-way ANOVA). AMH increased mRNA levels of aromatase (P < 0.05, one-way ANOVA) and FSHR (P < 0.0001, one-way ANOVA) in hGLCs from women with PCOM, but not from normal cells or PCOS (normal n = 7, PCOM n = 5, PCOS n = 4). In contrast to hGLCs from ovulatory ovaries, in PCOS AMH reduced protein levels (cell content) of stimulatory pSMAD-1/5/8 and SMAD-4 but increased inhibitory SMAD-6 and -7 (P < 0.05, normal n = 6, PCOS n = 3). AMH at 20 and 50 ng/ml decreased KGN-GC cell proliferation but not viability after 8 days of treatment (P < 0.005, two-way ANOVA). LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Luteinised GC from women undergoing IVF have a relatively low expression of AMH/AMHRII but advantageously continue to display responses inherent to the ovarian morphology from which they are collected. To compensate, we also utilised the KGN cell line which has been characterised to be at a developmental stage close to that of immature GC. The lack of flutamide influence on testosterone effects is not in itself sufficient evidence to conclude that the effect on AMH is mediated via conversion to oestrogen, and the effect of aromatase inhibitors or oestrogen-specific inhibitors should be tested. The effect of flutamide was tested on testosterone but not DHT. WIDER IMPLICATIONS OF THE FINDINGS Normal folliculogenesis and ovulation are dependent on the timely reduction in AMH production from GC at the time of follicle selection. Our findings reveal for the first time that theca-derived androgens may play a role in this model but that this inhibitory action is lost at levels of androgens equivalent to those seen in PCOS. The AMH decline may either be a direct effect of androgens or an indirect one via conversion to oestradiol and acting through the upregulation of ERα, which is known to stimulate the AMH promoter. Interestingly, the ability of GCs to respond to this continually elevated AMH level appears to be reduced in cells from women with PCOS due to an adaptive alteration in the SMAD signalling pathway and lower expression of AMHRII, indicating a form of 'AMH resistance'. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by the Thomas Addison Scholarship, St Georges Hospital Trust. The authors report no conflict of interest in this work and have nothing to disclose. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Nafi Dilaver
- Cell Biology and Genetics Research Centre, St George's University of London, London SW17 0RE, UK.,Academic Foundation Programme, Imperial College London, Charing Cross Hospital, London W6 8RF, UK
| | - Laura Pellatt
- Cell Biology and Genetics Research Centre, St George's University of London, London SW17 0RE, UK.,Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, UK
| | - Ella Jameson
- Biomedical Science Undergraduate Programme, St George's University of London, London SW17 0RE, UK
| | - Michael Ogunjimi
- Biomedical Science Undergraduate Programme, St George's University of London, London SW17 0RE, UK
| | - Gul Bano
- Thomas Addison Endocrine Unit, St George's Hospital, Cranmer Terrace, London SW17 0RE, UK
| | - Roy Homburg
- Homerton Fertility Unit, Homerton University Hospital, Homerton Row, London, UK
| | - Helen D Mason
- Cell Biology and Genetics Research Centre, St George's University of London, London SW17 0RE, UK
| | - Suman Rice
- Cell Biology and Genetics Research Centre, St George's University of London, London SW17 0RE, UK
| |
Collapse
|
10
|
Kereilwe O, Kadokawa H. Anti-Müllerian hormone and its receptor are detected in most gonadotropin-releasing-hormone cell bodies and fibers in heifer brains. Domest Anim Endocrinol 2020; 72:106432. [PMID: 32169754 DOI: 10.1016/j.domaniend.2019.106432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 11/18/2019] [Accepted: 12/27/2019] [Indexed: 12/31/2022]
Abstract
Circulating concentrations of Anti-Müllerian hormone (AMH) can indicate fertility in various animals, but the physiological mechanisms underlying the effect of AMH on fertility remain unknown. We recently discovered that AMH has extragonadal functions via its main receptor, AMH receptor type 2 (AMHR2). Specifically, AMH stimulates the secretion of luteinizing hormone and follicle-stimulating hormone from bovine gonadotrophs. Moreover, gonadotrophs themselves express AMH to exert paracrine/autocrine functions, and AMH can activate gonadotropin-releasing-hormone (GnRH) neurons in mice. This study aimed to evaluate whether AMH and AMHR2 are detected in areas of the brain relevant to neuroendocrine control of reproduction: the preoptic area (POA), arcuate nucleus (ARC), and median eminence (ME), and in particular within GnRH neurons. Reverse transcription-polymerase chain reaction detected both AMH and AMHR2 mRNA in tissues containing POA, as well as in those containing both ARC and ME, collected from postpubertal heifers. Western blotting detected AMH and AMHR2 protein in the collected tissues. Triple fluorescence immunohistochemistry revealed that most cell bodies or fibers of GnRH neurons were AMHR2-positive and AMH-positive, although some were negative. Immunohistochemistry revealed that 75% to 85% of cell bodies and fibers of GnRH neurons were positive for both AMH and AMHR2 in the POA, ARC, and both the internal and external zones of the ME. The cell bodies of GnRH neurons were situated around other AMH-positive cell bodies or fibers of GnRH and non-GNRH neurons. Our findings thus indicate that AMH and AMHR2 are detected in most cell bodies or fibers of GnRH neurons in the POA, ARC, and ME of heifer brains. These data support the need for further study as to how AMH and AMHR2 act within the hypothalamus to influence GnRH and gonadotropin secretion.
Collapse
Affiliation(s)
- O Kereilwe
- Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi-shi, Yamaguchi-ken 1677-1, Japan
| | - H Kadokawa
- Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi-shi, Yamaguchi-ken 1677-1, Japan.
| |
Collapse
|
11
|
CAR T Cells Targeting MISIIR for the Treatment of Ovarian Cancer and Other Gynecologic Malignancies. Mol Ther 2019; 28:548-560. [PMID: 31870622 DOI: 10.1016/j.ymthe.2019.11.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 11/22/2019] [Accepted: 11/29/2019] [Indexed: 01/20/2023] Open
Abstract
The prognosis of patients diagnosed with advanced ovarian or endometrial cancer remains poor, and effective therapeutic strategies are limited. The Müllerian inhibiting substance type 2 receptor (MISIIR) is a transforming growth factor β (TGF-β) receptor family member, overexpressed by most ovarian and endometrial cancers while absent in most normal tissues. Restricted tissue expression, coupled with an understanding that MISIIR ligation transmits apoptotic signals to cancer cells, makes MISIIR an attractive target for tumor-directed therapeutics. However, the development of clinical MISIIR-targeted agents has been challenging. Prompted by the responses achieved in patients with blood malignancies using chimeric antigen receptor (CAR) T cell therapy, we hypothesized that MISIIR targeting may be achieved using a CAR T cell approach. Herein, we describe the development and evaluation of a CAR that targets MISIIR. T cells expressing the MISIIR-specific CAR demonstrated antigen-specific reactivity in vitro and eliminated MISIIR-overexpressing tumors in vivo. MISIIR CAR T cells also recognized a panel of human ovarian and endometrial cancer cell lines, and they lysed a battery of patient-derived tumor specimens in vitro, without mediating cytotoxicity of a panel of normal primary human cells. In conclusion, these results indicate that MISIIR targeting for the treatment of ovarian cancer and other gynecologic malignancies is achievable using CAR technology.
Collapse
|
12
|
Olivier LS, Evliyaoglu O, Weiskirchen R, van Helden J. Investigation of soluble anti-Müllerian hormone receptor type 2 as a biomarker for diagnosis of female fertility disorders. Reprod Biomed Online 2019; 39:1017-1025. [PMID: 31727499 DOI: 10.1016/j.rbmo.2019.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 10/26/2022]
Abstract
RESEARCH QUESTION The ectodomain of the anti-Müllerian hormone (AMH) type 2 receptor is shed by proteases under certain conditions, which makes it measurable in the blood. The aim of this study was to identify correlations of soluble anti-Müllerian hormone receptor type 2 (sAMHR2) with other sex hormone concentrations and to assess whether sAMHR2 may serve as a new biomarker in fertility disorders. DESIGN In a retrospective cross-sectional study of women (n = 186) with different gynaecological-endocrinological disorders, mixed-effect models were used to analyse the correlation with established diagnostic hormone tests. Receiver operating characteristic curve analysis was performed to assess the diagnostic performance. RESULTS There was a strong correlation of sAMHR2 with LH (r = 0.898) and FSH (r = 0.846) and a moderate correlation of AMH with testosterone (r = 0.666) and androstenedione (r = 0.696) (all P < 0.001). In diagnoses of polycystic ovary syndrome (PCOS), AMH showed the best performance (area under the curve [AUC] 0.981, cut-off 4 ng/ml) with 96% sensitivity and 94% specificity. sAMHR2 concentrations and sAMHR2/AMH ratios were elevated in women with ovarian insufficiency, compared with all other study groups, including post-menopausal women on hormone replacement therapy. Highest sensitivity and specificity (100% and 98.2%, respectively) were achieved with sAMHR2/AMH ratio for the diagnosis of post-menopausal status (cut-off 68.85). The sAMHR2/AMH ratio (AUC 0.997) had a better performance than sAMHR2 (AUC 0.947), FSH (AUC 0.989) and LH (AUC 0.967). CONCLUSIONS The sAMHR2/AMH ratio may serve as a useful biomarker for infertility diagnostics to identify post-menopausal women.
Collapse
Affiliation(s)
- Lena Sophie Olivier
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, University Hospital RWTH Aachen, Germany
| | - Osman Evliyaoglu
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, University Hospital RWTH Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, University Hospital RWTH Aachen, Germany.
| | - Josef van Helden
- Laboratory Diagnostic Center, University Hospital RWTH Aachen, Germany.
| |
Collapse
|
13
|
Lemcke RA, Stephens CS, Hildebrandt KA, Johnson PA. Anti-Müllerian hormone type II receptor in avian follicle development. Biol Reprod 2019; 99:1227-1234. [PMID: 29931109 DOI: 10.1093/biolre/ioy140] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 06/18/2018] [Indexed: 11/13/2022] Open
Abstract
Anti-Müllerian hormone (AMH) helps maintain the ovarian reserve by regulating primordial follicle activation and follicular selection in mammals, although its role within the avian ovary is unknown. In mammals, AMH is primarily produced in granulosa cells of preantral and early antral follicles. Similarly, in the hen, the granulosa cells of smaller follicles are the predominant source of AMH. The importance of AMH in mammalian ovarian dynamics suggests the protein and its specific Type II receptor, AMHRII, may have conserved functions in the hen. AMHRII mRNA expression is highest (P < 0.01) in small follicles of the hen and decreases as follicle size increases. Similarly, expression of AMHRII and AMH is highest in granulosa cells from small follicles as compared to larger follicles. Dissection of 3-5 mm follicles into ooplasm and granulosa components shows that AMHRII mRNA levels are greater in ooplasm than granulosa cells. Furthermore, immunohistochemistry also revealed AMHRII staining in the oocyte and granulosa cells. AMH expression in mammals is elevated during periods of reproductive dormancy, possibly protecting the ovarian reserve. AMHRII and AMH mRNA were significantly higher (P < 0.05) in nonlaying ovaries of broiler hens. In molting layer hens, AMHRII mRNA was significantly greater (P < 0.05) compared to nonmolting hen ovaries. These results suggest that AMH may have a direct effect on the oocyte and, thereby, contribute to bidirectional communication between oocyte and granulosa cells. Enhanced expression of AMHRII and AMH during reproductive quiescence supports a potential role of AMH in protecting the ovarian reserve in hens.
Collapse
Affiliation(s)
- R A Lemcke
- Department of Animal Science, Cornell University, Ithaca, New York, USA
| | - C S Stephens
- Department of Animal Science, Cornell University, Ithaca, New York, USA
| | - K A Hildebrandt
- Department of Animal Science, Cornell University, Ithaca, New York, USA
| | - P A Johnson
- Department of Animal Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
14
|
Kereilwe O, Pandey K, Borromeo V, Kadokawa H. Anti-Müllerian hormone receptor type 2 is expressed in gonadotrophs of postpubertal heifers to control gonadotrophin secretion. Reprod Fertil Dev 2019. [PMID: 29533759 DOI: 10.1071/rd17377] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Preantral and small antral follicles may secret anti-Müllerian hormone (AMH) to control gonadotrophin secretion from ruminant gonadotrophs. The present study investigated whether the main receptor for AMH, AMH receptor type 2 (AMHR2), is expressed in gonadotrophs of postpubertal heifers to control gonadotrophin secretion. Expression of AMHR2 mRNA was detected in anterior pituitaries (APs) of postpubertal heifers using reverse transcription-polymerase chain reaction. An anti-AMHR2 chicken antibody was developed against the extracellular region near the N-terminus of bovine AMHR2. Western blotting using this antibody detected the expression of AMHR2 protein in APs. Immunofluorescence microscopy using the same antibody visualised colocalisation of AMHR2 with gonadotrophin-releasing hormone (GnRH) receptor on the plasma membrane of gonadotrophs. AP cells were cultured for 3.5 days and then treated with increasing concentrations (0, 1, 10, 100, or 1000pgmL-1) of AMH. AMH (10-1000pgmL-1) stimulated (P<0.05) basal FSH secretion. In addition, AMH (100-1000pgmL-1) weakly stimulated (P<0.05) basal LH secretion. AMH (100-1000pgmL-1) inhibited GnRH-induced FSH secretion, but not GnRH-induced LH secretion, in AP cells. In conclusion, AMHR2 is expressed in gonadotrophs of postpubertal heifers to control gonadotrophin secretion.
Collapse
Affiliation(s)
- Onalenna Kereilwe
- Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi-shi, Yamaguchi-ken 1677-1, Japan
| | - Kiran Pandey
- Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi-shi, Yamaguchi-ken 1677-1, Japan
| | - Vitaliano Borromeo
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, 26900, Italy
| | - Hiroya Kadokawa
- Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi-shi, Yamaguchi-ken 1677-1, Japan
| |
Collapse
|
15
|
Rak AY, Trofimov AV, Ischenko AM. Anti-mullerian hormone receptor type II as a Potential Target for Antineoplastic Therapy. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2019. [DOI: 10.1134/s1990750819030053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Rak AY, Trofimov AV, Ischenko AM. [Mullerian inhibiting substance type II receptor as a potential target for antineoplastic therapy]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 65:202-213. [PMID: 31258143 DOI: 10.18097/pbmc20196503202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The review considers properties of the type II anti-Mullerian hormone receptor (mullerian inhibiting substance receptor type II, MISRII), a transmembrane sensor with its own serine/threonine protein kinase activity, triggering apoptosis of the Mullerian ducts in mammalian embryogenesis and providing formation of the male type reproductive system. According to recent data, MISRII overexpression in the postnatal period is found in cells of a number of ovarian, mammary gland, and prostate tumors, and anti-Mullerian hormone (AMH) has a pro-apoptotic effect on MISRII-positive tumor cells. This fact makes MISRII a potential target for targeted anti-cancer therapy. Treatment based on targeting MISRII seems to be a much more effective alternative to the traditional one and will significantly reduce the drug dose. However, the mechanism of MISRII-AMH interaction is still poorly understood, so the development of new anticancer drugs is complicated. The review analyzes MISRII molecular structure and expression levels in various tissues and cell lines, as well as current understanding of the AMH binding mechanisms and data on the possibility of using MISRII as a target for the action of AMH-based antineoplastic drugs.
Collapse
Affiliation(s)
- A Ya Rak
- State Research Institute of Highly Pure Biopreparations, Saint-Petersburg, Russia; Saint-Petersburg State University, Saint-Petersburg, Russia
| | - A V Trofimov
- State Research Institute of Highly Pure Biopreparations, Saint-Petersburg, Russia
| | - A M Ischenko
- State Research Institute of Highly Pure Biopreparations, Saint-Petersburg, Russia
| |
Collapse
|
17
|
Estupina P, Fontayne A, Barret JM, Kersual N, Dubreuil O, Le Blay M, Pichard A, Jarlier M, Pugnière M, Chauvin M, Chardès T, Pouget JP, Deshayes E, Rossignol A, Abache T, de Romeuf C, Terrier A, Verhaeghe L, Gaucher C, Prost JF, Pèlegrin A, Navarro-Teulon I. The anti-tumor efficacy of 3C23K, a glyco-engineered humanized anti-MISRII antibody, in an ovarian cancer model is mainly mediated by engagement of immune effector cells. Oncotarget 2018; 8:37061-37079. [PMID: 28427157 PMCID: PMC5513714 DOI: 10.18632/oncotarget.15715] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/11/2017] [Indexed: 01/06/2023] Open
Abstract
Ovarian cancer is the leading cause of death in women with gynecological cancers and despite recent advances, new and more efficient therapies are crucially needed. Müllerian Inhibiting Substance type II Receptor (MISRII, also named AMHRII) is expressed in most ovarian cancer subtypes and is a novel potential target for ovarian cancer immunotherapy. We previously developed and tested 12G4, the first murine monoclonal antibody (MAb) against human MISRII. Here, we report the humanization, affinity maturation and glyco-engineering steps of 12G4 to generate the Fc-optimized 3C23K MAb, and the evaluation of its in vivo anti-tumor activity. The epitopes of 3C23K and 12G4 were strictly identical and 3C23K affinity for MISRII was enhanced by a factor of about 14 (KD = 5.5 × 10−11 M vs 7.9 × 10−10 M), while the use of the EMABling® platform allowed the production of a low-fucosylated 3C23K antibody with a 30-fold KD improvement of its affinity to FcγRIIIa. In COV434-MISRII tumor-bearing mice, 3C23K reduced tumor growth more efficiently than 12G4 and its combination with carboplatin was more efficient than each monotherapy with a mean tumor size of 500, 1100 and 100 mm3 at the end of treatment with 3C23K (10 mg/kg, Q3-4D12), carboplatin (60 mg/kg, Q7D4) and 3C23K+carboplatin, respectively. Conversely, 3C23K-FcKO, a 3C23K form without affinity for the FcγRIIIa receptor, did not display any anti-tumor effect in vivo. These results strongly suggested that 3C23K mechanisms of action are mainly Fc-related. In vitro, antibody-dependent cytotoxicity (ADCC) and antibody-dependent cell phagocytosis (ADCP) were induced by 3C23K, as demonstrated with human effector cells. Using human NK cells, 50% of the maximal lysis was obtained with a 46-fold lower concentration of low-fucosylated 3C23K (2.9 ng/ml) than of 3C23K expressed in CHO cells (133.35 ng/ml). As 3C23K induced strong ADCC with human PBMC but almost none with murine PBMC, antibody-dependent cell phagocytosis (ADCP) was then investigated. 3C23K-dependent (100 ng/ml) ADCP was more active with murine than human macrophages (only 10% of living target cells vs. about 25%). These in vitro results suggest that the reduced ADCC with murine effectors could be partially balanced by ADCP activity in in vivo experiments. Taken together, these preclinical data indicate that 3C23K is a new promising therapeutic candidate for ovarian cancer immunotherapy and justify its recent introduction in a phase I clinical trial.
Collapse
Affiliation(s)
- Pauline Estupina
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France.,INSERM, U896, Montpellier, F-34298, France.,Université Montpellier, Montpellier, F-34298, France.,Institut Régional du Cancer de Montpellier, ICM, Montpellier, F-34298, France
| | | | | | - Nathalie Kersual
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France.,INSERM, U896, Montpellier, F-34298, France.,Université Montpellier, Montpellier, F-34298, France.,Institut Régional du Cancer de Montpellier, ICM, Montpellier, F-34298, France
| | | | - Marion Le Blay
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France.,INSERM, U896, Montpellier, F-34298, France.,Université Montpellier, Montpellier, F-34298, France.,Institut Régional du Cancer de Montpellier, ICM, Montpellier, F-34298, France
| | - Alexandre Pichard
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France.,INSERM, U896, Montpellier, F-34298, France.,Université Montpellier, Montpellier, F-34298, France.,Institut Régional du Cancer de Montpellier, ICM, Montpellier, F-34298, France
| | - Marta Jarlier
- Institut Régional du Cancer de Montpellier, ICM, Montpellier, F-34298, France
| | - Martine Pugnière
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France.,INSERM, U896, Montpellier, F-34298, France.,Université Montpellier, Montpellier, F-34298, France.,Institut Régional du Cancer de Montpellier, ICM, Montpellier, F-34298, France
| | - Maëva Chauvin
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France.,INSERM, U896, Montpellier, F-34298, France.,Université Montpellier, Montpellier, F-34298, France.,Institut Régional du Cancer de Montpellier, ICM, Montpellier, F-34298, France
| | - Thierry Chardès
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France.,INSERM, U896, Montpellier, F-34298, France.,Université Montpellier, Montpellier, F-34298, France.,Institut Régional du Cancer de Montpellier, ICM, Montpellier, F-34298, France
| | - Jean-Pierre Pouget
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France.,INSERM, U896, Montpellier, F-34298, France.,Université Montpellier, Montpellier, F-34298, France.,Institut Régional du Cancer de Montpellier, ICM, Montpellier, F-34298, France
| | - Emmanuel Deshayes
- Institut Régional du Cancer de Montpellier, ICM, Montpellier, F-34298, France
| | | | | | | | | | | | | | | | - André Pèlegrin
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France.,INSERM, U896, Montpellier, F-34298, France.,Université Montpellier, Montpellier, F-34298, France.,Institut Régional du Cancer de Montpellier, ICM, Montpellier, F-34298, France
| | - Isabelle Navarro-Teulon
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France.,INSERM, U896, Montpellier, F-34298, France.,Université Montpellier, Montpellier, F-34298, France.,Institut Régional du Cancer de Montpellier, ICM, Montpellier, F-34298, France
| |
Collapse
|
18
|
Hirschhorn T, Levi-Hofman M, Danziger O, Smorodinsky NI, Ehrlich M. Differential molecular regulation of processing and membrane expression of Type-I BMP receptors: implications for signaling. Cell Mol Life Sci 2017; 74:2645-2662. [PMID: 28357470 PMCID: PMC11107780 DOI: 10.1007/s00018-017-2488-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 02/09/2017] [Accepted: 02/13/2017] [Indexed: 12/15/2022]
Abstract
The Type-I bone morphogenetic protein receptors (BMPRs), BMPR1A and BMPR1B, present the highest sequence homology among BMPRs, suggestive of functional similitude. However, sequence elements within their extracellular domain, such as signal sequence or N-glycosylation motifs, may result in differential regulation of biosynthetic processing and trafficking and in alterations to receptor function. We show that (i) BMPR1A and the ubiquitous isoform of BMPR1B differed in mode of translocation into the endoplasmic reticulum; and (ii) BMPR1A was N-glycosylated while BMPR1B was not, resulting in greater efficiency of processing and plasma membrane expression of BMPR1A. We further demonstrated the importance of BMPR1A expression and glycosylation in ES-2 ovarian cancer cells, where (i) CRISPR/Cas9-mediated knockout of BMPR1A abrogated BMP2-induced Smad1/5/8 phosphorylation and reduced proliferation of ES-2 cells and (ii) inhibition of N-glycosylation by site-directed mutagenesis, or by tunicamycin or 2-deoxy-D-glucose treatments, reduced biosynthetic processing and plasma membrane expression of BMPR1A and BMP2-induced Smad1/5/8 phosphorylation.
Collapse
Affiliation(s)
- Tal Hirschhorn
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Michal Levi-Hofman
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Oded Danziger
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Nechama I Smorodinsky
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Marcelo Ehrlich
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
19
|
Beck TN, Korobeynikov VA, Kudinov AE, Georgopoulos R, Solanki NR, Andrews-Hoke M, Kistner TM, Pépin D, Donahoe PK, Nicolas E, Einarson MB, Zhou Y, Boumber Y, Proia DA, Serebriiskii IG, Golemis EA. Anti-Müllerian Hormone Signaling Regulates Epithelial Plasticity and Chemoresistance in Lung Cancer. Cell Rep 2016; 16:657-71. [PMID: 27396341 DOI: 10.1016/j.celrep.2016.06.043] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 05/19/2016] [Accepted: 06/08/2016] [Indexed: 12/19/2022] Open
Abstract
Anti-Müllerian hormone (AMH) and its type II receptor AMHR2, both previously thought to primarily function in gonadal tissue, were unexpectedly identified as potent regulators of transforming growth factor (TGF-β)/bone morphogenetic protein (BMP) signaling and epithelial-mesenchymal transition (EMT) in lung cancer. AMH is a TGF-β/BMP superfamily member, and AMHR2 heterodimerizes with type I receptors (ALK2, ALK3) also used by the type II receptor for BMP (BMPR2). AMH signaling regulates expression of BMPR2, ALK2, and ALK3, supports protein kinase B-nuclear factor κB (AKT-NF-κB) and SMAD survival signaling, and influences BMP-dependent signaling in non-small cell lung cancer (NSCLC). AMH and AMHR2 are selectively expressed in epithelial versus mesenchymal cells, and loss of AMH/AMHR2 induces EMT. Independent induction of EMT reduces expression of AMH and AMHR2. Importantly, EMT associated with depletion of AMH or AMHR2 results in chemoresistance but sensitizes cells to the heat shock protein 90 (HSP90) inhibitor ganetespib. Recognition of this AMH/AMHR2 axis helps to further elucidate TGF-β/BMP resistance-associated signaling and suggests new strategies for therapeutic targeting of EMT.
Collapse
Affiliation(s)
- Tim N Beck
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Program in Molecular and Cell Biology and Genetics, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Vladislav A Korobeynikov
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Medical Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Alexander E Kudinov
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | - Nehal R Solanki
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Program in Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | | | | | - David Pépin
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital and Department of Surgery, Harvard Medical School, Boston, MA 02114, USA
| | - Patricia K Donahoe
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital and Department of Surgery, Harvard Medical School, Boston, MA 02114, USA
| | - Emmanuelle Nicolas
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Margret B Einarson
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Yan Zhou
- Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA 19140, USA
| | - Yanis Boumber
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | - Ilya G Serebriiskii
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Kazan Federal University, 420000 Kazan, Russian Federation
| | - Erica A Golemis
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Program in Molecular and Cell Biology and Genetics, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| |
Collapse
|
20
|
Rocha A, Zanuy S, Gómez A. Conserved Anti-Müllerian Hormone: Anti-Müllerian Hormone Type-2 Receptor Specific Interaction and Intracellular Signaling in Teleosts. Biol Reprod 2016; 94:141. [PMID: 27226310 DOI: 10.1095/biolreprod.115.137547] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 04/29/2016] [Indexed: 12/24/2022] Open
Abstract
In higher vertebrates, anti-Müllerian hormone (AMH) is required for Müllerian duct regression in fetal males. AMH is also produced during postnatal life in both sexes regulating steroidogenesis and early stages of folliculogenesis. Teleosts lack Müllerian ducts, but Amh has been identified in several species including European sea bass. However, information on Amh type-2 receptor (Amhr2), the specific receptor for Amh binding, is restricted to a couple of fish species. Here, we report on cloning sea bass amhr2, the production of a recombinant sea bass Amh, and the functional analysis of this ligand-receptor couple. Phylogenetic analysis revealed that sea bass amhr2 segregates with Amhr2 from other vertebrates. This piscine receptor is capable of activating Smad proteins. Antibodies raised against sea bass Amh were used to study native and recombinant Amh, revealing proteins in the range of 66-70 kDa corresponding to the full length Amh. Once proteolytically treated, recombinant sea bass Amh generates a 12 kDa C-terminal mature protein, suggesting that contrary to what has been described for other fish Amh proteins, this protein is processed in a similar way as mammalian AMH. The mature sea bass Amh is a biologically active protein able to bind sea bass Amhr2 and, surprisingly, also human AMHR2. In prepubertal sea bass testes, Amh was detected by immunohistochemistry mostly in Sertoli cells surrounding early germ-cell generations. During spermatogenesis, a weaker staining signal could be observed in Sertoli cells surrounding spermatocytes.
Collapse
Affiliation(s)
- Ana Rocha
- Instituto de Acuicultura de Torre la Sal (Consejo Superior de Investigaciones Científicas), Torre la Sal, Castellón, Spain
| | - Silvia Zanuy
- Instituto de Acuicultura de Torre la Sal (Consejo Superior de Investigaciones Científicas), Torre la Sal, Castellón, Spain
| | - Ana Gómez
- Instituto de Acuicultura de Torre la Sal (Consejo Superior de Investigaciones Científicas), Torre la Sal, Castellón, Spain
| |
Collapse
|
21
|
Hiepen C, Yadin D, Rikeit P, Dörpholz G, Knaus P. Actions from head to toe: An update on Bone/Body Morphogenetic Proteins in health and disease. Cytokine Growth Factor Rev 2016; 27:1-11. [PMID: 26803465 DOI: 10.1016/j.cytogfr.2015.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The pleiotropic actions of Bone Morphogenetic Proteins in many different tissues has led us to the conclusion that they may be viewed as Body Morphogenetic Proteins (BMPs). This is supported by a broad range of distinct BMP-related diseases. Here, we summarize highlights from the 10th international BMP conference, which took place from September 16th to 20th 2014 in Berlin. Attendees updated us on recently identified common and context-specific mechanisms of BMP signaling and function. This included for example new insights into BMP pro-domains, BMP receptors, role of BMPs in muscle and novel consequences of ACVRI mutations. Currently, new BMPs are entering clinical trials with the BMP pathway considered as a 'druggable' target. We conclude that various recent and ongoing approaches could indeed help patients in the near future.
Collapse
Affiliation(s)
- Christian Hiepen
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| | - David Yadin
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Paul Rikeit
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Gina Dörpholz
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Petra Knaus
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, Berlin, 14195, Germany; Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
22
|
Amsalem AR, Marom B, Shapira KE, Hirschhorn T, Preisler L, Paarmann P, Knaus P, Henis YI, Ehrlich M. Differential regulation of translation and endocytosis of alternatively spliced forms of the type II bone morphogenetic protein (BMP) receptor. Mol Biol Cell 2016; 27:716-30. [PMID: 26739752 PMCID: PMC4750929 DOI: 10.1091/mbc.e15-08-0547] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 12/24/2015] [Indexed: 12/22/2022] Open
Abstract
The cytoplasmic extension of the long-form isoform of BMPRII, unique among TGF-β superfamily receptors, is found to regulate the translation of BMPRII and its clathrin-mediated endocytosis. Both processes reduce its cell surface levels. The higher expression of BMPRII-SF at the plasma membrane results in enhanced activation of Smad signaling. The expression and function of transforming growth factor-β superfamily receptors are regulated by multiple molecular mechanisms. The type II BMP receptor (BMPRII) is expressed as two alternatively spliced forms, a long and a short form (BMPRII-LF and –SF, respectively), which differ by an ∼500 amino acid C-terminal extension, unique among TGF-β superfamily receptors. Whereas this extension was proposed to modulate BMPRII signaling output, its contribution to the regulation of receptor expression was not addressed. To map regulatory determinants of BMPRII expression, we compared synthesis, degradation, distribution, and endocytic trafficking of BMPRII isoforms and mutants. We identified translational regulation of BMPRII expression and the contribution of a 3’ terminal coding sequence to this process. BMPRII-LF and -SF differed also in their steady-state levels, kinetics of degradation, intracellular distribution, and internalization rates. A single dileucine signal in the C-terminal extension of BMPRII-LF accounted for its faster clathrin-mediated endocytosis relative to BMPRII-SF, accompanied by mildly faster degradation. Higher expression of BMPRII-SF at the plasma membrane resulted in enhanced activation of Smad signaling, stressing the potential importance of the multilayered regulation of BMPRII expression at the plasma membrane.
Collapse
Affiliation(s)
- Ayelet R Amsalem
- Department of Neurobiology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Barak Marom
- Department of Neurobiology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Keren E Shapira
- Department of Neurobiology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tal Hirschhorn
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Livia Preisler
- Department of Neurobiology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Pia Paarmann
- Institute for Chemistry and Biochemistry, Freie Univesitaet Berlin, 1495 Berlin, Germany
| | - Petra Knaus
- Institute for Chemistry and Biochemistry, Freie Univesitaet Berlin, 1495 Berlin, Germany
| | - Yoav I Henis
- Department of Neurobiology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Marcelo Ehrlich
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
23
|
AAV9 delivering a modified human Mullerian inhibiting substance as a gene therapy in patient-derived xenografts of ovarian cancer. Proc Natl Acad Sci U S A 2015. [PMID: 26216943 DOI: 10.1073/pnas.1510604112] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
To improve ovarian cancer patient survival, effective treatments addressing chemoresistant recurrences are particularly needed. Mullerian inhibiting substance (MIS) has been shown to inhibit the growth of a stem-like population of ovarian cancer cells. We have recently engineered peptide modifications to human MIS [albumin leader Q425R MIS (LRMIS)] that increase production and potency in vitro and in vivo. To test this novel therapeutic peptide, serous malignant ascites from highly resistant recurrent ovarian cancer patients were isolated and amplified to create low-passage primary cell lines. Purified recombinant LRMIS protein successfully inhibited the growth of cancer spheroids in vitro in a panel of primary cell lines in four of six patients tested. Adeno-associated virus (AAV) -delivered gene therapy has undergone a clinical resurgence with a good safety profile and sustained gene expression. Therefore, AAV9 was used as a single i.p. injection to deliver LRMIS to test its efficacy in inhibiting growth of palpable tumors in patient-derived ovarian cancer xenografts from ascites (PDXa). AAV9-LRMIS monotherapy resulted in elevated and sustained blood concentrations of MIS, which significantly inhibited the growth of three of five lethal chemoresistant serous adenocarcinoma PDXa models without signs of measurable or overt toxicity. Finally, we tested the frequency of MIS type II receptor expression in a tissue microarray of serous ovarian tumors by immunohistochemistry and found that 88% of patients bear tumors that express the receptor. Taken together, these preclinical data suggest that AAV9-LRMIS provides a potentially well-tolerated and effective treatment strategy poised for testing in patients with chemoresistant serous ovarian cancer.
Collapse
|