1
|
Sartorelli V, Ciuffoli V. Metabolic regulation in adult and aging skeletal muscle stem cells. Genes Dev 2025; 39:186-208. [PMID: 39662967 PMCID: PMC11789647 DOI: 10.1101/gad.352277.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Adult stem cells maintain homeostasis and enable regeneration of most tissues. Quiescence, proliferation, and differentiation of stem cells and their progenitors are tightly regulated processes governed by dynamic transcriptional, epigenetic, and metabolic programs. Previously thought to merely reflect a cell's energy state, metabolism is now recognized for its critical regulatory functions, controlling not only energy and biomass production but also the cell's transcriptome and epigenome. In this review, we explore how metabolic pathways, metabolites, and transcriptional and epigenetic regulators are functionally interlinked in adult and aging skeletal muscle stem cells.
Collapse
Affiliation(s)
- Vittorio Sartorelli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Veronica Ciuffoli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
2
|
Shukla M, Duangrat R, Nopparat C, Sotthibundhu A, Govitrapong P. Melatonin Augments the Expression of Core Transcription Factors in Aged and Alzheimer's Patient Skin Fibroblasts. BIOLOGY 2024; 13:698. [PMID: 39336125 PMCID: PMC11428320 DOI: 10.3390/biology13090698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder. Altered neurogenesis and the appearance of AD pathological hallmarks are fundamental to this disease. SRY-Box transcription factor 2 (Sox2), octamer-binding transcription factor 4 (Oct4), and Nanog are a set of core transcription factors that play a very decisive role in the preservation of pluripotency and the self-renewal capacity of embryonic and adult stem cells. These factors are critically involved in AD pathogenesis, senescence, and aging. Skin fibroblasts are emblematic of cellular damage in patients. We, therefore, in the present study, analyzed the basal expression of these factors in young, aged, and AD fibroblasts. AD fibroblasts displayed an altered expression of these factors, differing from aged and young fibroblasts. Since melatonin is well acknowledged for its anti-aging, anti-senescence and anti-AD therapeutic benefits, we further investigated the effects of melatonin treatment on the expression of these factors in fibroblasts, along with precise validation of the observed data in human neuroblastoma SH-SY5Y cells. Our findings reveal that melatonin administration augmented the expression levels of Sox2, Oct4, and Nanog significantly in both cells. Altogether, our study presents the neuroprotective potential and efficacy of melatonin, which might have significant therapeutic benefits for aging and AD patients.
Collapse
Affiliation(s)
- Mayuri Shukla
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Kamphaeng Phet 6, Bangkok 10210, Thailand
| | - Raphiporn Duangrat
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Kamphaeng Phet 6, Bangkok 10210, Thailand
| | - Chutikorn Nopparat
- Innovative Learning Center, Srinakharinwirot University, Sukhumvit 23, Bangkok 10110, Thailand
| | - Areechun Sotthibundhu
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - Piyarat Govitrapong
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Kamphaeng Phet 6, Bangkok 10210, Thailand
| |
Collapse
|
3
|
Haridhasapavalan KK, Sundaravadivelu PK, Joshi N, Das NJ, Mohapatra A, Voorkara U, Kaveeshwar V, Thummer RP. Generation of a recombinant version of a biologically active cell-permeant human HAND2 transcription factor from E. coli. Sci Rep 2022; 12:16129. [PMID: 36167810 PMCID: PMC9515176 DOI: 10.1038/s41598-022-19745-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/02/2022] [Indexed: 12/02/2022] Open
Abstract
Transcription factor HAND2 has a significant role in vascularization, angiogenesis, and cardiac neural crest development. It is one of the key cardiac factors crucial for the enhanced derivation of functional and mature myocytes from non-myocyte cells. Here, we report the generation of the recombinant human HAND2 fusion protein from the heterologous system. First, we cloned the full-length human HAND2 gene (only protein-coding sequence) after codon optimization along with the fusion tags (for cell penetration, nuclear translocation, and affinity purification) into the expression vector. We then transformed and expressed it in Escherichia coli strain, BL21(DE3). Next, the effect (in terms of expression) of tagging fusion tags with this recombinant protein at two different terminals was also investigated. Using affinity chromatography, we established the one-step homogeneous purification of recombinant human HAND2 fusion protein; and through circular dichroism spectroscopy, we established that this purified protein had retained its secondary structure. We then showed that this purified human protein could transduce the human cells and translocate to its nucleus. The generated recombinant HAND2 fusion protein showed angiogenic potential in the ex vivo chicken embryo model. Following transduction in MEF2C overexpressing cardiomyoblast cells, this purified recombinant protein synergistically activated the α-MHC promoter and induced GFP expression in the α-MHC-eGFP reporter assay. Prospectively, the purified bioactive recombinant HAND2 protein can potentially be a safe and effective molecular tool in the direct cardiac reprogramming process and other biological applications.
Collapse
Affiliation(s)
- Krishna Kumar Haridhasapavalan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Pradeep Kumar Sundaravadivelu
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Neha Joshi
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Nayan Jyoti Das
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Anshuman Mohapatra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Udayashree Voorkara
- Department of Obstetrics and Gynaecology, SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara University, Dharwad, 580009, Karnataka, India
| | - Vishwas Kaveeshwar
- Central Research Laboratory, SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara University, Dharwad, 580009, Karnataka, India.
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
4
|
Sarikhani M, Vaghefi Moghaddam S, Firouzamandi M, Hejazy M, Rahimi B, Moeini H, Alizadeh E. Harnessing rat derived model cells to assess the toxicity of TiO 2 nanoparticles. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:41. [PMID: 35507219 PMCID: PMC9068637 DOI: 10.1007/s10856-022-06662-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 04/08/2022] [Indexed: 05/11/2023]
Abstract
Until now, a few studies have been conducted on the destructive effects of TiO2 NPs in living organisms, and studies on the toxicity of TiO2 NPs are still in the beginning phases. Because of the widespread use of TiO2 NPs in all areas of human life, it is essential to study their profound and fundamental toxic effects on each organ and body cell. Herein, we evaluate the effect of exposure to TiO2 NPs on in vitro models derived from the rat bone marrow and adipose tissues. Exposure to TiO2 NPs at 100 and 200 μg/ml exhibited cytotoxicity for the rat bone marrow mesenchymal stem cells (rBMSCs) and rat adipose mesenchymal stem cells (rATSC), respectively. Additionally, reduced rBMSCs and rATSCs frequencies in the S phase of the cell cycle. Moreover, TiO2 NPs enhanced the activity of cellular senescence-associated β-galactosidase in both model cells. Significantly higher relative expression of aging-related genes P53 and NF-kB (p < 0.05) and lower expression levels of anti-aging-related genes Nanog and SIRT1 were found in the treated cells (p < 0.05). Colony-forming and DAPI staining showed the reduction of cell growth and DNA damage in both rBMSCs and rATSCs. Our findings along with other similar findings showed that TiO2 NPs probably have negative effects on the cell growth, prompt the cells for entry into proliferation stop, DNA damage, and trigger the aging process. Graphical abstract.
Collapse
Affiliation(s)
- Manizheh Sarikhani
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Section, Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Sevil Vaghefi Moghaddam
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoumeh Firouzamandi
- Biotechnology Section, Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Marzie Hejazy
- Toxicology Section, Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Bahareh Rahimi
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Hassan Moeini
- Institute of Virology, Faculty of Medicine, Technische Universität of München, Munich, Germany
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Alhasan BA, Gordeev SA, Knyazeva AR, Aleksandrova KV, Margulis BA, Guzhova IV, Suvorova II. The mTOR Pathway in Pluripotent Stem Cells: Lessons for Understanding Cancer Cell Dormancy. MEMBRANES 2021; 11:858. [PMID: 34832087 PMCID: PMC8620939 DOI: 10.3390/membranes11110858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022]
Abstract
Currently, the success of targeted anticancer therapies largely depends on the correct understanding of the dormant state of cancer cells, since it is increasingly regarded to fuel tumor recurrence. The concept of cancer cell dormancy is often considered as an adaptive response of cancer cells to stress, and, therefore, is limited. It is possible that the cancer dormant state is not a privilege of cancer cells but the same reproductive survival strategy as diapause used by embryonic stem cells (ESCs). Recent advances reveal that high autophagy and mTOR pathway reduction are key mechanisms contributing to dormancy and diapause. ESCs, sharing their main features with cancer stem cells, have a delicate balance between the mTOR pathway and autophagy activity permissive for diapause induction. In this review, we discuss the functioning of the mTOR signaling and autophagy in ESCs in detail that allows us to deepen our understanding of the biology of cancer cell dormancy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Irina I. Suvorova
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (B.A.A.); (S.A.G.); (A.R.K.); (K.V.A.); (B.A.M.); (I.V.G.)
| |
Collapse
|
6
|
Deylam M, Alizadeh E, Sarikhani M, Hejazy M, Firouzamandi M. Zinc oxide nanoparticles promote the aging process in a size-dependent manner. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:128. [PMID: 34591206 PMCID: PMC8484102 DOI: 10.1007/s10856-021-06602-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 09/05/2021] [Indexed: 05/15/2023]
Abstract
Zinc oxide (ZnO) nanoparticles (NPs) are generally utilized in cosmetic goods, sheds, biosensors, and delivery of drug. As in vitro ideal systems, mesenchymal stem cells (MSCs) are used to test acute toxicity. In the present study, size-dependent cytotoxicity effects of ZnO NPs on MSCs were assessed. Bone marrow and adipose MSCs were treated with ZnO NPs with average sizes of 10-30 and 35-45 nm. The 5 and 10 µg/ml concentrations of ZnO NP were found to be the safe concentrations for the NP sizes of 10-30 and 35-45 nm, respectively. Cell-cycle analysis indicated that the small size of ZnO NPs has more negative effects on the process of cell entry to DNA synthesis when compared to the larger size. The results of the β-galactosidase test showed the promotion of the aging process in the cells treated with the smaller size of ZnO NPs. Both sizes of the NP were found to upregulate the aging-related genes NF-kB and p53 and downregulate the anti-aging gene Nanog. To sum up, the smaller size of ZnO NPs can enhance the aging process in the cells.
Collapse
Affiliation(s)
- Mahla Deylam
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Manizheh Sarikhani
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Marzie Hejazy
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Masoumeh Firouzamandi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
7
|
Narayan G, Agrawal A, Joshi N, Gogoi R, Nagotu S, Thummer RP. Protein Production and Purification of a Codon-Optimized Human NGN3 Transcription Factor from E. coli. Protein J 2021; 40:891-906. [PMID: 34550497 DOI: 10.1007/s10930-021-10020-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2021] [Indexed: 12/29/2022]
Abstract
Neurogenin 3 (NGN3) transcription factor is vital for the development of endocrine cells of the intestine and pancreas. NGN3 is also critical for the neural precursor cell determination in the neuroectoderm. Additionally, it is one of the vital transcription factors for deriving human β-cells from specialized somatic cells. In the current study, the production and purification of the human NGN3 protein from Escherichia coli (E. coli) is reported. First, the 642 bp protein-coding nucleotide sequence of the NGN3 gene was codon-optimized to enable enhanced protein expression in E. coli strain BL21(DE3). The codon-optimized NGN3 sequence was fused in-frame to three different fusion tags to enable cell penetration, nuclear translocation, and affinity purification. The gene insert with the fusion tags was subsequently cloned into an expression vector (pET28a( +)) for heterologous expression in BL21(DE3) cells. A suitable genetic construct and the ideal expression conditions were subsequently identified that produced a soluble form of the recombinant NGN3 fusion protein. This NGN3 fusion protein was purified to homogeneity (purity > 90%) under native conditions, and its secondary structure was retained post-purification. This purified protein, when applied to human cells, did not induce cytotoxicity. Further, the cellular uptake and nuclear translocation of the NGN3 fusion protein was demonstrated followed by its biological activity in PANC-1 cells. Prospectively, this recombinant protein can be utilized for various biological applications to investigate its functionality in cell reprogramming, biological processes, and diseases.
Collapse
Affiliation(s)
- Gloria Narayan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Akriti Agrawal
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Neha Joshi
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Ranadeep Gogoi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Guwahati, Changsari, Guwahati, Assam, 781101, India.,CSIR-North East Institute of Science & Technology, Jorhat, Assam, 785006, India
| | - Shirisha Nagotu
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
8
|
Identification of Optimal Expression Parameters and Purification of a Codon-Optimized Human GLIS1 Transcription Factor from Escherichia coli. Mol Biotechnol 2021; 64:42-56. [PMID: 34528219 DOI: 10.1007/s12033-021-00390-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
GLIS1 has multiple roles in embryonic development and in deriving induced pluripotent stem cells by aiding signaling pathways and chromatin assembly. An inexpensive and simple method to produce human GLIS1 protein from Escherichia coli (E. coli) is demonstrated in this study. Various parameters such as codon usage bias, E. coli strains, media, induction conditions (such as inducer concentration, cell density, time, and temperature), and genetic constructs were investigated to obtain soluble expression of human GLIS1 protein. Using identified expression conditions and an appropriate genetic construct, the human GLIS1 protein was homogeneously purified (purity > 90%) under native conditions. Importantly, the purified protein has upheld a stable secondary structure, as demonstrated by circular dichroism spectroscopy. To the best of our knowledge, this is the first study to report the ideal expression conditions of human GLIS1 protein in E. coli to achieve soluble expression and purification under native conditions, upholding its stable secondary structure post-purification. The biological activity of the purified GLIS1 fusion protein was further assessed in MDA-MB-231 cells. This biologically active human GLIS1 protein potentiates new avenues to understand its molecular mechanisms in different cellular functions in various cancers and in the generation of induced pluripotent stem cells.
Collapse
|
9
|
Shahini A, Rajabian N, Choudhury D, Shahini S, Vydiam K, Nguyen T, Kulczyk J, Santarelli T, Ikhapoh I, Zhang Y, Wang J, Liu S, Stablewski A, Thiyagarajan R, Seldeen K, Troen BR, Peirick J, Lei P, Andreadis ST. Ameliorating the hallmarks of cellular senescence in skeletal muscle myogenic progenitors in vitro and in vivo. SCIENCE ADVANCES 2021; 7:eabe5671. [PMID: 34516892 PMCID: PMC8442867 DOI: 10.1126/sciadv.abe5671] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Senescence of myogenic progenitors impedes skeletal muscle regeneration. Here, we show that overexpression of the transcription factor NANOG in senescent myoblasts can overcome the effects of cellular senescence and confer a youthful phenotype to senescent cells. NANOG ameliorated primary hallmarks of cellular senescence including genomic instability, loss of proteostasis, and mitochondrial dysfunction. The rejuvenating effects of NANOG included restoration of DNA damage response via up-regulation of DNA repair proteins, recovery of heterochromatin marks via up-regulation of histones, and reactivation of autophagy and mitochondrial energetics via up-regulation of AMP-activated protein kinase (AMPK). Expression of NANOG in the skeletal muscle of a mouse model of premature aging restored the number of myogenic progenitors and induced formation of eMyHC+ myofibers. This work demonstrates the feasibility of reversing the effects of cellular senescence in vitro and in vivo, with no need for reprogramming to the pluripotent state.
Collapse
Affiliation(s)
- Aref Shahini
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Nika Rajabian
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Debanik Choudhury
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Shahryar Shahini
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Kalyan Vydiam
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Thy Nguyen
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Joseph Kulczyk
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Tyler Santarelli
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Izuagie Ikhapoh
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Yali Zhang
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY 14260, USA
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY 14260, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY 14260, USA
| | - Aimee Stablewski
- Gene Targeting and Transgenic Shared Resource, Roswell Park Comprehensive Cancer Center
| | - Ramkumar Thiyagarajan
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Kenneth Seldeen
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Bruce R. Troen
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
- Research Service, VA Western New York Healthcare System, Buffalo, NY 14260, USA
| | - Jennifer Peirick
- Laboratory Animal Facilities, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Pedro Lei
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Stelios T. Andreadis
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
- Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
- Center for Cell Gene and Tissue Engineering (CGTE), University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
10
|
Ter Huurne M, Stunnenberg HG. G1-phase progression in pluripotent stem cells. Cell Mol Life Sci 2021; 78:4507-4519. [PMID: 33884444 PMCID: PMC8195903 DOI: 10.1007/s00018-021-03797-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/19/2021] [Accepted: 02/19/2021] [Indexed: 11/10/2022]
Abstract
During early embryonic development both the rapid increase in cell number and the expression of genes that control developmental decisions are tightly regulated. Accumulating evidence has indicated that these two seemingly independent processes are mechanistically intertwined. The picture that emerges from studies on the cell cycle of embryonic stem cells is one in which proteins that promote cell cycle progression prevent differentiation and vice versa. Here, we review which transcription factors and signalling pathways play a role in both maintenance of pluripotency as well as cell cycle progression. We will not only describe the mechanism behind their function but also discuss the role of these regulators in different states of mouse pluripotency. Finally, we elaborate on how canonical cell cycle regulators impact on the molecular networks that control the maintenance of pluripotency and lineage specification.
Collapse
Affiliation(s)
- Menno Ter Huurne
- Department of Molecular Biology, Faculty of Science, Radboud University, 6525GA, Nijmegen, The Netherlands
- Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Rd, Parkville, Melbourne, VIC, 3052, Australia
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Faculty of Science, Radboud University, 6525GA, Nijmegen, The Netherlands.
- Princess Maxima Centre for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands.
| |
Collapse
|
11
|
Generation of biologically active recombinant human OCT4 protein from E. coli. 3 Biotech 2021; 11:207. [PMID: 33927995 DOI: 10.1007/s13205-021-02758-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 03/27/2021] [Indexed: 02/06/2023] Open
Abstract
Octamer-binding transcription factor 4 (OCT4) is vital for early embryonic development and is a master regulator of pluripotency in embryonic stem cells. Notably, OCT4 is a key reprogramming factor to derive induced pluripotent stem cells, which have tremendous prospects in regenerative medicine. In the current study, we report heterologous expression and purification of human OCT4 in E. coli to produce pure recombinant protein under native conditions. To achieve this, the 1083 bp coding sequence of the human OCT4 gene was codon-optimized for heterologous expression in E. coli. The codon-optimized sequence was fused with fusion tags, namely a cell-penetrating peptide sequence for intracellular delivery, a nuclear localization sequence for intranuclear delivery, and a His-tag for affinity purification. Subsequently, the codon-optimized sequence and the fusion tags were cloned in the protein expression vector, pET28a(+), and transformed into E. coli strain BL21(DE3) for expression. The recombinant OCT4 protein was purified from the soluble fraction under native conditions using immobilized metal ion affinity chromatography in a facile manner, and its identity was confirmed by Western blotting and mass spectrometry. Furthermore, the secondary structure of the recombinant protein was analyzed using far ultraviolet circular dichroism spectroscopy, which confirmed that the purified fusion protein maintained a secondary structure conformation, and it predominantly composed of α-helices. Next, the recombinant OCT4 protein was applied to human cells, and was found that it was able to enter the cells and translocate to the nucleus. Furthermore, the biological activity of the transduced OCT4 protein was also demonstrated on human cells. This recombinant tool can substitute for genetic and viral forms of OCT4 to enable the derivation of integration-free pluripotent cells. It can also be used to elucidate its biological role in various cellular processes and diseases and for structural and biochemical studies. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02758-z.
Collapse
|
12
|
Haridhasapavalan KK, Ranjan SH, Bhattacharyya S, Thummer RP. Soluble expression, purification, and secondary structure determination of human MESP1 transcription factor. Appl Microbiol Biotechnol 2021; 105:2363-2376. [PMID: 33651130 DOI: 10.1007/s00253-021-11194-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/04/2021] [Accepted: 02/19/2021] [Indexed: 02/06/2023]
Abstract
Transcription factor MESP1 is a crucial factor regulating cardiac, hematopoietic, and skeletal myogenic development. Besides, it also contributes to the generation of functional cardiomyocytes. Here, we report the soluble expression and purification of the full-length human MESP1 protein from the heterologous system, which can be delivered into the target mammalian cells. To generate this biological macromolecule, we cloned its codon-optimized gene sequence fused to a nuclear localization sequence, a cell-penetrating peptide, and a His-tag into the protein expression vector and expressed in the bacterial system (E. coli strain BL21(DE3)). Subsequently, we have screened and identified the optimal expression parameters to obtain this recombinant fusion protein in soluble form from E. coli and examined its expression concerning the placement of fusion tags at either terminal. Further, we have purified this recombinant fusion protein to homogeneity under native conditions. Notably, this purified fusion protein has maintained its secondary structure after purification, primarily comprising α-helices and random coils. This molecular tool can potentially replace its genetic and viral forms in the cardiac reprogramming of fibroblasts to induce a cardiac transcriptional profile in an integration-free manner and elucidating its role in various biological processes and diseases. KEY POINTS: • Screening of the suitable gene construct was performed and identified. • Screening of optimal expression conditions was performed and identified. • Native purification of recombinant human MESP1 protein from E. coli was performed. • Recombinant MESP1 protein has retained its secondary structure after purification.
Collapse
Affiliation(s)
- Krishna Kumar Haridhasapavalan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Sujal Harsh Ranjan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Srirupa Bhattacharyya
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
13
|
Thool M, Dey C, Bhattacharyya S, Sudhagar S, Thummer RP. Generation of a Recombinant Stem Cell-Specific Human SOX2 Protein from Escherichia coli Under Native Conditions. Mol Biotechnol 2021; 63:327-338. [PMID: 33570706 DOI: 10.1007/s12033-021-00305-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
The stem cell-specific SOX2 transcription factor is critical for early embryonic development and the maintenance of embryonic and neural stem cell identity. It is also crucial for the generation of induced pluripotent and neural stem cells, thus providing immense prospect in patient-specific therapies. Here, we report soluble expression and purification of human SOX2 protein under native conditions from a bacterial system. To generate this macromolecule, we codon-optimized the protein-coding sequence and fused it to a nuclear localization signal, a protein transduction domain, and a His-tag. This was then cloned into a protein expression vector and was expressed in Escherichia coli. Subsequently, we have screened and identified the optimal expression conditions to obtain recombinant fusion protein in a soluble form and studied its expression concerning the position of fusion tags at either terminal. Furthermore, we purified two versions of recombinant SOX2 fusion proteins to homogeneity under native conditions and demonstrated that they maintained their secondary structure. This molecular tool can substitute genetic and viral forms of SOX2 to facilitate the derivation of integration-free induced pluripotent and neural stem cells. Furthermore, it can be used in elucidating its role in stem cells, various cellular processes and diseases, and for structural and biochemical studies.
Collapse
Affiliation(s)
- Madhuri Thool
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.,Department of Biotechnology, National Institute of Pharmaceutical Education and Research Guwahati, Changsari, Guwahati, Assam, 781101, India
| | - Chandrima Dey
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Srirupa Bhattacharyya
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - S Sudhagar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Guwahati, Changsari, Guwahati, Assam, 781101, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
14
|
Generation of cell-permeant recombinant human transcription factor GATA4 from E. coli. Bioprocess Biosyst Eng 2021; 44:1131-1146. [PMID: 33559005 DOI: 10.1007/s00449-021-02516-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/17/2021] [Indexed: 12/11/2022]
Abstract
Transcription factor GATA4 is expressed during early embryogenesis and is vital for proper development. In addition, it is a crucial reprogramming factor for deriving functional cardiomyocytes and was recently identified as a tumor suppressor protein in various cancers. To generate a safe and effective molecular tool that can potentially be used in a cell reprogramming process and as an anti-cancer agent, we have identified optimal expression parameters to obtain soluble expression of human GATA4 in E. coli and purified the same to homogeneity under native conditions using immobilized metal ion affinity chromatography. The identity of GATA4 protein was confirmed using western blotting and mass spectrometry. Using circular dichroism spectroscopy, it was demonstrated that the purified recombinant protein has maintained its secondary structure, primarily comprising of random coils and α-helices. Subsequently, this purified recombinant protein was applied to human cells and was found that it was non-toxic and able to enter the cells as well as translocate to the nucleus. Prospectively, this cell- and nuclear-permeant molecular tool is suitable for cell reprogramming experiments and can be a safe and effective therapeutic agent for cancer therapy.
Collapse
|
15
|
Narayan G, Sundaravadivelu PK, Agrawal A, Gogoi R, Nagotu S, Thummer RP. Soluble expression, purification, and secondary structure determination of human PDX1 transcription factor. Protein Expr Purif 2020; 180:105807. [PMID: 33309974 DOI: 10.1016/j.pep.2020.105807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 01/06/2023]
Abstract
The transcription factor PDX1 is a master regulator essential for proper development of the pancreas, duodenum and antrum. Furthermore, it is an indispensable reprogramming factor for the derivation of human β-cells, and recently, it has been identified as a tumor suppressor protein in gastric cancer. Here, we report the soluble expression and purification of the full-length human PDX1 protein from a heterologous system. To achieve this, the 849 bp coding sequence of the PDX1 gene was first codon-optimized for expression in Escherichia coli (E. coli). This codon-optimized gene sequence was fused to a protein transduction domain, a nuclear localization sequence, and a His-tag, and this insert was cloned into the protein expression vector for expression in E. coli strain BL21(DE3). Next, screening and identification of the suitable gene construct and optimal expression conditions to obtain this recombinant fusion protein in a soluble form was performed. Further, we have purified this recombinant fusion protein to homogeneity under native conditions. Importantly, the secondary structure of the protein was retained after purification. Further, this recombinant PDX1 fusion protein was applied to human cells and showed the ability to enter the cells as well as translocate to the nucleus. This recombinant tool can be used as a safe tool and can potentially replace its genetic and viral forms in the reprogramming process to induce a β-cell-specific transcriptional profile in an integration-free manner. Additionally, it can also be used to elucidate its role in cellular processes and for structural and biochemical studies.
Collapse
Affiliation(s)
- Gloria Narayan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Pradeep Kumar Sundaravadivelu
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Akriti Agrawal
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Ranadeep Gogoi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Guwahati, Changsari, 781101, Guwahati, Assam, India; CSIR-North East Institute of Science & Technology, Jorhat, 785006, Assam, India.
| | - Shirisha Nagotu
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
16
|
Haridhasapavalan KK, Sundaravadivelu PK, Thummer RP. Codon Optimization, Cloning, Expression, Purification, and Secondary Structure Determination of Human ETS2 Transcription Factor. Mol Biotechnol 2020; 62:485-494. [PMID: 32808171 DOI: 10.1007/s12033-020-00266-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2020] [Indexed: 02/08/2023]
Abstract
Transcription factor ETS2 regulates genes involved in development, differentiation, angiogenesis, proliferation, and apoptosis. In addition, it is one of the core reprogramming factors responsible for the generation of human cardiomyocytes from adult somatic cells. In this study, we report the heterologous expression of human ETS2 in E. coli to produce a highly pure recombinant protein. To accomplish this, the codon-optimized 1507 bp coding sequence of the human ETS2 gene in fusion with a His-tag, a cell-penetrating peptide, and a nuclear localization sequence was cloned in the protein expression vector and transformed into E. coli strain BL21(DE3) for expression. The recombinant protein was purified to homogeneity under native conditions using immobilized metal ion affinity chromatography, and its identity was confirmed by Western blotting with an ETS2 antibody. Using far-UV circular dichroism spectroscopy, we have demonstrated that the recombinant protein has retained its secondary structure, predominantly comprising of random coils and β-sheets. Prospectively, this biological recombinant ETS2 protein can substitute viral and genetic forms of ETS2 in a cell reprogramming process to facilitate the generation of clinical-grade cells. It can also be used to investigate its molecular role in various biological processes and diseases and for biochemical and structural studies.
Collapse
Affiliation(s)
- Krishna Kumar Haridhasapavalan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Pradeep Kumar Sundaravadivelu
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
17
|
Liu F, Shi J, Zhang Y, Lian A, Han X, Zuo K, Liu M, Zheng T, Zou F, Liu X, Jin M, Mu Y, Li G, Su G, Liu J. NANOG Attenuates Hair Follicle-Derived Mesenchymal Stem Cell Senescence by Upregulating PBX1 and Activating AKT Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4286213. [PMID: 31885790 PMCID: PMC6914946 DOI: 10.1155/2019/4286213] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/24/2019] [Accepted: 10/12/2019] [Indexed: 02/06/2023]
Abstract
Stem cells derived from elderly donors or harvested by repeated subculture exhibit a marked decrease in proliferative capacity and multipotency, which not only compromises their therapeutic potential but also raises safety concerns for regenerative medicine. NANOG-a well-known core transcription factor-plays an important role in maintaining the self-renewal and pluripotency of stem cells. Unfortunately, the mechanism that NANOG delays mesenchymal stem cell (MSC) senescence is not well-known until now. In our study, we showed that both ectopic NANOG expression and PBX1 overexpression (i) significantly upregulated phosphorylated AKT (p-AKT) and PARP1; (ii) promoted cell proliferation, cell cycle progression, and osteogenesis; (iii) reduced the number of senescence-associated-β-galactosidase- (SA-β-gal-) positive cells; and (iv) downregulated the expression of p16, p53, and p21. Western blotting and dual-luciferase activity assays showed that ectopic NANOG expression significantly upregulated PBX1 expression and increased PBX1 promoter activity. In contrast, PBX1 knockdown by RNA interference in hair follicle- (HF-) derived MSCs that were ectopically expressing NANOG resulted in the significant downregulation of p-AKT and the upregulation of p16 and p21. Moreover, blocking AKT with the PI3K/AKT inhibitor LY294002 or knocking down AKT via RNA interference significantly decreased PBX1 expression, while increasing p16 and p21 expression and the number of SA-β-gal-positive cells. In conclusion, our findings show that NANOG delays HF-MSC senescence by upregulating PBX1 and activating AKT signaling and that a feedback loop likely exists between PBX1 and AKT signaling.
Collapse
Affiliation(s)
- Feilin Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Jiahong Shi
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
- Department of Ultrasound, The China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yingyao Zhang
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
| | - Aobo Lian
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
| | - Xing Han
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
| | - Kuiyang Zuo
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
| | - Mingsheng Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
| | - Tong Zheng
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
| | - Fei Zou
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
| | - Xiaomei Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
| | - Minghua Jin
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
| | - Ying Mu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, China
| | - Gang Li
- Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
| | - Guanfang Su
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Jinyu Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
18
|
HosseinNia P, Hajian M, Jafarpour F, Hosseini SM, Tahmoorespur M, Nasr-Esfahani MH. Dynamics of The Expression of Pluripotency and Lineage Specific Genes in The Pre and Peri-Implantation Goat Embryo. CELL JOURNAL 2019; 21:194-203. [PMID: 30825293 PMCID: PMC6397601 DOI: 10.22074/cellj.2019.5732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 08/19/2018] [Indexed: 01/08/2023]
Abstract
Objective Two critical points of early development are the first and second lineage segregations, which are regulated by a wide spectrum of molecular and cellular factors. Gene regulatory networks, are one of the important components which handle inner cell mass (ICM) and trophectoderm (TE) fates and the pluripotency status across different mammalian species. Considering the importance of goats in agriculture and biotechnology, this study set out to investigate the dynamics of expression of the core pluripotency markers at the mRNA and protein levels. Materials and Methods In this experimental study, the expression pattern of three pluripotency markers (Oct4, Nanog and Sox2) and the linage specific markers (Rex1, Gata4 and Cdx2) were quantitatively assessed in in vitro matured (MII) oocytes and embryos at three distinctive stages: 8-16 cell stage, day-7 (D7) blastocysts and D14 blastocysts. Moreover, expression of Nanog, Oct4, Sox2 proteins, and their localization in the goat blastocyst was observed through immunocytochemistry. Results Relative levels of mRNA transcripts for Nanog and Sox2 in D3 (8-16 cell) embryos were significantly higher than D7 blastocysts and mature oocytes, while Oct4 was only significantly higher than D7 blastocysts. However, the expression pattern of Rex1, as an epiblast linage marker, decreased from the oocyte to the D14 stage. The expression pattern of Gata4 and Cdx2, as extra embryonic linage markers, also showed a similar trend from oocyte to D3 while their expressions were up-regulated in D14 blastocysts. Conclusion Reduction in Nanog, Oct4, Sox2 mRNA transcription and a late increase in extra embryonic linage markers suggests that the developmental program of linage differentiation is retarded in goat embryos compared to previously reported data on mice and humans. This is likely related to late the implantation in goats.
Collapse
Affiliation(s)
- Pouria HosseinNia
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.,Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.,Department of Research and Development, ROJETechnologies, Yazd, Iran
| | - Mehdi Hajian
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Farnoosh Jafarpour
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Seyed Morteza Hosseini
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mojtaba Tahmoorespur
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran. electronic Address:
| |
Collapse
|
19
|
Ye MY, Chen MY, Chang YH, Huang JS, Huang TT, Wong TY, Hong TM, Chen YL. Growth-regulated oncogene-α from oral submucous fibrosis fibroblasts promotes malignant transformation of oral precancerous cells. J Oral Pathol Med 2018; 47:880-886. [PMID: 30035347 DOI: 10.1111/jop.12768] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/28/2018] [Accepted: 07/19/2018] [Indexed: 01/02/2023]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is a common human malignancy and is usually preceded by the oral precancerous lesions. Oral submucous fibrosis (OSF) is one of the oral precancerous lesions with high incidence of malignant transformation. In addition to cancer cells, cancer-associated fibroblasts in the tumor microenvironment are correlated with cancer progression, but the role of fibroblasts from OSF in tumorigenesis and progression is still unknown. Growth-regulated oncogene-α (GRO-α), a member of CXC chemokine family, is related to tumorigenesis in several cancers. In this study, we would like to explore the role of GRO-α from OSF-associated fibroblasts in oral cancer progression. METHODS We isolated primary culture fibroblasts of normal, precancerous, and tumor tissues from patients with OSCC accompanied with OSF. A cytokine array was used to screen cytokine secretions in the conditioned media of the fibroblasts. A wound healing migration assay, WST-1 cell proliferation assay, rhodamine-phalloidin staining, and soft agar colony formation assay were used to investigate the effects of GRO-α on a dysplastic oral keratinocyte cell line (DOK) cell migration, growth, and anchorage-independent growth. RESULTS GRO-α was identified to be increased in conditioned media of OSF-associated fibroblasts. GRO-α promotes DOK cells proliferation, migration, and anchorage-independent growth through enhancing the EGFR/ERK signaling pathway, F-actin rearrangement, and stemness properties, respectively. Moreover, GRO-α neutralizing antibodies downregulated the conditioned medium-induced cell proliferation and migration of DOK. CONCLUSION GRO-α from OSF-associated fibroblasts paracrinally promotes oral malignant transformation and significantly contributes to OSCC development.
Collapse
Affiliation(s)
- Mei-Yin Ye
- Institutes of Oral Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Meng-Yen Chen
- Institutes of Oral Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Han Chang
- Institutes of Oral Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jehn-Shyun Huang
- Institutes of Oral Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tze-Ta Huang
- Institutes of Oral Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tung-Yiu Wong
- Institutes of Oral Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tse-Ming Hong
- Institutes of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yuh-Ling Chen
- Institutes of Oral Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
20
|
Functional characterization of NANOG in goat pre-implantation embryonic development. Theriogenology 2018; 120:33-39. [PMID: 30092372 DOI: 10.1016/j.theriogenology.2018.07.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 07/21/2018] [Accepted: 07/23/2018] [Indexed: 11/24/2022]
Abstract
Nanog as a novel pluripotent cell-specific gene plays important roles in regulation of signaling pathways for maintenance and induction of pluripotency in inner cell mass (ICM) and embryonic stem cells (ESC) in mouse. The molecular features and transcription regulation of NANOG gene in domestic animals are not well defined. In this study, we performed knockdown of NANOG mRNA in goat embryos and examined its effect on early embryonic development. Presumptive zygotes were injected with a volume of 8-10 pl NANOG or scrambled (SCR) siRNA, and subsequently cleavage and blastocyst formation rate were assessed. Furthermore, gene expression analysis was carried out in 6-8 cell and blastocyst derived embryos from non-injected controls, SCR - and siRNA-injected presumptive zygotes. Cleavage and blastocyst rates in siRNA groups were insignificantly lower than the control and SCR groups. Embryos with reduced expression of NANOG showed decrease in number of trophectoderm (TE) and total cells in blastocysts. Analysis of expression of developmentally important genes (SOX2, OCT4 and NANOG), which work as a network, showed that NANOG knockdown results in significant increase in expression of SOX2 and OCT4 and among the possible target genes (CDX2, REX1 and GATA4) of this network, only GATA4 showed increased expression. Our results suggest that NANOG is likely to be required for proliferation of trophoblastic cells.
Collapse
|
21
|
Münst B, Thier MC, Winnemöller D, Helfen M, Thummer RP, Edenhofer F. Nanog induces suppression of senescence through downregulation of p27KIP1 expression. Development 2016. [DOI: 10.1242/dev.136952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|