1
|
van Pelt J, Meeusen B, Derua R, Guffens L, Van Cutsem E, Janssens V, Verslype C. Human pancreatic cancer patients with Epithelial-to-Mesenchymal Transition and an aggressive phenotype show a disturbed balance in Protein Phosphatase Type 2A expression and functionality. J Transl Med 2023; 21:317. [PMID: 37170215 PMCID: PMC10176933 DOI: 10.1186/s12967-023-04145-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/20/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) has a low survival, its incidence is rising and little therapeutic improvements are expected in the near future. It has been observed that Epithelial-to-Mesenchymal transition (EMT) contributes (including in PDAC) to a more aggressive cancer phenotype. Additionally, largely unexplored, studies indicate a mechanistic interplay between Protein Phosphatase Type 2A (PP2A) enzymes and EMT that could offer treatment opportunities. The aim was to investigate the relation of a PP2A expression signature (encompassing all PP2A subunits, endogenous inhibitors and activators) with EMT and aggressive pancreatic cancer, and to discuss possible implications. METHODS We retrieved different PDAC expression datasets from NCBI to capture the variation in patients, and analyzed these using datamining, survival analysis, differential gene and protein expression. We determined genes highly associated with aggressive PDAC. For in vitro evaluation, Panc-1 cells were treated with the pharmacologic PP2A inhibitor Okadaic Acid (OA). Additionally, two OA-resistant Panc-1 clones were developed and characterized. RESULTS In patients, there is a strong correlation between EMT and aggressive PDAC, and between aggressive PDAC and PP2A, with a significant upregulation of PP2A inhibitor genes. Several PP2A genes significantly correlated with decreased survival. In vitro, short-term exposure to OA induced EMT in Panc-1 cells. This shift towards EMT was further pronounced in the OA-resistant Panc-1 clones, morphologically and by pathway analysis. Proteomic analysis and gene sequencing showed that the advanced OA-resistant model most resembles the clinical PDAC presentation (with EMT signature, and with several specific PP2A genes upregulated, and others downregulated). CONCLUSIONS We demonstrated a strong association between EMT, altered PP2A expression and aggressive PDAC in patients. Also, in vitro, PP2A inhibition induces EMT. Overall, statistics suggests the mechanistic importance of PP2A dysregulation for PDAC progression. Translationally, our observations indicate that pharmacologic restoration of PP2A activity could be an attractive therapeutic strategy to block or reverse progression.
Collapse
Affiliation(s)
- Jos van Pelt
- Laboratory of Digestive Oncology, Department of Oncology, KU Leuven & University Hospitals Leuven, Geb. Onderwijs & Navorsing 4, Room 07.465, Herestraat 49, Bus 603, B3000, Leuven, Belgium.
- KU Leuven Cancer Institute (LKI), Herestraat 49, B3000, Leuven, Belgium.
| | - Bob Meeusen
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, O&N1, University of Leuven (KU Leuven), Herestraat 49, Bus 901, B3000, Leuven, Belgium
| | - Rita Derua
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, O&N1, University of Leuven (KU Leuven), Herestraat 49, Bus 901, B3000, Leuven, Belgium
- SyBioMa (KU Leuven), Herestraat 49, B3000, Leuven, Belgium
| | - Liesbeth Guffens
- KU Leuven Cancer Institute (LKI), Herestraat 49, B3000, Leuven, Belgium
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, O&N1, University of Leuven (KU Leuven), Herestraat 49, Bus 901, B3000, Leuven, Belgium
| | - Eric Van Cutsem
- Laboratory of Digestive Oncology, Department of Oncology, KU Leuven & University Hospitals Leuven, Geb. Onderwijs & Navorsing 4, Room 07.465, Herestraat 49, Bus 603, B3000, Leuven, Belgium
- KU Leuven Cancer Institute (LKI), Herestraat 49, B3000, Leuven, Belgium
| | - Veerle Janssens
- KU Leuven Cancer Institute (LKI), Herestraat 49, B3000, Leuven, Belgium.
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, O&N1, University of Leuven (KU Leuven), Herestraat 49, Bus 901, B3000, Leuven, Belgium.
| | - Chris Verslype
- Laboratory of Digestive Oncology, Department of Oncology, KU Leuven & University Hospitals Leuven, Geb. Onderwijs & Navorsing 4, Room 07.465, Herestraat 49, Bus 603, B3000, Leuven, Belgium
- KU Leuven Cancer Institute (LKI), Herestraat 49, B3000, Leuven, Belgium
| |
Collapse
|
2
|
Haanen TJ, O'Connor CM, Narla G. Biased holoenzyme assembly of protein phosphatase 2A (PP2A): From cancer to small molecules. J Biol Chem 2022; 298:102656. [PMID: 36328247 PMCID: PMC9707111 DOI: 10.1016/j.jbc.2022.102656] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Protein phosphatase 2A (PP2A) is a family of serine threonine phosphatases responsible for regulating protein phosphorylation, thus opposing the activity of cellular kinases. PP2A is composed of a catalytic subunit (PP2A Cα/β) and scaffolding subunit (PP2A Aα/β) and various substrate-directing B regulatory subunits. PP2A biogenesis is regulated at multiple levels. For example, the sequestration of the free catalytic subunit during the process of biogenesis avoids promiscuous phosphatase activity. Posttranslational modifications of PP2A C direct PP2A heterotrimeric formation. Additionally, PP2A functions as a haploinsufficient tumor suppressor, where attenuated PP2A enzymatic activity creates a permissive environment for oncogenic transformation. Recent work studying PP2A in cancer showed that its role in tumorigenesis is more nuanced, with some holoenzymes being tumor suppressive, while others are required for oncogenic transformation. In cancer biology, PP2A function is modulated through various mechanisms including the displacement of specific B regulatory subunits by DNA tumor viral antigens, by recurrent mutations, and through loss of carboxymethyl-sensitive heterotrimeric complexes. In aggregate, these alterations bias PP2A activity away from its tumor suppressive functions and toward oncogenic ones. From a therapeutic perspective, molecular glues and disruptors present opportunities for both the selective stabilization of tumor-suppressive holoenzymes and disruption of holoenzymes that are pro-oncogenic. Collectively, these approaches represent an attractive cancer therapy for a wide range of tumor types. This review will discuss the mechanisms by which PP2A holoenzyme formation is dysregulated in cancer and the current therapies that are aimed at biasing heterotrimer formation of PP2A for the treatment of cancer.
Collapse
Affiliation(s)
- Terrance J Haanen
- Division of Genetic Medicine, Department of Internal Medicine, The University of Michigan, Ann Arbor, Michigan, USA
| | - Caitlin M O'Connor
- Division of Genetic Medicine, Department of Internal Medicine, The University of Michigan, Ann Arbor, Michigan, USA
| | - Goutham Narla
- Division of Genetic Medicine, Department of Internal Medicine, The University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
3
|
He JJ, Shang L, Yu QW, Jiao N, Qiu S, Zhu WX, Wu DF, Tian YE, Zhang Q. High expression of protein phosphatase 2 regulatory subunit B'' alpha predicts poor outcome in hepatocellular carcinoma patients after liver transplantation. World J Gastrointest Oncol 2021; 13:716-731. [PMID: 34322200 PMCID: PMC8299934 DOI: 10.4251/wjgo.v13.i7.716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/06/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Protein phosphatase 2 regulatory subunit B'' alpha (PPP2R3A) gene has been reported in other tumors, but the influence of PPP2R3A gene expression on the occurrence, development, and prognosis of hepatocellular carcinoma (HCC) remains unclear.
AIM To investigate whether the PPP2R3A gene could be used to predict tumor recurrence and survival of HCC patients after liver transplantation (LT).
METHODS Diseased liver tissues of HCC patients after LT were collected as well as their clinical data and follow-up information. The immunohistochemical method was used to detect the expression of PPP2R3A protein in the tissues of 108 patients with primary liver cancer. The χ2 test was used to analyze the relationship between PPP2R3A protein expression levels and the clinicopathological features of tumors. The Kaplan-Meier method was used to analyze overall postoperative survival. The COX proportional hazard model was used to analyze adverse prognostic factors.
RESULTS Immunohistochemistry showed that the PPP2R3A protein was mainly expressed in the cytoplasm of HCC cells. Compared to corresponding peritumoral tissues, expression was higher in HCC tissues (P ≤ 0.001). Correlation analysis showed that high PPP2R3A expression was correlated with preoperative serum alpha-fetoprotein (AFP) levels (P = 0.003), tumor-node-metastasis-t stage (P ≤ 0.001), and envelope invasion (P = 0.001). Univariate analysis showed that overall survival (P ≤ 0.001) and recurrence-free survival (P = 0.025) of patients with high PPP2R3A expression (≥ 4 points) were poor compared to those with low expression (< 4 points). The overall survival rates or recurrence-free survival rates at 1, 2, and 3 years with high PPP2R3A expression were 73%, 38%, and 23% or 31%, 23%, and 23%, respectively. Multivariate analysis showed that high PPP2R3A expression (hazard ratio = 2.900, 95% confidence interval: 1.411–5.960, P = 0.004) was an independent survival risk factor of HCC patients after LT, and it was also an independent predictor of postoperative tumor recurrence. This study also showed in patients with AFP ≥ 400 ng/mL, the overall survival (P ≤ 0.001) and recurrence-free survival (P = 0.023) of those with high PPP2R3A expression were significantly worse compared to those with low PPP2R3A expression. When PPP2R3A expression was low, the overall survival rate (P = 0.461) or recurrence-free survival rate (P = 0.072) after LT in patients with AFP < 400 ng/mL and ≥ 400 ng/mL was not significantly difference. The 1, 2, and 3 year survival rate of patients with low PPP2R3A expression and AFP < 400 ng/mL were 98%, 80%, and 69%, respectively, while patients who met Hangzhou criteria had a post-transplant 1, 2, and 3 years overall survival rate of 89%, 66%, and 55%, respectively.
CONCLUSION High expression of PPP2R3A might be a potential marker for predicting poor prognosis of HCC after LT. Combined with serum AFP levels, PPP2R3A might enhance the accuracy of predicting HCC outcome in patients after LT and supplement the efficacy of the Hangzhou criteria.
Collapse
Affiliation(s)
- Jia-Jia He
- Clinical College of General Hospital of Chinese People's Armed Police Force, Anhui Medical University, Hefei 230032, Anhui, China
- Department of Organ Transplantation, The Third Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Lei Shang
- Department of Health Statistics, Fourth Military Medical University, Xi'an 710032, Shanxi Province, China
| | - Qun-Wei Yu
- Department of Ophthalmology, The Third Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Ning Jiao
- Department of Organ Transplantation, The Third Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Shuang Qiu
- Department of Organ Transplantation, The Third Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Wei-Xiong Zhu
- Department of Organ Transplantation, The Third Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Dong-Feng Wu
- Department of Organ Transplantation, The Third Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Yun-Er Tian
- Department of Organ Transplantation, The Third Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Qing Zhang
- Clinical College of General Hospital of Chinese People's Armed Police Force, Anhui Medical University, Hefei 230032, Anhui, China
- Department of Organ Transplantation, The Third Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| |
Collapse
|
4
|
He JJ, Shang L, Yu QW, Jiao N, Qiu S, Zhu WX, Wu DF, Tian YE, Zhang Q. High expression of protein phosphatase 2 regulatory subunit B'' alpha predicts poor outcome in hepatocellular carcinoma patients after liver transplantation. World J Gastrointest Oncol 2021. [DOI: 10.4251/wjgo.v13.i7.541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
5
|
Sandal P, Jong CJ, Merrill RA, Song J, Strack S. Protein phosphatase 2A - structure, function and role in neurodevelopmental disorders. J Cell Sci 2021; 134:270819. [PMID: 34228795 DOI: 10.1242/jcs.248187] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Neurodevelopmental disorders (NDDs), including intellectual disability (ID), autism and schizophrenia, have high socioeconomic impact, yet poorly understood etiologies. A recent surge of large-scale genome or exome sequencing studies has identified a multitude of mostly de novo mutations in subunits of the protein phosphatase 2A (PP2A) holoenzyme that are strongly associated with NDDs. PP2A is responsible for at least 50% of total Ser/Thr dephosphorylation in most cell types and is predominantly found as trimeric holoenzymes composed of catalytic (C), scaffolding (A) and variable regulatory (B) subunits. PP2A can exist in nearly 100 different subunit combinations in mammalian cells, dictating distinct localizations, substrates and regulatory mechanisms. PP2A is well established as a regulator of cell division, growth, and differentiation, and the roles of PP2A in cancer and various neurodegenerative disorders, such as Alzheimer's disease, have been reviewed in detail. This Review summarizes and discusses recent reports on NDDs associated with mutations of PP2A subunits and PP2A-associated proteins. We also discuss the potential impact of these mutations on the structure and function of the PP2A holoenzymes and the etiology of NDDs.
Collapse
Affiliation(s)
- Priyanka Sandal
- Department of Neuroscience and Pharmacology, and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242, USA
| | - Chian Ju Jong
- Department of Neuroscience and Pharmacology, and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242, USA
| | - Ronald A Merrill
- Department of Neuroscience and Pharmacology, and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242, USA
| | - Jianing Song
- Department of Neuroscience and Pharmacology, and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242, USA
| | - Stefan Strack
- Department of Neuroscience and Pharmacology, and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
6
|
Bryant JP, Levy A, Heiss J, Banasavadi-Siddegowda YK. Review of PP2A Tumor Biology and Antitumor Effects of PP2A Inhibitor LB100 in the Nervous System. Cancers (Basel) 2021; 13:cancers13123087. [PMID: 34205611 PMCID: PMC8235527 DOI: 10.3390/cancers13123087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Central and peripheral nervous system tumors represent a heterogenous group of neoplasms which often demonstrate resistance to treatment. Given that these tumors are often refractory to conventional therapy, novel pharmaceutical regimens are needed for successfully treating this pathology. One such therapeutic is the serine/threonine phosphatase inhibitor, LB100. LB100 is a water-soluble competitive protein phosphtase inhibitor that has demonstrated antitumor effects in preclinical and clinical trials. In this review, we aim to summarize current evidence demonstrating the efficacy of LB100 as an inhibitor of nervous system tumors. Furthermore, we review the involvement of the well-studied phosphatase, protein phosphatase 2A, in oncogenic cell signaling pathways, neurophysiology, and neurodevelopment. Abstract Protein phosphatase 2A (PP2A) is a ubiquitous serine/threonine phosphatase implicated in a wide variety of regulatory cellular functions. PP2A is abundant in the mammalian nervous system, and dysregulation of its cellular functions is associated with myriad neurodegenerative disorders. Additionally, PP2A has oncologic implications, recently garnering attention and emerging as a therapeutic target because of the antitumor effects of a potent PP2A inhibitor, LB100. LB100 abrogation of PP2A is believed to exert its inhibitory effects on tumor progression through cellular chemo- and radiosensitization to adjuvant agents. An updated and unifying review of PP2A biology and inhibition with LB100 as a therapeutic strategy for targeting cancers of the nervous system is needed, as other reviews have mainly covered broader applications of LB100. In this review, we discuss the role of PP2A in normal cells and tumor cells of the nervous system. Furthermore, we summarize current evidence regarding the therapeutic potential of LB100 for treating solid tumors of the nervous system.
Collapse
Affiliation(s)
- Jean-Paul Bryant
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; (J.-P.B.); (J.H.)
| | - Adam Levy
- Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - John Heiss
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; (J.-P.B.); (J.H.)
| | - Yeshavanth Kumar Banasavadi-Siddegowda
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; (J.-P.B.); (J.H.)
- Correspondence: ; Tel.: +1-301-451-0970
| |
Collapse
|
7
|
Di Leo L, Bodemeyer V, Bosisio FM, Claps G, Carretta M, Rizza S, Faienza F, Frias A, Khan S, Bordi M, Pacheco MP, Di Martino J, Bravo-Cordero JJ, Daniel CJ, Sears RC, Donia M, Madsen DH, Guldberg P, Filomeni G, Sauter T, Robert C, De Zio D, Cecconi F. Loss of Ambra1 promotes melanoma growth and invasion. Nat Commun 2021; 12:2550. [PMID: 33953176 PMCID: PMC8100102 DOI: 10.1038/s41467-021-22772-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 03/26/2021] [Indexed: 12/20/2022] Open
Abstract
Melanoma is the deadliest skin cancer. Despite improvements in the understanding of the molecular mechanisms underlying melanoma biology and in defining new curative strategies, the therapeutic needs for this disease have not yet been fulfilled. Herein, we provide evidence that the Activating Molecule in Beclin-1-Regulated Autophagy (Ambra1) contributes to melanoma development. Indeed, we show that Ambra1 deficiency confers accelerated tumor growth and decreased overall survival in Braf/Pten-mutated mouse models of melanoma. Also, we demonstrate that Ambra1 deletion promotes melanoma aggressiveness and metastasis by increasing cell motility/invasion and activating an EMT-like process. Moreover, we show that Ambra1 deficiency in melanoma impacts extracellular matrix remodeling and induces hyperactivation of the focal adhesion kinase 1 (FAK1) signaling, whose inhibition is able to reduce cell invasion and melanoma growth. Overall, our findings identify a function for AMBRA1 as tumor suppressor in melanoma, proposing FAK1 inhibition as a therapeutic strategy for AMBRA1 low-expressing melanoma.
Collapse
Affiliation(s)
- Luca Di Leo
- Melanoma Research Team, Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Valérie Bodemeyer
- Melanoma Research Team, Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Francesca M Bosisio
- Lab of Translational Cell and Tissue Research, University of Leuven, Leuven, Belgium
| | | | - Marco Carretta
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Salvatore Rizza
- Redox Biology Group, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Fiorella Faienza
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Alex Frias
- Melanoma Research Team, Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Shawez Khan
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Matteo Bordi
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, Rome, Italy
| | - Maria P Pacheco
- Life Sciences Research Unit, University of Luxembourg, Belvaux, Luxembourg
| | - Julie Di Martino
- School of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jose J Bravo-Cordero
- School of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Colin J Daniel
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Rosalie C Sears
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Marco Donia
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Daniel H Madsen
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Per Guldberg
- Molecular Diagnostics Group, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Giuseppe Filomeni
- Redox Biology Group, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Sauter
- Life Sciences Research Unit, University of Luxembourg, Belvaux, Luxembourg
| | - Caroline Robert
- INSERM U981, Gustave Roussy Institute, Villejuif, France
- Université Paris-Sud, Université Paris-Saclay, Kremlin-Bicêtre, France
- Dermato-Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Daniela De Zio
- Melanoma Research Team, Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark.
| | - Francesco Cecconi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy.
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, Rome, Italy.
- Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark.
| |
Collapse
|
8
|
Dzulko M, Pons M, Henke A, Schneider G, Krämer OH. The PP2A subunit PR130 is a key regulator of cell development and oncogenic transformation. Biochim Biophys Acta Rev Cancer 2020; 1874:188453. [PMID: 33068647 DOI: 10.1016/j.bbcan.2020.188453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/10/2020] [Accepted: 10/11/2020] [Indexed: 12/25/2022]
Abstract
Protein phosphatase 2A (PP2A) is a major serine/threonine phosphatase. This enzyme is involved in a plethora of cellular processes, including apoptosis, autophagy, cell proliferation, and DNA repair. Remarkably, PP2A can act as a context-dependent tumor suppressor or promoter. Active PP2A complexes consist of structural (PP2A-A), regulatory (PP2A-B), and catalytic (PP2A-C) subunits. The regulatory subunits define the substrate specificity and the subcellular localization of the holoenzyme. Here we condense the increasing evidence that the PP2A B-type subunit PR130 is a critical regulator of cell identity and oncogenic transformation. We summarize knowledge on the biological functions of PR130 in normal and transformed cells, targets of the PP2A-PR130 complex, and how diverse extra- and intracellular stimuli control the expression and activity of PR130. We additionally review the impact of PP2A-PR130 on cardiac functions, neuronal processes, and anti-viral defense and how this might affect cancer development and therapy.
Collapse
Affiliation(s)
- Melanie Dzulko
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany
| | - Miriam Pons
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany
| | - Andreas Henke
- Section of Experimental Virology, Institute of Medical Microbiology, Jena University Hospital, Friedrich Schiller University, 07745 Jena, Germany
| | - Günter Schneider
- Klinik und Poliklinik für Innere Medizin II, Technical University of Munich, 81675 Munich, Germany
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany.
| |
Collapse
|
9
|
Chastney MR, Lawless C, Humphries JD, Warwood S, Jones MC, Knight D, Jorgensen C, Humphries MJ. Topological features of integrin adhesion complexes revealed by multiplexed proximity biotinylation. J Cell Biol 2020; 219:e202003038. [PMID: 32585685 PMCID: PMC7401799 DOI: 10.1083/jcb.202003038] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/09/2020] [Accepted: 04/28/2020] [Indexed: 12/16/2022] Open
Abstract
Integrin adhesion complexes (IACs) bridge the extracellular matrix to the actin cytoskeleton and transduce signals in response to both chemical and mechanical cues. The composition, interactions, stoichiometry, and topological organization of proteins within IACs are not fully understood. To address this gap, we used multiplexed proximity biotinylation (BioID) to generate an in situ, proximity-dependent adhesome in mouse pancreatic fibroblasts. Integration of the interactomes of 16 IAC-associated baits revealed a network of 147 proteins with 361 proximity interactions. Candidates with underappreciated roles in adhesion were identified, in addition to established IAC components. Bioinformatic analysis revealed five clusters of IAC baits that link to common groups of prey, and which therefore may represent functional modules. The five clusters, and their spatial associations, are consistent with current models of IAC interaction networks and stratification. This study provides a resource to examine proximal relationships within IACs at a global level.
Collapse
Affiliation(s)
- Megan R. Chastney
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Craig Lawless
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Jonathan D. Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Stacey Warwood
- Biological Mass Spectrometry Core Facility, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Matthew C. Jones
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - David Knight
- Biological Mass Spectrometry Core Facility, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Claus Jorgensen
- Cancer Research UK Manchester Institute, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Alderley Park, Manchester, UK
| | - Martin J. Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| |
Collapse
|
10
|
Akiyama H, Iwasaki Y, Yamada S, Kamiguchi H, Sakakibara SI. Control of cell migration by the novel protein phosphatase-2A interacting protein inka2. Cell Tissue Res 2020; 380:527-537. [DOI: 10.1007/s00441-020-03169-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 01/08/2020] [Indexed: 12/12/2022]
|
11
|
Hein AL, Brandquist ND, Ouellette CY, Seshacharyulu P, Enke CA, Ouellette MM, Batra SK, Yan Y. PR55α regulatory subunit of PP2A inhibits the MOB1/LATS cascade and activates YAP in pancreatic cancer cells. Oncogenesis 2019; 8:63. [PMID: 31659153 PMCID: PMC6817822 DOI: 10.1038/s41389-019-0172-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 12/11/2022] Open
Abstract
PP2A holoenzyme complexes are responsible for the majority of Ser/Thr phosphatase activities in human cells. Each PP2A consists of a catalytic subunit (C), a scaffold subunit (A), and a regulatory subunit (B). While the A and C subunits each exists only in two highly conserved isoforms, a large number of B subunits share no homology, which determines PP2A substrate specificity and cellular localization. It is anticipated that different PP2A holoenzymes play distinct roles in cellular signaling networks, whereas PP2A has only generally been defined as a putative tumor suppressor, which is mostly based on the loss-of-function studies using pharmacological or biological inhibitors for the highly conserved A or C subunit of PP2A. Recent studies of specific pathways indicate that some PP2A complexes also possess tumor-promoting functions. We have previously reported an essential role of PR55α, a PP2A regulatory subunit, in the support of oncogenic phenotypes, including in vivo tumorigenicity/metastasis of pancreatic cancer cells. In this report, we have elucidated a novel role of PR55α-regulated PP2A in the activation of YAP oncoprotein, whose function is required for anchorage-independent growth during oncogenesis of solid tumors. Our data show two lines of YAP regulation by PR55α: (1) PR55α inhibits the MOB1-triggered autoactivation of LATS1/2 kinases, the core member of the Hippo pathway that inhibits YAP by inducing its proteasomal degradation and cytoplasmic retention and (2) PR55α directly interacts with and regulates YAP itself. Accordingly, PR55α is essential for YAP-promoted gene transcriptions, as well as for anchorage-independent growth, in which YAP plays a key role. In summary, current findings demonstrate a novel YAP activation mechanism based on the PR55α-regulated PP2A phosphatase.
Collapse
Affiliation(s)
- Ashley L Hein
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nichole D Brandquist
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Caroline Y Ouellette
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Charles A Enke
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michel M Ouellette
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Ying Yan
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, USA. .,Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
12
|
Chen H, Xu J, Wang P, Shu Q, Huang L, Guo J, Zhang X, Zhang H, Wang Y, Shen Z, Chen X, Zhang Q. Protein phosphatase 2 regulatory subunit B''Alpha silencing inhibits tumor cell proliferation in liver cancer. Cancer Med 2019; 8:7741-7753. [PMID: 31647192 PMCID: PMC6912040 DOI: 10.1002/cam4.2620] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 09/29/2019] [Accepted: 10/06/2019] [Indexed: 12/24/2022] Open
Abstract
Aim To explore the effects of protein phosphatase 2 regulatory subunit B''Alpha (PPP2R3A) on the proliferation and migration of liver cancer cells. Methods Expression of PPP2R3A in tumor tissues of hepatocellular carcinoma (HCC) patients was detected by immunohistochemistry and western blotting. In two liver cancer cell lines (HepG2 and HuH7), PPP2R3A expression was silenced and then overexpression with PPP2R3A lentiviral vectors, and the effects of PPP2R3A knockdown or overexpression on the proliferation, cell cycle, migration, and invasion of HCC cells were determined in vitro. In a xenograft cancer model in nude mice, the in vivo effects of PPP2R3A knockdown on tumor growth and cancer cell proliferation were evaluated. Results PPP2R3A expression was found in tumor foci in six of eight HCC samples, at a level higher than that in the adjacent para‐tumor tissues. PPP2R3A expression was observed primarily in the cytoplasm of the cancer cells. Knockdown of PPP2R3A resulted in significant inhibition of hepatoma cell proliferation (P < .05), migration (P < .01), and invasion (P < .01) as well as a significant delay in the G1/S transition in both liver cancer lines (P < .05) and increased p53 expression. Conversely, overexpression of PPP2R3A promoted the proliferation (P < .05) and altered cell cycle progression (P < .05) of both liver cancer cell lines. In vivo, PPP2R3A knockdown in liver cancer cells led to significant reductions in the tumor volume (P < .001) and the expression of Ki‐67 in tumor tissues (P < .05). Conclusion PPP2R3A may play a role in liver cancer via the regulation of tumor cell proliferation and invasion.
Collapse
Affiliation(s)
- Huijuan Chen
- Department of Liver Transplantation, The Third Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing, China.,Graduate School, Anhui Medical University, Hefei, China
| | - Jing Xu
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Peixiao Wang
- Department of Gastroenterology, Henan Children's Hospital, Zhengzhou, China
| | - Qingming Shu
- Pathology Department, The Third Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing, China
| | - Lihong Huang
- Medical Department, The Third Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing, China
| | - Jing Guo
- Medical Department, The Third Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing, China
| | - Xuyi Zhang
- Medical Department, The Third Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing, China
| | - Hongying Zhang
- Medical Department, The Third Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing, China
| | - Ying Wang
- Department of Liver Transplantation, The Third Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing, China
| | - Zhongyang Shen
- Department of Liver Transplantation, The Third Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing, China.,Department of Transplantation Surgery, Tianjin First Central Hospital, Tianjin, China
| | - Xinguo Chen
- Department of Liver Transplantation, The Third Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing, China
| | - Qing Zhang
- Department of Liver Transplantation, The Third Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing, China
| |
Collapse
|
13
|
Hoock SC, Ritter A, Steinhäuser K, Roth S, Behrends C, Oswald F, Solbach C, Louwen F, Kreis N, Yuan J. RITA modulates cell migration and invasion by affecting focal adhesion dynamics. Mol Oncol 2019; 13:2121-2141. [PMID: 31353815 PMCID: PMC6763788 DOI: 10.1002/1878-0261.12551] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 07/12/2019] [Accepted: 07/21/2019] [Indexed: 12/15/2022] Open
Abstract
RITA, the RBP-J interacting and tubulin-associated protein, has been reported to be related to tumor development, but the underlying mechanisms are not understood. Since RITA interacts with tubulin and coats microtubules of the cytoskeleton, we hypothesized that it is involved in cell motility. We show here that depletion of RITA reduces cell migration and invasion of diverse cancer cell lines and mouse embryonic fibroblasts. Cells depleted of RITA display stable focal adhesions (FA) with elevated active integrin, phosphorylated focal adhesion kinase, and paxillin. This is accompanied by enlarged size and disturbed turnover of FA. These cells also demonstrate increased polymerized tubulin. Interestingly, RITA is precipitated with the lipoma-preferred partner (LPP), which is critical in actin cytoskeleton remodeling and cell migration. Suppression of RITA results in reduced LPP and α-actinin at FA leading to compromised focal adhesion turnover and actin dynamics. This study identifies RITA as a novel crucial player in cell migration and invasion by affecting the turnover of FA through its interference with the dynamics of actin filaments and microtubules. Its deregulation may contribute to malignant progression.
Collapse
Affiliation(s)
- Samira Catharina Hoock
- Department of Gynecology and Obstetrics, School of MedicineJ. W. Goethe‐UniversityFrankfurtGermany
| | - Andreas Ritter
- Department of Gynecology and Obstetrics, School of MedicineJ. W. Goethe‐UniversityFrankfurtGermany
| | - Kerstin Steinhäuser
- Department of Gynecology and Obstetrics, School of MedicineJ. W. Goethe‐UniversityFrankfurtGermany
- Present address:
Solvadis Distribution GmbHGernsheimGermany
| | - Susanne Roth
- Department of Gynecology and Obstetrics, School of MedicineJ. W. Goethe‐UniversityFrankfurtGermany
| | - Christian Behrends
- Institute of Biochemistry II, Medical SchoolJ. W.‐Goethe UniversityFrankfurtGermany
- Present address:
Munich Cluster of Systems NeurologyLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Franz Oswald
- Department of Internal Medicine I, Center for Internal MedicineMedical Center UlmGermany
| | - Christine Solbach
- Department of Gynecology and Obstetrics, School of MedicineJ. W. Goethe‐UniversityFrankfurtGermany
| | - Frank Louwen
- Department of Gynecology and Obstetrics, School of MedicineJ. W. Goethe‐UniversityFrankfurtGermany
| | - Nina‐Naomi Kreis
- Department of Gynecology and Obstetrics, School of MedicineJ. W. Goethe‐UniversityFrankfurtGermany
| | - Juping Yuan
- Department of Gynecology and Obstetrics, School of MedicineJ. W. Goethe‐UniversityFrankfurtGermany
| |
Collapse
|
14
|
Yun S, Hu R, Schwaemmle ME, Scherer AN, Zhuang Z, Koleske AJ, Pallas DC, Schwartz MA. Integrin α5β1 regulates PP2A complex assembly through PDE4D in atherosclerosis. J Clin Invest 2019; 129:4863-4874. [PMID: 31408443 PMCID: PMC6819111 DOI: 10.1172/jci127692] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 08/07/2019] [Indexed: 12/15/2022] Open
Abstract
Fibronectin in the vascular wall promotes inflammatory activation of the endothelium during vascular remodeling and atherosclerosis. These effects are mediated in part by fibronectin binding to integrin α5, which recruits and activates phosphodiesterase 4D5 (PDE4D5) by inducing its dephosphorylation on an inhibitory site Ser651. Active PDE then hydrolyzes anti-inflammatory cAMP to facilitate inflammatory signaling. To test this model in vivo, we mutated the integrin binding site in PDE4D5 in mice. This mutation reduced endothelial inflammatory activation in athero-prone regions of arteries, and, in a hyperlipidemia model, reduced atherosclerotic plaque size while increasing markers of plaque stability. We then investigated the mechanism of PDE4D5 activation. Proteomics identified the PP2A regulatory subunit B55α as the factor recruiting PP2A to PDE4D5. The B55α-PP2A complex localized to adhesions and directly dephosphorylated PDE4D5. This interaction also unexpectedly stabilized the PP2A-B55α complex. The integrin-regulated, pro-atherosclerotic transcription factor Yap is also dephosphorylated and activated through this pathway. PDE4D5 therefore mediates matrix-specific regulation of EC phenotype via an unconventional adapter role, assembling and anchoring a multifunctional PP2A complex with other targets. These results are likely to have widespread consequences for control of cell function by integrins.
Collapse
Affiliation(s)
- Sanguk Yun
- Department of Internal Medicine, Yale Cardiovascular Research Center, and
| | - Rui Hu
- Department of Internal Medicine, Yale Cardiovascular Research Center, and
| | | | - Alexander N. Scherer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Zhenwu Zhuang
- Department of Internal Medicine, Yale Cardiovascular Research Center, and
| | - Anthony J. Koleske
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - David C. Pallas
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Martin A. Schwartz
- Department of Internal Medicine, Yale Cardiovascular Research Center, and
- Department of Biomedical Engineering, and
- Department of Cell Biology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
15
|
Swingle MR, Honkanen RE. Inhibitors of Serine/Threonine Protein Phosphatases: Biochemical and Structural Studies Provide Insight for Further Development. Curr Med Chem 2019; 26:2634-2660. [PMID: 29737249 PMCID: PMC10013172 DOI: 10.2174/0929867325666180508095242] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/05/2018] [Accepted: 03/29/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND The reversible phosphorylation of proteins regulates many key functions in eukaryotic cells. Phosphorylation is catalyzed by protein kinases, with the majority of phosphorylation occurring on side chains of serine and threonine residues. The phosphomonoesters generated by protein kinases are hydrolyzed by protein phosphatases. In the absence of a phosphatase, the half-time for the hydrolysis of alkyl phosphate dianions at 25º C is over 1 trillion years; knon ~2 x 10-20 sec-1. Therefore, ser/thr phosphatases are critical for processes controlled by reversible phosphorylation. METHODS This review is based on the literature searched in available databases. We compare the catalytic mechanism of PPP-family phosphatases (PPPases) and the interactions of inhibitors that target these enzymes. RESULTS PPPases are metal-dependent hydrolases that enhance the rate of hydrolysis ([kcat/kM]/knon ) by a factor of ~1021, placing them among the most powerful known catalysts on earth. Biochemical and structural studies indicate that the remarkable catalytic proficiencies of PPPases are achieved by 10 conserved amino acids, DXH(X)~26DXXDR(X)~20- 26NH(X)~50H(X)~25-45R(X)~30-40H. Six act as metal-coordinating residues. Four position and orient the substrate phosphate. Together, two metal ions and the 10 catalytic residues position the phosphoryl group and an activated bridging water/hydroxide nucleophile for an inline attack upon the substrate phosphorous atom. The PPPases are conserved among species, and many structurally diverse natural toxins co-evolved to target these enzymes. CONCLUSION Although the catalytic site is conserved, opportunities for the development of selective inhibitors of this important group of metalloenzymes exist.
Collapse
Affiliation(s)
- Mark R Swingle
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile AL 36688, United States
| | - Richard E Honkanen
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile AL 36688, United States
| |
Collapse
|
16
|
Zhao H, Li D, Zhang B, Qi Y, Diao Y, Zhen Y, Shu X. PP2A as the Main Node of Therapeutic Strategies and Resistance Reversal in Triple-Negative Breast Cancer. Molecules 2017; 22:molecules22122277. [PMID: 29261144 PMCID: PMC6149800 DOI: 10.3390/molecules22122277] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/07/2017] [Accepted: 12/19/2017] [Indexed: 12/31/2022] Open
Abstract
Triple negative breast cancer (TNBC), is defined as a type of tumor lacking the expression of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2). The ER, PR and HER2 are usually the molecular therapeutic targets for breast cancers, but they are ineffective for TNBC because of their negative expressions, so chemotherapy is currently the main treatment strategy in TNBC. However, drug resistance remains a major impediment to TNBC chemotherapeutic treatment. Recently, the protein phosphatase 2A (PP2A) has been found to regulate the phosphorylation of some substrates involved in the relevant target of TNBC, such as cell cycle control, DNA damage responses, epidermal growth factor receptor, immune modulation and cell death resistance, which may be the effective therapeutic strategies or influence drug sensitivity to TNBCs. Furthermore, PP2A has also been found that could induce ER re-expression in ER-negative breast cancer cells, and which suggests PP2A could promote the sensitivity of tamoxifen to TNBCs as a resistance reversal agent. In this review, we will summarize the potential therapeutic value of PP2A as the main node in developing targeting agents, disrupting resistance or restoring drug sensitivity in TNBC.
Collapse
Affiliation(s)
- Henan Zhao
- Department of Pathophysiology, Dalian Medical University, Dalian 116044, China.
| | - Duojiao Li
- Kamp Pharmaceutical Co. Ltd., Changsha 410008, China.
| | - Baojing Zhang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China.
| | - Yan Qi
- College of Pharmacy, Dalian Medical University, Dalian 116044, China.
| | - Yunpeng Diao
- College of Pharmacy, Dalian Medical University, Dalian 116044, China.
| | - Yuhong Zhen
- College of Pharmacy, Dalian Medical University, Dalian 116044, China.
| | - Xiaohong Shu
- College of Pharmacy, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
17
|
Ngan E, Kiepas A, Brown CM, Siegel PM. Emerging roles for LPP in metastatic cancer progression. J Cell Commun Signal 2017; 12:143-156. [PMID: 29027626 DOI: 10.1007/s12079-017-0415-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/03/2017] [Indexed: 01/21/2023] Open
Abstract
LIM domain containing proteins are important regulators of diverse cellular processes, and play pivotal roles in regulating the actin cytoskeleton. Lipoma Preferred Partner (LPP) is a member of the zyxin family of LIM proteins that has long been characterized as a promoter of mesenchymal/fibroblast cell migration. More recently, LPP has emerged as a critical inducer of tumor cell migration, invasion and metastasis. LPP is thought to contribute to these malignant phenotypes by virtue of its ability to shuttle into the nucleus, localize to adhesions and, most recently, to promote invadopodia formation. In this review, we will examine the mechanisms through which LPP regulates the functions of adhesions and invadopodia, and discuss potential roles of LPP in mediating cellular responses to mechanical cues within these mechanosensory structures.
Collapse
Affiliation(s)
- Elaine Ngan
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Room 508, Montréal, Québec, H3A 1A3, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Alex Kiepas
- Department of Physiology, McGill University, Montréal, Québec, Canada
| | - Claire M Brown
- Department of Physiology, McGill University, Montréal, Québec, Canada
| | - Peter M Siegel
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Room 508, Montréal, Québec, H3A 1A3, Canada. .,Department of Medicine, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
18
|
Meeusen B, Janssens V. Tumor suppressive protein phosphatases in human cancer: Emerging targets for therapeutic intervention and tumor stratification. Int J Biochem Cell Biol 2017; 96:98-134. [PMID: 29031806 DOI: 10.1016/j.biocel.2017.10.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023]
Abstract
Aberrant protein phosphorylation is one of the hallmarks of cancer cells, and in many cases a prerequisite to sustain tumor development and progression. Like protein kinases, protein phosphatases are key regulators of cell signaling. However, their contribution to aberrant signaling in cancer cells is overall less well appreciated, and therefore, their clinical potential remains largely unexploited. In this review, we provide an overview of tumor suppressive protein phosphatases in human cancer. Along their mechanisms of inactivation in defined cancer contexts, we give an overview of their functional roles in diverse signaling pathways that contribute to their tumor suppressive abilities. Finally, we discuss their emerging roles as predictive or prognostic markers, their potential as synthetic lethality targets, and the current feasibility of their reactivation with pharmacologic compounds as promising new cancer therapies. We conclude that their inclusion in clinical practice has obvious potential to significantly improve therapeutic outcome in various ways, and should now definitely be pushed forward.
Collapse
Affiliation(s)
- Bob Meeusen
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium.
| |
Collapse
|
19
|
The broken "Off" switch in cancer signaling: PP2A as a regulator of tumorigenesis, drug resistance, and immune surveillance. BBA CLINICAL 2016; 6:87-99. [PMID: 27556014 PMCID: PMC4986044 DOI: 10.1016/j.bbacli.2016.08.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 08/01/2016] [Accepted: 08/02/2016] [Indexed: 12/31/2022]
Abstract
Aberrant activation of signal transduction pathways can transform a normal cell to a malignant one and can impart survival properties that render cancer cells resistant to therapy. A diverse set of cascades have been implicated in various cancers including those mediated by serine/threonine kinases such RAS, PI3K/AKT, and PKC. Signal transduction is a dynamic process involving both "On" and "Off" switches. Activating mutations of RAS or PI3K can be viewed as the switch being stuck in the "On" position resulting in continued signaling by a survival and/or proliferation pathway. On the other hand, inactivation of protein phosphatases such as the PP2A family can be seen as the defective "Off" switch that similarly can activate these pathways. A problem for therapeutic targeting of PP2A is that the enzyme is a hetero-trimer and thus drug targeting involves complex structures. More importantly, since PP2A isoforms generally act as tumor suppressors one would want to activate these enzymes rather than suppress them. The elucidation of the role of cellular inhibitors like SET and CIP2A in cancer suggests that targeting these proteins can have therapeutic efficacy by mechanisms involving PP2A activation. Furthermore, drugs such as FTY-720 can activate PP2A isoforms directly. This review will cover the current state of knowledge of PP2A role as a tumor suppressor in cancer cells and as a mediator of processes that can impact drug resistance and immune surveillance.
Collapse
|