1
|
Narang BJ, Drole K, Barber JFP, Goods PSR, Debevec T. Utility of hypoxic modalities for musculoskeletal injury rehabilitation in athletes: A narrative review of mechanisms and contemporary perspectives. J Sports Sci 2024:1-14. [PMID: 39448892 DOI: 10.1080/02640414.2024.2416779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024]
Abstract
Recent evidence suggests that different hypoxic modalities might accelerate the rehabilitation process in injured athletes. In this review, the application of hypoxia during rehabilitation from musculoskeletal injury is explored in relation to two principles: (1) facilitating the healing of damaged tissue, and (2) mitigating detraining and inducing training adaptations with a reduced training load. Key literature that explores the underlying mechanisms for these themes is presented, and considerations for practice and future research directions are outlined. For principle (1), passive intermittent hypoxic exposures might accelerate tissue healing through angiogenic and osteogenic mechanisms. Experimental evidence is largely derived from rodent research, so further work is warranted to establish whether clinically meaningful effects can be observed in humans, before optimal protocols are determined (duration, frequency, and hypoxic severity). Regarding principle (2), a hypoxia-related increase in the cardiometabolic stimulus imposed by low-load exercise is appealing for load-compromised athletes. As rehabilitation progresses, a variety of hypoxic modalities can be implemented to enhance adaptation to energy-systems and resistance-based training, and more efficiently return the athlete to competition readiness. While hypoxic modalities seem promising for accelerating musculoskeletal injury rehabilitation in humans, and are already being widely used in practice, a significant gap remains regarding their evidence-based application.
Collapse
Affiliation(s)
- Benjamin Jonathan Narang
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
- Department of Automatics, Biocybernetics, and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Kristina Drole
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| | | | - Paul S R Goods
- Physical Activity, Sport and Exercise (PHASE) Research Group, School of Allied Health (Exercise Science), Murdoch University, Perth, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Perth, Australia
| | - Tadej Debevec
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
- Department of Automatics, Biocybernetics, and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
2
|
Wang YH, Lin J, Wang J, Wu SG, Qiu K, Zhang HJ, Qi GH. The Role of Incubation Conditions on the Regulation of Muscle Development and Meat Quality in Poultry. Front Physiol 2022; 13:883134. [PMID: 35784883 PMCID: PMC9240787 DOI: 10.3389/fphys.2022.883134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/24/2022] [Indexed: 11/23/2022] Open
Abstract
Muscle is the most abundant edible tissue in table poultry, which serves as an important source of high protein for humans. Poultry myofiber originates in the early embryogenic stage, and the overall muscle fiber number is almost determined before hatching. Muscle development in the embryonic stage is critical to the posthatch muscle growth and final meat yield and quality. Incubation conditions including temperature, humidity, oxygen density, ventilation and lighting may substantially affect the number, shape and structure of the muscle fiber, which may produce long-lasting effect on the postnatal muscle growth and meat quality. Suboptimal incubation conditions can induce the onset of myopathies. Early exposure to suitable hatching conditions may modify the muscle histomorphology posthatch and the final muscle mass of the birds by regulating embryonic hormone levels and benefit the muscle cell activity. The elucidation of the muscle development at the embryonic stage would facilitate the modulation of poultry muscle quantity and meat quality. This review starts from the physical and biochemical characteristics of poultry myofiber formation, and brings together recent advances of incubation conditions on satellite cell migration, fiber development and transformation, and subsequent muscle myopathies and other meat quality defects. The underlying molecular and cellular mechanisms for the induced muscle growth and meat quality traits are also discussed. The future studies on the effects of external incubation conditions on the regulation of muscle cell proliferation and meat quality are suggested. This review may broaden our knowledge on the regulation of incubation conditions on poultry muscle development, and provide more informative decisions for hatchery in the selection of hatching parameter for pursuit of more large muscle size and superior meat quality.
Collapse
Affiliation(s)
| | | | | | | | | | - Hai-Jun Zhang
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Research Institute of Feed, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guang-Hai Qi
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Research Institute of Feed, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
3
|
Zhu P, Hamlish NX, Thakkar AV, Steffeck AWT, Rendleman EJ, Khan NH, Waldeck NJ, DeVilbiss AW, Martin-Sandoval MS, Mathews TP, Chandel NS, Peek CB. BMAL1 drives muscle repair through control of hypoxic NAD + regeneration in satellite cells. Genes Dev 2022; 36:149-166. [PMID: 35115380 PMCID: PMC8887128 DOI: 10.1101/gad.349066.121] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/05/2022] [Indexed: 01/07/2023]
Abstract
The process of tissue regeneration occurs in a developmentally timed manner, yet the role of circadian timing is not understood. Here, we identify a role for the adult muscle stem cell (MuSC)-autonomous clock in the control of muscle regeneration following acute ischemic injury. We observed greater muscle repair capacity following injury during the active/wake period as compared with the inactive/rest period in mice, and loss of Bmal1 within MuSCs leads to impaired muscle regeneration. We demonstrate that Bmal1 loss in MuSCs leads to reduced activated MuSC number at day 3 postinjury, indicating a failure to properly expand the myogenic precursor pool. In cultured primary myoblasts, we observed that loss of Bmal1 impairs cell proliferation in hypoxia (a condition that occurs in the first 1-3 d following tissue injury in vivo), as well as subsequent myofiber differentiation. Loss of Bmal1 in both cultured myoblasts and in vivo activated MuSCs leads to reduced glycolysis and premature activation of prodifferentiation gene transcription and epigenetic remodeling. Finally, hypoxic cell proliferation and myofiber formation in Bmal1-deficient myoblasts are restored by increasing cytosolic NAD+ Together, we identify the MuSC clock as a pivotal regulator of oxygen-dependent myoblast cell fate and muscle repair through the control of the NAD+-driven response to injury.
Collapse
Affiliation(s)
- Pei Zhu
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Noah X Hamlish
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Abhishek Vijay Thakkar
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Adam W T Steffeck
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Emily J Rendleman
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Nabiha H Khan
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Nathan J Waldeck
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Andrew W DeVilbiss
- Children's Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | - Misty S Martin-Sandoval
- Children's Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | - Thomas P Mathews
- Children's Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | - Navdeep S Chandel
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Department of Medicine, Division of Pulmonary and Critical Care, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Clara B Peek
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| |
Collapse
|
4
|
Molecular Imaging of Human Skeletal Myoblasts (huSKM) in Mouse Post-Infarction Myocardium. Int J Mol Sci 2021; 22:ijms221910885. [PMID: 34639225 PMCID: PMC8509689 DOI: 10.3390/ijms221910885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022] Open
Abstract
Current treatment protocols for myocardial infarction improve the outcome of disease to some extent but do not provide the clue for full regeneration of the heart tissues. An increasing body of evidence has shown that transplantation of cells may lead to some organ recovery. However, the optimal stem cell population has not been yet identified. We would like to propose a novel pro-regenerative treatment for post-infarction heart based on the combination of human skeletal myoblasts (huSkM) and mesenchymal stem cells (MSCs). huSkM native or overexpressing gene coding for Cx43 (huSKMCx43) alone or combined with MSCs were delivered in four cellular therapeutic variants into the healthy and post-infarction heart of mice while using molecular reporter probes. Single-Photon Emission Computed Tomography/Computed Tomography (SPECT/CT) performed right after cell delivery and 24 h later revealed a trend towards an increase in the isotopic uptake in the post-infarction group of animals treated by a combination of huSkMCx43 with MSC. Bioluminescent imaging (BLI) showed the highest increase in firefly luciferase (fluc) signal intensity in post-infarction heart treated with combination of huSkM and MSCs vs. huSkM alone (p < 0.0001). In healthy myocardium, however, nanoluciferase signal (nanoluc) intensity varied markedly between animals treated with stem cell populations either alone or in combinations with the tendency to be simply decreased. Therefore, our observations seem to show that MSCs supported viability, engraftment, and even proliferation of huSkM in the post-infarction heart.
Collapse
|
5
|
Wang J, Zhang H, Kaul A, Li K, Priyandoko D, Kaul SC, Wadhwa R. Effect of Ashwagandha Withanolides on Muscle Cell Differentiation. Biomolecules 2021; 11:biom11101454. [PMID: 34680087 PMCID: PMC8533065 DOI: 10.3390/biom11101454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/10/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Withania somnifera (Ashwagandha) is used in Indian traditional medicine, Ayurveda, and is believed to have a variety of health-promoting effects. The molecular mechanisms and pathways underlying these effects have not yet been sufficiently explored. In this study, we investigated the effect of Ashwagandha extracts and their major withanolides (withaferin A and withanone) on muscle cell differentiation using C2C12 myoblasts. We found that withaferin A and withanone and Ashwagandha extracts possessing different ratios of these active ingredients have different effects on the differentiation of C2C12. Withanone and withanone-rich extracts caused stronger differentiation of myoblasts to myotubes, deaggregation of heat- and metal-stress-induced aggregated proteins, and activation of hypoxia and autophagy pathways. Of note, the Parkinson’s disease model of Drosophila that possess a neuromuscular disorder showed improvement in their flight and climbing activity, suggesting the potential of Ashwagandha withanolides for the management of muscle repair and activity.
Collapse
Affiliation(s)
- Jia Wang
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 3058565, Japan; (J.W.); (H.Z.); (A.K.); (K.L.); (D.P.); (S.C.K.)
| | - Huayue Zhang
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 3058565, Japan; (J.W.); (H.Z.); (A.K.); (K.L.); (D.P.); (S.C.K.)
| | - Ashish Kaul
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 3058565, Japan; (J.W.); (H.Z.); (A.K.); (K.L.); (D.P.); (S.C.K.)
| | - Kejuan Li
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 3058565, Japan; (J.W.); (H.Z.); (A.K.); (K.L.); (D.P.); (S.C.K.)
- College of Life Science, Sichuan Normal University, Chengdu 610066, China
| | - Didik Priyandoko
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 3058565, Japan; (J.W.); (H.Z.); (A.K.); (K.L.); (D.P.); (S.C.K.)
- Department of Biology, Universitas Pendidikan Indonesia, Bangdung 40154, Indonesia
| | - Sunil C. Kaul
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 3058565, Japan; (J.W.); (H.Z.); (A.K.); (K.L.); (D.P.); (S.C.K.)
| | - Renu Wadhwa
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 3058565, Japan; (J.W.); (H.Z.); (A.K.); (K.L.); (D.P.); (S.C.K.)
- Correspondence:
| |
Collapse
|
6
|
Rozance PJ, Wesolowski SR, Jonker SS, Brown LD. Anemic hypoxemia reduces myoblast proliferation and muscle growth in late-gestation fetal sheep. Am J Physiol Regul Integr Comp Physiol 2021; 321:R352-R363. [PMID: 34287074 PMCID: PMC8530759 DOI: 10.1152/ajpregu.00342.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Fetal skeletal muscle growth requires myoblast proliferation, differentiation, and fusion into myofibers in addition to protein accretion for fiber hypertrophy. Oxygen is an important regulator of this process. Therefore, we hypothesized that fetal anemic hypoxemia would inhibit skeletal muscle growth. Studies were performed in late-gestation fetal sheep that were bled to anemic and therefore hypoxemic conditions beginning at ∼125 days of gestation (term = 148 days) for 9 ± 0 days (n = 19) and compared with control fetuses (n = 16). A metabolic study was performed on gestational day ∼134 to measure fetal protein kinetic rates. Myoblast proliferation and myofiber area were determined in biceps femoris (BF), tibialis anterior (TA), and flexor digitorum superficialis (FDS) muscles. mRNA expression of muscle regulatory factors was determined in BF. Fetal arterial hematocrit and oxygen content were 28% and 52% lower, respectively, in anemic fetuses. Fetal weight and whole body protein synthesis, breakdown, and accretion rates were not different between groups. Hindlimb length, however, was 7% shorter in anemic fetuses. TA and FDS muscles weighed less, and FDS myofiber area was smaller in anemic fetuses compared with controls. The percentage of Pax7+ myoblasts that expressed Ki67 was lower in BF and tended to be lower in FDS from anemic fetuses indicating reduced myoblast proliferation. There was less MYOD and MYF6 mRNA expression in anemic versus control BF consistent with reduced myoblast differentiation. These results indicate that fetal anemic hypoxemia reduced muscle growth. We speculate that fetal muscle growth may be improved by strategies that increase oxygen availability.
Collapse
Affiliation(s)
- Paul J. Rozance
- 1Department of Pediatrics, Perinatal Research Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Stephanie R. Wesolowski
- 1Department of Pediatrics, Perinatal Research Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Sonnet S. Jonker
- 2Center for Developmental Health, Knight Cardiovascular Institute,
Oregon Health & Science University, Portland, Oregon
| | - Laura D. Brown
- 1Department of Pediatrics, Perinatal Research Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
7
|
van Doorslaer de Ten Ryen S, Francaux M, Deldicque L. Regulation of satellite cells by exercise in hypoxic conditions: a narrative review. Eur J Appl Physiol 2021; 121:1531-1542. [PMID: 33745023 DOI: 10.1007/s00421-021-04641-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/10/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE To investigate in vivo the adaptations of satellite cell induced by exercise performed in acute or chronic hypoxic conditions and their contribution to muscle remodeling and hypertrophy. METHODS Search terms related to exercise, hypoxia and satellite cells were entered on Embase, PubMed and Scopus. Studies were selected for their relevance in terms of regulation of satellite cells by in vivo exercise and muscle contraction in hypoxic conditions. RESULTS Satellite cell activation and proliferation seem to be enabled after acute hypoxic exercise via regulations induced by myogenic regulatory factors. Several studies reported also a role of the inflammatory pathway nuclear factor-kappa B and angiogenic factors such as vascular endothelial growth factor, both known to upregulate myogenesis. By stimulating angiogenesis, repeated exercise performed in acute hypoxia might contribute to satellite cell activation. Contrary to such exercise conditions, chronic exposure to hypoxia downregulates myogenesis despite the maintenance of physical activity. This impaired myogenesis might be induced by excessive oxidative stress and proteolysis. CONCLUSION In vivo studies suggest that, in comparison to exercise or hypoxia alone, exercise performed in a hypoxic environment, may improve or impair muscle remodeling induced by contractile activity depending upon the duration of hypoxia. Satellite cells seem to be major actors in these dichotomous adaptations. Further research on the role of angiogenesis, types of contraction and autophagy is needed for a better understanding of their respective role in hypoxic exercise-induced modulations of satellite cell activity in human.
Collapse
Affiliation(s)
- Sophie van Doorslaer de Ten Ryen
- Institute of Neuroscience, Université Catholique de Louvain, Place Pierre de Coubertin, 1 L08.10.01, 1348, Louvain-la-Neuve, Belgium
| | - Marc Francaux
- Institute of Neuroscience, Université Catholique de Louvain, Place Pierre de Coubertin, 1 L08.10.01, 1348, Louvain-la-Neuve, Belgium
| | - Louise Deldicque
- Institute of Neuroscience, Université Catholique de Louvain, Place Pierre de Coubertin, 1 L08.10.01, 1348, Louvain-la-Neuve, Belgium.
| |
Collapse
|
8
|
Bae DH, Gholam Azad M, Kalinowski DS, Lane DJR, Jansson PJ, Richardson DR. Ascorbate and Tumor Cell Iron Metabolism: The Evolving Story and Its Link to Pathology. Antioxid Redox Signal 2020; 33:816-838. [PMID: 31672021 DOI: 10.1089/ars.2019.7903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: Vitamin C or ascorbate (Asc) is a water-soluble vitamin and an antioxidant that is involved in many crucial biological functions. Asc's ability to reduce metals makes it an essential enzyme cofactor. Recent Advances: The ability of Asc to act as a reductant also plays an important part in its overall role in iron metabolism, where Asc induces both nontransferrin-bound iron and transferrin-bound iron uptake at physiological concentrations (∼50 μM). Moreover, Asc has emerged to play an important role in multiple diseases and its effects at pharmacological doses could be important for their treatment. Critical Issues: Asc's role as a regulator of cellular iron metabolism, along with its cytotoxic effects and different roles at pharmacological concentrations, makes it a candidate as an anticancer agent. Ever since the controversy regarding the studies from the Mayo Clinic was finally explained, there has been a renewed interest in using Asc as a therapeutic approach toward cancer due to its minimal side effects. Numerous studies have been able to demonstrate the anticancer activity of Asc through selective oxidative stress toward cancer cells via H2O2 generation at pharmacological concentrations. Studies have demonstrated that Asc's cytotoxic mechanism at concentrations (>1 mM) has been associated with decreased cellular iron uptake. Future Directions: Recent studies have also suggested other mechanisms, such as Asc's effects on autophagy, polyamine metabolism, and the cell cycle. Clearly, more has yet to be discovered about Asc's mechanism of action to facilitate safe and effective treatment options for cancer and other diseases.
Collapse
Affiliation(s)
- Dong-Hun Bae
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney, Sydney, Australia
| | - Mahan Gholam Azad
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney, Sydney, Australia
| | - Danuta S Kalinowski
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney, Sydney, Australia
| | - Darius J R Lane
- The Florey Institute of Neuroscience and Mental Health, Melbourne Dementia Research Centre, The University of Melbourne, Parkville, Australia
| | - Patric J Jansson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney, Sydney, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney, Sydney, Australia.,Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Showa-ku, Japan
| |
Collapse
|
9
|
Oviedo-Rondón EO, Velleman SG, Wineland MJ. The Role of Incubation Conditions in the Onset of Avian Myopathies. Front Physiol 2020; 11:545045. [PMID: 33041856 PMCID: PMC7530269 DOI: 10.3389/fphys.2020.545045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/19/2020] [Indexed: 12/18/2022] Open
Abstract
White striping, wooden breast, and spaghetti muscle have become common myopathies in broilers worldwide. Several research reports have indicated that the origin of these lesions is metabolic disorders. These failures in normal metabolism can start very early in life, and suboptimal incubation conditions may trigger some of the key alterations on muscle metabolism. Incubation conditions affect the development of muscle and can be associated with the onset of myopathies. A series of experiments conducted with broilers, turkeys, and ducks are discussed to overview primary information showing the main changes in breast muscle histomorphology, metabolism, and physiology caused by suboptimal incubation conditions. These modifications may be associated with current myopathies. Those effects of incubation on myopathy occurrence and severity have also been confirmed at slaughter age. The impact of egg storage, temperature profiles, oxygen concentrations, and time of hatch have been evaluated. The effects have been observed in diverse species, genetic lines, and both genders. Histological and muscle evaluations have detected that myopathies could be induced by extended hypoxia and high temperatures, and those effects depend on the genetic line. Thus, these modifications in muscle metabolic responses may make hatchlings more susceptible to develop myopathies during grow out due to thermal stress, high-density diets, and fast growth rates.
Collapse
Affiliation(s)
| | - Sandra G. Velleman
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
| | | |
Collapse
|
10
|
Pamenter ME, Hall JE, Tanabe Y, Simonson TS. Cross-Species Insights Into Genomic Adaptations to Hypoxia. Front Genet 2020; 11:743. [PMID: 32849780 PMCID: PMC7387696 DOI: 10.3389/fgene.2020.00743] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Over millions of years, vertebrate species populated vast environments spanning the globe. Among the most challenging habitats encountered were those with limited availability of oxygen, yet many animal and human populations inhabit and perform life cycle functions and/or daily activities in varying degrees of hypoxia today. Of particular interest are species that inhabit high-altitude niches, which experience chronic hypobaric hypoxia throughout their lives. Physiological and molecular aspects of adaptation to hypoxia have long been the focus of high-altitude populations and, within the past decade, genomic information has become increasingly accessible. These data provide an opportunity to search for common genetic signatures of selection across uniquely informative populations and thereby augment our understanding of the mechanisms underlying adaptations to hypoxia. In this review, we synthesize the available genomic findings across hypoxia-tolerant species to provide a comprehensive view of putatively hypoxia-adaptive genes and pathways. In many cases, adaptive signatures across species converge on the same genetic pathways or on genes themselves [i.e., the hypoxia inducible factor (HIF) pathway). However, specific variants thought to underlie function are distinct between species and populations, and, in most cases, the precise functional role of these genomic differences remains unknown. Efforts to standardize these findings and explore relationships between genotype and phenotype will provide important clues into the evolutionary and mechanistic bases of physiological adaptations to environmental hypoxia.
Collapse
Affiliation(s)
- Matthew E. Pamenter
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
- Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - James E. Hall
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Yuuka Tanabe
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Tatum S. Simonson
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
11
|
Cordeiro IR, Tanaka M. Environmental Oxygen is a Key Modulator of Development and Evolution: From Molecules to Ecology. Bioessays 2020; 42:e2000025. [DOI: 10.1002/bies.202000025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/09/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Ingrid Rosenburg Cordeiro
- Department of Life Science and Technology Tokyo Institute of Technology B‐17, 4259 Nagatsuta‐cho, Midori‐ku Yokohama 226‐8501 Japan
| | - Mikiko Tanaka
- Department of Life Science and Technology Tokyo Institute of Technology B‐17, 4259 Nagatsuta‐cho, Midori‐ku Yokohama 226‐8501 Japan
| |
Collapse
|
12
|
Zhang W, Yu L, Han X, Pan J, Deng J, Zhu L, Lu Y, Huang W, Liu S, Li Q, Liu Y. The secretome of human dental pulp stem cells protects myoblasts from hypoxia‑induced injury via the Wnt/β‑catenin pathway. Int J Mol Med 2020; 45:1501-1513. [PMID: 32323739 PMCID: PMC7138287 DOI: 10.3892/ijmm.2020.4525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 01/29/2020] [Indexed: 12/21/2022] Open
Abstract
Human dental pulp stem cells (hDPSCs) present several advantages, including their ability to be non-invasively harvested without ethical concern. The secretome of hDPSCs can promote the functional recovery of various tissue injuries. However, the protective effects on hypoxia-induced skeletal muscle injury remain to be explored. The present study demonstrated that C2C12 myoblast coculture with hDPSCs attenuated CoCl2-induced hypoxic injury compared with C2C12 alone. The hDPSC secretome increased cell viability and differentiation and decreased G2/M cell cycle arrest under hypoxic conditions. These results were further verified using hDPSC-conditioned medium (hDPSC-CM). The present data revealed that the protective effects of hDPSC-CM depend on the concentration ratio of the CM. In terms of the underlying molecular mechanism, hDPSC-CM activated the Wnt/β-catenin pathway, which increased the protein levels of Wnt1, phosphorylated-glycogen synthase kinase-3β and β-catenin and the mRNA levels of Wnt target genes. By contrast, an inhibitor (XAV939) of Wnt/β-catenin diminished the protective effects of hDPSC-CM. Taken together, the findings of the present study demonstrated that the hDPSC secretome alleviated the hypoxia-induced myoblast injury potentially through regulating the Wnt/β-catenin pathway. These findings may provide new insight into a therapeutic alternative using the hDPSC secretome in skeletal muscle hypoxia-related diseases.
Collapse
Affiliation(s)
- Weihua Zhang
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai 200001, P.R. China
| | - Liming Yu
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai 200001, P.R. China
| | - Xinxin Han
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai 200001, P.R. China
| | - Jie Pan
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai 200001, P.R. China
| | - Jiajia Deng
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai 200001, P.R. China
| | - Luying Zhu
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai 200001, P.R. China
| | - Yun Lu
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai 200001, P.R. China
| | - Wei Huang
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai 200001, P.R. China
| | - Shangfeng Liu
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai 200001, P.R. China
| | - Qiang Li
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai 200001, P.R. China
| | - Yuehua Liu
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai 200001, P.R. China
| |
Collapse
|
13
|
Kim S, Lee M, Choi YK. The Role of a Neurovascular Signaling Pathway Involving Hypoxia-Inducible Factor and Notch in the Function of the Central Nervous System. Biomol Ther (Seoul) 2020; 28:45-57. [PMID: 31484285 PMCID: PMC6939687 DOI: 10.4062/biomolther.2019.119] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022] Open
Abstract
In the neurovascular unit, the neuronal and vascular systems communicate with each other. O2 and nutrients, reaching endothelial cells (ECs) through the blood stream, spread into neighboring cells, such as neural stem cells, and neurons. The proper function of neural circuits in adults requires sufficient O2 and glucose for their metabolic demands through angiogenesis. In a central nervous system (CNS) injury, such as glioma, Parkinson’s disease, and Alzheimer’s disease, damaged ECs can contribute to tissue hypoxia and to the consequent disruption of neuronal functions and accelerated neurodegeneration. This review discusses the current evidence regarding the contribution of oxygen deprivation to CNS injury, with an emphasis on hypoxia-inducible factor (HIF)-mediated pathways and Notch signaling. Additionally, it focuses on adult neurological functions and angiogenesis, as well as pathological conditions in the CNS. Furthermore, the functional interplay between HIFs and Notch is demonstrated in pathophysiological conditions.
Collapse
Affiliation(s)
- Seunghee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Minjae Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Yoon Kyung Choi
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
14
|
Dabral S, Muecke C, Valasarajan C, Schmoranzer M, Wietelmann A, Semenza GL, Meister M, Muley T, Seeger-Nukpezah T, Samakovlis C, Weissmann N, Grimminger F, Seeger W, Savai R, Pullamsetti SS. A RASSF1A-HIF1α loop drives Warburg effect in cancer and pulmonary hypertension. Nat Commun 2019; 10:2130. [PMID: 31086178 PMCID: PMC6513860 DOI: 10.1038/s41467-019-10044-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 04/05/2019] [Indexed: 12/13/2022] Open
Abstract
Hypoxia signaling plays a major role in non-malignant and malignant hyperproliferative diseases. Pulmonary hypertension (PH), a hypoxia-driven vascular disease, is characterized by a glycolytic switch similar to the Warburg effect in cancer. Ras association domain family 1A (RASSF1A) is a scaffold protein that acts as a tumour suppressor. Here we show that hypoxia promotes stabilization of RASSF1A through NOX-1- and protein kinase C- dependent phosphorylation. In parallel, hypoxia inducible factor-1 α (HIF-1α) activates RASSF1A transcription via HIF-binding sites in the RASSF1A promoter region. Vice versa, RASSF1A binds to HIF-1α, blocks its prolyl-hydroxylation and proteasomal degradation, and thus enhances the activation of the glycolytic switch. We find that this mechanism operates in experimental hypoxia-induced PH, which is blocked in RASSF1A knockout mice, in human primary PH vascular cells, and in a subset of human lung cancer cells. We conclude that RASSF1A-HIF-1α forms a feedforward loop driving hypoxia signaling in PH and cancer.
Collapse
Affiliation(s)
- Swati Dabral
- Department of Lung Development and Remodeling, Member of the German Center for Lung Research (DZL), Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Christian Muecke
- Department of Lung Development and Remodeling, Member of the German Center for Lung Research (DZL), Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Chanil Valasarajan
- Department of Lung Development and Remodeling, Member of the German Center for Lung Research (DZL), Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Mario Schmoranzer
- Department of Lung Development and Remodeling, Member of the German Center for Lung Research (DZL), Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Astrid Wietelmann
- MRI and µCT Service Group, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Gregg L Semenza
- Departments of Pediatrics, Medicine, Oncology, Radiation Oncology, Biological Chemistry, and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD21205, MD, USA
| | - Michael Meister
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, Heidelberg, 69126, Germany.,Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, 69120, Germany
| | - Thomas Muley
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, Heidelberg, 69126, Germany.,Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, 69120, Germany
| | - Tamina Seeger-Nukpezah
- Department I of Internal Medicine and Center for Integrated Oncology, University of Cologne, Cologne, 50937, Germany
| | - Christos Samakovlis
- Department of Lung Development and Remodeling, Member of the German Center for Lung Research (DZL), Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691, Stockholm, Sweden.,Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), ECCPS, Member of the DZL, Justus-Liebig University, Giessen, 35392, Germany
| | - Norbert Weissmann
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), ECCPS, Member of the DZL, Justus-Liebig University, Giessen, 35392, Germany
| | - Friedrich Grimminger
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), ECCPS, Member of the DZL, Justus-Liebig University, Giessen, 35392, Germany
| | - Werner Seeger
- Department of Lung Development and Remodeling, Member of the German Center for Lung Research (DZL), Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany.,Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), ECCPS, Member of the DZL, Justus-Liebig University, Giessen, 35392, Germany
| | - Rajkumar Savai
- Department of Lung Development and Remodeling, Member of the German Center for Lung Research (DZL), Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany.,Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), ECCPS, Member of the DZL, Justus-Liebig University, Giessen, 35392, Germany
| | - Soni S Pullamsetti
- Department of Lung Development and Remodeling, Member of the German Center for Lung Research (DZL), Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany. .,Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), ECCPS, Member of the DZL, Justus-Liebig University, Giessen, 35392, Germany.
| |
Collapse
|
15
|
Davis CK, Jain SA, Bae ON, Majid A, Rajanikant GK. Hypoxia Mimetic Agents for Ischemic Stroke. Front Cell Dev Biol 2019; 6:175. [PMID: 30671433 PMCID: PMC6331394 DOI: 10.3389/fcell.2018.00175] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/10/2018] [Indexed: 12/27/2022] Open
Abstract
Every year stroke claims more than 6 million lives worldwide. The majority of them are ischemic stroke. Small molecule-based therapeutics for ischemic stroke has attracted a lot of attention, but none has been shown to be clinically useful so far. Hypoxia-inducible factor-1 (HIF-1) plays a crucial role in the transcriptional adaptation of cells to hypoxia. Small molecule-based hypoxia-mimetic agents either stabilize HIF-1α via HIF-prolyl hydroxylases (PHDs) inhibition or through other mechanisms. In both the cases, these agents have been shown to confer ischemic neuroprotection in vitro and in vivo. The agents which act via PHD inhibition are mainly classified into iron chelators, iron competitors, and 2 oxoglutarate (2OG) analogs. This review discusses HIF structure and key players in the HIF-1 degradation pathway as well as the genes, proteins and chemical molecules that are connected to HIF-1 and how they affect cell survival following ischemic injury. Furthermore, this review gives a summary of studies that used PHD inhibitors and other HIF-1α stabilizers as hypoxia-mimetic agents for the treatment of ischemic injury.
Collapse
Affiliation(s)
- Charles K Davis
- School of Biotechnology, National Institute of Technology Calicut, Calicut, India
| | - Saurabh A Jain
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Ok-Nam Bae
- College of Pharmacy, Hanyang University, Ansan, South Korea
| | - Arshad Majid
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - G K Rajanikant
- School of Biotechnology, National Institute of Technology Calicut, Calicut, India
| |
Collapse
|
16
|
Gnimassou O, Fernández-Verdejo R, Brook M, Naslain D, Balan E, Sayda M, Cegielski J, Nielens H, Decottignies A, Demoulin JB, Smith K, Atherton PJ, Francaux M, Deldicque L. Environmental hypoxia favors myoblast differentiation and fast phenotype but blunts activation of protein synthesis after resistance exercise in human skeletal muscle. FASEB J 2018; 32:5272-5284. [PMID: 29672220 DOI: 10.1096/fj.201800049rr] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We hypothesized that a single session of resistance exercise performed in moderate hypoxic (FiO2: 14%) environmental conditions would potentiate the anabolic response during the recovery period spent in normoxia. Twenty subjects performed a 1-leg knee extension session in normoxic or hypoxic conditions. Muscle biopsies were taken 15 min and 4 h after exercise in the vastus lateralis of the exercised and the nonexercised legs. Blood and saliva samples were taken at regular intervals before, during, and after the exercise session. The muscle fractional-protein synthetic rate was determined by deuterium incorporation into proteins, and the protein-degradation rate was determined by methylhistidine release from skeletal muscle. We found that: 1) hypoxia blunted the activation of protein synthesis after resistance exercise; 2) hypoxia down-regulated the transcriptional program of autophagy; 3) hypoxia regulated the expression of genes involved in glucose metabolism at rest and the genes involved in myoblast differentiation and fusion and in muscle contraction machinery after exercise; and 4) the hypoxia-inducible factor-1α pathway was not activated at the time points studied. Contrary to our hypothesis, environmental hypoxia did not potentiate the short-term anabolic response after resistance exercise, but it initiated transcriptional regulations that could potentially translate into satellite cell incorporation and higher force production in the long term.-Gnimassou, O., Fernández-Verdejo, R., Brook, M., Naslain, D., Balan, E., Sayda, M., Cegielski, J., Nielens, H., Decottignies, A., Demoulin, J.-B., Smith, K., Atherton, P. J., Fancaux, M., Deldicque, L. Environmental hypoxia favors myoblast differentiation and fast phenotype but blunts activation of protein synthesis after resistance exercise in human skeletal muscle.
Collapse
Affiliation(s)
- Olouyomi Gnimassou
- Institute of Neuroscience, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Rodrigo Fernández-Verdejo
- Institute of Neuroscience, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
- Carrera de Nutrición y Dietética, Departamento de Ciencias de la Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Matthew Brook
- Medical Research Council-Arthritis Research UK Centre of Excellence for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham, Derby, United Kingdom
- Clinical, Metabolic, and Molecular Physiology, Royal Derby Hospital, University of Nottingham, Derby, United Kingdom
| | - Damien Naslain
- Institute of Neuroscience, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Estelle Balan
- Institute of Neuroscience, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Mariwan Sayda
- Medical Research Council-Arthritis Research UK Centre of Excellence for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham, Derby, United Kingdom
- Clinical, Metabolic, and Molecular Physiology, Royal Derby Hospital, University of Nottingham, Derby, United Kingdom
| | - Jessica Cegielski
- Medical Research Council-Arthritis Research UK Centre of Excellence for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham, Derby, United Kingdom
- Clinical, Metabolic, and Molecular Physiology, Royal Derby Hospital, University of Nottingham, Derby, United Kingdom
| | - Henri Nielens
- Institute of Neuroscience, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | | | - Kenneth Smith
- Medical Research Council-Arthritis Research UK Centre of Excellence for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham, Derby, United Kingdom
- Clinical, Metabolic, and Molecular Physiology, Royal Derby Hospital, University of Nottingham, Derby, United Kingdom
| | - Philip J Atherton
- Medical Research Council-Arthritis Research UK Centre of Excellence for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham, Derby, United Kingdom
- Clinical, Metabolic, and Molecular Physiology, Royal Derby Hospital, University of Nottingham, Derby, United Kingdom
| | - Marc Francaux
- Institute of Neuroscience, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Louise Deldicque
- Institute of Neuroscience, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
17
|
Ryall JG, Lynch GS. The molecular signature of muscle stem cells is driven by nutrient availability and innate cell metabolism. Curr Opin Clin Nutr Metab Care 2018; 21:240-245. [PMID: 29697538 DOI: 10.1097/mco.0000000000000472] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW To discuss how innate muscle stem-cell metabolism and nutrient availability can provide temporal regulation of chromatin accessibility and transcription. RECENT FINDINGS Fluorescence-activated cell sorting coupled with whole transcriptome sequencing revealed for the first time that quiescent and proliferating skeletal muscle stem cells exhibit a process of metabolic reprogramming, from fatty-acid oxidation during quiescence to glycolysis during proliferation. Using a combination of immunofluorescence and chromatin immunoprecipitation sequencing, this shift in metabolism has been linked to altered availability of key metabolites essential for histone (de)acetylation and (de)methylation, including acetyl-CoA, s-adenosylmethionine and α-ketoglutarate. Importantly, these changes in metabolite availability have been linked to muscle stem-cell function. SUMMARY Together, these results provide greater insight into how muscle stem cells interact with their local environment, with important implications for metabolic diseases, skeletal muscle regeneration and cell-transplantation therapies.
Collapse
Affiliation(s)
- James G Ryall
- Department of Physiology, Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia
| | | |
Collapse
|
18
|
Chen YJ, Huang BY, Yang CN. Molecular modeling on HIF-2α-ARNT dimer destabilization caused by R171A and/or V192D mutations in HIF-2α. J Mol Graph Model 2017; 79:35-45. [PMID: 29132019 DOI: 10.1016/j.jmgm.2017.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/12/2017] [Accepted: 10/12/2017] [Indexed: 10/18/2022]
Abstract
Oxygen homeostasis in normal and tumor cells is mediated by hypoxia-inducible factors (HIFs), which are active as heterodimer complexes, such as HIF-2α-aryl hydrocarbon receptor nuclear translocator (ARNT) and HIF-1α-ARNT. A series of mutations on the interfaces between HIF-2α and ARNT and on the domain-domain interface within HIF-2α has been reported to exert varying effects on HIF-2α-ARNT dimerization. In the present study, molecular dynamic simulations were conducted to evaluate HIF-2α mutations, namely R171A, V192D, and R171A/V192D, which are not involved in the interaction with ARNT but impede HIF-2α-ARNT dimerization. Our results indicate that these mutations induct local conformation leading to a shortened (by V192D) or widened (by R171A and R171A/V192D) Y91-E346 separation distance, where E346 and Y91 are located on the HIF-2α and interact with ARNT according to electrostatic and geometrical shape complementarity, respectively.
Collapse
Affiliation(s)
- Ya-Jyun Chen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, Taiwan
| | - Bo-Yen Huang
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, Taiwan
| | - Chia-Ning Yang
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, Taiwan; Scientific Multi-Simulation Center, National University of Kaohsiung, Kaohsiung, Taiwan.
| |
Collapse
|
19
|
Chang WL, Chang YC, Lin KT, Li HR, Pai CY, Chen JH, Su YH. Asymmetric distribution of hypoxia-inducible factor α regulates dorsoventral axis establishment in the early sea urchin embryo. Development 2017; 144:2940-2950. [PMID: 28705895 DOI: 10.1242/dev.145052] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 07/05/2017] [Indexed: 12/21/2022]
Abstract
Hypoxia signaling is an ancient pathway by which animals can respond to low oxygen. Malfunction of this pathway disturbs hypoxic acclimation and can result in various diseases, including cancers. The role of hypoxia signaling in early embryogenesis remains unclear. Here, we show that in the blastula of the sea urchin Strongylocentrotus purpuratus, hypoxia-inducible factor α (HIFα), the downstream transcription factor of the hypoxia pathway, is localized and transcriptionally active on the future dorsal side. This asymmetric distribution is attributable to its oxygen-sensing ability. Manipulations of the HIFα level entrained the dorsoventral axis, as the side with the higher level of HIFα tends to develop into the dorsal side. Gene expression analyses revealed that HIFα restricts the expression of nodal to the ventral side and activates several genes encoding transcription factors on the dorsal side. We also observed that intrinsic hypoxic signals in the early embryos formed a gradient, which was disrupted under hypoxic conditions. Our results reveal an unprecedented role of the hypoxia pathway in animal development.
Collapse
Affiliation(s)
- Wei-Lun Chang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan.,Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan
| | - Yi-Cheng Chang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Kuan-Ting Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Han-Ru Li
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Chih-Yu Pai
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Jen-Hao Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Hsien Su
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan .,Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan
| |
Collapse
|
20
|
Contreras-Muñoz P, Torrella JR, Serres X, Rizo-Roca D, De la Varga M, Viscor G, Martínez-Ibáñez V, Peiró JL, Järvinen TAH, Rodas G, Marotta M. Postinjury Exercise and Platelet-Rich Plasma Therapies Improve Skeletal Muscle Healing in Rats But Are Not Synergistic When Combined. Am J Sports Med 2017; 45:2131-2141. [PMID: 28453295 DOI: 10.1177/0363546517702864] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Skeletal muscle injuries are the most common sports-related injury and a major concern in sports medicine. The effect of platelet-rich plasma (PRP) injections on muscle healing is still poorly understood, and current data are inconclusive. PURPOSE To evaluate the effects of an ultrasound-guided intramuscular PRP injection, administered 24 hours after injury, and/or posttraumatic daily exercise training for 2 weeks on skeletal muscle healing in a recently established rat model of skeletal muscle injury that highly mimics the muscle trauma seen in human athletes. STUDY DESIGN Controlled laboratory study. METHODS A total of 40 rats were assigned to 5 groups. Injured rats (medial gastrocnemius injury) received a single PRP injection (PRP group), daily exercise training (Exer group), or a combination of a single PRP injection and daily exercise training (PRP-Exer group). Untreated and intramuscular saline-injected animals were used as controls. Muscle force was determined 2 weeks after muscle injury, and muscles were harvested and evaluated by means of histological assessment and immunofluorescence microscopy. RESULTS Both PRP (exhibiting 4.8-fold higher platelet concentration than whole blood) and exercise training improved muscle strength (maximum tetanus force, TetF) in approximately 18%, 20%, and 30% of rats in the PRP, PRP-Exer, and Exer groups, respectively. Specific markers of muscle regeneration (developmental myosin heavy chain, dMHC) and scar formation (collagen I) demonstrated the beneficial effect of the tested therapies in accelerating the muscle healing process in rats. PRP and exercise treatments stimulated the growth of newly formed regenerating muscle fibers (1.5-, 2-, and 2.5-fold increase in myofiber cross-sectional area in PRP, PRP-Exer, and Exer groups, respectively) and reduced scar formation in injured skeletal muscle (20%, 34%, and 41% of reduction in PRP, PRP-Exer, and Exer groups, respectively). Exercise-treated muscles (PRP-Exer and Exer groups) had significantly reduced percentage of dMHC-positive regenerating fibers (35% and 47% decrease in dMHC expression, respectively), indicating that exercise therapies accelerated the muscle healing process witnessed by the more rapid replacement of the embryonic-developmental myosin isoform by mature muscle myosin isoforms. CONCLUSION Intramuscular PRP injection and, especially, treadmill exercise improve histological outcome and force recovery of the injured skeletal muscle in a rat injury model that imitates sports-related muscle injuries in athletes. However, there was not a synergistic effect when both treatments were combined, suggesting that PRP does not add any beneficial effect to exercise-based therapy in the treatment of injured skeletal muscle. CLINICAL RELEVANCE This study demonstrates the efficacy of an early active rehabilitation protocol or single intramuscular PRP injection on muscle recovery. The data also reveal that the outcome of the early active rehabilitation is adversely affected by the PRP injection when the two therapies are combined, and this could explain why PRP therapies have failed in randomized clinical trials where the athletes have adhered to postinjection rehabilitation protocols based on the principle of early, active mobilization.
Collapse
Affiliation(s)
- Paola Contreras-Muñoz
- Leitat Foundation, Leitat Technological Center, Barcelona, Spain.,Bioengineering, Cell Therapy and Surgery in Congenital Malformations Laboratory, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joan Ramon Torrella
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Xavier Serres
- Ultrasound Unit, Department of Radiology, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - David Rizo-Roca
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | | | - Ginés Viscor
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Vicente Martínez-Ibáñez
- Bioengineering, Cell Therapy and Surgery in Congenital Malformations Laboratory, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - José Luis Peiró
- Bioengineering, Cell Therapy and Surgery in Congenital Malformations Laboratory, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain.,Translational Research in Fetal Surgery for Congenital Malformations Laboratory, Center for Fetal, Cellular and Molecular Therapy, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Tero A H Järvinen
- Medical School, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Gil Rodas
- Leitat Foundation, Leitat Technological Center, Barcelona, Spain.,Medical Services, Futbol Club Barcelona, Ciutat Esportiva Futbol Club Barcelona, Barcelona, Spain
| | - Mario Marotta
- Leitat Foundation, Leitat Technological Center, Barcelona, Spain.,Bioengineering, Cell Therapy and Surgery in Congenital Malformations Laboratory, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|