1
|
Schindler-Johnson M, Petridou NI. Collective effects of cell cleavage dynamics. Front Cell Dev Biol 2024; 12:1358971. [PMID: 38559810 PMCID: PMC10978805 DOI: 10.3389/fcell.2024.1358971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
A conserved process of early embryonic development in metazoans is the reductive cell divisions following oocyte fertilization, termed cell cleavages. Cell cleavage cycles usually start synchronously, lengthen differentially between the embryonic cells becoming asynchronous, and cease before major morphogenetic events, such as germ layer formation and gastrulation. Despite exhibiting species-specific characteristics, the regulation of cell cleavage dynamics comes down to common controllers acting mostly at the single cell/nucleus level, such as nucleus-to-cytoplasmic ratio and zygotic genome activation. Remarkably, recent work has linked cell cleavage dynamics to the emergence of collective behavior during embryogenesis, including pattern formation and changes in embryo-scale mechanics, raising the question how single-cell controllers coordinate embryo-scale processes. In this review, we summarize studies across species where an association between cell cleavages and collective behavior was made, discuss the underlying mechanisms, and propose that cell-to-cell variability in cell cleavage dynamics can serve as a mechanism of long-range coordination in developing embryos.
Collapse
Affiliation(s)
- Magdalena Schindler-Johnson
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Nicoletta I. Petridou
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
2
|
Aze A, Hutchins JRA, Maiorano D. Studying Translesion DNA Synthesis Using Xenopus In Vitro Systems. Methods Mol Biol 2024; 2740:21-36. [PMID: 38393467 DOI: 10.1007/978-1-0716-3557-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Cell-free extracts derived from Xenopus eggs have been widely used to decipher molecular pathways involved in several cellular processes including DNA synthesis, the DNA damage response, and genome integrity maintenance. We set out assays using Xenopus cell-free extracts to study translesion DNA synthesis (TLS), a branch of the DNA damage tolerance pathway that allows replication of damaged DNA. Using this system, we were able to recapitulate TLS activities that occur naturally in vivo during early embryogenesis. This chapter describes protocols to detect chromatin-bound TLS factors by western blotting and immunofluorescence microscopy upon induction of DNA damage by UV irradiation, monitor TLS-dependent mutagenesis, and perform proteomic screening.
Collapse
Affiliation(s)
- Antoine Aze
- Genome Surveillance and Stability Laboratory, Institute of Human Genetics, UMR9002, CNRS-University of Montpellier, Montpellier, France
| | - James R A Hutchins
- Genome Surveillance and Stability Laboratory, Institute of Human Genetics, UMR9002, CNRS-University of Montpellier, Montpellier, France
| | - Domenico Maiorano
- Genome Surveillance and Stability Laboratory, Institute of Human Genetics, UMR9002, CNRS-University of Montpellier, Montpellier, France.
| |
Collapse
|
3
|
Chan KY, Yan CCS, Roan HY, Hsu SC, Tseng TL, Hsiao CD, Hsu CP, Chen CH. Skin cells undergo asynthetic fission to expand body surfaces in zebrafish. Nature 2022; 605:119-125. [PMID: 35477758 DOI: 10.1038/s41586-022-04641-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/10/2022] [Indexed: 12/24/2022]
Abstract
As an animal's surface area expands during development, skin cell populations must quickly respond to maintain sufficient epithelial coverage. Despite much progress in understanding of skin cell behaviours in vivo1,2, it remains unclear how cells collectively act to satisfy coverage demands at an organismic level. Here we created a multicolour cell membrane tagging system, palmskin, to monitor the entire population of superficial epithelial cells (SECs) in developing zebrafish larvae. Using time-lapse imaging, we found that many SECs readily divide on the animal body surface; during a specific developmental window, a single SEC can produce a maximum of four progeny cells over its lifetime on the surface of the animal. Remarkably, EdU assays, DNA staining and hydroxyurea treatment showed that these terminally differentiated skin cells continue splitting despite an absence of DNA replication, causing up to 50% of SECs to exhibit reduced genome size. On the basis of a simple mathematical model and quantitative analyses of cell volumes and apical surface areas, we propose that 'asynthetic fission' is used as an efficient mechanism for expanding epithelial coverage during rapid growth. Furthermore, global or local manipulation of body surface growth affects the extent and mode of SEC division, presumably through tension-mediated activation of stretch-activated ion channels. We speculate that this frugal yet flexible mode of cell proliferation might also occur in contexts other than zebrafish skin expansion.
Collapse
Affiliation(s)
- Keat Ying Chan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.,Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
| | | | - Hsiao-Yuh Roan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Shao-Chun Hsu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Tzu-Lun Tseng
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taiwan
| | - Chao-Ping Hsu
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan.,Division of Physics, National Center for Theoretical Sciences, Taipei, Taiwan
| | - Chen-Hui Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
4
|
Lo Furno E, Busseau I, Aze A, Lorenzi C, Saghira C, Danzi MC, Zuchner S, Maiorano D. Translesion DNA synthesis-driven mutagenesis in very early embryogenesis of fast cleaving embryos. Nucleic Acids Res 2021; 50:885-898. [PMID: 34939656 PMCID: PMC8789082 DOI: 10.1093/nar/gkab1223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/22/2021] [Accepted: 12/22/2021] [Indexed: 11/19/2022] Open
Abstract
In early embryogenesis of fast cleaving embryos, DNA synthesis is short and surveillance mechanisms preserving genome integrity are inefficient, implying the possible generation of mutations. We have analyzed mutagenesis in Xenopus laevis and Drosophila melanogaster early embryos. We report the occurrence of a high mutation rate in Xenopus and show that it is dependent upon the translesion DNA synthesis (TLS) master regulator Rad18. Unexpectedly, we observed a homology-directed repair contribution of Rad18 in reducing the mutation load. Genetic invalidation of TLS in the pre-blastoderm Drosophila embryo resulted in reduction of both the hatching rate and single-nucleotide variations on pericentromeric heterochromatin in adult flies. Altogether, these findings indicate that during very early Xenopus and Drosophila embryos TLS strongly contributes to the high mutation rate. This may constitute a previously unforeseen source of genetic diversity contributing to the polymorphisms of each individual with implications for genome evolution and species adaptation.
Collapse
Affiliation(s)
- Elena Lo Furno
- Genome Surveillance and Stability Laboratory, Institut de Génétique Humaine, Université de Montpellier, CNRS-UMR9002, 34000 Montpellier, France
| | - Isabelle Busseau
- Systemic Impact of Small Regulatory RNAs Laboratory, Institut de Génétique Humaine, Université de Montpellier, CNRS-UMR9002, 34000 Montpellier, France
| | - Antoine Aze
- Genome Surveillance and Stability Laboratory, Institut de Génétique Humaine, Université de Montpellier, CNRS-UMR9002, 34000 Montpellier, France
| | - Claudio Lorenzi
- Machine Learning and Gene Regulation Laboratory, Institut de Génétique Humaine, Université de Montpellier, CNRS-UMR9002, 34000 Montpellier, France
| | - Cima Saghira
- Department of Human Genetics, Hussman Institute for Human Genomics, University of Miami, Miami, FL 33136, USA
| | - Matt C Danzi
- Department of Human Genetics, Hussman Institute for Human Genomics, University of Miami, Miami, FL 33136, USA
| | - Stephan Zuchner
- Department of Human Genetics, Hussman Institute for Human Genomics, University of Miami, Miami, FL 33136, USA
| | - Domenico Maiorano
- Genome Surveillance and Stability Laboratory, Institut de Génétique Humaine, Université de Montpellier, CNRS-UMR9002, 34000 Montpellier, France
| |
Collapse
|
5
|
Lo Furno E, Recolin B, van der Laan S, Aze A, Maiorano D. Studying the DNA damage response in embryonic systems. Methods Enzymol 2021; 661:95-120. [PMID: 34776225 DOI: 10.1016/bs.mie.2021.08.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Maintenance and surveillance of genome integrity is crucial during the very early steps of embryonic development, since de novo mutations generated during this stage can be propagated in differentiated adult cells and may lead to predisposition to diseases including cancer. Surprisingly, early embryos are characterized by a relaxed control of genome integrity, reminiscent of that observed in cancer cells. How embryos manage to produce healthy adult individuals in such conditions remains still unclear. Here, we describe protocols and methods to study and analyze the DNA damage response and genome integrity in two embryonic experimental systems, early Xenopus laevis embryos and mouse embryonic stem cells. We describe methods to study gene functions in the DNA damage response by mRNA microinjection in Xenopus embryos generated by in vitro fertilization, mutagenesis and developmental regulation of the DNA damage response. We also describe methods to analyze the DNA damage response in mESCs, including synchronization experiments that allow studying the DNA damage response at different cell cycle stages. Analysis of genome integrity in these systems may also help to shed light on the molecular mechanisms that preserve genome integrity and become dysregulated in cancer cells.
Collapse
Affiliation(s)
- Elena Lo Furno
- Institut de Génétique Humaine, Université de Montpellier, Genome Surveillance and Stability, CNRS-UMR9002, Montpellier, France
| | - Bénédicte Recolin
- Institut de Génétique Humaine, Université de Montpellier, Genome Surveillance and Stability, CNRS-UMR9002, Montpellier, France.
| | - Siem van der Laan
- Institut de Génétique Humaine, Université de Montpellier, Genome Surveillance and Stability, CNRS-UMR9002, Montpellier, France
| | - Antoine Aze
- Institut de Génétique Humaine, Université de Montpellier, Genome Surveillance and Stability, CNRS-UMR9002, Montpellier, France
| | - Domenico Maiorano
- Institut de Génétique Humaine, Université de Montpellier, Genome Surveillance and Stability, CNRS-UMR9002, Montpellier, France.
| |
Collapse
|
6
|
Liu B, Zhao H, Wu K, Großhans J. Temporal Gradients Controlling Embryonic Cell Cycle. BIOLOGY 2021; 10:biology10060513. [PMID: 34207742 PMCID: PMC8228447 DOI: 10.3390/biology10060513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 12/17/2022]
Abstract
Simple Summary Embryonic cells sense temporal gradients of regulatory signals to determine whether and when to proceed or remodel the cell cycle. Such a control mechanism is allowed to accurately link the cell cycle with the developmental program, including cell differentiation, morphogenesis, and gene expression. The mid-blastula transition has been a paradigm for timing in early embryogenesis in frog, fish, and fly, among others. It has been argued for decades now if the events associated with the mid-blastula transition, i.e., the onset of zygotic gene expression, remodeling of the cell cycle, and morphological changes, are determined by a control mechanism or by absolute time. Recent studies indicate that multiple independent signals and mechanisms contribute to the timing of these different processes. Here, we focus on the mechanisms for cell cycle remodeling, specifically in Drosophila, which relies on gradual changes of the signal over time. We discuss pathways for checkpoint activation, decay of Cdc25 protein levels, as well as depletion of deoxyribonucleotide metabolites and histone proteins. The gradual changes of these signals are linked to Cdk1 activity by readout mechanisms involving thresholds. Abstract Cell proliferation in early embryos by rapid cell cycles and its abrupt pause after a stereotypic number of divisions present an attractive system to study the timing mechanism in general and its coordination with developmental progression. In animals with large eggs, such as Xenopus, zebrafish, or Drosophila, 11–13 very fast and synchronous cycles are followed by a pause or slowdown of the cell cycle. The stage when the cell cycle is remodeled falls together with changes in cell behavior and activation of the zygotic genome and is often referred to as mid-blastula transition. The number of fast embryonic cell cycles represents a clear and binary readout of timing. Several factors controlling the cell cycle undergo dynamics and gradual changes in activity or concentration and thus may serve as temporal gradients. Recent studies have revealed that the gradual loss of Cdc25 protein, gradual depletion of free deoxyribonucleotide metabolites, or gradual depletion of free histone proteins impinge on Cdk1 activity in a threshold-like manner. In this review, we will highlight with a focus on Drosophila studies our current understanding and recent findings on the generation and readout of these temporal gradients, as well as their position within the regulatory network of the embryonic cell cycle.
Collapse
Affiliation(s)
- Boyang Liu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (B.L.); (H.Z.); (K.W.)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, China
| | - Han Zhao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (B.L.); (H.Z.); (K.W.)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, China
| | - Keliang Wu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (B.L.); (H.Z.); (K.W.)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, China
| | - Jörg Großhans
- Department of Biology, Philipps University, 35043 Marburg, Germany
- Correspondence:
| |
Collapse
|
7
|
The nuclear to cytoplasmic ratio directly regulates zygotic transcription in Drosophila through multiple modalities. Proc Natl Acad Sci U S A 2021; 118:2010210118. [PMID: 33790005 DOI: 10.1073/pnas.2010210118] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Early embryos must rapidly generate large numbers of cells to form an organism. Many species accomplish this through a series of rapid, reductive, and transcriptionally silent cleavage divisions. Previous work has demonstrated that the number of divisions before both cell cycle elongation and zygotic genome activation (ZGA) is regulated by the ratio of nuclear content to cytoplasm (N/C). To understand how the N/C ratio affects the timing of ZGA, we directly assayed the behavior of several previously identified N/C ratio-dependent genes using the MS2-MCP reporter system in living Drosophila embryos with altered ploidy and cell cycle durations. For every gene that we examined, we found that nascent RNA output per cycle is delayed in haploid embryos. Moreover, we found that the N/C ratio influences transcription through three overlapping modes of action. For some genes (knirps, fushi tarazu, and snail), the effect of ploidy can be primarily attributed to changes in cell cycle duration. However, additional N/C ratio-mediated mechanisms contribute significantly to transcription delays for other genes. For giant and bottleneck, the kinetics of transcription activation are significantly disrupted in haploids, while for frühstart and Krüppel, the N/C ratio controls the probability of transcription initiation. Our data demonstrate that the regulatory elements of N/C ratio-dependent genes respond directly to the N/C ratio through multiple modes of regulation.
Collapse
|
8
|
Nolet FE, Vandervelde A, Vanderbeke A, Piñeros L, Chang JB, Gelens L. Nuclei determine the spatial origin of mitotic waves. eLife 2020; 9:e52868. [PMID: 32452767 PMCID: PMC7314552 DOI: 10.7554/elife.52868] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 05/22/2020] [Indexed: 12/11/2022] Open
Abstract
Traveling waves play an essential role in coordinating mitosis over large distances, but what determines the spatial origin of mitotic waves remains unclear. Here, we show that such waves initiate at pacemakers, regions that oscillate faster than their surroundings. In cell-free extracts of Xenopus laevis eggs, we find that nuclei define such pacemakers by concentrating cell cycle regulators. In computational models of diffusively coupled oscillators that account for nuclear import, nuclear positioning determines the pacemaker location. Furthermore, we find that the spatial dimensions of the oscillatory medium change the nuclear positioning and strongly influence whether a pacemaker is more likely to be at a boundary or an internal region. Finally, we confirm experimentally that increasing the system width increases the proportion of pacemakers at the boundary. Our work provides insight into how nuclei and spatial system dimensions can control local concentrations of regulators and influence the emergent behavior of mitotic waves.
Collapse
Affiliation(s)
- Felix E Nolet
- Laboratory of Dynamics in Biological Systems, Department of Cellular and Molecular Medicine, Faculty of Medicine, KU LeuvenLeuvenBelgium
| | - Alexandra Vandervelde
- Laboratory of Dynamics in Biological Systems, Department of Cellular and Molecular Medicine, Faculty of Medicine, KU LeuvenLeuvenBelgium
| | - Arno Vanderbeke
- Laboratory of Dynamics in Biological Systems, Department of Cellular and Molecular Medicine, Faculty of Medicine, KU LeuvenLeuvenBelgium
- MeBioS - Biosensors Group, Department of Biosystems, KU LeuvenLeuvenBelgium
| | - Liliana Piñeros
- Laboratory of Dynamics in Biological Systems, Department of Cellular and Molecular Medicine, Faculty of Medicine, KU LeuvenLeuvenBelgium
| | - Jeremy B Chang
- Department of Pharmaceutical ChemistryUniversity of California, San FranciscoUnited States
| | - Lendert Gelens
- Laboratory of Dynamics in Biological Systems, Department of Cellular and Molecular Medicine, Faculty of Medicine, KU LeuvenLeuvenBelgium
| |
Collapse
|
9
|
Liu B, Großhans J. The role of dNTP metabolites in control of the embryonic cell cycle. Cell Cycle 2019; 18:2817-2827. [PMID: 31544596 PMCID: PMC6791698 DOI: 10.1080/15384101.2019.1665948] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 01/06/2023] Open
Abstract
Deoxyribonucleotide metabolites (dNTPs) are the substrates for DNA synthesis. It has been proposed that their availability influences the progression of the cell cycle during development and pathological situations such as tumor growth. The mechanism has remained unclear for the link between cell cycle and dNTP levels beyond their role as substrates. Here, we review recent studies concerned with the dynamics of dNTP levels in early embryos and the role of DNA replication checkpoint as a sensor of dNTP levels.
Collapse
Affiliation(s)
- Boyang Liu
- Institut für Entwicklungsbiochemie, Universitätsmedizin, Georg-August-Universität, Göttingen, Germany
| | - Jörg Großhans
- Institut für Entwicklungsbiochemie, Universitätsmedizin, Georg-August-Universität, Göttingen, Germany
- Entwicklungsgenetik, Fachbereich Biologie, Philipps-Universität, Marburg, Germany
| |
Collapse
|
10
|
Platel M, Narassimprakash H, Ciardo D, Haccard O, Marheineke K. Genome wide decrease of DNA replication eye density at the midblastula transition of Xenopus laevis. Cell Cycle 2019; 18:1458-1472. [PMID: 31130065 PMCID: PMC6592225 DOI: 10.1080/15384101.2019.1618641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/03/2019] [Accepted: 05/08/2019] [Indexed: 02/04/2023] Open
Abstract
During the first rapid divisions of early development in many species, the DNA:cytoplasm ratio increases until the midblastula transition (MBT) when transcription resumes and cell cycles lengthen. S phase is very rapid in early embryos, about 20-30 times faster than in differentiated cells. Using a combination of DNA fiber studies and a Xenopus laevis embryonic in vitro replication system, we show that S phase slows down shortly after the MBT owing to a genome wide decrease of replication eye density. Increasing the dNTP pool did not accelerate S phase or increase replication eye density implying that dNTPs are not rate limiting for DNA replication at the Xenopus MBT. Increasing the ratio of DNA:cytoplasm in egg extracts faithfully recapitulates changes in the spatial replication program in embryos, supporting the hypothesis that titration of soluble limiting factors could explain the observed changes in the DNA replication program at the MBT in Xenopus laevis.
Collapse
Affiliation(s)
- Marie Platel
- Department of Genome Biology, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris‐Sud, University Paris‐Saclay, Gif‐sur‐Yvette, France
| | - Hemalatha Narassimprakash
- Department of Genome Biology, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris‐Sud, University Paris‐Saclay, Gif‐sur‐Yvette, France
| | - Diletta Ciardo
- Department of Genome Biology, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris‐Sud, University Paris‐Saclay, Gif‐sur‐Yvette, France
| | - Olivier Haccard
- Department of Genome Biology, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris‐Sud, University Paris‐Saclay, Gif‐sur‐Yvette, France
| | - Kathrin Marheineke
- Department of Genome Biology, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris‐Sud, University Paris‐Saclay, Gif‐sur‐Yvette, France
| |
Collapse
|
11
|
Kermi C, Aze A, Maiorano D. Preserving Genome Integrity During the Early Embryonic DNA Replication Cycles. Genes (Basel) 2019; 10:genes10050398. [PMID: 31137726 PMCID: PMC6563053 DOI: 10.3390/genes10050398] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/15/2019] [Indexed: 02/06/2023] Open
Abstract
During the very early stages of embryonic development chromosome replication occurs under rather challenging conditions, including a very short cell cycle, absence of transcription, a relaxed DNA damage response and, in certain animal species, a highly contracted S-phase. This raises the puzzling question of how the genome can be faithfully replicated in such a peculiar metabolic context. Recent studies have provided new insights into this issue, and unveiled that embryos are prone to accumulate genetic and genomic alterations, most likely due to restricted cellular functions, in particular reduced DNA synthesis quality control. These findings may explain the low rate of successful development in mammals and the occurrence of diseases, such as abnormal developmental features and cancer. In this review, we will discuss recent findings in this field and put forward perspectives to further study this fascinating question.
Collapse
Affiliation(s)
- Chames Kermi
- Laboratoire Surveillance et Stabilité du Génome, Institut de Génétique Humaine, UMR9002, CNRS, Université de Montpellier, 34090 Montpellier, France.
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 318 Campus Drive, Stanford, CA 94305-5441, USA.
| | - Antoine Aze
- Laboratoire Surveillance et Stabilité du Génome, Institut de Génétique Humaine, UMR9002, CNRS, Université de Montpellier, 34090 Montpellier, France.
| | - Domenico Maiorano
- Laboratoire Surveillance et Stabilité du Génome, Institut de Génétique Humaine, UMR9002, CNRS, Université de Montpellier, 34090 Montpellier, France.
| |
Collapse
|
12
|
Ciardo D, Goldar A, Marheineke K. On the Interplay of the DNA Replication Program and the Intra-S Phase Checkpoint Pathway. Genes (Basel) 2019; 10:E94. [PMID: 30700024 PMCID: PMC6410103 DOI: 10.3390/genes10020094] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 12/12/2022] Open
Abstract
DNA replication in eukaryotes is achieved by the activation of multiple replication origins which needs to be precisely coordinated in space and time. This spatio-temporal replication program is regulated by many factors to maintain genome stability, which is frequently threatened through stresses of exogenous or endogenous origin. Intra-S phase checkpoints monitor the integrity of DNA synthesis and are activated when replication forks are stalled. Their activation leads to the stabilization of forks, to the delay of the replication program by the inhibition of late firing origins, and the delay of G2/M phase entry. In some cell cycles during early development these mechanisms are less efficient in order to allow rapid cell divisions. In this article, we will review our current knowledge of how the intra-S phase checkpoint regulates the replication program in budding yeast and metazoan models, including early embryos with rapid S phases. We sum up current models on how the checkpoint can inhibit origin firing in some genomic regions, but allow dormant origin activation in other regions. Finally, we discuss how numerical and theoretical models can be used to connect the multiple different actors into a global process and to extract general rules.
Collapse
Affiliation(s)
- Diletta Ciardo
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette CEDEX, France.
| | | | | |
Collapse
|
13
|
Chk1 Inhibition of the Replication Factor Drf1 Guarantees Cell-Cycle Elongation at the Xenopus laevis Mid-blastula Transition. Dev Cell 2017; 42:82-96.e3. [PMID: 28697335 PMCID: PMC5505860 DOI: 10.1016/j.devcel.2017.06.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 04/19/2017] [Accepted: 06/07/2017] [Indexed: 12/21/2022]
Abstract
The early cell divisions of many metazoan embryos are rapid and occur in the near absence of transcription. At the mid-blastula transition (MBT), the cell cycle elongates and several processes become established including the onset of bulk transcription and cell-cycle checkpoints. How these events are timed and coordinated is poorly understood. Here we show in Xenopus laevis that developmental activation of the checkpoint kinase Chk1 at the MBT results in the SCFβ-TRCP-dependent degradation of a limiting replication initiation factor Drf1. Inhibition of Drf1 is the primary mechanism by which Chk1 blocks cell-cycle progression in the early embryo and is an essential function of Chk1 at the blastula-to-gastrula stage of development. This study defines the downregulation of Drf1 as an important mechanism to coordinate the lengthening of the cell cycle and subsequent developmental processes. Activation of Chk1 at the Xenopus MBT results in the degradation of Drf1 Drf1 degradation is SCFβ-TRCP dependent Chk1 blocks the cell cycle in the early embryo through inhibition of Drf1 Inhibition of Drf1 is an essential function of Chk1 during gastrulation
Collapse
|
14
|
Regulation of DNA Replication in Early Embryonic Cleavages. Genes (Basel) 2017; 8:genes8010042. [PMID: 28106858 PMCID: PMC5295036 DOI: 10.3390/genes8010042] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/06/2017] [Accepted: 01/11/2017] [Indexed: 11/18/2022] Open
Abstract
Early embryonic cleavages are characterized by short and highly synchronous cell cycles made of alternating S- and M-phases with virtually absent gap phases. In this contracted cell cycle, the duration of DNA synthesis can be extraordinarily short. Depending on the organism, the whole genome of an embryo is replicated at a speed that is between 20 to 60 times faster than that of a somatic cell. Because transcription in the early embryo is repressed, DNA synthesis relies on a large stockpile of maternally supplied proteins stored in the egg representing most, if not all, cellular genes. In addition, in early embryonic cell cycles, both replication and DNA damage checkpoints are inefficient. In this article, we will review current knowledge on how DNA synthesis is regulated in early embryos and discuss possible consequences of replicating chromosomes with little or no quality control.
Collapse
|
15
|
Abstract
The mechanism that duplicates the nuclear genome during the trillions of cell divisions required to develop from zygote to adult is the same throughout the eukarya, but the mechanisms that determine where, when and how much nuclear genome duplication occur regulate development and differ among the eukarya. They allow organisms to change the rate of cell proliferation during development, to activate zygotic gene expression independently of DNA replication, and to restrict nuclear DNA replication to once per cell division. They allow specialized cells to exit their mitotic cell cycle and differentiate into polyploid cells, and in some cases, to amplify the number of copies of specific genes. It is genome duplication that drives evolution, by virtue of the errors that inevitably occur when the same process is repeated trillions of times. It is, unfortunately, the same errors that produce age-related genetic disorders such as cancer.
Collapse
Affiliation(s)
- Melvin L DePamphilis
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
16
|
|
17
|
Hutchins JRA, Aze A, Coulombe P, Méchali M. Characteristics of Metazoan DNA Replication Origins. DNA REPLICATION, RECOMBINATION, AND REPAIR 2016. [PMCID: PMC7120227 DOI: 10.1007/978-4-431-55873-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Zhang M, Kothari P, Mullins M, Lampson MA. Regulation of zygotic genome activation and DNA damage checkpoint acquisition at the mid-blastula transition. Cell Cycle 2015; 13:3828-38. [PMID: 25558827 DOI: 10.4161/15384101.2014.967066] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Following fertilization, oviparous embryos undergo rapid, mostly transcriptionally silent cleavage divisions until the mid-blastula transition (MBT), when large-scale developmental changes occur, including zygotic genome activation (ZGA) and cell cycle remodeling, via lengthening and checkpoint acquisition. Despite their concomitant appearance, whether these changes are co-regulated is unclear. Three models have been proposed to account for the timing of (ZGA). One model implicates a threshold nuclear to cytoplasmic (N:C) ratio, another stresses the importance cell cycle elongation, while the third model invokes a timer mechanism. We show that precocious Chk1 activity in pre-MBT zebrafish embryos elongates cleavage cycles, thereby slowing the increase in the N:C ratio. We find that cell cycle elongation does not lead to transcriptional activation. Rather, ZGA slows in parallel with the N:C ratio. We show further that the DNA damage checkpoint program is maternally supplied and independent of ZGA. Although pre-MBT embryos detect damage and activate Chk2 after induction of DNA double-strand breaks, the Chk1 arm of the DNA damage response is not activated, and the checkpoint is nonfunctional. Our results are consistent with the N:C ratio model for ZGA. Moreover, the ability of precocious Chk1 activity to delay pre-MBT cell cycles indicate that lack of Chk1 activity limits checkpoint function during cleavage cycles. We propose that Chk1 gain-of-function at the MBT underlies cell cycle remodeling, whereas ZGA is regulated independently by the N:C ratio.
Collapse
|
19
|
O'Farrell PH. Growing an Embryo from a Single Cell: A Hurdle in Animal Life. Cold Spring Harb Perspect Biol 2015; 7:cshperspect.a019042. [PMID: 26254311 DOI: 10.1101/cshperspect.a019042] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A requirement that an animal be able to feed to grow constrains how a cell can grow into an animal, and it forces an alternation between growth (increase in mass) and proliferation (increase in cell number). A growth-only phase that transforms a stem cell of ordinary proportions into a huge cell, the oocyte, requires dramatic adaptations to help a nucleus direct a 10(5)-fold expansion of cytoplasmic volume. Proliferation without growth transforms the huge egg into an embryo while still accommodating an impotent nucleus overwhelmed by the voluminous cytoplasm. This growth program characterizes animals that deposit their eggs externally, but it is changed in mammals and in endoparasites. In these organisms, development in a nutritive environment releases the growth constraint, but growth of cells before gastrulation requires a new program to sustain pluripotency during this growth.
Collapse
Affiliation(s)
- Patrick H O'Farrell
- Department of Biochemistry, University of California San Francisco, San Francisco, California 94158
| |
Collapse
|
20
|
Kermi C, Prieto S, van der Laan S, Tsanov N, Recolin B, Uro-Coste E, Delisle MB, Maiorano D. RAD18 Is a Maternal Limiting Factor Silencing the UV-Dependent DNA Damage Checkpoint in Xenopus Embryos. Dev Cell 2015. [PMID: 26212134 DOI: 10.1016/j.devcel.2015.06.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In early embryos, the DNA damage checkpoint is silent until the midblastula transition (MBT) because of maternal limiting factors of unknown identity. Here we identify the RAD18 ubiquitin ligase as one such factor in Xenopus. We show, in vitro and in vivo, that inactivation of RAD18 function leads to DNA damage-dependent checkpoint activation, monitored by CHK1 phosphorylation. Moreover, we show that the abundance of both RAD18 and PCNA monoubiquitylated (mUb) are developmentally regulated. Increased DNA abundance limits the availability of RAD18 close to the MBT, thereby reducing PCNA(mUb) and inducing checkpoint derepression. Furthermore, we show that this embryonic-like regulation can be reactivated in somatic mammalian cells by ectopic RAD18 expression, therefore conferring resistance to DNA damage. Finally, we find high RAD18 expression in cancer stem cells highly resistant to DNA damage. Together, these data propose RAD18 as a critical embryonic checkpoint-inhibiting factor and suggest that RAD18 deregulation may have unexpected oncogenic potential.
Collapse
Affiliation(s)
- Chames Kermi
- Genome Surveillance and Stability Laboratory, CNRS-UPR1142, Institute of Human Genetics, 141 Rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | - Susana Prieto
- Genome Surveillance and Stability Laboratory, CNRS-UPR1142, Institute of Human Genetics, 141 Rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | - Siem van der Laan
- Genome Surveillance and Stability Laboratory, CNRS-UPR1142, Institute of Human Genetics, 141 Rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | - Nikolay Tsanov
- Genome Surveillance and Stability Laboratory, CNRS-UPR1142, Institute of Human Genetics, 141 Rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | - Bénédicte Recolin
- Genome Surveillance and Stability Laboratory, CNRS-UPR1142, Institute of Human Genetics, 141 Rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | - Emmanuelle Uro-Coste
- Laboratoire Universitaire d'Anatomie Pathologique, Faculté de Médecine Rangueil, Université Toulouse III, CHU, INSERM, 1 Avenue Jean Poulhès, CS 53717 Toulouse, France
| | - Marie-Bernadette Delisle
- Laboratoire Universitaire d'Anatomie Pathologique, Faculté de Médecine Rangueil, Université Toulouse III, CHU, INSERM, 1 Avenue Jean Poulhès, CS 53717 Toulouse, France
| | - Domenico Maiorano
- Genome Surveillance and Stability Laboratory, CNRS-UPR1142, Institute of Human Genetics, 141 Rue de la Cardonille, 34396 Montpellier Cedex 5, France.
| |
Collapse
|
21
|
Platel M, Goldar A, Wiggins JM, Barbosa P, Libeau P, Priam P, Narassimprakash H, Grodzenski X, Marheineke K. Tight Chk1 Levels Control Replication Cluster Activation in Xenopus. PLoS One 2015; 10:e0129090. [PMID: 26046346 PMCID: PMC4457610 DOI: 10.1371/journal.pone.0129090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 05/05/2015] [Indexed: 12/03/2022] Open
Abstract
DNA replication in higher eukaryotes initiates at thousands of origins according to a spatio-temporal program. The ATR/Chk1 dependent replication checkpoint inhibits the activation of later firing origins. In the Xenopus in vitro system initiations are not sequence dependent and 2-5 origins are grouped in clusters that fire at different times despite a very short S phase. We have shown that the temporal program is stochastic at the level of single origins and replication clusters. It is unclear how the replication checkpoint inhibits late origins but permits origin activation in early clusters. Here, we analyze the role of Chk1 in the replication program in sperm nuclei replicating in Xenopus egg extracts by a combination of experimental and modelling approaches. After Chk1 inhibition or immunodepletion, we observed an increase of the replication extent and fork density in the presence or absence of external stress. However, overexpression of Chk1 in the absence of external replication stress inhibited DNA replication by decreasing fork densities due to lower Cdk2 kinase activity. Thus, Chk1 levels need to be tightly controlled in order to properly regulate the replication program even during normal S phase. DNA combing experiments showed that Chk1 inhibits origins outside, but not inside, already active clusters. Numerical simulations of initiation frequencies in the absence and presence of Chk1 activity are consistent with a global inhibition of origins by Chk1 at the level of clusters but need to be combined with a local repression of Chk1 action close to activated origins to fit our data.
Collapse
Affiliation(s)
- Marie Platel
- Department of Genome Biology, Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Paris South University, Gif sur Yvette, France
| | - Arach Goldar
- Department of Genome Biology, Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Paris South University, Gif sur Yvette, France
| | - Jennifer M. Wiggins
- Department of Genome Biology, Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Paris South University, Gif sur Yvette, France
| | - Pedro Barbosa
- Department of Genome Biology, Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Paris South University, Gif sur Yvette, France
| | - Pierre Libeau
- Department of Genome Biology, Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Paris South University, Gif sur Yvette, France
| | - Pierre Priam
- Department of Genome Biology, Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Paris South University, Gif sur Yvette, France
| | - Hemalatha Narassimprakash
- Department of Genome Biology, Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Paris South University, Gif sur Yvette, France
| | - Xenia Grodzenski
- Department of Genome Biology, Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Paris South University, Gif sur Yvette, France
| | - Kathrin Marheineke
- Department of Genome Biology, Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Paris South University, Gif sur Yvette, France
- * E-mail:
| |
Collapse
|
22
|
Developmentally Regulated Post-translational Modification of Nucleoplasmin Controls Histone Sequestration and Deposition. Cell Rep 2015; 10:1735-1748. [PMID: 25772360 DOI: 10.1016/j.celrep.2015.02.038] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 01/09/2015] [Accepted: 02/13/2015] [Indexed: 11/23/2022] Open
Abstract
Nucleoplasmin (Npm) is an abundant histone chaperone in vertebrate oocytes and embryos. During embryogenesis, regulation of Npm histone binding is critical for its function in storing and releasing maternal histones to establish and maintain the zygotic epigenome. Here, we demonstrate that Xenopus laevis Npm post-translational modifications (PTMs) specific to the oocyte and egg promote either histone deposition or sequestration, respectively. Mass spectrometry and Npm phosphomimetic mutations used in chromatin assembly assays identified hyperphosphorylation on the N-terminal tail as a critical regulator for sequestration. C-terminal tail phosphorylation and PRMT5-catalyzed arginine methylation enhance nucleosome assembly by promoting histone interaction with the second acidic tract of Npm. Electron microscopy reconstructions of Npm and TTLL4 activity toward the C-terminal tail demonstrate that oocyte- and egg-specific PTMs cause Npm conformational changes. Our results reveal that PTMs regulate Npm chaperoning activity by modulating Npm conformation and Npm-histone interaction, leading to histone sequestration in the egg.
Collapse
|
23
|
Coordinating Cell Cycle Remodeling with Transcriptional Activation at the Drosophila MBT. Curr Top Dev Biol 2015; 113:113-48. [DOI: 10.1016/bs.ctdb.2015.06.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Collart C, Owens NDL, Bhaw-Rosun L, Cooper B, De Domenico E, Patrushev I, Sesay AK, Smith JN, Smith JC, Gilchrist MJ. High-resolution analysis of gene activity during the Xenopus mid-blastula transition. Development 2014; 141:1927-39. [PMID: 24757007 PMCID: PMC3994770 DOI: 10.1242/dev.102012] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Xenopus mid-blastula transition (MBT) marks the onset of large-scale zygotic transcription, as well as an increase in cell cycle length and a loss of synchronous cell divisions. Little is known about what triggers the activation of transcription or how newly expressed genes interact with each other. Here, we use high-resolution expression profiling to identify three waves of gene activity: a post-fertilisation wave involving polyadenylation of maternal transcripts; a broad wave of zygotic transcription detectable as early as the seventh cleavage and extending beyond the MBT at the twelfth cleavage; and a shorter post-MBT wave of transcription that becomes apparent as development proceeds. Our studies have also allowed us to define a set of maternal mRNAs that are deadenylated shortly after fertilisation, and are likely to be degraded thereafter. Experimental analysis indicates that the polyadenylation of maternal transcripts is necessary for the establishment of proper levels of zygotic transcription at the MBT, and that genes activated in the second wave of expression, including Brachyury and Mixer, contribute to the regulation of genes expressed in the third. Together, our high-resolution time series and experimental studies have yielded a deeper understanding of the temporal organisation of gene regulatory networks in the early Xenopus embryo.
Collapse
Affiliation(s)
- Clara Collart
- Division of Systems Biology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Murphy CM, Michael WM. Control of DNA replication by the nucleus/cytoplasm ratio in Xenopus. J Biol Chem 2013; 288:29382-93. [PMID: 23986447 DOI: 10.1074/jbc.m113.499012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The nucleus/cytoplasm (N/C) ratio controls S phase dynamics in many biological systems, most notably the abrupt remodeling of the cell cycle that occurs at the midblastula transition in early Xenopus laevis embryos. After an initial series of rapid cleavage cycles consisting only of S and M phases, a critical N/C ratio is reached, which causes a sharp increase in the length of S phase as the cell cycle is reconfigured to resemble somatic cell cycles. How the N/C ratio determines the length of S phase has been a longstanding problem in developmental biology. Using Xenopus egg extracts, we show that DNA replication at high N/C ratio is restricted by one or more limiting substances. We report here that the protein phosphatase PP2A, in conjunction with its B55α regulatory subunit, becomes limiting for replication origin firing at high N/C ratio, and this in turn leads to reduced origin activation and an increase in the time required to complete S phase. Increasing the levels of PP2A catalytic subunit or B55α experimentally restores rapid DNA synthesis at high N/C ratio. Inversely, reduction of PP2A or B55α levels sharply extends S phase even in low N/C extracts. These results identify PP2A-B55α as a link between DNA replication and N/C ratio in egg extracts and suggest a mechanism that may influence the onset of the midblastula transition in vivo.
Collapse
Affiliation(s)
- Christopher M Murphy
- From the Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089 and
| | | |
Collapse
|
26
|
Collart C, Allen GE, Bradshaw CR, Smith JC, Zegerman P. Titration of four replication factors is essential for the Xenopus laevis midblastula transition. Science 2013; 341:893-6. [PMID: 23907533 PMCID: PMC3898016 DOI: 10.1126/science.1241530] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The rapid, reductive early divisions of many metazoan embryos are followed by the midblastula transition (MBT), during which the cell cycle elongates and zygotic transcription begins. It has been proposed that the increasing nuclear to cytoplasmic (N/C) ratio is critical for controlling the events of the MBT. We show that four DNA replication factors--Cut5, RecQ4, Treslin, and Drf1--are limiting for replication initiation at increasing N/C ratios in vitro and in vivo in Xenopus laevis. The levels of these factors regulate multiple events of the MBT, including the slowing of the cell cycle, the onset of zygotic transcription, and the developmental activation of the kinase Chk1. This work provides a mechanism for how the N/C ratio controls the MBT and shows that the regulation of replication initiation is fundamental for normal embryogenesis.
Collapse
Affiliation(s)
- Clara Collart
- Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge CB2 1QN, UK
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | - George E. Allen
- Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge CB2 1QN, UK
| | - Charles R. Bradshaw
- Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge CB2 1QN, UK
| | - James C. Smith
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | - Philip Zegerman
- Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge CB2 1QN, UK
- Department of Zoology, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge CB2 1QN, UK
| |
Collapse
|
27
|
Kerns SL, Schultz KM, Barry KA, Thorne TM, McGarry TJ. Geminin is required for zygotic gene expression at the Xenopus mid-blastula transition. PLoS One 2012; 7:e38009. [PMID: 22662261 PMCID: PMC3360639 DOI: 10.1371/journal.pone.0038009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 04/28/2012] [Indexed: 12/23/2022] Open
Abstract
In many organisms early development is under control of the maternal genome and zygotic gene expression is delayed until the mid-blastula transition (MBT). As zygotic transcription initiates, cell cycle checkpoints become activated and the tempo of cell division slows. The mechanisms that activate zygotic transcription at the MBT are incompletely understood, but they are of interest because they may resemble mechanisms that cause stem cells to stop dividing and terminally differentiate. The unstable regulatory protein Geminin is thought to coordinate cell division with cell differentiation. Geminin is a bi-functional protein. It prevents a second round of DNA replication during S and G2 phase by binding and inhibiting the essential replication factor Cdt1. Geminin also binds and inhibits a number of transcription factors and chromatin remodeling proteins and is thought to keep dividing cells in an undifferentiated state. We previously found that the cells of Geminin-deficient Xenopus embryos arrest in G2 phase just after the MBT then disintegrate at the onset of gastrulation. Here we report that they also fail to express most zygotic genes. The gene expression defect is cell-autonomous and is reproduced by over-expressing Cdt1 or by incubating the embryos in hydroxyurea. Geminin deficient and hydroxyurea-treated blastomeres accumulate DNA damage in the form of double stranded breaks. Bypassing the Chk1 pathway overcomes the cell cycle arrest caused by Geminin depletion but does not restore zygotic gene expression. In fact, bypassing the Chk1 pathway by itself induces double stranded breaks and abolishes zygotic transcription. We did not find evidence that Geminin has a replication-independent effect on transcription. We conclude that Geminin is required to maintain genome integrity during the rapid cleavage divisions, and that DNA damage disrupts zygotic gene transcription at the MBT, probably through activation of DNA damage checkpoint pathways.
Collapse
Affiliation(s)
- Sarah L. Kerns
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Kathryn M. Schultz
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Kelly A. Barry
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Tina M. Thorne
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Thomas J. McGarry
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Robert H. Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
28
|
Prigge JR, Eriksson S, Iverson SV, Meade TA, Capecchi MR, Arnér ES, Schmidt EE. Hepatocyte DNA replication in growing liver requires either glutathione or a single allele of txnrd1. Free Radic Biol Med 2012; 52:803-10. [PMID: 22198266 PMCID: PMC3267845 DOI: 10.1016/j.freeradbiomed.2011.11.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 11/03/2011] [Accepted: 11/14/2011] [Indexed: 12/24/2022]
Abstract
Ribonucleotide reductase (RNR) activity requires an electron donor, which in bacteria, yeast, and plants is usually either reduced thioredoxin (Trx) or reduced glutaredoxin. Mice lacking glutathione reductase are viable and, although mice lacking thioredoxin reductase 1 (TrxR1) are embryonic-lethal, several studies have shown that mouse cells lacking the txnrd1 gene, encoding TrxR1, can proliferate normally. To better understand the in vivo electron donor requirements for mammalian RNR, we here investigated whether replication of TrxR1-deficient hepatocytes in mouse livers either employed an alternative source of Trx-reducing activity or, instead, solely relied upon the glutathione (GSH) pathway. Neither normal nor genetically TrxR1-deficient livers expressed substantial levels of mRNA splice forms encoding cytosolic variants of TrxR2, and the TrxR1-deficient livers showed severely diminished total TrxR activity, making it unlikely that any alternative TrxR enzyme activities complemented the genetic TrxR1 deficiency. To test whether the GSH pathway was required for replication, GSH levels were depleted by administration of buthionine sulfoximine (BSO) to juvenile mice. In controls not receiving BSO, replicative indexes were similar in hepatocytes having two, one, or no functional alleles of txnrd1. After BSO treatment, hepatocytes containing either two or one copies of this gene were also normal. However, hepatocytes completely lacking a functional txnrd1 gene exhibited severely reduced replicative indexes after GSH depletion. We conclude that hepatocyte proliferation in vivo requires either GSH or at least one functional allele of txnrd1, demonstrating that either the GSH- or the TrxR1-dependent redox pathway can independently support hepatocyte proliferation during liver growth.
Collapse
Affiliation(s)
- Justin R. Prigge
- Department of Immunology and Infectious Disease, Montana State University, Bozeman, Montana, USA
| | - Sofi Eriksson
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Sonya V. Iverson
- Department of Immunology and Infectious Disease, Montana State University, Bozeman, Montana, USA
| | - Tesia A. Meade
- Biomedical Engineering Program, Case Western Reserve University, Cleveland, OH, USA
| | - Mario R. Capecchi
- Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah, USA
| | - Elias S.J. Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Edward E. Schmidt
- Department of Immunology and Infectious Disease, Montana State University, Bozeman, Montana, USA
- Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| |
Collapse
|
29
|
Gotoh T, Kishimoto T, Sible JC. Phosphorylation of Claspin is triggered by the nucleocytoplasmic ratio at the Xenopus laevis midblastula transition. Dev Biol 2011; 353:302-8. [PMID: 21396931 DOI: 10.1016/j.ydbio.2011.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 02/22/2011] [Accepted: 03/02/2011] [Indexed: 11/17/2022]
Abstract
At the Xenopus midblastula transition (MBT), cell cycles lengthen, and checkpoints that respond to damaged or unreplicated DNA are established. The MBT is triggered by a critical nucleocytoplasmic (N/C) ratio; however, the molecular basis for its initiation remains unknown. In egg extracts, activation of Chk1 checkpoint kinase requires the adaptor protein Claspin, which recruits Chk1 for phosphorylation by ATR. At the MBT in embryos, Chk1 is transiently activated to lengthen the cell cycle. We show that Xenopus Claspin is phosphorylated at the MBT at both DNA replication checkpoint-dependent and -independent sites. Further, in egg extracts, Claspin phosphorylation depends on a threshold N/C ratio, but occurs even when ATR is inhibited. Not all phosphorylation that occurs at the MBT is reproduced in egg extracts. Our results identify Claspin as the most upstream molecule in the signaling pathway that responds to the N/C ratio and indicate that Claspin may also respond to an independent timer to trigger the MBT and activation of cell cycle checkpoints.
Collapse
Affiliation(s)
- Tetsuya Gotoh
- Department of Biological Sciences, 2119 Derring Hall, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0406, USA.
| | | | | |
Collapse
|
30
|
Vastag L, Jorgensen P, Peshkin L, Wei R, Rabinowitz JD, Kirschner MW. Remodeling of the metabolome during early frog development. PLoS One 2011; 6:e16881. [PMID: 21347444 PMCID: PMC3035664 DOI: 10.1371/journal.pone.0016881] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 01/04/2011] [Indexed: 12/27/2022] Open
Abstract
A rapid series of synchronous cell divisions initiates embryogenesis in many animal species, including the frog Xenopus laevis. After many of these cleavage cycles, the nuclear to cytoplasmic ratio increases sufficiently to somehow cause cell cycles to elongate and become asynchronous at the mid-blastula transition (MBT). We have discovered that an unanticipated remodeling of core metabolic pathways occurs during the cleavage cycles and the MBT in X. laevis, as evidenced by widespread changes in metabolite abundance. While many of the changes in metabolite abundance were consistently observed, it was also evident that different female frogs laid eggs with different levels of at least some metabolites. Metabolite tracing with heavy isotopes demonstrated that alanine is consumed to generate energy for the early embryo. dATP pools were found to decline during the MBT and we have confirmed that maternal pools of dNTPs are functionally exhausted at the onset of the MBT. Our results support an alternative hypothesis that the cell cycle lengthening at the MBT is triggered not by a limiting maternal protein, as is usually proposed, but by a decline in dNTP pools brought about by the exponentially increasing demands of DNA synthesis.
Collapse
Affiliation(s)
- Livia Vastag
- Carl Icahn Laboratory, Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Paul Jorgensen
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Leonid Peshkin
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ru Wei
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Joshua D. Rabinowitz
- Carl Icahn Laboratory, Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Marc W. Kirschner
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
31
|
Hara M, Mori M, Wada T, Tachibana K, Kishimoto T. Start of the embryonic cell cycle is dually locked in unfertilized starfish eggs. Development 2009; 136:1687-96. [PMID: 19369392 DOI: 10.1242/dev.035261] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A key event in the oocyte-to-embryo transition is the start of the embryonic mitotic cell cycle. Prior to this start, the cell cycle in oocytes is generally arrested at a particular stage during meiosis, and the meiotic arrest is released by fertilization. However, it remains unclear how release from the meiotic arrest is implicated in the start of the embryonic cell cycle. To elucidate this link, we have used starfish eggs, in which G1 phase arrest occurs after completion of meiosis if the mature oocytes are not fertilized, and fertilization simply directs the start of the embryonic cell cycle. The starfish G1 arrest is known to rely on the Mos-MAPK-Rsk (p90 ribosomal S6 kinase) pathway, and inactivation of Rsk induces S phase in the absence of fertilization. However, here we show that this S phase is not followed by M phase when MAPK remains active, owing to poly(A)-independent repression of cyclin A and B synthesis. By contrast, inactivation of MAPK alone induces M phase, even when S phase is inhibited by constitutively active Rsk. Thus, there is a divergence of separate pathways downstream of MAPK that together block the start of the embryonic mitotic cycle. One is the previously known Rsk-dependent pathway that prevents S phase, and the other is a novel pathway that is not mediated by Rsk and that leads to prevention of the first mitotic M phase through suppression of protein synthesis of M phase cyclins. Release from such a 'dual-lock' by fertilization results in the start of the embryonic cell cycle.
Collapse
Affiliation(s)
- Masatoshi Hara
- Graduate School of BioscienceTokyo Institute of Technology, Nagatsuta, Midoriku, Yokohama 226-8501, Japan
| | | | | | | | | |
Collapse
|
32
|
Toyama R, Rebbert ML, Dey A, Ozato K, Dawid IB. Brd4 associates with mitotic chromosomes throughout early zebrafish embryogenesis. Dev Dyn 2008; 237:1636-44. [PMID: 18498094 PMCID: PMC2424266 DOI: 10.1002/dvdy.21576] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Brd4 is a member of the BET (bromodomains and extraterminal) subfamily of bromodomain proteins that includes chromatin-modifying proteins and transcriptional regulators. Brd4 has a role in cell cycle progression, making it indispensable in mouse embryos and cultured cells. The N-terminal domain of Brd4 participates in a fusion oncogene. Brd4 associates with acetylated histones in chromatin, and this association persists during mitosis implicating Brd4 in epigenetic memory. Brd4 sequence, particularly the bromodomains and ET domain, is conserved in the zebrafish and Xenopus laevis proteins reported here. Brd4 is expressed and localized on mitotic chromosomes in early zebrafish embryos before and after the midblastula transition (MBT), indicating that the Brd4-chromosome association is a conserved property that is maintained even before zygotic transcription. The association of Brd4 with acetylated histones may also be conserved in early embryos as we found that histones H3 and H4 are already acetylated during pre-MBT stages.
Collapse
Affiliation(s)
- Reiko Toyama
- Laboratory of Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA.
| | | | | | | | | |
Collapse
|
33
|
Ohsugi M, Adachi K, Horai R, Kakuta S, Sudo K, Kotaki H, Tokai-Nishizumi N, Sagara H, Iwakura Y, Yamamoto T. Kid-mediated chromosome compaction ensures proper nuclear envelope formation. Cell 2008; 132:771-82. [PMID: 18329364 DOI: 10.1016/j.cell.2008.01.029] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2007] [Revised: 11/14/2007] [Accepted: 01/17/2008] [Indexed: 10/22/2022]
Abstract
Toward the end of mitosis, neighboring chromosomes gather closely to form a compact cluster. This is important for reassembling the nuclear envelope around the entire chromosome mass but not individual chromosomes. By analyzing mice and cultured cells lacking the expression of chromokinesin Kid/kinesin-10, we show that Kid localizes to the boundaries of anaphase and telophase chromosomes and contributes to the shortening of the anaphase chromosome mass along the spindle axis. Loss of Kid-mediated anaphase chromosome compaction often causes the formation of multinucleated cells, specifically at oocyte meiosis II and the first couple of mitoses leading to embryonic death. In contrast, neither male meiosis nor somatic mitosis after the morula-stage is affected by Kid deficiency. These data suggest that Kid-mediated anaphase/telophase chromosome compaction prevents formation of multinucleated cells. This protection is especially important during the very early stages of development, when the embryonic cells are rich in ooplasm.
Collapse
Affiliation(s)
- Miho Ohsugi
- Division of Oncology, Department of Cancer Biology, The University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wroble BN, Finkielstein CV, Sible JC. Wee1 kinase alters cyclin E/Cdk2 and promotes apoptosis during the early embryonic development of Xenopus laevis. BMC DEVELOPMENTAL BIOLOGY 2007; 7:119. [PMID: 17961226 PMCID: PMC2176066 DOI: 10.1186/1471-213x-7-119] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Accepted: 10/25/2007] [Indexed: 12/04/2022]
Abstract
Background The cell cycles of the Xenopus laevis embryo undergo extensive remodeling beginning at the midblastula transition (MBT) of early development. Cell divisions 2–12 consist of rapid cleavages without gap phases or cell cycle checkpoints. Some remodeling events depend upon a critical nucleo-cytoplasmic ratio, whereas others rely on a maternal timer controlled by cyclin E/Cdk2 activity. One key event that occurs at the MBT is the degradation of maternal Wee1, a negative regulator of cyclin-dependent kinase (Cdk) activity. Results In order to assess the effect of Wee1 on embryonic cell cycle remodeling, Wee1 mRNA was injected into one-cell stage embryos. Overexpression of Wee1 caused cell cycle delay and tyrosine phosphorylation of Cdks prior to the MBT. Furthermore, overexpression of Wee1 disrupted key developmental events that normally occur at the MBT such as the degradation of Cdc25A, cyclin E, and Wee1. Overexpression of Wee1 also resulted in post-MBT apoptosis, tyrosine phosphorylation of Cdks and persistence of cyclin E/Cdk2 activity. To determine whether Cdk2 was required specifically for the survival of the embryo, the cyclin E/Cdk2 inhibitor, Δ34-Xic1, was injected in embryos and also shown to induce apoptosis. Conclusion Taken together, these data suggest that Wee1 triggers apoptosis through the disruption of the cyclin E/Cdk2 timer. In contrast to Wee1 and Δ34-Xic1, altering Cdks by expression of Chk1 and Chk2 kinases blocks rather than promotes apoptosis and causes premature degradation of Cdc25A. Collectively, these data implicate Cdc25A as a key player in the developmentally regulated program of apoptosis in X. laevis embryos.
Collapse
Affiliation(s)
- Brian N Wroble
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| | | | | |
Collapse
|
35
|
Dasso M, Smythe C, Milarski K, Kornbluth S, Newport JW. DNA replication and progression through the cell cycle. CIBA FOUNDATION SYMPOSIUM 2007; 170:161-80; discussion 180-6. [PMID: 1483344 DOI: 10.1002/9780470514320.ch11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Somatic cells possess control mechanisms which monitor DNA replication and assure that it is complete before mitosis is initiated. We have been investigating these mechanisms in Xenopus egg extracts. Using in vitro cycling extracts, which spontaneously alternate between interphase and mitosis, we found that the onset of mitosis is inhibited by the presence of unreplicated DNA, demonstrating that the completion of DNA replication and the initiation of mitosis are coupled in these extracts. As in somatic cells, this coupling is sensitive to caffeine and to okadaic acid. In Xenopus extracts unreplicated DNA increases the tyrosine phosphorylation of p34cdc2, thereby maintaining MPF (mitosis-promoting factor) in an inactive state and preventing the onset of mitosis. The block to mitosis in the presence of unreplicated DNA can be reversed by the addition of bacterially expressed cdc25 protein. The extent of MPF activation by cdc25 protein under these conditions depends on the number of nuclei present. We have developed an assay to examine the rate of tyrosine phosphorylation on p34cdc2. It is increased by unreplicated DNA, in a manner consistent with unreplicated DNA up-regulating the kinase that phosphorylates p34cdc2. We have begun to examine how unreplicated DNA generates the signal that inhibits MPF activation by testing the ability of naked single- and double-stranded DNA templates to inhibit mitosis, and by investigating the role of RCC1, a chromatin-associated protein required for the coupling of DNA replication and mitosis.
Collapse
Affiliation(s)
- M Dasso
- Department of Biology, University of California, San Diego, La Jolla 92093
| | | | | | | | | |
Collapse
|
36
|
Silva T, Bradley RH, Gao Y, Coue M. Xenopus CDC7/DRF1 complex is required for the initiation of DNA replication. J Biol Chem 2006; 281:11569-76. [PMID: 16507577 DOI: 10.1074/jbc.m510278200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Cdc7 kinase is essential for the initiation of DNA replication in eukaryotes. Two regulatory subunits of the Xenopus Cdc7 kinase have been identified: XDbf4 and XDrf1. In this study we determined the expression pattern of XDbf4 and XDrf1 and examined their involvement in DNA replication. We show that XDrf1 expression is restricted to oogenesis and early embryos, whereas XDbf4 is expressed throughout development. Immunodepletion from Xenopus egg extracts indicated that both proteins are only found in complexes with XCdc7 and there is a 5-fold molar excess of the XCdc7/Drf1 over SCdc7/Dbf4 complexes. Both complexes exhibit kinase activity and are differentially phosphorylated during the cell cycle. Depletion of the XCdc7/Drf1 from egg extracts inhibited DNA replication, whereas depletion of XCdc7/Dbf4 had little effect. Chromatin binding studies indicated that XCdc7/Drf1 is required for pre-replication complex activation but not their assembly. XCdc7/Dbf4 complexes bound to the chromatin in two steps: the first step was independent of pre-replication complex assembly and the second step was dependent on pre-replication complex activation. By contrast, binding of XCdc7/Drf1 complexes was entirely dependent on pre-replication complex assembly. Finally, we present evidence that the association of the two complexes on the chromatin is not regulated by ATR checkpoint pathways that result from DNA replication blocks. These data suggest that Cdc7/Drf1 but not Cdc7/Dbf4 complexes support the initiation of DNA replication in Xenopus egg extracts and during early embryonic development.
Collapse
Affiliation(s)
- Tania Silva
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA
| | | | | | | |
Collapse
|
37
|
Takahashi TS, Walter JC. Cdc7-Drf1 is a developmentally regulated protein kinase required for the initiation of vertebrate DNA replication. Genes Dev 2005; 19:2295-300. [PMID: 16204181 PMCID: PMC1240038 DOI: 10.1101/gad.1339805] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cdc7, a protein kinase required for the initiation of eukaryotic DNA replication, is activated by a regulatory subunit, Dbf4. A second activator of Cdc7 called Drf1 exists in vertebrates, but its function is unknown. Here, we report that in Xenopus egg extracts, Cdc7-Drf1 is far more abundant than Cdc7-Dbf4, and removal of Drf1 but not Dbf4 severely inhibits phosphorylation of Mcm4 and DNA replication. After gastrulation, when the cell cycle acquires somatic characteristics, Drf1 levels decline sharply and Cdc7-Dbf4 becomes the more abundant kinase. These results identify Drf1 as a developmentally regulated, essential activator of Cdc7 in Xenopus.
Collapse
Affiliation(s)
- Tatsuro S Takahashi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
38
|
Abstract
The discovery of genes that control cell division in yeast, and their relation to cancer, is reviewed.
Collapse
|
39
|
Takagi M, Shimoda T, Shinagawa A. Dependence of the timing system regulating the onset of gastrulation on cytoplasmic, but not nuclear, activities in the Xenopus embryo. Dev Growth Differ 2005; 47:415-22. [PMID: 16109039 DOI: 10.1111/j.1440-169x.2005.00808.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study examines the properties of the timer that regulates the onset of gastrulation in the Xenopus embryo. Pre-gastrulation embryos were exposed to aphidicolin, vinblastine, 6-dimethylaminopurine (6-DMAP) or urethane. Embryos exposed to aphidicolin or vinblastine for 0.5-2 h before the presumptive onset of gastrulation, began gastrulation at the same time as control embryos. However, those exposed to 6-DMAP or urethane commenced gastrulation significantly later than controls. In 6-DMAP- and urethane-treated embryos, the onset of gastrulation was retarded by approximately 25% and 120%, respectively. 6-DMAP and urethane, but not vinblastine, also lowered the rate of nuclear doubling by 30% and 120%, respectively, in late-blastula to early-gastrula embryos. 6-DMAP and urethane also lowered the rate of cleavage and cleavage-relevant cytoplasmic cycling by 30% and 80%, respectively, in cleavage-stage embryos. We propose that cytoplasmic activities that can be retarded by 6-DMAP and urethane, but not aphidicolin or vinblastine, may be responsible for regulating the onset of gastrulation in Xenopus embryos.
Collapse
Affiliation(s)
- Makoto Takagi
- Department of Biology, Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-Machi, Yamagata 990-8560, Japan
| | | | | |
Collapse
|
40
|
Iwao Y, Uchida Y, Ueno S, Yoshizaki N, Masui Y. Midblastula transition (MBT) of the cell cycles in the yolk and pigment granule-free translucent blastomeres obtained from centrifuged Xenopus embryos. Dev Growth Differ 2005; 47:283-94. [PMID: 16026537 DOI: 10.1111/j.1440-169x.2005.00802.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We obtained translucent blastomeres free of yolk and pigment granules from Xenopus embryos which had been centrifuged at the beginning of the 8-cell stage with cellular integrity. They divided synchronously regardless of their cell size until they had decreased to 37.5 microm in radius; those smaller than this critical size, however, divided asynchronously with cell cycle times inversely proportional to the square of the cell radius after midblastula transition (MBT). The length of the S phase was determined as the time during which nuclear DNA fluorescence increased in Hoechst-stained blastomeres. When the cell cycle time exceeded 45 min, S and M phases were lengthened; when the cell cycle times exceeded 70 min, the G2 phase appeared; and after cell cycle times became longer than 150 min, the G1 phase appeared. Lengths of G1, S and M phases increased linearly with increasing cell cycle time. Enhanced green fluorescent protein (EGFP)-tagged proliferating cell nuclear antigen (PCNA) expressed in the blastomeres appeared in the S phase nucleus, but suddenly dispersed into the cytoplasm at the M phase. The system developed in this study is useful for examining the cell cycle behavior of the cell cycle-regulating molecules in living Xenopus blastomeres by fluorescence microscopy in real time.
Collapse
Affiliation(s)
- Yasuhiro Iwao
- Department of Biological Science, Faculty of Science, Yamaguchi University, 753-8512 Yamaguchi, Japan.
| | | | | | | | | |
Collapse
|
41
|
Offner N, Duval N, Jamrich M, Durand B. The pro-apoptotic activity of a vertebrate Bar-like homeobox gene plays a key role in patterning the Xenopus neural plate by limiting the number of chordin- and shh-expressing cells. Development 2005; 132:1807-18. [PMID: 15772136 DOI: 10.1242/dev.01712] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Targeted disruption of effectors molecules of the apoptotic pathway have demonstrated the occurrence and magnitude of early programmed cell death (EPCD), a form of apoptosis that affects proliferating and newly differentiated cells in vertebrates, and most dramatically cells of the central nervous system (CNS). Little is known about the molecular pathways controlling apoptosis at these early developmental stages, as the roles of EPCD during patterning of the developing nervous system. We describe a new function, in Xenopus neurodevelopment, for a highly conserved homeodomain protein Barhl2. Barhl2 promotes apoptosis in the Xenopus neuroectoderm and mesoderm, acting as a transcriptional repressor, through a mechanism that cannot be attributed to an unspecific cellular stress response. We show that the pro-apoptotic activity of Barhl2 is essential during normal neural plate formation as it limits the number of chordin- and Xshh-expressing cells in the prospective notochord and floorplate, which act as organizing centers. Our findings show that Barhl2 is part of a pathway regulating EPCD. They also provide evidence that apoptosis plays an important role in regulating the size of organizing centers.
Collapse
Affiliation(s)
- Nicolas Offner
- Unité Rétrovirus et Transfert Génétique, INSERM (U622). Institut Pasteur, Paris, France
| | | | | | | |
Collapse
|
42
|
Wroble BN, Sible JC. Chk2/Cds1 protein kinase blocks apoptosis during early development ofXenopus laevis. Dev Dyn 2005; 233:1359-65. [PMID: 15937936 DOI: 10.1002/dvdy.20449] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Early Xenopus laevis embryos possess cell cycles that do not arrest at checkpoints in response to damaged DNA. At the midblastula transition (MBT), embryos with damaged DNA undergo apoptosis. After the MBT, DNA damage triggers cell cycle arrest rather than apoptosis. The transition from checkpoint-unregulated to checkpoint-regulated cycles makes Xenopus embryos compelling for studying mechanisms regulating response to genomic damage. The DNA damage checkpoint is mediated by the Chk2/Cds1 kinase. Conflicting evidence implicates Chk2 as an inhibitor or promoter of apoptosis. To better understand the developmental function of Chk2, we expressed wild-type (wt) and dominant-negative (DN) Chk2 in Xenopus embryos. Wt-Chk2 created a pre-MBT checkpoint due to degradation of Cdc25A and phosphorylation of cyclin-dependent kinases. Embryos expressing DN-Chk2 developed normally until gastrulation and then underwent apoptosis. Conversely, low doses of wt-Chk2 blocked radiation-induced apoptosis. Therefore, Chk2 operates at a switch between cell cycle arrest or apoptosis in response to genomic assaults.
Collapse
Affiliation(s)
- Brian N Wroble
- Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0406, USA
| | | |
Collapse
|
43
|
Abstract
ATR and Chk1 are important components of a cell cycle checkpoint pathway. In this issue of Developmental Cell, Conn et al. shed a novel light on the molecular mechanism of Chk1 activation and raise the possibility of a developmental checkpoint that regulates Chk1 in response to the nuclear/cytoplasmic ratio.
Collapse
Affiliation(s)
- Jennifer Pogoriler
- Ben May Institute for Cancer Research, Committee on Cancer Biology, University of Chicago, 924 East 57th Street, IL 60637 USA
| | | |
Collapse
|
44
|
Conn CW, Lewellyn AL, Maller JL. The DNA damage checkpoint in embryonic cell cycles is dependent on the DNA-to-cytoplasmic ratio. Dev Cell 2004; 7:275-81. [PMID: 15296723 DOI: 10.1016/j.devcel.2004.07.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2004] [Revised: 05/20/2004] [Accepted: 05/26/2004] [Indexed: 11/19/2022]
Abstract
In Xenopus, cell cycle checkpoints monitoring DNA damage, DNA replication, and spindle assembly do not appear until after the midblastula transition (MBT; 4000 cells). We show that a DNA damage checkpoint can slow the cell cycle even in 2-cell embryos when the DNA content is increased. Slowing follows caffeine-sensitive activation of the checkpoint kinase, Chk1; degradation of the cell cycle phosphatase, Cdc25A; and inhibitory phosphorylation of Cdc25C and cyclin-dependent kinases (Cdks). Alterations in the DNA-to-cytoplasmic ratio elicit a dose-dependent DNA damage checkpoint, and the ratio required to activate Chk1 for the damage response is lower than that associated with "developmental" activation of Chk1 shortly after the MBT. Our results indicate that a maternal damage response, independent of zygotic transcription, is present even in very early embryos, and requires both double-stranded DNA ends and a threshold DNA-to-cytoplasmic ratio to significantly affect the cell cycle.
Collapse
Affiliation(s)
- Christopher W Conn
- Department of Pharmacology, University of Colorado School of Medicine, Denver 80262 USA
| | | | | |
Collapse
|
45
|
Murakami MS, Moody SA, Daar IO, Morrison DK. Morphogenesis during Xenopus gastrulation requires Wee1-mediated inhibition of cell proliferation. Development 2004; 131:571-80. [PMID: 14711880 DOI: 10.1242/dev.00971] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Major developmental events in early Xenopus embryogenesis coincide with changes in the length and composition of the cell cycle. These changes are mediated in part through the regulation of CyclinB/Cdc2 and they occur at the first mitotic cell cycle, the mid-blastula transition (MBT) and at gastrulation. In this report, we investigate the contribution of maternal Wee1, a kinase inhibitor of CyclinB/Cdc2, to these crucial developmental transitions. By depleting Wee1 protein levels using antisense morpholino oligonucleotides, we show that Wee1 regulates M-phase entry and Cdc2 tyrosine phosphorylation in early gastrula embryos. Moreover, we find that Wee1 is required for key morphogenetic movements involved in gastrulation, but is not needed for the induction of zygotic transcription. In addition, Wee1 is positively regulated by tyrosine autophosphorylation in early gastrula embryos and this upregulation of Wee1 activity is required for normal gastrulation. We also show that overexpression of Cdc25C, a phosphatase that activates the CyclinB/Cdc2 complex, induces gastrulation defects that can be rescued by Wee1, providing additional evidence that cell cycle inhibition is crucial for the gastrulation process. Together, these findings further elucidate the developmental function of Wee1 and demonstrate the importance of cell cycle regulation in vertebrate morphogenesis.
Collapse
Affiliation(s)
- Monica S Murakami
- Cellular Growth Mechanisms Section, Regulation of Cell Growth Laboratory, NCI-Frederick, Frederick, MD 21702, USA
| | | | | | | |
Collapse
|
46
|
Abstract
The evolutionary advent of uterine support of embryonic growth in mammals is relatively recent. Nonetheless, striking differences in the earliest steps of embryogenesis make it difficult to draw parallels even with other chordates. We suggest that use of fertilization as a reference point misaligns the earliest stages and masks parallels that are evident when development is aligned at conserved stages surrounding gastrulation. In externally deposited eggs from representatives of all the major phyla, gastrulation is preceded by specialized extremely rapid cleavage cell cycles. Mammals also exhibit remarkably fast cell cycles in close association with gastrulation, but instead of beginning development with these rapid cycles, the mammalian egg first devotes itself to the production of extraembryonic structures. Previous attempts to identify common features of cleavage cycles focused on post-fertilization divisions of the mammalian egg. We propose that comparison to the rapid peri-gastrulation cycles is more appropriate and suggest that these cycles are related by evolutionary descent to the early cleavage stages of embryos such as those of frog and fly. The deferral of events in mammalian embryogenesis might be due to an evolutionary shift in the timing of fertilization.
Collapse
Affiliation(s)
- Patrick H O'Farrell
- Department Biochemistry and Biophysics, GH-S372C Genentech Hall, UCSF, San Francisco, CA 94143-2200, USA.
| | | | | |
Collapse
|
47
|
May LG, Madine MA, Waring MJ. Echinomycin inhibits chromosomal DNA replication and embryonic development in vertebrates. Nucleic Acids Res 2004; 32:65-72. [PMID: 14704344 PMCID: PMC373276 DOI: 10.1093/nar/gkh166] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Echinomycin, a member of the quinoxaline family of antibiotics, is known to be a strong inhibitor of RNA synthesis which has been attributed to its ability to bind to double-helical DNA. Here we study the effect of echinomycin upon DNA replication using egg extracts and embryos from Xenopus laevis as well as cultured human cells. Evidence is presented that echinomycin interferes with chromatin decondensation, nuclear assembly and DNA replication. In the absence of transcription and translation, the drug specifically blocks DNA replication in both Xenopus sperm chromatin and HeLa cell nuclei in vitro. By contrast, replication of single-stranded DNA is not inhibited indicating that echinomycin acts by interacting with the DNA and not the replication elongation proteins of chromatin. The addition of the antibiotic to HeLa cells and X.laevis embryos results in anaphase bridges and cell death. Importantly, in X.laevis embryos injected with echinomycin at the two-cell stage the drug specifically inhibits the cell cycle prior to the onset of transcription, suggesting that quinoxaline antibiotics could exert anti- proliferative effects by inhibition of chromosomal DNA replication.
Collapse
Affiliation(s)
- Laurence G May
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | | | | |
Collapse
|
48
|
Hashimoto H, Suetake I, Tajima S. Monoclonal antibody against dnmt1 arrests the cell division of xenopus early-stage embryos. Exp Cell Res 2003; 286:252-62. [PMID: 12749854 DOI: 10.1016/s0014-4827(03)00060-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
DNA methylation plays a crucial role in embryogenesis, and Dnmt1 is known to be a key enzyme in the maintenance of DNA methylation. Dnmt1 is highly accumulated in mature oocytes and eggs. To analyze the function of the maternally accumulated Dnmt1, we injected monoclonal antibodies that specifically recognize the amino terminus of Xenopus Dnmt1 into Xenopus laevis embryos. The monoclonal antibodies inhibited the cell division of the embryos before the midblastula transition. Monoclonal antibody neither inhibited DNA methylation activity of Dnmt1 in vitro nor affected its stability in embryos. In addition, injection of alpha-amanitin, an inhibitor of transcription, did not rescue the cell division arrest. The results suggest that the inhibition of cell division by monoclonal antibodies was due neither to the direct inhibition of DNA methylation activity of Dnmt1 nor to aberrant transcription before the midblastula transition. The morphology of chromatin of the arrested cells showed that the cell cycle was arrested at interphase. This was supported by the biochemical analysis in which the arrested cells demonstrated low histone H1 kinase activity, which indicated that the cells had not entered M phase. Dnmt1 may have an important function other than DNA methylation activity for early embryogenesis in Xenopus laevis.
Collapse
Affiliation(s)
- Hideharu Hashimoto
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
49
|
Carter AD, Sible JC. Loss of XChk1 function triggers apoptosis after the midblastula transition in Xenopus laevis embryos. Mech Dev 2003; 120:315-23. [PMID: 12591601 DOI: 10.1016/s0925-4773(02)00443-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Prior to the midblastula transition (MBT), Xenopus laevis embryos do not engage cell cycle checkpoints, although overexpression of the kinase XChk1 arrests cell divisions. At the MBT, XChk1 transiently activates and promotes cell cycle lengthening. In this study, endogenous XChk1 was inhibited by the expression of dominant-negative XChk1 (DN-XChk1). Development appeared normal until the early gastrula stage, when cells lost attachments and chromatin condensed. TUNEL and caspase assays indicated these embryos died by apoptosis during gastrulation. Embryos with unreplicated DNA likewise died by apoptosis. Embryos expressing DN-XChk1 proceeded through additional rapid rounds of DNA replication but initiated zygotic transcription on schedule. Therefore, XChk1 is essential in the early Xenopus embryo for cell cycle remodeling and for survival after the MBT.
Collapse
Affiliation(s)
- Ayesha D Carter
- Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0406, USA
| | | |
Collapse
|
50
|
Abstract
The Wee kinases block entry into mitosis by phosphorylating and inhibiting the activity of the mitotic cyclin-dependent kinase, Cdk1. We have found that the various Xenopus Wee kinases have unique temporal and spatial patterns of expression during development. In addition, we have isolated and characterized a new Wee1-like kinase, Xenopus Wee2. By both in vivo and in vitro tests, Xenopus Wee2 functions as a Wee1-like kinase. The previously isolated Wee1-like kinase, Xenopus Wee1, is expressed only as maternal gene product. In contrast, Xenopus Wee2 is predominantly a zygotic gene product, while the third Wee kinase, Xenopus Myt1, is both a maternal and zygotic gene product. Concurrent with the changing levels of these Cdk inhibitory kinases, the pattern of embryonic cell division becomes asynchronous and spatially restricted in the Xenopus embryo. Interestingly, once zygotic transcription begins, Xenopus Wee2 is expressed in regions of the embryo that are devoid of mitotic cells, such as the involuting mesoderm. In contrast, Xenopus Myt1 is expressed in regions of the embryo that have high levels of proliferation, such as the developing neural tissues. The existence of multiple Wee kinases may help explain how distinct patterns of cell division arise and are regulated during development.
Collapse
Affiliation(s)
- Walter Leise
- Department of Biochemistry and Molecular Biology, Cener for Molecular Oncology and Committees on Developmental Biology, Cancer Biology, and Genetics, University of Chicago, Ill 60637, USA
| | | |
Collapse
|