1
|
Lebel M, Cliche DO, Charbonneau M, Brochu-Gaudreau K, Adam D, Brochiero E, Dubois CM, Cantin AM. Hypoxia Promotes Invadosome Formation by Lung Fibroblasts. Cells 2024; 13:1152. [PMID: 38995003 PMCID: PMC11240699 DOI: 10.3390/cells13131152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024] Open
Abstract
Lung parenchymal hypoxia has emerged as a cardinal feature of idiopathic pulmonary fibrosis (IPF). Hypoxia promotes cancer cell invasion and metastasis through signaling that is dependent upon the lysophosphatidic acid (LPA) receptor, LPA1 (LPAR1). Abundant data indicate that LPA1-dependent signaling also enhances lung fibrogenesis in IPF. We recently reported that fibroblasts isolated from the lungs of individuals with IPF have an increased capacity to form subcellular matrix-degradative structures known as invadosomes, an event that correlates with the degree of lung fibrosis. We therefore hypothesized that hypoxia promotes invadosome formation in lung fibroblasts through LPA1-dependent signaling. Here, it is demonstrated that invadosome formation by fibroblasts from the lungs of individuals with advanced IPF is inhibited by both the tyrosine receptor kinase inhibitor nintedanib and inhibition of LPA1. In addition, exposure of normal human lung fibroblasts to either hypoxia or LPA increased their ability to form invadosomes. Mechanistically, the hypoxia-induced invadosome formation by lung fibroblasts was found to involve LPA1 and PDGFR-Akt signaling. We concluded that hypoxia increases the formation of invadosomes in lung fibroblasts through the LPA1 and PDGFR-Akt signaling axis, which represents a potential target for suppressing lung fibrosis.
Collapse
Affiliation(s)
- Mégane Lebel
- Respiratory Division, Department of Medicine, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Dominic O Cliche
- Respiratory Division, Department of Medicine, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Martine Charbonneau
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12ième Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Karine Brochu-Gaudreau
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12ième Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Damien Adam
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada
| | - Emmanuelle Brochiero
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada
- Department of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Claire M Dubois
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12ième Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - André M Cantin
- Respiratory Division, Department of Medicine, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
2
|
Inoue H, Kanda T, Hayashi G, Munenaga R, Yoshida M, Hasegawa K, Miyagawa T, Kurumada Y, Hasegawa J, Wada T, Horiuchi M, Yoshimatsu Y, Itoh F, Maemoto Y, Arasaki K, Wakana Y, Watabe T, Matsushita H, Harada H, Tagaya M. A MAP1B-cortactin-Tks5 axis regulates TNBC invasion and tumorigenesis. J Cell Biol 2024; 223:e202303102. [PMID: 38353696 PMCID: PMC10866687 DOI: 10.1083/jcb.202303102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/31/2023] [Accepted: 12/22/2023] [Indexed: 02/16/2024] Open
Abstract
The microtubule-associated protein MAP1B has been implicated in axonal growth and brain development. We found that MAP1B is highly expressed in the most aggressive and deadliest breast cancer subtype, triple-negative breast cancer (TNBC), but not in other subtypes. Expression of MAP1B was found to be highly correlated with poor prognosis. Depletion of MAP1B in TNBC cells impairs cell migration and invasion concomitant with a defect in tumorigenesis. We found that MAP1B interacts with key components for invadopodia formation, cortactin, and Tks5, the latter of which is a PtdIns(3,4)P2-binding and scaffold protein that localizes to invadopodia. We also found that Tks5 associates with microtubules and supports the association between MAP1B and α-tubulin. In accordance with their interaction, depletion of MAP1B leads to Tks5 destabilization, leading to its degradation via the autophagic pathway. Collectively, these findings suggest that MAP1B is a convergence point of the cytoskeleton to promote malignancy in TNBC and thereby a potential diagnostic and therapeutic target for TNBC.
Collapse
Affiliation(s)
- Hiroki Inoue
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Taku Kanda
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Gakuto Hayashi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Ryota Munenaga
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Masayuki Yoshida
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Kana Hasegawa
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Takuya Miyagawa
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Yukiya Kurumada
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Jumpei Hasegawa
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Tomoyuki Wada
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Motoi Horiuchi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Yasuhiro Yoshimatsu
- Department of Cellular Physiological Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Division of Pharmacology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Fumiko Itoh
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Yuki Maemoto
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Kohei Arasaki
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Yuichi Wakana
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Tetsuro Watabe
- Department of Cellular Physiological Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiromichi Matsushita
- Department of Laboratory Medicine, National Cancer Center Hospital,Tokyo, Japan
- Department of Laboratory Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Hironori Harada
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Mitsuo Tagaya
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| |
Collapse
|
3
|
Wenzel EM, Pedersen NM, Elfmark LA, Wang L, Kjos I, Stang E, Malerød L, Brech A, Stenmark H, Raiborg C. Intercellular transfer of cancer cell invasiveness via endosome-mediated protease shedding. Nat Commun 2024; 15:1277. [PMID: 38341434 PMCID: PMC10858897 DOI: 10.1038/s41467-024-45558-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Overexpression of the transmembrane matrix metalloproteinase MT1-MMP/MMP14 promotes cancer cell invasion. Here we show that MT1-MMP-positive cancer cells turn MT1-MMP-negative cells invasive by transferring a soluble catalytic ectodomain of MT1-MMP. Surprisingly, this effect depends on the presence of TKS4 and TKS5 in the donor cell, adaptor proteins previously implicated in invadopodia formation. In endosomes of the donor cell, TKS4/5 promote ADAM-mediated cleavage of MT1-MMP by bridging the two proteases, and cleavage is stimulated by the low intraluminal pH of endosomes. The bridging depends on the PX domains of TKS4/5, which coincidently interact with the cytosolic tail of MT1-MMP and endosomal phosphatidylinositol 3-phosphate. MT1-MMP recruits TKS4/5 into multivesicular endosomes for their subsequent co-secretion in extracellular vesicles, together with the enzymatically active ectodomain. The shed ectodomain converts non-invasive recipient cells into an invasive phenotype. Thus, TKS4/5 promote intercellular transfer of cancer cell invasiveness by facilitating ADAM-mediated shedding of MT1-MMP in acidic endosomes.
Collapse
Affiliation(s)
- Eva Maria Wenzel
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Nina Marie Pedersen
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Liv Anker Elfmark
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Ling Wang
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Ingrid Kjos
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Espen Stang
- Laboratory for Molecular and Cellular Cancer Research, Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Lene Malerød
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Andreas Brech
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Section for Physiology and Cell Biology, Dept. of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Harald Stenmark
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Camilla Raiborg
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway.
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
4
|
Zhu Y, Hu Y, Wang P, Dai X, Fu Y, Xia Y, Sun L, Ruan S. Comprehensive bioinformatics and experimental analysis of SH3PXD2B reveals its carcinogenic effect in gastric carcinoma. Life Sci 2023; 326:121792. [PMID: 37211344 DOI: 10.1016/j.lfs.2023.121792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023]
Abstract
AIMS We aim to explore the possibility and mechanism of SH3PXD2B as a reliable biomarker for gastric cancer (GC). MAIN METHODS We used public databases to analyze the molecular characteristics and disease associations of SH3PXD2B, and KM database for prognostic analysis. The TCGA gastric cancer dataset was used for single gene correlation, differential expression, functional enrichment and immunoinfiltration analysis. SH3PXD2B protein interaction network was constructed by the STRING database. And the GSCALite database was used to explore sensitive drugs and perform SH3PXD2B molecular docking. The impact of SH3PXD2B silencing and over-expression by lentivirus transduction on the proliferation and invasion of human GC HGC-27 and NUGC-3 cells was determined. KEY FINDINGS The high expression of SH3PXD2B in gastric cancer was related to the poor prognosis of patients. It may affect the progression of gastric cancer by forming a regulatory network with FBN1, ADAM15 and other molecules, and the mechanism may involve regulating the infiltration of Treg, TAM and other immunosuppressive cells. The cytofunctional experiments verified that it significantly promoted the proliferation and migration of gastric cancer cells. In addition, we found that some drugs were sensitive to the expression of SH3PXD2B such as sotrastaurin, BHG712 and sirolimus, and they had strong molecular combination of SH3PXD2B, which may provide guidance for the treatment of gastric cancer. SIGNIFICANCE Our study strongly suggests that SH3PXD2B is a carcinogenic molecule that can be used as a biomarker for GC detection, prognosis, treatment design, and follow-up.
Collapse
Affiliation(s)
- Ying Zhu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
| | - Yunhong Hu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Peipei Wang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Xinyang Dai
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Yuhan Fu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Yuwei Xia
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Leitao Sun
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Shanming Ruan
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China.
| |
Collapse
|
5
|
Remy D, Macé AS, Chavrier P, Monteiro P. Invadopodia Methods: Detection of Invadopodia Formation and Activity in Cancer Cells Using Reconstituted 2D and 3D Collagen-Based Matrices. Methods Mol Biol 2023; 2608:225-246. [PMID: 36653711 DOI: 10.1007/978-1-0716-2887-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Tumor dissemination involves cancer cell migration through the extracellular matrix (ECM). ECM is mainly composed of collagen fibers that oppose cell invasion. To overcome hindrance in the matrix, cancer cells deploy a protease-dependent program in order to remodel the matrix fibers. Matrix remodeling requires the formation of actin-based matrix/plasma membrane contact sites called invadopodia, responsible for collagen cleavage through the accumulation and activity of the transmembrane type-I matrix metalloproteinase (MT1-MMP). In this article, we describe experimental procedures designed to assay for invadopodia formation and for invadopodia activity using 2D and 3D models based on gelatin (denatured collagen) and fibrillar type-I collagen matrices.
Collapse
Affiliation(s)
- David Remy
- Institut Curie, CNRS UMR144, PSL Research University, Research Center, Actin and Membrane Dynamics Laboratory, Paris, France
| | - Anne-Sophie Macé
- Institut Curie, PSL Research University, Cell and Tissue Imaging Facility (PICT-IBiSA), Paris, France
| | - Philippe Chavrier
- Institut Curie, CNRS UMR144, PSL Research University, Research Center, Actin and Membrane Dynamics Laboratory, Paris, France
| | - Pedro Monteiro
- Institut Curie, CNRS UMR144, PSL Research University, Research Center, Actin and Membrane Dynamics Laboratory, Paris, France.
| |
Collapse
|
6
|
Lebel M, Cliche DO, Charbonneau M, Adam D, Brochiero E, Dubois CM, Cantin AM. Invadosome Formation by Lung Fibroblasts in Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2022; 24:ijms24010499. [PMID: 36613948 PMCID: PMC9820272 DOI: 10.3390/ijms24010499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/02/2022] [Accepted: 12/14/2022] [Indexed: 12/30/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by abnormal fibroblast accumulation in the lung leading to extracellular matrix deposition and remodeling that compromise lung function. However, the mechanisms of interstitial invasion and remodeling by lung fibroblasts remain poorly understood. The invadosomes, initially described in cancer cells, consist of actin-based adhesive structures that coordinate with numerous other proteins to form a membrane protrusion capable of degrading the extracellular matrix to promote their invasive phenotype. In this regard, we hypothesized that invadosome formation may be increased in lung fibroblasts from patients with IPF. Public RNAseq datasets from control and IPF lung tissues were used to identify differentially expressed genes associated with invadosomes. Lung fibroblasts isolated from bleomycin-exposed mice and IPF patients were seeded with and without the two approved drugs for treating IPF, nintedanib or pirfenidone on fluorescent gelatin-coated coverslips for invadosome assays. Several matrix and invadosome-associated genes were increased in IPF tissues and in IPF fibroblastic foci. Invadosome formation was significantly increased in lung fibroblasts isolated from bleomycin-exposed mice and IPF patients. The degree of lung fibrosis found in IPF tissues correlated strongly with invadosome production by neighboring cells. Nintedanib suppressed IPF and PDGF-activated lung fibroblast invadosome formation, an event associated with inhibition of the PDGFR/PI3K/Akt pathway and TKS5 expression. Fibroblasts derived from IPF lung tissues express a pro-invadosomal phenotype, which correlates with the severity of fibrosis and is responsive to antifibrotic treatment.
Collapse
Affiliation(s)
- Mégane Lebel
- Respiratory Division, Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, QC J1H 5N4, Canada
| | - Dominic O. Cliche
- Respiratory Division, Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, QC J1H 5N4, Canada
| | - Martine Charbonneau
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, QC J1H 5N4, Canada
| | - Damien Adam
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada
| | - Emmanuelle Brochiero
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada
- Department of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Claire M. Dubois
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, QC J1H 5N4, Canada
| | - André M. Cantin
- Respiratory Division, Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, QC J1H 5N4, Canada
- Correspondence: ; Tel.: +819-346-1110 (ext. 14881)
| |
Collapse
|
7
|
Ueshima S, Fang J. Histone H3K9 methyltransferase SETDB1 augments invadopodia formation to promote tumor metastasis. Oncogene 2022; 41:3370-3380. [PMID: 35546351 PMCID: PMC9801494 DOI: 10.1038/s41388-022-02345-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 01/04/2023]
Abstract
Non-small cell lung cancer (NSCLC) is one of leading causes of cancer-related mortality worldwide, which harbors various accumulated genetic and epigenetic abnormalities. Histone methyltransferase SETDB1 is a pivotal epigenetic regulator whose focal amplification and upregulation are commonly detected in NSCLC. However, molecular mechanisms underlying the pro-oncogenic function of SETDB1 remain poorly characterized. Here, we demonstrate that SETDB1 augments the migration and invasion capabilities of NSCLC cells by reinforcing invadopodia formation and mediated ECM degradation. At the molecular level, SETDB1 suppresses the expression of FOXA2, a crucial tumor and metastasis suppressor via coordinated epigenetic mechanisms - SETDB1 not only catalyzes histone H3K9 methylation on FOXA2 genomic locus, but also recruits DNMT3A to regulate DNA methylation on CpG island. Consequently, depletion of Setdb1 in murine lung adenocarcinoma cells completely abolished their full and spontaneous metastatic capabilities in mouse xenograft models. These findings together establish the pro-metastasis activity of SETDB1 in NSCLC and elucidate the underlying cellular and molecular mechanisms.
Collapse
Affiliation(s)
- Shuhei Ueshima
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jia Fang
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| |
Collapse
|
8
|
Oprescu A, Michel D, Antkowiak A, Vega E, Viaud J, Courtneidge SA, Eckly A, de la Salle H, Chicanne G, Léon C, Payrastre B, Gaits-Iacovoni F. Megakaryocytes form linear podosomes devoid of digestive properties to remodel medullar matrix. Sci Rep 2022; 12:6255. [PMID: 35428815 PMCID: PMC9012751 DOI: 10.1038/s41598-022-10215-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 04/01/2022] [Indexed: 12/20/2022] Open
Abstract
Bone marrow megakaryocytes (MKs) undergo a maturation involving contacts with the microenvironment before extending proplatelets through sinusoids to deliver platelets in the bloodstream. We demonstrated that MKs assemble linear F-actin-enriched podosomes on collagen I fibers. Microscopy analysis evidenced an inverse correlation between the number of dot-like versus linear podosomes over time. Confocal videomicroscopy confirmed that they derived from each-other. This dynamics was dependent on myosin IIA. Importantly, MKs progenitors expressed the Tks4/5 adaptors, displayed a strong gelatinolytic ability and did not form linear podosomes. While maturing, MKs lost Tks expression together with digestive ability. However, those MKs were still able to remodel the matrix by exerting traction on collagen I fibers through a collaboration between GPVI, ß1 integrin and linear podosomes. Our data demonstrated that a change in structure and composition of podosomes accounted for the shift of function during megakaryopoiesis. These data highlight the fact that members of the invadosome family could correspond to different maturation status of the same entity, to adapt to functional responses required by differentiation stages of the cell that bears them.
Collapse
Affiliation(s)
- Antoine Oprescu
- INSERM, UMR1297, Université Toulouse III, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Déborah Michel
- INSERM, UMR1297, Université Toulouse III, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Adrien Antkowiak
- INSERM, UMR1297, Université Toulouse III, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Elodie Vega
- INSERM, UMR1297, Université Toulouse III, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Julien Viaud
- INSERM, UMR1297, Université Toulouse III, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Sara A Courtneidge
- Department of Cell, Development and Cancer Biology, Oregon Health & Science University, Oregon, USA
| | - Anita Eckly
- INSERM, UMR_S1255, Université de Strasbourg, Etablissement Français du Sang-GEST, Strasbourg, France
| | - Henri de la Salle
- INSERM, UMR_S1255, Université de Strasbourg, Etablissement Français du Sang-GEST, Strasbourg, France
| | - Gaëtan Chicanne
- INSERM, UMR1297, Université Toulouse III, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Catherine Léon
- INSERM, UMR_S1255, Université de Strasbourg, Etablissement Français du Sang-GEST, Strasbourg, France
| | - Bernard Payrastre
- INSERM, UMR1297, Université Toulouse III, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France.,CHU de Toulouse, laboratoire d'Hématologie, Toulouse, France
| | - Frédérique Gaits-Iacovoni
- INSERM, UMR1297, Université Toulouse III, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France. .,Molecular, Cellular and Developmental Biology Department (MCD, UMR5077), Centre de Biologie Intégrative (CBI, FR3743), University of Toulouse, CNRS, UPS, 31062, Toulouse, France.
| |
Collapse
|
9
|
Colombero C, Remy D, Antoine‐Bally S, Macé A, Monteiro P, ElKhatib N, Fournier M, Dahmani A, Montaudon E, Montagnac G, Marangoni E, Chavrier P. mTOR Repression in Response to Amino Acid Starvation Promotes ECM Degradation Through MT1-MMP Endocytosis Arrest. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101614. [PMID: 34250755 PMCID: PMC8425857 DOI: 10.1002/advs.202101614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/07/2021] [Indexed: 05/02/2023]
Abstract
Under conditions of starvation, normal and tumor epithelial cells can rewire their metabolism toward the consumption of extracellular proteins, including extracellular matrix-derived components as nutrient sources. The mechanism of pericellular matrix degradation by starved cells has been largely overlooked. Here it is shown that matrix degradation by breast and pancreatic tumor cells and patient-derived xenograft explants increases by one order of magnitude upon amino acid and growth factor deprivation. In addition, it is found that collagenolysis requires the invadopodia components, TKS5, and the transmembrane metalloproteinase, MT1-MMP, which are key to the tumor invasion program. Increased collagenolysis is controlled by mTOR repression upon nutrient depletion or pharmacological inhibition by rapamycin. The results reveal that starvation hampers clathrin-mediated endocytosis, resulting in MT1-MMP accumulation in arrested clathrin-coated pits. The study uncovers a new mechanism whereby mTOR repression in starved cells leads to the repurposing of abundant plasma membrane clathrin-coated pits into robust ECM-degradative assemblies.
Collapse
Affiliation(s)
| | - David Remy
- Institut CuriePSL Research UniversityCNRS UMR 144Paris75005France
| | | | - Anne‐Sophie Macé
- Institut CuriePSL Research UniversityCNRS UMR 144Paris75005France
- Cell and Tissue Imaging Facility (PICT‐IBiSA)Institut CuriePSL Research UniversityParis75005France
| | - Pedro Monteiro
- Institut CuriePSL Research UniversityCNRS UMR 144Paris75005France
| | - Nadia ElKhatib
- Gustave Roussy InstituteUniversité Paris‐SaclayINSERM U1279Villejuif94805France
| | - Margot Fournier
- Institut CuriePSL Research UniversityCNRS UMR 144Paris75005France
| | - Ahmed Dahmani
- Translational Research DepartmentInstitut CuriePSL Research UniversityParis75005France
| | - Elodie Montaudon
- Translational Research DepartmentInstitut CuriePSL Research UniversityParis75005France
| | - Guillaume Montagnac
- Gustave Roussy InstituteUniversité Paris‐SaclayINSERM U1279Villejuif94805France
| | - Elisabetta Marangoni
- Translational Research DepartmentInstitut CuriePSL Research UniversityParis75005France
| | | |
Collapse
|
10
|
Rivier P, Mubalama M, Destaing O. Small GTPases all over invadosomes. Small GTPases 2021; 12:429-439. [PMID: 33487105 PMCID: PMC8583085 DOI: 10.1080/21541248.2021.1877081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/30/2020] [Accepted: 01/10/2021] [Indexed: 12/19/2022] Open
Abstract
Cell invasion is associated with numerous patho-physiologic states including cell development and metastatic dissemination. This process couples the activation of cell motility with the capacity to degrade the extracellular matrix, thereby permitting cells to pass through basal membranes. Invasion is sustained by the actions of invadosomes, an ensemble of subcellular structures with high functional homology. Invadosomes are 3D acto-adhesive structures that can also mediate local extracellular matrix degradation through the controlled delivery of proteases. Intracellular RHO GTPases play a central role in the regulation of invadosomes where their complex interplay regulates multiple invadosome functions. This review aims to provide an overview of the synergistic activities of the small GTPases in invadosome biology. This broad-based review also reinforces the importance of the spatiotemporal regulation of small GTPases and the impact of this process on invadosome dynamics.
Collapse
Affiliation(s)
- Paul Rivier
- Team DYSAD, Dept2, Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Grenoble, France
| | - Michel Mubalama
- Team DYSAD, Dept2, Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Grenoble, France
| | - Olivier Destaing
- Team DYSAD, Dept2, Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Grenoble, France
| |
Collapse
|
11
|
Saha T, Gil-Henn H. Invadopodia, a Kingdom of Non-Receptor Tyrosine Kinases. Cells 2021; 10:cells10082037. [PMID: 34440806 PMCID: PMC8391121 DOI: 10.3390/cells10082037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 01/01/2023] Open
Abstract
Non-receptor tyrosine kinases (NRTKs) are crucial mediators of intracellular signaling and control a wide variety of processes such as cell division, morphogenesis, and motility. Aberrant NRTK-mediated tyrosine phosphorylation has been linked to various human disorders and diseases, among them cancer metastasis, to which no treatment presently exists. Invasive cancer cells leaving the primary tumor use invadopodia, feet-like structures which facilitate extracellular matrix (ECM) degradation and intravasation, to escape the primary tumor and disseminate into distant tissues and organs during metastasis. A major challenge in metastasis research is to elucidate the molecular mechanisms and signaling pathways underlying invadopodia regulation, as the general belief is that targeting these structures can potentially lead to the eradication of cancer metastasis. Non-receptor tyrosine kinases (NRTKs) play a central role in regulating invadopodia formation and function, but how they coordinate the signaling leading to these processes was not clear until recently. Here, we describe the major NRTKs that rule invadopodia and how they work in concert while keeping an accurate hierarchy to control tumor cell invasiveness and dissemination.
Collapse
|
12
|
Merő B, Koprivanacz K, Cserkaszky A, Radnai L, Vas V, Kudlik G, Gógl G, Sok P, Póti ÁL, Szeder B, Nyitray L, Reményi A, Geiszt M, Buday L. Characterization of the Intramolecular Interactions and Regulatory Mechanisms of the Scaffold Protein Tks4. Int J Mol Sci 2021; 22:ijms22158103. [PMID: 34360869 PMCID: PMC8348221 DOI: 10.3390/ijms22158103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 01/01/2023] Open
Abstract
The scaffold protein Tks4 is a member of the p47phox-related organizer superfamily. It plays a key role in cell motility by being essential for the formation of podosomes and invadopodia. In addition, Tks4 is involved in the epidermal growth factor (EGF) signaling pathway, in which EGF induces the translocation of Tks4 from the cytoplasm to the plasma membrane. The evolutionarily-related protein p47phox and Tks4 share many similarities in their N-terminal region: a phosphoinositide-binding PX domain is followed by two SH3 domains (so called “tandem SH3”) and a proline-rich region (PRR). In p47phox, the PRR is followed by a relatively short, disordered C-terminal tail region containing multiple phosphorylation sites. These play a key role in the regulation of the protein. In Tks4, the PRR is followed by a third and a fourth SH3 domain connected by a long (~420 residues) unstructured region. In p47phox, the tandem SH3 domain binds the PRR while the first SH3 domain interacts with the PX domain, thereby preventing its binding to the membrane. Based on the conserved structural features of p47phox and Tks4 and the fact that an intramolecular interaction between the third SH3 and the PX domains of Tks4 has already been reported, we hypothesized that Tks4 is similarly regulated by autoinhibition. In this study, we showed, via fluorescence-based titrations, MST, ITC, and SAXS measurements, that the tandem SH3 domain of Tks4 binds the PRR and that the PX domain interacts with the third SH3 domain. We also investigated a phosphomimicking Thr-to-Glu point mutation in the PRR as a possible regulator of intramolecular interactions. Phosphatidylinositol-3-phosphate (PtdIns(3)P) was identified as the main binding partner of the PX domain via lipid-binding assays. In truncated Tks4 fragments, the presence of the tandem SH3, together with the PRR, reduced PtdIns(3)P binding, while the presence of the third SH3 domain led to complete inhibition.
Collapse
Affiliation(s)
- Balázs Merő
- Research Centre for Natural Sciences, Institute of Enzymology, 1117 Budapest, Hungary; (B.M.); (K.K.); (A.C.); (L.R.); (V.V.); (G.K.); (B.S.)
| | - Kitti Koprivanacz
- Research Centre for Natural Sciences, Institute of Enzymology, 1117 Budapest, Hungary; (B.M.); (K.K.); (A.C.); (L.R.); (V.V.); (G.K.); (B.S.)
| | - Anna Cserkaszky
- Research Centre for Natural Sciences, Institute of Enzymology, 1117 Budapest, Hungary; (B.M.); (K.K.); (A.C.); (L.R.); (V.V.); (G.K.); (B.S.)
| | - László Radnai
- Research Centre for Natural Sciences, Institute of Enzymology, 1117 Budapest, Hungary; (B.M.); (K.K.); (A.C.); (L.R.); (V.V.); (G.K.); (B.S.)
| | - Virag Vas
- Research Centre for Natural Sciences, Institute of Enzymology, 1117 Budapest, Hungary; (B.M.); (K.K.); (A.C.); (L.R.); (V.V.); (G.K.); (B.S.)
| | - Gyöngyi Kudlik
- Research Centre for Natural Sciences, Institute of Enzymology, 1117 Budapest, Hungary; (B.M.); (K.K.); (A.C.); (L.R.); (V.V.); (G.K.); (B.S.)
| | - Gergő Gógl
- Department of Biochemistry, Eötvös Loránd University, 1117 Budapest, Hungary; (G.G.); (L.N.)
| | - Péter Sok
- Research Centre for Natural Sciences, Institute of Organic Chemistry, 1117 Budapest, Hungary; (P.S.); (Á.L.P.); (A.R.)
| | - Ádám L. Póti
- Research Centre for Natural Sciences, Institute of Organic Chemistry, 1117 Budapest, Hungary; (P.S.); (Á.L.P.); (A.R.)
| | - Bálint Szeder
- Research Centre for Natural Sciences, Institute of Enzymology, 1117 Budapest, Hungary; (B.M.); (K.K.); (A.C.); (L.R.); (V.V.); (G.K.); (B.S.)
| | - László Nyitray
- Department of Biochemistry, Eötvös Loránd University, 1117 Budapest, Hungary; (G.G.); (L.N.)
| | - Attila Reményi
- Research Centre for Natural Sciences, Institute of Organic Chemistry, 1117 Budapest, Hungary; (P.S.); (Á.L.P.); (A.R.)
| | - Miklós Geiszt
- Department of Physiology, Semmelweis University, 1094 Budapest, Hungary;
| | - László Buday
- Department of Biochemistry, Eötvös Loránd University, 1117 Budapest, Hungary; (G.G.); (L.N.)
- Department of Molecular Biology, Semmelweis University Medical School, 1094 Budapest, Hungary
- Correspondence:
| |
Collapse
|
13
|
Sugimoto A, Okuno T, Tsujio G, Sera T, Yamamoto Y, Maruo K, Kushiyama S, Nishimura S, Kuroda K, Togano S, Miki Y, Yoshii M, Tamura T, Toyokawa T, Tanaka H, Muguruma K, Ohira M, Yashiro M. The clinicopathologic significance of Tks5 expression of peritoneal mesothelial cells in gastric cancer patients. PLoS One 2021; 16:e0253702. [PMID: 34255789 PMCID: PMC8277061 DOI: 10.1371/journal.pone.0253702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 06/08/2021] [Indexed: 11/18/2022] Open
Abstract
Background Gastric cancer (GC) patients frequently develop peritoneal metastasis. Recently, it has been reported that peritoneal mesothelial cells (PMCs) activated by GC cells acquire a migratory capacity and promote GC cell invasion. The invasiveness of PMCs reportedly depends on the activity of Tks5, an adaptor protein required for invadopodia formation. However, the relationship between clinicopathologic features and Tks5 expression in PMCs has been poorly documented. In this study, we evaluated the clinicopathologic significance of the Tks5 expression of PMCs in GC patients. Materials and methods A total of 110 GC patients who underwent gastrectomy were enrolled in this study. Tks5 expressions in PMCs from the greater omentum, lesser omentum and retroperitoneum were evaluated by immunohistochemistry. We analyzed the correlation between Tks5 expressions in PMCs and the patients’ clinicopathologic features. Results Tks5 expression was found in 71 (64.5%) of the 110 patients, while 39 (35.5%) were Tks5-negative. Tks5 positivity was significantly (p = 0.038) associated with a greater tumor depth (i.e., T3/4 compared with T1/T2). Peritoneal recurrence was found in 12 of 98 cases within 3 years of surgery. The 3-year peritoneal recurrence-free survival (PRFS) rate in Tks5-positive cases was significantly poorer than that in Tks5-negative cases (80.1% vs 97.4%, p = 0.024). Multivariate analysis revealed that Tks5 positivity and lymph node metastasis were independent factors for PRFS. Conclusion Tks5 is frequently expressed in PMCs in advanced-stage gastric cancer. Tks5 might be a useful predictor for peritoneal recurrence in GC patients.
Collapse
Affiliation(s)
- Atsushi Sugimoto
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.,Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Tomohisa Okuno
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.,Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Gen Tsujio
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.,Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Tomohiro Sera
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.,Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yurie Yamamoto
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Koji Maruo
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.,Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shuhei Kushiyama
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.,Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Sadaaki Nishimura
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.,Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kenji Kuroda
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.,Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shingo Togano
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.,Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yuichiro Miki
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.,Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Mami Yoshii
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Tatsuro Tamura
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Takahiro Toyokawa
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hiroaki Tanaka
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kazuya Muguruma
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masaichi Ohira
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masakazu Yashiro
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.,Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
14
|
Tilak M, Alural B, Wismer SE, Brasher MI, New LA, Sheridan SD, Perlis RH, Coppolino MG, Lalonde J, Jones N. Adaptor Protein ShcD/ SHC4 Interacts with Tie2 Receptor to Synergistically Promote Glioma Cell Invasion. Mol Cancer Res 2021; 19:757-770. [PMID: 33495401 DOI: 10.1158/1541-7786.mcr-20-0188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 11/26/2020] [Accepted: 01/14/2021] [Indexed: 11/16/2022]
Abstract
Gliomas are characterized by diffuse infiltration of tumor cells into surrounding brain tissue, and this highly invasive nature contributes to disease recurrence and poor patient outcomes. The molecular mechanisms underlying glioma cell invasion remain incompletely understood, limiting development of new targeted therapies. Here, we have identified phosphotyrosine adaptor protein ShcD as upregulated in malignant glioma and shown that it associates with receptor tyrosine kinase Tie2 to facilitate invasion. In human glioma cells, we find that expression of ShcD and Tie2 increases invasion, and this significant synergistic effect is disrupted with a ShcD mutant that cannot bind Tie2 or hyperphosphorylate the receptor. Expression of ShcD and/or Tie2 further increases invadopodia formation and matrix degradation in U87 glioma cells. In a coculture model, we show that U87-derived tumor spheroids expressing both ShcD and Tie2 display enhanced infiltration into cerebral organoids. Mechanistically, we identify changes in focal adhesion kinase phosphorylation in the presence of ShcD and/or Tie2 in U87 cells upon Tie2 activation. Finally, we identify a strong correlation between transcript levels of ShcD and Tie2 signaling components as well as N-cadherin in advanced gliomas and those with classical or mesenchymal subtypes, and we show that elevated expression of ShcD correlates with a significant reduction in patient survival in higher grade gliomas with mesenchymal signature. Altogether, our data highlight a novel Tie2-ShcD signaling axis in glioma cell invasion, which may be of clinical significance. IMPLICATIONS: ShcD cooperates with Tie2 to promote glioma cell invasion and its elevated expression correlates with poor patient outcome in advanced gliomas.
Collapse
Affiliation(s)
- Manali Tilak
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Begüm Alural
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Sarah E Wismer
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Megan I Brasher
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Laura A New
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Steven D Sheridan
- Center for Quantitative Health, Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Roy H Perlis
- Center for Quantitative Health, Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Marc G Coppolino
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Jasmin Lalonde
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Nina Jones
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
15
|
Kui X, Wang Y, Zhang C, Li H, Li Q, Ke Y, Wang L. Prognostic value of SH3PXD2B (Tks4) in human hepatocellular carcinoma: a combined multi-omics and experimental study. BMC Med Genomics 2021; 14:115. [PMID: 33906640 PMCID: PMC8080318 DOI: 10.1186/s12920-021-00963-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common and fatal cancers worldwide. HCC invasion and metastasis are crucial for its poor prognosis. SH3PXD2B is a scaffold protein and critical for intravascular and extravascular invasion and metastasis of various types of tumors. However, the role of SH3PXD2B in HCC progression remains unclear. METHODS The levels of SH3PXD2B mRNA transcripts in the TCGA database and SH3PXD2B protein expression in the Human Protein Atlas were analyzed. Furthermore, the levels of SH3PXD2B expression in clinical samples were analyzed by quantitative RT-PCR and immunohistochemistry. The potential association of the levels of SH3PXD2B expression with clinicopathological characteristics, overall survival (OS), and recurrence-free survival (RFS) of HCC patients was analyzed. The impact of SH3PXD2B silencing by shRNA-based lentivirus transduction on the proliferation and invasion of human HCC Hep3B and Huh7 cells was determined. RESULTS SH3PXD2B expression was up-regulated in HCC tissues in the TCGA and Human Protein Atlas as well as clinical samples, relative to that of non-tumor liver samples. The levels of SH3PXD2B expression in HCC tissues were significantly associated with higher HBV infection rate, higher HCC grades and TNM stages, higher Ki-67 expression, higher serum α-fetoprotein (AFP), a shorter OS and RFS of HCC patients. Functionally, SH3PXD2B silencing significantly inhibited the formation and function of invadopodia and the invasion of Hep3B and Huh7 cells, but did not affect their proliferation in vitro. CONCLUSIONS Our data suggest that SH3PXD2B may promote the invasion and metastasis of HCC and be a valuable therapeutic target and biomarker for treatment and prognosis of HCC.
Collapse
Affiliation(s)
- Xiang Kui
- Department of Pathology, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Yan Wang
- Department of Pathology, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Cheng Zhang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
- Department of Hepatobiliary Surgery, The Sixth People's Hospital of Chengdu, Chengdu, 610051, China
| | - Hai Li
- School of Medicine, Kunming University, Kunming, 650214, China
| | - Qingfeng Li
- Department of Pathology, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Yang Ke
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China.
| | - Lin Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China.
| |
Collapse
|
16
|
The multiple roles of actin-binding proteins at invadopodia. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021. [PMID: 33962752 DOI: 10.1016/bs.ircmb.2021.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Invadopodia are actin-rich membrane protrusions that facilitate cancer cell dissemination by focusing on proteolytic activity and clearing paths for migration through physical barriers, such as basement membranes, dense extracellular matrices, and endothelial cell junctions. Invadopodium formation and activity require spatially and temporally regulated changes in actin filament organization and dynamics. About three decades of research have led to a remarkable understanding of how these changes are orchestrated by sequential recruitment and coordinated activity of different sets of actin-binding proteins. In this chapter, we provide an update on the roles of the actin cytoskeleton during the main stages of invadopodium development with a particular focus on actin polymerization machineries and production of pushing forces driving extracellular matrix remodeling.
Collapse
|
17
|
Iizuka S, Quintavalle M, Navarro JC, Gribbin KP, Ardecky RJ, Abelman MM, Ma CT, Sergienko E, Zeng FY, Pass I, Thomas GV, McWeeney SK, Hassig CA, Pinkerton AB, Courtneidge SA. Serine-Threonine Kinase TAO3-Mediated Trafficking of Endosomes Containing the Invadopodia Scaffold TKS5α Promotes Cancer Invasion and Tumor Growth. Cancer Res 2021; 81:1472-1485. [PMID: 33414172 DOI: 10.1158/0008-5472.can-20-2383] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/13/2020] [Accepted: 01/04/2021] [Indexed: 11/16/2022]
Abstract
Invadopodia are actin-based proteolytic membrane protrusions required for invasive behavior and tumor growth. In this study, we used our high-content screening assay to identify kinases whose activity affects invadopodia formation. Among the top hits selected for further analysis was TAO3, an STE20-like kinase of the GCK subfamily. TAO3 was overexpressed in many human cancers and regulated invadopodia formation in melanoma, breast, and bladder cancers. Furthermore, TAO3 catalytic activity facilitated melanoma growth in three-dimensional matrices and in vivo. A novel, potent catalytic inhibitor of TAO3 was developed that inhibited invadopodia formation and function as well as tumor cell extravasation and growth. Treatment with this inhibitor demonstrated that TAO3 activity is required for endosomal trafficking of TKS5α, an obligate invadopodia scaffold protein. A phosphoproteomics screen for TAO3 substrates revealed the dynein subunit protein LIC2 as a relevant substrate. Knockdown of LIC2 or expression of a phosphomimetic form promoted invadopodia formation. Thus, TAO3 is a new therapeutic target with a distinct mechanism of action. SIGNIFICANCE: An unbiased screening approach identifies TAO3 as a regulator of invadopodia formation and function, supporting clinical development of this class of target.
Collapse
Affiliation(s)
- Shinji Iizuka
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California.,Department of Cell Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon
| | | | - Jose C Navarro
- Department of Cell Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon
| | - Kyle P Gribbin
- Department of Cell Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon
| | - Robert J Ardecky
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Matthew M Abelman
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Chen-Ting Ma
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Eduard Sergienko
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Fu-Yue Zeng
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Ian Pass
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - George V Thomas
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Shannon K McWeeney
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon.,Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, Oregon.,Oregon Clinical and Translational Research Institute, Oregon Health and Science University, Portland, Oregon
| | - Christian A Hassig
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | | | - Sara A Courtneidge
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California. .,Department of Cell Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon.,Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon.,Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
18
|
Iizuka S, Leon RP, Gribbin KP, Zhang Y, Navarro J, Smith R, Devlin K, Wang LG, Gibbs SL, Korkola J, Nan X, Courtneidge SA. Crosstalk between invadopodia and the extracellular matrix. Eur J Cell Biol 2020; 99:151122. [PMID: 33070041 DOI: 10.1016/j.ejcb.2020.151122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/24/2020] [Accepted: 08/12/2020] [Indexed: 12/27/2022] Open
Abstract
The scaffold protein Tks5α is required for invadopodia-mediated cancer invasion both in vitro and in vivo. We have previously also revealed a role for Tks5 in tumor cell growth using three-dimensional (3D) culture model systems and mouse transplantation experiments. Here we use both 3D and high-density fibrillar collagen (HDFC) culture to demonstrate that native collagen-I, but not a form lacking the telopeptides, stimulated Tks5-dependent growth, which was dependent on the DDR collagen receptors. We used microenvironmental microarray (MEMA) technology to determine that laminin, fibronectin and tropoelastin also stimulated invadopodia formation. A Tks5α-specific monoclonal antibody revealed its expression both on microtubules and at invadopodia. High- and super-resolution microscopy of cells in and on collagen was then used to place Tks5α at the base of invadopodia, separated from much of the actin and cortactin, but coincident with both matrix metalloprotease and cathepsin proteolytic activity. Inhibition of the Src family kinases, cathepsins or metalloproteases all reduced invadopodia length but each had distinct effects on Tks5α localization. These studies highlight the crosstalk between invadopodia and extracellular matrix components, and reveal the invadopodium to be a spatially complex structure.
Collapse
Affiliation(s)
- Shinji Iizuka
- Departments of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon, USA.
| | - Ronald P Leon
- Departments of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon, USA
| | - Kyle P Gribbin
- Departments of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon, USA
| | - Ying Zhang
- Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA
| | - Jose Navarro
- Departments of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon, USA
| | - Rebecca Smith
- Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA
| | - Kaylyn Devlin
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Lei G Wang
- Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA
| | - Summer L Gibbs
- Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA; Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - James Korkola
- Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA; Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Xiaolin Nan
- Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA; Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Sara A Courtneidge
- Departments of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon, USA; Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA; Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA.
| |
Collapse
|
19
|
Zagryazhskaya-Masson A, Monteiro P, Macé AS, Castagnino A, Ferrari R, Infante E, Duperray-Susini A, Dingli F, Lanyi A, Loew D, Génot E, Chavrier P. Intersection of TKS5 and FGD1/CDC42 signaling cascades directs the formation of invadopodia. J Cell Biol 2020; 219:e201910132. [PMID: 32673397 PMCID: PMC7480108 DOI: 10.1083/jcb.201910132] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 04/24/2020] [Accepted: 05/29/2020] [Indexed: 12/22/2022] Open
Abstract
Tumor cells exposed to a physiological matrix of type I collagen fibers form elongated collagenolytic invadopodia, which differ from dotty-like invadopodia forming on the gelatin substratum model. The related scaffold proteins, TKS5 and TKS4, are key components of the mechanism of invadopodia assembly. The molecular events through which TKS proteins direct collagenolytic invadopodia formation are poorly defined. Using coimmunoprecipitation experiments, identification of bound proteins by mass spectrometry, and in vitro pull-down experiments, we found an interaction between TKS5 and FGD1, a guanine nucleotide exchange factor for the Rho-GTPase CDC42, which is known for its role in the assembly of invadopodial actin core structure. A novel cell polarity network is uncovered comprising TKS5, FGD1, and CDC42, directing invadopodia formation and the polarization of MT1-MMP recycling compartments, required for invadopodia activity and invasion in a 3D collagen matrix. Additionally, our data unveil distinct signaling pathways involved in collagenolytic invadopodia formation downstream of TKS4 or TKS5 in breast cancer cells.
Collapse
Affiliation(s)
- Anna Zagryazhskaya-Masson
- Institut Curie, PSL Research University, Centre National de la Recherche Scientifique, UMR 144, Paris, France
| | - Pedro Monteiro
- Institut Curie, PSL Research University, Centre National de la Recherche Scientifique, UMR 144, Paris, France
| | - Anne-Sophie Macé
- Institut Curie, PSL Research University, Centre National de la Recherche Scientifique, UMR 144, Paris, France
- Cell and Tissue Imaging Facility (PICT-IBiSA), Institut Curie, PSL Research University, Centre National de la Recherche Scientifique, Paris, France
| | - Alessia Castagnino
- Institut Curie, PSL Research University, Centre National de la Recherche Scientifique, UMR 144, Paris, France
| | - Robin Ferrari
- Institut Curie, PSL Research University, Centre National de la Recherche Scientifique, UMR 144, Paris, France
| | - Elvira Infante
- Institut Curie, PSL Research University, Centre National de la Recherche Scientifique, UMR 144, Paris, France
| | - Aléria Duperray-Susini
- Institut Curie, PSL Research University, Centre National de la Recherche Scientifique, UMR 144, Paris, France
| | - Florent Dingli
- Mass Spectrometry and Proteomic Laboratory, Institut Curie, PSL Research University, Paris, France
| | - Arpad Lanyi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Damarys Loew
- Mass Spectrometry and Proteomic Laboratory, Institut Curie, PSL Research University, Paris, France
| | - Elisabeth Génot
- European Institute of Chemistry and Biology, Bordeaux, France
- Centre de Recherche Cardio-Thoracique de Bordeaux, Institut National de la Santé et de la Recherche Médicale U1045, and Université de Bordeaux, Bordeaux, France
| | - Philippe Chavrier
- Institut Curie, PSL Research University, Centre National de la Recherche Scientifique, UMR 144, Paris, France
| |
Collapse
|
20
|
Yoshihara M, Yamakita Y, Kajiyama H, Senga T, Koya Y, Yamashita M, Nawa A, Kikkawa F. Filopodia play an important role in the trans-mesothelial migration of ovarian cancer cells. Exp Cell Res 2020; 392:112011. [PMID: 32339607 DOI: 10.1016/j.yexcr.2020.112011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/26/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022]
Abstract
Ovarian cancer cells shed from primary tumors can spread easily to the peritoneum via the peritoneal fluid. To allow further metastasis, the cancer cells must interact with the mesothelial cell layer, which covers the entire surface of the peritoneal organs. Although the clinical importance of this interaction between cancer and mesothelial cells has been increasingly recognized, the molecular mechanisms utilized by cancer cells to adhere to and migrate through the mesothelial cell layer are poorly understood. To investigate the molecular mechanisms of cancer cell trans-mesothelial migration, we set up an in vitro trans-mesothelial migration assay using primary peritoneal mesothelial cells. Using this method, we found that downregulation of filopodial protein fascin-1 or myosin X expression in ES-2 cells significantly inhibited the rate of trans-mesothelial migration of cancer cells, whereas upregulation of fascin-1 in SK-OV-3 cells enhanced this rate. Furthermore, downregulation of N-cadherin or integrin β1 inhibited the rate of cancer cell trans-mesothelial migration. Conversely, downregulation of cortactin or TKS5 or treatment with the MMP inhibitor GM6001 or the N-WASP inhibitor wiskostatin did not have any effect on cancer cell trans-mesothelial migration. These results suggest that filopodia, but not lamellipodia or invadopodia, play an important role in the trans-mesothelial migration of ovarian cancer cells.
Collapse
Affiliation(s)
- Masato Yoshihara
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan; Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Australia
| | - Yoshihiko Yamakita
- Bell Research Center-Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan; Bell Research Center for Reproductive Health and Cancer, Tsushima, Aichi, Japan.
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan.
| | | | - Yoshihiro Koya
- Bell Research Center-Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan; Bell Research Center for Reproductive Health and Cancer, Tsushima, Aichi, Japan
| | - Mamoru Yamashita
- Bell Research Center for Reproductive Health and Cancer, Tsushima, Aichi, Japan
| | - Akihiro Nawa
- Bell Research Center-Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan; Bell Research Center for Reproductive Health and Cancer, Tsushima, Aichi, Japan
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| |
Collapse
|
21
|
Thuault S, Mamelonet C, Salameh J, Ostacolo K, Chanez B, Salaün D, Baudelet E, Audebert S, Camoin L, Badache A. A proximity-labeling proteomic approach to investigate invadopodia molecular landscape in breast cancer cells. Sci Rep 2020; 10:6787. [PMID: 32321993 PMCID: PMC7176661 DOI: 10.1038/s41598-020-63926-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/06/2020] [Indexed: 12/27/2022] Open
Abstract
Metastatic progression is the leading cause of mortality in breast cancer. Invasive tumor cells develop invadopodia to travel through basement membranes and the interstitial matrix. Substantial efforts have been made to characterize invadopodia molecular composition. However, their full molecular identity is still missing due to the difficulty in isolating them. To fill this gap, we developed a non-hypothesis driven proteomic approach based on the BioID proximity biotinylation technology, using the invadopodia-specific protein Tks5α fused to the promiscuous biotin ligase BirA* as bait. In invasive breast cancer cells, Tks5α fusion concentrated to invadopodia and selectively biotinylated invadopodia components, in contrast to a fusion which lacked the membrane-targeting PX domain (Tks5β). Biotinylated proteins were isolated by affinity capture and identified by mass spectrometry. We identified known invadopodia components, revealing the pertinence of our strategy. Furthermore, we observed that Tks5 newly identified close neighbors belonged to a biologically relevant network centered on actin cytoskeleton organization. Analysis of Tks5β interactome demonstrated that some partners bound Tks5 before its recruitment to invadopodia. Thus, the present strategy allowed us to identify novel Tks5 partners that were not identified by traditional approaches and could help get a more comprehensive picture of invadopodia molecular landscape.
Collapse
Affiliation(s)
- Sylvie Thuault
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Univ, INSERM, Institut Paoli-Calmettes, CNRS, Marseille, France.
| | - Claire Mamelonet
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Univ, INSERM, Institut Paoli-Calmettes, CNRS, Marseille, France
| | - Joëlle Salameh
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Univ, INSERM, Institut Paoli-Calmettes, CNRS, Marseille, France.,INSERM UMR-S 1193, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Kevin Ostacolo
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Univ, INSERM, Institut Paoli-Calmettes, CNRS, Marseille, France.,Department of Biochemistry and Molecular Biology, Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Brice Chanez
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Univ, INSERM, Institut Paoli-Calmettes, CNRS, Marseille, France.,Institut Paoli-Calmettes, Department of Medical Oncology, Marseille, France
| | - Danièle Salaün
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Univ, INSERM, Institut Paoli-Calmettes, CNRS, Marseille, France
| | - Emilie Baudelet
- CRCM, Marseille Proteomics, Aix-Marseille Univ, INSERM, CNRS, Institut Paoli-Calmettes, Marseille, France
| | - Stéphane Audebert
- CRCM, Marseille Proteomics, Aix-Marseille Univ, INSERM, CNRS, Institut Paoli-Calmettes, Marseille, France
| | - Luc Camoin
- CRCM, Marseille Proteomics, Aix-Marseille Univ, INSERM, CNRS, Institut Paoli-Calmettes, Marseille, France
| | - Ali Badache
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Univ, INSERM, Institut Paoli-Calmettes, CNRS, Marseille, France
| |
Collapse
|
22
|
Gozzelino L, De Santis MC, Gulluni F, Hirsch E, Martini M. PI(3,4)P2 Signaling in Cancer and Metabolism. Front Oncol 2020; 10:360. [PMID: 32296634 PMCID: PMC7136497 DOI: 10.3389/fonc.2020.00360] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/02/2020] [Indexed: 12/19/2022] Open
Abstract
The phosphatidylinositide 3 kinases (PI3Ks) and their downstream mediators AKT and mammalian target of rapamycin (mTOR) are central regulators of glycolysis, cancer metabolism, and cancer cell proliferation. At the molecular level, PI3K signaling involves the generation of the second messenger lipids phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] and phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2]. There is increasing evidence that PI(3,4)P2 is not only the waste product for the removal of PI(3,4,5)P3 but can also act as a signaling molecule. The selective cellular functions for PI(3,4)P2 independent of PI(3,4,5)P3 have been recently described, including clathrin-mediated endocytosis and mTOR regulation. However, the specific spatiotemporal dynamics and signaling role of PI3K minor lipid messenger PI(3,4)P2 are not well-understood. This review aims at highlighting the biological functions of this lipid downstream of phosphoinositide kinases and phosphatases and its implication in cancer metabolism.
Collapse
Affiliation(s)
- Luca Gozzelino
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Maria Chiara De Santis
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Federico Gulluni
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Miriam Martini
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| |
Collapse
|
23
|
Daly C, Logan B, Breeyear J, Whitaker K, Ahmed M, Seals DF. Tks5 SH3 domains exhibit differential effects on invadopodia development. PLoS One 2020; 15:e0227855. [PMID: 31999741 PMCID: PMC6991978 DOI: 10.1371/journal.pone.0227855] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 12/31/2019] [Indexed: 11/23/2022] Open
Abstract
The Src substrate Tks5 helps scaffold matrix-remodeling invadopodia in invasive cancer cells. Focus was directed here on how the five SH3 domains of Tks5 impact that activity. Mutations designed to inhibit protein-protein interactions were created in the individual SH3 domains of Tks5, and the constructs were introduced into the LNCaP prostate carcinoma cell line, a model system with intrinsically low Tks5 expression and which our lab had previously showed the dependence of Src-dependent Tks5 phosphorylation on invadopodia development. In LNCaP cells, acute increases in wild-type Tks5 led to increased gelatin matrix degradation. A similar result was observed when Tks5 was mutated in its 4th or 5th SH3 domains. This was in contrast to the 1st, 2nd, and 3rd SH3 domain mutations of Tks5 where each had a remarkable accentuating effect on gelatin degradation. Conversely, in the invadopodia-competent Src-3T3 model system, mutations in any one of the first three SH3 domains had a dominant negative effect that largely eliminated the presence of invadopodia, inhibited gelatin degradation activity, and redistributed both Src, cortactin, and Tks5 to what are likely endosomal compartments. A hypothesis involving Tks5 conformational states and the regulation of endosomal trafficking is presented as an explanation for these seemingly disparate results.
Collapse
Affiliation(s)
- Christina Daly
- Department of Biology, Appalachian State University, Boone, North Carolina, United States of America
| | - Brewer Logan
- Department of Biology, Appalachian State University, Boone, North Carolina, United States of America
| | - Joseph Breeyear
- Department of Biology, Appalachian State University, Boone, North Carolina, United States of America
| | - Kelley Whitaker
- Department of Biology, Appalachian State University, Boone, North Carolina, United States of America
| | - Maryam Ahmed
- Department of Biology, Appalachian State University, Boone, North Carolina, United States of America
| | - Darren F Seals
- Department of Biology, Appalachian State University, Boone, North Carolina, United States of America
| |
Collapse
|
24
|
MT1-MMP directs force-producing proteolytic contacts that drive tumor cell invasion. Nat Commun 2019; 10:4886. [PMID: 31653854 PMCID: PMC6814785 DOI: 10.1038/s41467-019-12930-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 10/04/2019] [Indexed: 12/31/2022] Open
Abstract
Unraveling the mechanisms that govern the formation and function of invadopodia is essential towards the prevention of cancer spread. Here, we characterize the ultrastructural organization, dynamics and mechanical properties of collagenotytic invadopodia forming at the interface between breast cancer cells and a physiologic fibrillary type I collagen matrix. Our study highlights an uncovered role for MT1-MMP in directing invadopodia assembly independent of its proteolytic activity. Electron microscopy analysis reveals a polymerized Arp2/3 actin network at the concave side of the curved invadopodia in association with the collagen fibers. Actin polymerization is shown to produce pushing forces that repel the confining matrix fibers, and requires MT1-MMP matrix-degradative activity to widen the matrix pores and generate the invasive pathway. A theoretical model is proposed whereby pushing forces result from actin assembly and frictional forces in the actin meshwork due to the curved geometry of the matrix fibers that counterbalance resisting forces by the collagen fibers. The mechanism of force production by invadopodia is unclear. Here, the authors show that cell surface MT1-MMP when in contact with collagen, induces Arp2/3 branched actin polymerisation on the concave side of invadopodia, which generates a pushing force along with collagen cleavage by MT1-MMP to invade.
Collapse
|
25
|
Bayarmagnai B, Perrin L, Esmaeili Pourfarhangi K, Graña X, Tüzel E, Gligorijevic B. Invadopodia-mediated ECM degradation is enhanced in the G1 phase of the cell cycle. J Cell Sci 2019; 132:jcs.227116. [PMID: 31533971 DOI: 10.1242/jcs.227116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 09/10/2019] [Indexed: 12/16/2022] Open
Abstract
The process of tumor cell invasion and metastasis includes assembly of invadopodia, protrusions capable of degrading the extracellular matrix (ECM). The effect of cell cycle progression on invadopodia has not been elucidated. In this study, by using invadopodia and cell cycle fluorescent markers, we show in 2D and 3D cultures, as well as in vivo, that breast carcinoma cells assemble invadopodia and invade into the surrounding ECM preferentially during the G1 phase. The expression (MT1-MMP, also known as MMP14, and cortactin) and localization (Tks5; also known as SH3PXD2A) of invadopodia components are elevated in G1 phase, and cells synchronized in G1 phase exhibit significantly higher ECM degradation compared to the cells synchronized in S phase. The cyclin-dependent kinase inhibitor (CKI) p27kip1 (also known as CDKN1B) localizes to the sites of invadopodia assembly. Overexpression and stable knockdown of p27kip1 lead to contrasting effects on invadopodia turnover and ECM degradation. Taken together, these findings suggest that expression of invadopodia components, as well as invadopodia function, are linked to cell cycle progression, and that invadopodia are controlled by cell cycle regulators. Our results caution that this coordination between invasion and cell cycle must be considered when designing effective chemotherapies.
Collapse
Affiliation(s)
- Battuya Bayarmagnai
- Department of Bioengineering, Temple University, Philadelphia, PA 19122, USA
| | - Louisiane Perrin
- Department of Bioengineering, Temple University, Philadelphia, PA 19122, USA
| | | | - Xavier Graña
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.,Fels Research Institute for Cancer Biology and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Erkan Tüzel
- Department of Bioengineering, Temple University, Philadelphia, PA 19122, USA
| | - Bojana Gligorijevic
- Department of Bioengineering, Temple University, Philadelphia, PA 19122, USA .,Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| |
Collapse
|
26
|
Erami Z, Heitz S, Bresnick AR, Backer JM. PI3Kβ links integrin activation and PI(3,4)P 2 production during invadopodial maturation. Mol Biol Cell 2019; 30:2367-2376. [PMID: 31318314 PMCID: PMC6741064 DOI: 10.1091/mbc.e19-03-0182] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/17/2019] [Accepted: 07/01/2019] [Indexed: 11/17/2022] Open
Abstract
The invasion of tumor cells from the primary tumor is mediated by invadopodia, actin-rich protrusive organelles that secrete matrix metalloproteases and degrade the extracellular matrix. This coupling between protrusive activity and matrix degradation facilitates tumor invasion. We previously reported that the PI3Kβ isoform of PI 3-kinase, which is regulated by both receptor tyrosine kinases and G protein-coupled receptors, is required for invasion and gelatin degradation in breast cancer cells. We have now defined the mechanism by which PI3Kβ regulates invadopodia. We find that PI3Kβ is specifically activated downstream from integrins, and is required for integrin-stimulated spreading and haptotaxis as well as integrin-stimulated invadopodia formation. Surprisingly, these integrin-stimulated and PI3Kβ-dependent responses require the production of PI(3,4)P2 by the phosphoinositide 5'-phosphatase SHIP2. Thus, integrin activation of PI3Kβ is coupled to the SHIP2-dependent production of PI(3,4)P2, which regulates the recruitment of PH domain-containing scaffolds such as lamellipodin to invadopodia. These findings provide novel mechanistic insight into the role of PI3Kβ in the regulation of invadopodia in breast cancer cells.
Collapse
Affiliation(s)
- Zahra Erami
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Samantha Heitz
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Anne R. Bresnick
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Jonathan M. Backer
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
27
|
Chuang MC, Lin SS, Ohniwa RL, Lee GH, Su YA, Chang YC, Tang MJ, Liu YW. Tks5 and Dynamin-2 enhance actin bundle rigidity in invadosomes to promote myoblast fusion. J Cell Biol 2019; 218:1670-1685. [PMID: 30894403 PMCID: PMC6504888 DOI: 10.1083/jcb.201809161] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/22/2019] [Accepted: 03/04/2019] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle development requires the cell-cell fusion of differentiated myoblasts to form muscle fibers. The actin cytoskeleton is known to be the main driving force for myoblast fusion; however, how actin is organized to direct intercellular fusion remains unclear. Here we show that an actin- and dynamin-2-enriched protrusive structure, the invadosome, is required for the fusion process of myogenesis. Upon differentiation, myoblasts acquire the ability to form invadosomes through isoform switching of a critical invadosome scaffold protein, Tks5. Tks5 directly interacts with and recruits dynamin-2 to the invadosome and regulates its assembly around actin filaments to strengthen the stiffness of dynamin-actin bundles and invadosomes. These findings provide a mechanistic framework for the acquisition of myogenic fusion machinery during myogenesis and reveal a novel structural function for Tks5 and dynamin-2 in organizing actin filaments in the invadosome to drive membrane fusion.
Collapse
Affiliation(s)
- Mei-Chun Chuang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shan-Shan Lin
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ryosuke L Ohniwa
- Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Center for Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Gang-Hui Lee
- International Center of Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
| | - You-An Su
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Chen Chang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Jer Tang
- International Center of Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan.,Department of Physiology, Medical College, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Wen Liu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan .,Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
28
|
Common J, Barker J, Steensel M. What does acne genetics teach us about disease pathogenesis? Br J Dermatol 2019; 181:665-676. [DOI: 10.1111/bjd.17721] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2019] [Indexed: 12/18/2022]
Affiliation(s)
- J.E.A. Common
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A*STAR) Singapore
| | - J.N. Barker
- St John's Institute of Dermatology Faculty of Life Sciences and Medicine King's College London London U.K
| | - M.A.M. Steensel
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A*STAR) Singapore
- Lee Kong Chian School of Medicine Nanyang Technological University Clinical Sciences Building Novena Singapore
| |
Collapse
|