1
|
Li J, Buonfiglio F, Zeng Y, Pfeiffer N, Gericke A. Oxidative Stress in Cataract Formation: Is There a Treatment Approach on the Horizon? Antioxidants (Basel) 2024; 13:1249. [PMID: 39456502 PMCID: PMC11505147 DOI: 10.3390/antiox13101249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/04/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Cataracts, a leading cause of blindness worldwide, are closely linked to oxidative stress-induced damage to lens epithelial cells (LECs). Key factors contributing to cataract formation include aging, arterial hypertension, and diabetes mellitus. Given the high global prevalence of cataracts, the burden of cataract-related visual impairment is substantial, highlighting the need for pharmacological strategies to supplement surgical interventions. Understanding the molecular pathways involved in oxidative stress during cataract development may offer valuable insights for designing novel therapeutic approaches. This review explores the role of oxidative stress in cataract formation, focusing on critical mechanisms, such as mitochondrial dysfunction, endoplasmic reticulum stress, loss of gap junctions, and various cell death pathways in LECs. Additionally, we discuss emerging therapeutic strategies and potential targeting options, including antioxidant-based treatments.
Collapse
Affiliation(s)
- Jingyan Li
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (F.B.); (Y.Z.); (N.P.)
| | | | | | | | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (F.B.); (Y.Z.); (N.P.)
| |
Collapse
|
2
|
Varadaraj K, Gao J, Mathias RT, Kumari S. Effect of hydrogen peroxide on lens transparency, intracellular pH, gap junction coupling, hydrostatic pressure and membrane water permeability. Exp Eye Res 2024; 245:109957. [PMID: 38843983 PMCID: PMC11302404 DOI: 10.1016/j.exer.2024.109957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
Clouding of the eye lens or cataract is an age-related anomaly that affects middle-aged humans. Exploration of the etiology points to a great extent to oxidative stress due to different forms of reactive oxygen species/metabolites such as Hydrogen peroxide (H2O2) that are generated due to intracellular metabolism and environmental factors like radiation. If accumulated and left unchecked, the imbalance between the production and degradation of H2O2 in the lens could lead to cataracts. Our objective was to explore ex vivo the effects of H2O2 on lens physiology. We investigated transparency, intracellular pH (pHi), intercellular gap junction coupling (GJC), hydrostatic pressure (HP) and membrane water permeability after subjecting two-month-old C57 wild-type (WT) mouse lenses for 3 h or 8 h in lens saline containing 50 μM H2O2; the results were compared with control lenses incubated in the saline without H2O2. There was a significant decrease in lens transparency in H2O2-treated lenses. In control lenses, pHi decreases from ∼7.34 in the surface fiber cells to 6.64 in the center. Experimental lenses exposed to H2O2 for 8 h showed a significant decrease in surface pH (from 7.34 to 6.86) and central pH (from 6.64 to 6.56), compared to the controls. There was a significant increase in GJC resistance in the differentiating (12-fold) and mature (1.4-fold) fiber cells compared to the control. Experimental lenses also showed a significant increase in HP which was ∼2-fold higher at the junction between the differentiating and mature fiber cells and ∼1.5-fold higher at the center compared to these locations in control lenses; HP at the surface was 0 mm Hg in either type lens. Fiber cell membrane water permeability significantly increased in H2O2-exposed lenses compared to controls. Our data demonstrate that elevated levels of lens intracellular H2O2 caused a decrease in intracellular pH and led to acidosis which most likely uncoupled GJs, and increased AQP0-dependent membrane water permeability causing a consequent rise in HP. We infer that an abnormal increase in intracellular H2O2 could induce acidosis, cause oxidative stress, alter lens microcirculation, and lead to the development of accelerated lens opacity and age-related cataracts.
Collapse
Affiliation(s)
- Kulandaiappan Varadaraj
- Physiology and Biophysics, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA.
| | - Junyuan Gao
- Physiology and Biophysics, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Richard T Mathias
- Physiology and Biophysics, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Sindhu Kumari
- Physiology and Biophysics, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
3
|
Salgado M, Márquez-Miranda V, Ferrada L, Rojas M, Poblete-Flores G, González-Nilo FD, Ardiles ÁO, Sáez JC. Ca 2+ permeation through C-terminal cleaved, but not full-length human Pannexin1 hemichannels, mediates cell death. Proc Natl Acad Sci U S A 2024; 121:e2405468121. [PMID: 38861601 PMCID: PMC11194574 DOI: 10.1073/pnas.2405468121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/10/2024] [Indexed: 06/13/2024] Open
Abstract
Pannexin1 hemichannels (Panx1 HCs) are found in the membrane of most mammalian cells and communicate the intracellular and extracellular spaces, enabling the passive transfer of ions and small molecules. They are involved in physiological and pathophysiological conditions. During apoptosis, the C-terminal tail of Panx1 is proteolytically cleaved, but the permeability features of hemichannels and their role in cell death remain elusive. To address these topics, HeLa cells transfected with full-length human Panx1 (fl-hPanx1) or C-terminal truncated hPanx1 (Δ371hPanx1) were exposed to alkaline extracellular saline solution, increasing the activity of Panx1 HCs. The Δ371hPanx1 HC was permeable to DAPI and Etd+, but not to propidium iodide, whereas fl-hPanx1 HC was only permeable to DAPI. Furthermore, the cytoplasmic Ca2+ signal increased only in Δ371hPanx1 cells, which was supported by bioinformatics approaches. The influx of Ca2+ through Δ371hPanx1 HCs was necessary to promote cell death up to about 95% of cells, whereas the exposure to alkaline saline solution without Ca2+ failed to induce cell death, and the Ca2+ ionophore A23187 promoted more than 80% cell death even in fl-hPanx1 transfectants. Moreover, cell death was prevented with carbenoxolone or 10Panx1 in Δ371hPanx1 cells, whereas it was undetectable in HeLa Panx1-/- cells. Pretreatment with Ferrostatin-1 and necrostatin-1 did not prevent cell death, suggesting that ferroptosis or necroptosis was not involved. In comparison, zVAD-FMK, a pancaspase inhibitor, reduced death by ~60%, suggesting the involvement of apoptosis. Therefore, alkaline pH increases the activity of Δ371hPanx1HCs, leading to a critical intracellular free-Ca2+ overload that promotes cell death.
Collapse
Affiliation(s)
- Magdiel Salgado
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso2381850, Chile
| | - Valeria Márquez-Miranda
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago8370146, Chile
| | - Luciano Ferrada
- Centro de Microscopía Avanzada-Biobío, Universidad de Concepción, Concepción4070386, Chile
| | - Maximiliano Rojas
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago8370146, Chile
| | - Gonzalo Poblete-Flores
- Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso2341386, Chile
| | - Fernando D. González-Nilo
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso2381850, Chile
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago8370146, Chile
| | - Álvaro O. Ardiles
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso2381850, Chile
- Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso2341386, Chile
| | - Juan C. Sáez
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso2381850, Chile
| |
Collapse
|
4
|
Li Y, Acosta FM, Jiang JX. Gap Junctions or Hemichannel-Dependent and Independent Roles of Connexins in Fibrosis, Epithelial-Mesenchymal Transitions, and Wound Healing. Biomolecules 2023; 13:1796. [PMID: 38136665 PMCID: PMC10742173 DOI: 10.3390/biom13121796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Fibrosis initially appears as a normal response to damage, where activated fibroblasts produce large amounts of the extracellular matrix (ECM) during the wound healing process to assist in the repair of injured tissue. However, the excessive accumulation of the ECM, unresolved by remodeling mechanisms, leads to organ dysfunction. Connexins, a family of transmembrane channel proteins, are widely recognized for their major roles in fibrosis, the epithelial-mesenchymal transition (EMT), and wound healing. Efforts have been made in recent years to identify novel mediators and targets for this regulation. Connexins form gap junctions and hemichannels, mediating communications between neighboring cells and inside and outside of cells, respectively. Recent evidence suggests that connexins, beyond forming channels, possess channel-independent functions in fibrosis, the EMT, and wound healing. One crucial channel-independent function is their role as the primary functional component for cell adhesion. Other channel-independent functions of connexins involve their roles in mitochondria and exosomes. This review summarizes the latest advances in the channel-dependent and independent roles of connexins in fibrosis, the EMT, and wound healing, with a particular focus on eye diseases, emphasizing their potential as novel, promising therapeutic targets.
Collapse
Affiliation(s)
- Yuting Li
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (Y.L.); (F.M.A.)
- Department of Pathology, Basic Medical School, Ningxia Medical University, Yinchuan 750004, China
| | - Francisca M. Acosta
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (Y.L.); (F.M.A.)
| | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (Y.L.); (F.M.A.)
| |
Collapse
|
5
|
Pacheco AIP. Cataractogenesis and molecular pathways, with reactive free oxygen species as a common pathway. Surv Ophthalmol 2023:S0039-6257(23)00144-3. [PMID: 37944599 DOI: 10.1016/j.survophthal.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 10/25/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
Slowing down or stopping the natural process of cataractogenesis is certainly a challenge for those who today propose an option other than surgery. Addressing the same problem in different ways constitutes a new approach to solving what is today the number one cause of reversible blindness worldwide. The technological revolution, as well as the advances in the biological sciences, allows us to conceive mechanisms never thought of before to stop the process that, as a common pathway, constitutes opacification of the crystalline lens. A new dawn for cataracts is coming through molecular, newly-discovered mechanisms. Cataractogenesis and molecular pathways have reactive free oxygen species as a common pathway. Surgical removal is today's gold standard, but perhaps not for much longer.
Collapse
Affiliation(s)
- Arturo Iván Pérez Pacheco
- Department of Ophthalmology, The University of Medical Science, Ophthalmological General Teaching Center Hospital "Dr. Enrique Cabrera", Havana, Cuba.
| |
Collapse
|
6
|
Ek-Vitorin JF, Jiang JX. The Role of Gap Junctions Dysfunction in the Development of Cataracts: From Loss of Cell-to-Cell Transfer to Blurred Vision-Review. Bioelectricity 2023; 5:164-172. [PMID: 37746311 PMCID: PMC10516237 DOI: 10.1089/bioe.2023.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023] Open
Abstract
Mutations of lens connexins are linked to congenital cataracts. However, the role of connexin mutations in the development of age-related lens opacification remains largely unknown. Here, we present a focused review of the literature on lens organization and factors associated with cataract development. Several lines of evidence indicate that disturbances of the lens circulation by dysfunctional connexin channels, and/or accumulation of protein damage due to oxidative stress, are key factors in cataract development. Phosphorylation by protein kinase A improves the permeability of connexins channels to small molecules and mitigates the lens clouding induced by oxidative stress. We conclude (1) that connexin channels are central to the lens circulation and (2) that their permeability to antioxidant molecules contributes to the maintenance of lens transparency.
Collapse
Affiliation(s)
| | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, Texas, USA
| |
Collapse
|
7
|
Wang T, Liu J, Hu C, Wei X, Han L, Zhu A, Wang R, Chen Z, Xia Z, Yao S, Mao W. Downregulation of cardiac PIASy inhibits Cx43 SUMOylation and ameliorates ventricular arrhythmias in a rat model of myocardial ischemia/reperfusion injury. Chin Med J (Engl) 2023; 136:1349-1357. [PMID: 37014755 PMCID: PMC10309519 DOI: 10.1097/cm9.0000000000002618] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Dysfunction of the gap junction channel protein connexin 43 (Cx43) contributes to myocardial ischemia/reperfusion (I/R)-induced ventricular arrhythmias. Cx43 can be regulated by small ubiquitin-like modifier (SUMO) modification. Protein inhibitor of activated STAT Y (PIASy) is an E3 SUMO ligase for its target proteins. However, whether Cx43 is a target protein of PIASy and whether Cx43 SUMOylation plays a role in I/R-induced arrhythmias are largely unknown. METHODS Male Sprague-Dawley rats were infected with PIASy short hairpin ribonucleic acid (shRNA) using recombinant adeno-associated virus subtype 9 (rAAV9). Two weeks later, the rats were subjected to 45 min of left coronary artery occlusion followed by 2 h reperfusion. Electrocardiogram was recorded to assess arrhythmias. Rat ventricular tissues were collected for molecular biological measurements. RESULTS Following 45 min of ischemia, QRS duration and QTc intervals statistically significantly increased, but these values decreased after transfecting PIASy shRNA. PIASy downregulation ameliorated ventricular arrhythmias induced by myocardial I/R, as evidenced by the decreased incidence of ventricular tachycardia and ventricular fibrillation, and reduced arrythmia score. In addition, myocardial I/R statistically significantly induced PIASy expression and Cx43 SUMOylation, accompanied by reduced Cx43 phosphorylation and plakophilin 2 (PKP2) expression. Moreover, PIASy downregulation remarkably reduced Cx43 SUMOylation, accompanied by increased Cx43 phosphorylation and PKP2 expression after I/R. CONCLUSION PIASy downregulation inhibited Cx43 SUMOylation and increased PKP2 expression, thereby improving ventricular arrhythmias in ischemic/reperfused rats heart.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Jinmin Liu
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
- Department of Anesthesiology, Wuhan No. 1 Hospital, Wuhan, Hubei 430022, China
| | - Chenchen Hu
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Xin Wei
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Linlin Han
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Afang Zhu
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Rong Wang
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Zhijun Chen
- Department of Anesthesiology, Wuhan No. 1 Hospital, Wuhan, Hubei 430022, China
| | - Zhengyuan Xia
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Shanglong Yao
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Weike Mao
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| |
Collapse
|
8
|
Du Y, Tong Y, Quan Y, Wang G, Cheng H, Gu S, Jiang JX. Protein kinase A activation alleviates cataract formation via increased gap junction intercellular communication. iScience 2023; 26:106114. [PMID: 36852280 PMCID: PMC9958365 DOI: 10.1016/j.isci.2023.106114] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/09/2022] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Cataract is the leading cause of blindness worldwide. Here, we reported a potential, effective therapeutic mean for cataract prevention and treatment. Gap junction communication, an important mechanism in maintaining lens transparency, is increased by protein kinase A (PKA). We found that PKA activation reduced cataracts induced by oxidative stress, increased gap junctions/hemichannels in connexin (Cx) 50, Cx46 or Cx50 and Cx46 co-expressing cells, and decreased reactive oxygen species (ROS) levels. However, ROS reduction was shown in wild-type, Cx46 and Cx50 knockout, but not in Cx46/Cx50 double KO lens. In addition, PKA activation protects lens fiber cell death induced by oxidative stress via hemichannel-mediated glutathione transport. Connexin deletion increased lens opacity induced by oxidative stress associated with reduction of anti-oxidative stress gene expression. Together, our results suggest that PKA activation through increased connexin channels in lens fiber cell decreases ROS levels and cell death, leading to alleviated cataracts.
Collapse
Affiliation(s)
- Yu Du
- Department of Ophthalmology, Lanzhou University Second Hospital; Second Clinical School, Lanzhou University, Lanzhou, Gansu, 730000, China
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Yuxin Tong
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Yumeng Quan
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
- Department of Ophthalmology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Guangyan Wang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
- Department of Ophthalmology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Hongyun Cheng
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Sumin Gu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| |
Collapse
|
9
|
Abstract
Gap junctions, comprising connexin proteins, create conduits directly coupling the cytoplasms of adjacent cells. Expressed in essentially all tissues, dynamic gap junction structures enable the exchange of small molecules including ions and second messengers, and are central to maintenance of homeostasis and synchronized excitability. With such diverse and critical roles throughout the body, it is unsurprising that alterations to gap junction and/or connexin expression and function underlie a broad array of age-related pathologies. From neurological dysfunction to cardiac arrhythmia and bone loss, it is hard to identify a human disease state that does not involve reduced, or in some cases inappropriate, intercellular communication to affect organ function. With a complex life cycle encompassing several key regulatory steps, pathological gap junction remodeling during ageing can arise from alterations in gene expression, translation, intracellular trafficking, and posttranslational modification of connexins. Connexin proteins are now known to "moonlight" and perform a variety of non-junctional functions in the cell, independent of gap junctions. Furthermore, connexin "hemichannels" on the cell surface can communicate with the extracellular space without ever coupling to an adjacent cell to form a gap junction channel. This chapter will focus primarily on gap junctions in ageing, but such non-junctional connexin functions will be referred to where appropriate and the full spectrum of connexin biology should be noted as potentially causative/contributing to some findings in connexin knockout animals, for example.
Collapse
Affiliation(s)
- Michael J Zeitz
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA.,FBRI Center for Vascular and Heart Research, Roanoke, VA, USA
| | - James W Smyth
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA. .,FBRI Center for Vascular and Heart Research, Roanoke, VA, USA. .,Department of Biological Sciences, College of Science, Virginia Tech, Blacksburg, VA, USA. .,Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA.
| |
Collapse
|
10
|
Jones JL, Burdon KP. Evaluating gap junction variants for a role in pediatric cataract: an overview of the genetic landscape and clinical classification of variants in the GJA3 and GJA8 genes. EXPERT REVIEW OF OPHTHALMOLOGY 2022. [DOI: 10.1080/17469899.2023.2160320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Johanna L Jones
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Kathryn P Burdon
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
11
|
Hou W, Pande A, Pande J. Oxidation of active cysteines mediates protein aggregation of S10R, the cataract-associated mutant of mouse GammaB-crystallin. Proteins 2022; 90:1987-2000. [PMID: 35726360 PMCID: PMC9561057 DOI: 10.1002/prot.26391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/15/2022] [Accepted: 06/01/2022] [Indexed: 11/09/2022]
Abstract
The Ser10 to Arg mutation in mouse γB-crystallin (MGB) has been associated with protein aggregation, dense nuclear opacity, and the degeneration of fiber cells in the lens core. Overexpression of the gap junction protein, connexin 46 (Cx46), was found to suppress the nuclear opacity and restore normal cell-cell contact. However, the molecular basis for the protein aggregation and related downstream effects were not evident from these studies. Here, we provide a comparison of the structures and solution properties of wild type MGB and the S10R mutant in vitro and show that, even though the mutation does not directly involve cysteine residues, some cysteines in the mutant protein are activated, leading to the enhanced formation of intermolecular disulfide-crosslinked protein aggregates relative to the wild-type. This occurs even as the protein structure is essentially unaltered. Thus, the primary event is enhanced protein aggregation due to the disulfide crosslinking of the mutant protein. We suggest that these aggregates eventually get deposited on fiber cell membranes. Since the gap junction protein, Cx46 is involved in the transport of reduced glutathione, we posit that these deposits interfere in Cx46-mediated glutathione transport and facilitate the oxidative stress-mediated downstream changes. Overexpression of Cx46 suppresses such oxidative aggregation. These studies provide a plausible explanation for the protein aggregation and other changes that accompany this mutation. If indeed cysteine oxidation is the primary event for protein aggregation also in vivo, then the S10R mutant mouse, which is currently available, could serve as a viable animal model for human age-onset cataract.
Collapse
Affiliation(s)
- Wenjuan Hou
- Department of Chemistry, Life Sciences, University at
Albany, State University of New York, Albany, NY, USA
- Current address: BioLegend Inc., 8999 BioLegend Way, San
Diego, CA 92121, United States
| | - Ajay Pande
- Department of Chemistry, Life Sciences, University at
Albany, State University of New York, Albany, NY, USA
| | - Jayanti Pande
- Department of Chemistry, Life Sciences, University at
Albany, State University of New York, Albany, NY, USA
| |
Collapse
|
12
|
Guo R, Huang D, Ji J, Liu W. A novel mutation GJA8 NM_005267.5: c.124G > A, p.(E42K) causing congenital nuclear cataract. BMC Ophthalmol 2022; 22:172. [PMID: 35428228 PMCID: PMC9013174 DOI: 10.1186/s12886-022-02386-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/04/2022] [Indexed: 11/10/2022] Open
Abstract
Background To identify the genetic mutation of a four-generation autosomal dominant congenital cataract family in China. Methods Targeted region sequencing containing 778 genes associated with ocular diseases was performed to screen for the potential mutation, and Sanger sequencing was used to confirm the mutation. The homology model was constructed to identify the protein structural change, several online software were used to predict the mutation impact. CLUSTALW was used to perform multiple sequence alignment from different species. Results A novel heterozygous mutation, GJA8 NM_005267.5: c.124G > A, p.(E42K) was found, which cosegregated with congenital cataract phenotype in this family. Bioinformatics analysis of the mutation showed that the surface potential diagram of proteins changed. Several online programs predicted the mutation was ‘Pathogenic’, ‘Damaging’, ‘Disease causing’ or ‘Deleterious’. Conclusions A novel mutation NM_005267.5(GJA8):c.124G > A was identified in our study. Our finding can broaden the mutation spectrum of GJA8, enrich the phenotype-genotype correlation of congenital cataract and help to better understand the genetic background of congenital cataract.
Collapse
|
13
|
Varadaraj K, Gao J, Mathias RT, Kumari SS. GPX1 knockout, not catalase knockout, causes accelerated abnormal optical aberrations and cataract in the aging lens. Mol Vis 2022; 28:11-20. [PMID: 35400989 PMCID: PMC8942455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/20/2022] [Indexed: 11/14/2022] Open
Abstract
Purpose Glutathione peroxidase 1 (GPX1) and catalase are expressed in the lens epithelial cells and cortical fiber cells, where they detoxify H2O2 to reduce oxidative stress, which is a major cause for cataractogenesis. We sought to find out, between these two enzymes, which is critical for transparency and homeostasis in the aging lens by investigating alterations in the lens's refractive property, transparency, and gap junction coupling (GJC) resistance. Methods Wild-type (C57BL/6J), GPX1 knockout (GPX1-/-) and catalase knockout (CAT-/-) mice were used. Lens transparency was quantified using dark-field images and ImageJ software. For optical aberration evaluation, each lens was placed over a copper electron microscopy specimen grid; the grid image was captured through the lens using a digital camera attached to a dark-field binocular microscope. Optical aberrations were assessed by the quality of the magnified gridlines. Microelectrode-based intact lens intracellular impedance was measured to determine GJC resistance. Results In contrast to wild-type (WT) and CAT-/- lenses, GPX1-/- lenses developed accelerated age-related cataracts. While two-month-old lenses were normal, at nine months of age, GPX1-/- mice started to show the development of abnormal optical distortion aberrations and loss of transparency. At 12 months of age, GPX1-/- lenses developed significant opacity and abnormal optical distortion aberrations compared to CAT-/- and WT (p<0.001); these aberrations gradually increased with age and matured into cataracts by 24 months of age. There was also a significant increase (p<0.001) in GJC resistance in the differentiating and mature fiber cells of GPX1-/- lenses at 12 months of age compared to that in similar areas of age-matched CAT-/- and WT lenses. Conclusions Changes in the refractive and physiological properties of the lens occurred before cataract formation in GPX1-/- lenses but not in CAT-/- lenses. GPX1 is more critical than catalase for lens transparency, optical quality, and homeostasis in the aging lens under normal physiological conditions. GPX1 could be a promising therapeutic target for developing potential strategies to reduce adverse oxidative stress and delay/treat/prevent age-related cataracts.
Collapse
|
14
|
González-Jamett A, Vásquez W, Cifuentes-Riveros G, Martínez-Pando R, Sáez JC, Cárdenas AM. Oxidative Stress, Inflammation and Connexin Hemichannels in Muscular Dystrophies. Biomedicines 2022; 10:biomedicines10020507. [PMID: 35203715 PMCID: PMC8962419 DOI: 10.3390/biomedicines10020507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 12/16/2022] Open
Abstract
Muscular dystrophies (MDs) are a heterogeneous group of congenital neuromuscular disorders whose clinical signs include myalgia, skeletal muscle weakness, hypotonia, and atrophy that leads to progressive muscle disability and loss of ambulation. MDs can also affect cardiac and respiratory muscles, impairing life-expectancy. MDs in clude Duchenne muscular dystrophy, Emery-Dreifuss muscular dystrophy, facioscapulohumeral muscular dystrophy and limb-girdle muscular dystrophy. These and other MDs are caused by mutations in genes that encode proteins responsible for the structure and function of skeletal muscles, such as components of the dystrophin-glycoprotein-complex that connect the sarcomeric-actin with the extracellular matrix, allowing contractile force transmission and providing stability during muscle contraction. Consequently, in dystrophic conditions in which such proteins are affected, muscle integrity is disrupted, leading to local inflammatory responses, oxidative stress, Ca2+-dyshomeostasis and muscle degeneration. In this scenario, dysregulation of connexin hemichannels seem to be an early disruptor of the homeostasis that further plays a relevant role in these processes. The interaction between all these elements constitutes a positive feedback loop that contributes to the worsening of the diseases. Thus, we discuss here the interplay between inflammation, oxidative stress and connexin hemichannels in the progression of MDs and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Arlek González-Jamett
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (W.V.); (J.C.S.)
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso 2360102, Chile; (G.C.-R.); (R.M.-P.)
- Correspondence: (A.G.-J.); (A.M.C.)
| | - Walter Vásquez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (W.V.); (J.C.S.)
| | - Gabriela Cifuentes-Riveros
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso 2360102, Chile; (G.C.-R.); (R.M.-P.)
| | - Rafaela Martínez-Pando
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso 2360102, Chile; (G.C.-R.); (R.M.-P.)
| | - Juan C. Sáez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (W.V.); (J.C.S.)
| | - Ana M. Cárdenas
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (W.V.); (J.C.S.)
- Correspondence: (A.G.-J.); (A.M.C.)
| |
Collapse
|
15
|
Shi Y, Li X, Yang J. Mutations of CX46/CX50 and Cataract Development. Front Mol Biosci 2022; 9:842399. [PMID: 35223995 PMCID: PMC8874012 DOI: 10.3389/fmolb.2022.842399] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/12/2022] [Indexed: 12/24/2022] Open
Abstract
Cataract is a common disease in the aging population. Gap junction has been considered a central component in maintaining homeostasis for preventing cataract formation. Gap junction channels consist of connexin proteins with more than 20 members. Three genes including GJA1, GJA3, and GJA8, that encode protein Cx43 (connexin43), Cx46 (connexin46), and Cx50 (connexin50), respectively, have been identified in human and rodent lens. Cx46 together with Cx50 have been detected in lens fiber cells with high expression, whereas Cx43 is mainly expressed in lens epithelial cells. Disrupted expression of the two connexin proteins Cx46 and Cx50 is directly related to the development of severe cataract in human and mice. In this review article, we describe the main role of Cx46 and Cx50 connexin proteins in the lens and the relationship between mutations of Cx46 or Cx50 and hereditary cataracts. Furthermore, the latest progress in the fundamental research of lens connexin and the mechanism of cataract formation caused by lens connexin dysfunction are summarized. Overall, targeting connexin could be a novel approach for the treatment of cataract.
Collapse
Affiliation(s)
- Yumeng Shi
- Key Laboratory of Visual Impairment and Restoration of Shanghai, Department of Ophthalmology and Visual Science, Eye Ear Nose and Throat Hospital of Fudan University, Shanghai, China
| | - Xinbo Li
- Casey Eye Institute, Oregon Health and Science University, Portland, OR, United States
- *Correspondence: Jin Yang, ; Xinbo Li,
| | - Jin Yang
- Key Laboratory of Visual Impairment and Restoration of Shanghai, Department of Ophthalmology and Visual Science, Eye Ear Nose and Throat Hospital of Fudan University, Shanghai, China
- *Correspondence: Jin Yang, ; Xinbo Li,
| |
Collapse
|
16
|
Gap Junction-Dependent and -Independent Functions of Connexin43 in Biology. BIOLOGY 2022; 11:biology11020283. [PMID: 35205149 PMCID: PMC8869330 DOI: 10.3390/biology11020283] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/21/2022]
Abstract
For the first time in animal evolution, the emergence of gap junctions allowed direct exchanges of cellular substances for communication between two cells. Innexin proteins constituted primordial gap junctions until the connexin protein emerged in deuterostomes and took over the gap junction function. After hundreds of millions of years of gene duplication, the connexin gene family now comprises 21 members in the human genome. Notably, GJA1, which encodes the Connexin43 protein, is one of the most widely expressed and commonly studied connexin genes. The loss of Gja1 in mice leads to swelling and a blockage of the right ventricular outflow tract and death of the embryos at birth, suggesting a vital role of Connexin43 gap junction in heart development. Since then, the importance of Connexin43-mediated gap junction function has been constantly expanded to other types of cells. Other than forming gap junctions, Connexin43 can also form hemichannels to release or uptake small molecules from the environment or even mediate many physiological processes in a gap junction-independent manner on plasma membranes. Surprisingly, Connexin43 also localizes to mitochondria in the cell, playing important roles in mitochondrial potassium import and respiration. At the molecular level, Connexin43 mRNA and protein are processed with very distinct mechanisms to yield carboxyl-terminal fragments with different sizes, which have their unique subcellular localization and distinct biological activities. Due to many exciting advancements in Connexin43 research, this review aims to start with a brief introduction of Connexin43 and then focuses on updating our knowledge of its gap junction-independent functions.
Collapse
|
17
|
Quan Y, Du Y, Wu C, Gu S, Jiang JX. Connexin hemichannels regulate redox potential via metabolite exchange and protect lens against cellular oxidative damage. Redox Biol 2021; 46:102102. [PMID: 34474393 PMCID: PMC8408634 DOI: 10.1016/j.redox.2021.102102] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 11/23/2022] Open
Abstract
Increased oxidative stress contributes to cataract formation during aging. Anterior epithelial cells are a frontline antioxidant defense system with powerful capacities to maintain redox homeostasis and lens transparency. In this study, we report a new molecular mechanism of connexin (Cx) hemichannels (HCs) in lens epithelial cells to protect lens against oxidative stress. Our results showed haploinsufficiency of Cx43 elevated oxidative stress and susceptibility to cataracts in the mouse lens. Cx43 HCs opened in response to hydrogen peroxide (H2O2) or ultraviolet radiation (UVR) in human lens epithelium HLE-B3 cells, and this activation contributed to a cellular protective mechanism against oxidative stress-induced apoptotic cell death. Furthermore, we found that Cx43 HCs mediated the exchange of oxidants and antioxidants in lens epithelial cells undergoing oxidative stress. These transporting activities facilitated a reduction of intracellular reactive oxygen species (ROS) accumulation and maintained the intracellular glutathione (GSH) level through the exchange of redox metabolites and change of anti-oxidative gene expression. In addition, we show that Cx43 HCs can be regulated by the intracellular redox state and this regulation is mediated by residue Cys260 located at the Cx43 C-terminus. Together, our results demonstrate that Cx43 HCs activated by oxidative stress in the lens epithelial cells play a key role in maintaining redox homeostasis in lens under oxidative stress. Our findings contribute to advancing our understanding of oxidative stress induced lens disorders, such as age-related non-congenital cataracts.
Collapse
Affiliation(s)
- Yumeng Quan
- Department of Ophthalmology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Yu Du
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Changrui Wu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Sumin Gu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA.
| |
Collapse
|
18
|
Orellana VP, Tittarelli A, Retamal MA. Connexins in melanoma: Potential role of Cx46 in its aggressiveness. Pigment Cell Melanoma Res 2021; 34:853-868. [PMID: 33140904 DOI: 10.1111/pcmr.12945] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/20/2020] [Accepted: 10/27/2020] [Indexed: 12/19/2022]
Abstract
Melanoma is the most aggressive skin cancer, and in metastatic advanced states, it is completely refractory to chemotherapy. Therefore, it is relevant to understand the molecular bases that rule their aggressiveness. Connexins (Cxs) are proteins that under normal physiological conditions participate in intercellular communication, via the exchange of signaling molecules between the cytoplasm and extracellular milieu and the exchange of ions/second messengers between the cytoplasm of contacting cells. These proteins have shown important roles in cancer progression, chemo- and radiotherapy resistance, and metastasis. Accordingly, Cx26 and Cx43 seem to play important roles in melanoma progression and metastasis. On the other hand, Cx46 is typically expressed in the eye lens, where it seems to be associated with oxidative stress protection in fiber lens cells. However, in the last decade, Cx46 expression has been associated with breast and brain cancers, due to its role in potentiation of both extracellular vesicle release and cancer stem cell-like properties. In this review, we analyzed a potential role of Cx46 as a new biomarker and therapeutic target in melanoma.
Collapse
Affiliation(s)
- Viviana P Orellana
- Universidad del Desarrollo. Centro de Fisiología Celular e Integrativa, Clinica Alemana Facultad de Medicina, Santiago, Chile
- Universidad del Desarrollo. Programa de Comunicación Celular en Cáncer, Clínica Alemana Facultad de Medicina, Santiago, Chile
| | - Andrés Tittarelli
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana (UTEM), Santiago, Chile
| | - Mauricio A Retamal
- Universidad del Desarrollo. Centro de Fisiología Celular e Integrativa, Clinica Alemana Facultad de Medicina, Santiago, Chile
- Universidad del Desarrollo. Programa de Comunicación Celular en Cáncer, Clínica Alemana Facultad de Medicina, Santiago, Chile
| |
Collapse
|
19
|
Quan Y, Du Y, Tong Y, Gu S, Jiang JX. Connexin Gap Junctions and Hemichannels in Modulating Lens Redox Homeostasis and Oxidative Stress in Cataractogenesis. Antioxidants (Basel) 2021; 10:1374. [PMID: 34573006 PMCID: PMC8464761 DOI: 10.3390/antiox10091374] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/24/2021] [Indexed: 11/18/2022] Open
Abstract
The lens is continuously exposed to oxidative stress insults, such as ultraviolet radiation and other oxidative factors, during the aging process. The lens possesses powerful oxidative stress defense systems to maintain its redox homeostasis, one of which employs connexin channels. Connexins are a family of proteins that form: (1) Hemichannels that mediate the communication between the intracellular and extracellular environments, and (2) gap junction channels that mediate cell-cell communication between adjacent cells. The avascular lens transports nutrition and metabolites through an extensive network of connexin channels, which allows the passage of small molecules, including antioxidants and oxidized wastes. Oxidative stress-induced post-translational modifications of connexins, in turn, regulates gap junction and hemichannel permeability. Recent evidence suggests that dysfunction of connexins gap junction channels and hemichannels may induce cataract formation through impaired redox homeostasis. Here, we review the recent advances in the knowledge of connexin channels in lens redox homeostasis and their response to cataract-related oxidative stress by discussing two major aspects: (1) The role of lens connexins and channels in oxidative stress and cataractogenesis, and (2) the impact and underlying mechanism of oxidative stress in regulating connexin channels.
Collapse
Affiliation(s)
| | | | | | | | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA; (Y.Q.); (Y.D.); (Y.T.); (S.G.)
| |
Collapse
|
20
|
Thompson B, Chen Y, Davidson EA, Garcia-Milian R, Golla JP, Apostolopoulos N, Orlicky DJ, Schey K, Thompson DC, Vasiliou V. Impaired GSH biosynthesis disrupts eye development, lens morphogenesis and PAX6 function. Ocul Surf 2021; 22:190-203. [PMID: 34425299 DOI: 10.1016/j.jtos.2021.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/29/2021] [Accepted: 08/16/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE The purpose of this study was to elucidate the role and molecular consequences of impaired glutathione (GSH) biosynthesis on eye development. METHODS GSH biosynthesis was impaired in surface ectoderm-derived ocular tissues by crossing Gclcf/f mice with hemizygous Le-Cre transgenic mice to produce Gclcf/f/Le-CreTg/- (KO) mice. Control mice included Gclcf/fand Gclcwt/wt/Le-CreTg/- mice (CRE). Eyes from all mice (at various stages of eye development) were subjected to histological, immunohistochemical, Western blot, RT-qPCR, RNA-seq, and subsequent Gene Ontology, Ingenuity Pathway Analysis and TRANSFAC analyses. PAX6 transactivation activity was studied using a luciferase reporter assay in HEK293T cells depleted of GSH using buthionine sulfoximine (BSO). RESULTS Deletion of Gclc diminished GSH levels, increased reactive oxygen species (ROS), and caused an overt microphthalmia phenotype characterized by malformation of the cornea, iris, lens, and retina that is distinct from and much more profound than the one observed in CRE mice. In addition, only the lenses of KO mice displayed reduced crystallin (α, β), PITX3 and Foxe3 expression. RNA-seq analyses at postnatal day 1 revealed 1552 differentially expressed genes (DEGs) in the lenses of KO mice relative to those from Gclcf/f mice, with Crystallin and lens fiber cell identity genes being downregulated while lens epithelial cell identity and immune response genes were upregulated. Bioinformatic analysis of the DEGs implicated PAX6 as a key upstream regulator. PAX6 transactivation activity was impaired in BSO-treated HEK293T cells. CONCLUSIONS These data suggest that impaired ocular GSH biosynthesis may disrupt eye development and PAX6 function.
Collapse
Affiliation(s)
- Brian Thompson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, 60 College Street, New Haven, CT, USA
| | - Ying Chen
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, 60 College Street, New Haven, CT, USA
| | - Emily A Davidson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, 60 College Street, New Haven, CT, USA; Department of Cellular & Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Rolando Garcia-Milian
- Bioinformatics Support Program, Cushing/Whitney Medical Library, Yale School of Medicine, New Haven, CT, USA
| | - Jaya Prakash Golla
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, 60 College Street, New Haven, CT, USA; Department of Medicine, Yale University School of Medicine, New Haven, CT, USA; Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | | | - David J Orlicky
- Department of Pathology, Anschutz School of Medicine, University of Colorado, Aurora, CO, USA
| | - Kevin Schey
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - David C Thompson
- Department of Clinical Pharmacy, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, 60 College Street, New Haven, CT, USA.
| |
Collapse
|
21
|
Gong XD, Wang Y, Hu XB, Zheng SY, Fu JL, Nie Q, Wang L, Hou M, Xiang JW, Xiao Y, Gao Q, Bai YY, Liu YZ, Li DWC. Aging-dependent loss of GAP junction proteins Cx46 and Cx50 in the fiber cells of human and mouse lenses accounts for the diminished coupling conductance. Aging (Albany NY) 2021; 13:17568-17591. [PMID: 34226295 PMCID: PMC8312418 DOI: 10.18632/aging.203247] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023]
Abstract
The homeostasis of the ocular lens is maintained by a microcirculation system propagated through gap junction channels. It is well established that the intercellular communications of the lens become deteriorative during aging. However, the molecular basis for this change in human lenses has not been well defined. Here, we present evidence to show that over 90% of Cx46 and Cx50 are lost in the fiber cells of normal human lenses aged 50 and above. From transparent to cataractous lenses, while Cx43 was upregulated, both Cx46 and Cx50 were significantly down-regulated in the lens epithelia. During aging of mouse lenses, Cx43 remained unchanged, but both Cx46 and Cx50 were significantly downregulated. Under oxidative stress treatment, mouse lenses develop in vitro cataractogenesis. Associated with this process, Cx43 was significantly upregulated, in contrast, Cx46 and Cx50 were sharply downregulated. Together, our results for the first time reveal that downregulation in Cx46 and Cx50 levels appears to be the major reason for the diminished coupling conductance, and the aging-dependent loss of Cx46 and Cx50 promotes senile cataractogenesis.
Collapse
Affiliation(s)
- Xiao-Dong Gong
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510230, China
| | - Yan Wang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510230, China
| | - Xue-Bin Hu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510230, China
| | - Shu-Yu Zheng
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510230, China
| | - Jia-Ling Fu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510230, China
| | - Qian Nie
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510230, China
| | - Ling Wang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510230, China
| | - Min Hou
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510230, China
| | - Jia-Wen Xiang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510230, China
| | - Yuan Xiao
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510230, China
| | - Qian Gao
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510230, China
| | - Yue-Yue Bai
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510230, China
| | - Yi-Zhi Liu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510230, China
| | - David Wan-Cheng Li
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510230, China
| |
Collapse
|
22
|
Zhang K, Guan QW, Zhou XY, Xia QX, Yin XX, Zhou HH, Mao XY. The mutual interplay of redox signaling and connexins. J Mol Med (Berl) 2021; 99:933-941. [PMID: 33928434 DOI: 10.1007/s00109-021-02084-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 11/24/2022]
Abstract
Connexins (Cxs) are ubiquitous transmembrane proteins that possess both channel function (e.g., formations of gap junction and hemichannel) and non-channel properties (e.g., gene transcription and protein-protein interaction). Several factors have been identified to play a role in the regulation of Cxs, which include those acting intracellularly, as redox potential, pH, intramolecular interactions, and post-translational modifications (e.g., phosphorylation, S-nitrosylation) as well as those acting extracellularly, such as Ca2+ and Mg2+. The relationship between redox signaling and Cxs attracts considerable attention in recent years. There is ample evidence showing that redox signaling molecules (e.g., hydrogen peroxide (H2O2), nitric oxide (NO)) affect Cxs-based channel function while the opening of Cx channels also triggers the transfer of various redox-related metabolites (e.g., reactive oxygen species, glutathione, nicotinamide adenine dinucleotide, and NO). On the basis of these evidences, we propose the existence of redox-Cxs crosstalk. In this review, we briefly discuss the interaction between redox signaling and Cxs and the implications of the intersection in disease pathology and future therapeutic interventions.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Clinical Pharmacology, Xiangya Hospital and Institute of Clinical Pharmacology, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 110 Xiangya Road, Changsha, 410078, People's Republic of China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Qi-Wen Guan
- Department of Clinical Pharmacology, Xiangya Hospital and Institute of Clinical Pharmacology, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 110 Xiangya Road, Changsha, 410078, People's Republic of China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Xin-Yu Zhou
- Department of Neurology, Lianyungang Hospital affiliated with Xuzhou Medical College, Tongguan Road, 182, Lianyungang, Jiangsu, People's Republic of China
| | - Qin-Xuan Xia
- Department of Clinical Pharmacology, Xiangya Hospital and Institute of Clinical Pharmacology, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 110 Xiangya Road, Changsha, 410078, People's Republic of China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Xi-Xi Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital and Institute of Clinical Pharmacology, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 110 Xiangya Road, Changsha, 410078, People's Republic of China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Xiao-Yuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital and Institute of Clinical Pharmacology, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China. .,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 110 Xiangya Road, Changsha, 410078, People's Republic of China. .,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China. .,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
23
|
Chen M, Li G, Zhang L, Ning K, Yang B, Jiang JX, Wang DE, Xu H. Primary Osteocyte Supernatants Metabolomic Profiling of Two Transgenic Mice With Connexin43 Dominant Negative Mutants. Front Endocrinol (Lausanne) 2021; 12:649994. [PMID: 34093433 PMCID: PMC8169970 DOI: 10.3389/fendo.2021.649994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Osteocytes could release some small molecules (≤ 1 kDa) through gap junctions and hemichannels to extracellular environment, such as prostaglandin E2 (PGE2), nitric oxide (NO) and adenosine triphosphate (ATP), which play key roles in transferring signals between bone cells and other tissue cells. Connexin (Cx) 43 is the most abundant connexin in osteocytes. To further discover molecules released by osteocytes through Cx43 channels and better understand the regulatory function of Cx43 channels in osteocytes, we performed non-targeted global metabolomics analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS) on conditioned medium collected from osteocytes isolated from two transgenic mouse models with Cx43 dominant negative mutants driven by a 10 kb-DMP1 promoter: R76W (gap junctions are blocked, whereas hemichannels are promoted) and Δ130-136 (both gap junctions and hemichannels are blocked). The results revealed that several new categories of molecules, such as "fatty acyls" and "carboxylic acids and derivatives", could be released through osteocytic Cx43 channels. In addition, alteration of Cx43 channel function affected the release of metabolites related to inflammatory reaction and oxidative stress. Pathway analysis further showed that citric acid cycle was the most differential metabolic pathway regulated by Cx43 channels. In sum, these results isolated new potential metabolites released by osteocytes through Cx43 channels, and offered a novel perspective to understand the regulatory mechanisms of osteocytes on themselves and other cells as well.
Collapse
Affiliation(s)
- Meng Chen
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Guobin Li
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Lan Zhang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Kaiting Ning
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Baoqiang Yang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
| | - Dong-En Wang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Huiyun Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an, China
| |
Collapse
|
24
|
Liu J, Riquelme MA, Li Z, Li Y, Tong Y, Quan Y, Pei C, Gu S, Jiang JX. Mechanosensitive collaboration between integrins and connexins allows nutrient and antioxidant transport into the lens. J Cell Biol 2021; 219:211530. [PMID: 33180092 PMCID: PMC7668387 DOI: 10.1083/jcb.202002154] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/01/2020] [Accepted: 09/28/2020] [Indexed: 01/08/2023] Open
Abstract
The delivery of glucose and antioxidants is vital to maintain homeostasis and lens transparency. Here, we report a new mechanism whereby mechanically activated connexin (Cx) hemichannels serve as a transport portal for delivering glucose and glutathione (GSH). Integrin α6β1 in outer cortical lens fiber activated by fluid flow shear stress (FFSS) induced opening of hemichannels. Inhibition of α6 activation prevented hemichannel opening as well as glucose and GSH uptake. The activation of integrin β1, a heterodimeric partner of α6 in the absence of FFSS, increased Cx50 hemichannel opening. Hemichannel activation by FFSS depended on the interaction of integrin α6 and Cx50 C-terminal domain. Moreover, hemichannels in nuclear fiber were unresponsive owing to Cx50 truncation. Taken together, these results show that mechanically activated α6β1 integrin in outer cortical lens fibers leads to opening of hemichannels, which transport glucose and GSH into cortical lens fibers. This study unveils a new transport mechanism that maintains metabolic and antioxidative function of the lens.
Collapse
Affiliation(s)
- Jie Liu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX.,The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Manuel A Riquelme
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX
| | - Zhen Li
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX
| | - Yuting Li
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX
| | - Yuxin Tong
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX
| | - Yumeng Quan
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX.,The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Cheng Pei
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Sumin Gu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX
| |
Collapse
|
25
|
Van Campenhout R, Gomes AR, De Groof TW, Muyldermans S, Devoogdt N, Vinken M. Mechanisms Underlying Connexin Hemichannel Activation in Disease. Int J Mol Sci 2021; 22:ijms22073503. [PMID: 33800706 PMCID: PMC8036530 DOI: 10.3390/ijms22073503] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023] Open
Abstract
Gap junctions and connexin hemichannels mediate intercellular and extracellular communication, respectively. While gap junctions are seen as the “good guys” by controlling homeostasis, connexin hemichannels are considered as the “bad guys”, as their activation is associated with the onset and dissemination of disease. Open connexin hemichannels indeed mediate the transport of messengers between the cytosol and extracellular environment and, by doing so, fuel inflammation and cell death in a plethora of diseases. The present mini-review discusses the mechanisms involved in the activation of connexin hemichannels during pathology.
Collapse
Affiliation(s)
- Raf Van Campenhout
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (R.V.C.); (A.R.G.)
| | - Ana Rita Gomes
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (R.V.C.); (A.R.G.)
| | - Timo W.M. De Groof
- Department of Medical Imaging, In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (T.W.M.D.G.); (N.D.)
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium;
| | - Nick Devoogdt
- Department of Medical Imaging, In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (T.W.M.D.G.); (N.D.)
| | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (R.V.C.); (A.R.G.)
- Correspondence: ; Tel.: +32-2-4774587
| |
Collapse
|
26
|
Li Z, Gu S, Quan Y, Varadaraj K, Jiang JX. Development of a potent embryonic chick lens model for studying congenital cataracts in vivo. Commun Biol 2021; 4:325. [PMID: 33707565 PMCID: PMC7952907 DOI: 10.1038/s42003-021-01849-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/11/2021] [Indexed: 01/31/2023] Open
Abstract
Congenital cataracts are associated with gene mutations, yet the underlying mechanism remains largely unknown. Here we reported an embryonic chick lens model that closely recapitulates the process of cataract formation. We adopted dominant-negative site mutations that cause congenital cataracts, connexin, Cx50E48K, aquaporin 0, AQP0R33C, αA-crystallin, CRYAA R12C and R54C. The recombinant retroviruses containing these mutants were microinjected into the occlusive lumen of chick lenses at early embryonic development. Cx50E48K expression developed cataracts associated with disorganized nuclei and enlarged extracellular spaces. Expression of AQP0R33C resulted in cortical cataracts, enlarged extracellular spaces and distorted fiber cell organization. αA crystallin mutations distorted lens light transmission and increased crystalline protein aggregation. Together, retroviral expression of congenital mutant genes in embryonic chick lenses closely mimics characteristics of human congenital cataracts. This model will provide an effective, reliable in vivo system to investigate the development and underlying mechanism of cataracts and other genetic diseases.
Collapse
Affiliation(s)
- Zhen Li
- grid.267309.90000 0001 0629 5880Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX USA
| | - Sumin Gu
- grid.267309.90000 0001 0629 5880Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX USA
| | - Yumeng Quan
- grid.267309.90000 0001 0629 5880Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX USA
| | - Kulandaiappan Varadaraj
- grid.36425.360000 0001 2216 9681Department of Physiology and Biophysics, Stony Brook University, New York, NY USA
| | - Jean X. Jiang
- grid.267309.90000 0001 0629 5880Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX USA
| |
Collapse
|
27
|
Hua R, Zhang J, Riquelme MA, Jiang JX. Connexin Gap Junctions and Hemichannels Link Oxidative Stress to Skeletal Physiology and Pathology. Curr Osteoporos Rep 2021; 19:66-74. [PMID: 33403446 PMCID: PMC8174533 DOI: 10.1007/s11914-020-00645-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/16/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW The goal of this review is to provide an overview of the impact and underlying mechanism of oxidative stress on connexin channel function, and their roles in skeletal aging, estrogen deficiency, and glucocorticoid excess associated bone loss. RECENT FINDINGS Connexin hemichannel opening is increased under oxidative stress conditions, which confers a cell protective role against oxidative stress-induced cell death. Oxidative stress acts as a key contributor to aging, estrogen deficiency, and glucocorticoid excess-induced osteoporosis and impairs osteocytic network and connexin gap junction communication. This paper reviews the current knowledge for the role of oxidative stress and connexin channels in the pathogenesis of osteoporosis and physiological and pathological responses of connexin channels to oxidative stress. Oxidative stress decreases osteocyte viability and impairs the balance of anabolic and catabolic responses. Connexin 43 (Cx43) channels play a critical role in bone remodeling, mechanotransduction, and survival of osteocytes. Under oxidative stress conditions, there is a consistent reduction of Cx43 expression, while the opening of Cx43 hemichannels protects osteocytes against cell injury caused by oxidative stress.
Collapse
Affiliation(s)
- Rui Hua
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Jingruo Zhang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Manuel A Riquelme
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA.
| |
Collapse
|
28
|
Mustafi S, Camarena V, Qureshi R, Sant DW, Wilkes Z, Bilbao D, Slingerland J, Kesmodel SB, Wang G. Vitamin C sensitizes triple negative breast cancer to PI3K inhibition therapy. Am J Cancer Res 2021; 11:3552-3564. [PMID: 33664847 PMCID: PMC7914363 DOI: 10.7150/thno.53225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/25/2020] [Indexed: 12/22/2022] Open
Abstract
Rationale: The clinical use of PI3K inhibitors, such as buparlisib, has been plagued with toxicity at effective doses. The aim of this study is to determine if vitamin C, a potent epigenetic regulator, can improve the therapeutic outcome and reduce the dose of buparlisib in treating PIK3CA-mutated triple negative breast cancer (TNBC). Methods: The response of TNBC cells to buparlisib was assessed by EC50 measurements, apoptosis assay, clonogenic assay, and xenograft assay in mice. Molecular approaches including Western blot, immunofluorescence, RNA sequencing, and gene silencing were utilized as experimental tools. Results: Treatment with buparlisib at lower doses, along with vitamin C, induced apoptosis and inhibited the growth of TNBC cells in vitro. Vitamin C via oral delivery rendered a sub-therapeutic dose of buparlisib able to inhibit TNBC xenograft growth and to markedly block metastasis in mice. We discovered that buparlisib and vitamin C coordinately reduced histone H3K4 methylation by enhancing the nuclear translocation of demethylase, KDM5, and by serving as a cofactor to promote KDM5-mediated H3K4 demethylation. The expression of genes in the PI3K pathway, such as AKT2 and mTOR, was suppressed by vitamin C in a KDM5-dependent manner. Vitamin C and buparlisib cooperatively blocked AKT phosphorylation. Inhibition of KDM5 largely abolished the effect of vitamin C on the response of TNBC cells to buparlisib. Additionally, vitamin C and buparlisib co-treatment changed the expression of genes, including PCNA and FILIP1L, which are critical to cancer growth and metastasis. Conclusion: Vitamin C can be used to reduce the dosage of buparlisib needed to produce a therapeutic effect, which could potentially ease the dose-dependent side effects in patients.
Collapse
|
29
|
Mulkearns-Hubert EE, Reizes O, Lathia JD. Connexins in Cancer: Jekyll or Hyde? Biomolecules 2020; 10:E1654. [PMID: 33321749 PMCID: PMC7764653 DOI: 10.3390/biom10121654] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/16/2022] Open
Abstract
The expression, localization, and function of connexins, the protein subunits that comprise gap junctions, are often altered in cancer. In addition to cell-cell coupling through gap junction channels, connexins also form hemichannels that allow communication between the cell and the extracellular space and perform non-junctional intracellular activities. Historically, connexins have been considered tumor suppressors; however, they can also serve tumor-promoting functions in some contexts. Here, we review the literature surrounding connexins in cancer cells in terms of specific connexin functions and propose that connexins function upstream of most, if not all, of the hallmarks of cancer. The development of advanced connexin targeting approaches remains an opportunity for the field to further interrogate the role of connexins in cancer phenotypes, particularly through the use of in vivo models. More specific modulators of connexin function will both help elucidate the functions of connexins in cancer and advance connexin-specific therapies in the clinic.
Collapse
Affiliation(s)
- Erin E. Mulkearns-Hubert
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (O.R.); (J.D.L.)
| | - Ofer Reizes
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (O.R.); (J.D.L.)
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College, Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Justin D. Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (O.R.); (J.D.L.)
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College, Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, 44195, USA
| |
Collapse
|
30
|
Li D, Xu C, Huang D, Guo R, Ji J, Liu W. Identification and functional analysis of a novel missense mutation in GJA8, p.Ala69Thr. BMC Ophthalmol 2020; 20:461. [PMID: 33218330 PMCID: PMC7678044 DOI: 10.1186/s12886-020-01725-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/09/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To explore the molecular genetic cause of a four-generation autosomal dominant congenital cataract family in China. METHODS Targeted region sequencing was performed to screen for the potential mutation, and Sanger sequencing was used to confirm the mutation. The homology model was constructed to identify the protein structural change, PolyPhen-2 and Provean were used to predict the mutation impact. Functional and cellular analysis of the wild and mutant GJA8 were performed in DF-1 cells by western blotting, dye uptake assay, immunofluorescence, Annexin V-FITC staining. RESULTS A novel heterozygous mutation (c.205G > A; p.Ala69Thr) was identified within GJA8, which cosegregated with congenital cataract phenotype in this family. Bioinformatics analysis showed the mutation was located in a highly conserved region, and the mutation was predicted to be pathogenic. Function analysis indicated that the mutation inhibited GJA8 hemichannel activity, reduced cell tolerance to oxidative stress, changed the protein distribution pattern and inhibited the cell growth. CONCLUSIONS We have identified a novel missense mutation in GJA8 (c.205G > A, p.Ala69Thr) in a four-generation Chinese family and our results will further broaden the gene mutation spectrum of GJA8.
Collapse
Affiliation(s)
- Dandan Li
- Department of Ophthalmology, Tianjin TEDA Hospital, 300457, Tianjin, China
| | - Chenjia Xu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Nankai District, Tianjin, 300384, China
| | - Dandan Huang
- Department of Ophthalmology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Ruru Guo
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Nankai District, Tianjin, 300384, China
| | - Jian Ji
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Nankai District, Tianjin, 300384, China
| | - Wei Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Nankai District, Tianjin, 300384, China.
| |
Collapse
|
31
|
Hu Z, Riquelme MA, Gu S, Jiang JX. Regulation of Connexin Gap Junctions and Hemichannels by Calcium and Calcium Binding Protein Calmodulin. Int J Mol Sci 2020; 21:E8194. [PMID: 33147690 PMCID: PMC7663298 DOI: 10.3390/ijms21218194] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 12/20/2022] Open
Abstract
Connexins are the structural components of gap junctions and hemichannels that mediate the communication and exchange of small molecules between cells, and between the intracellular and extracellular environment, respectively. Connexin (Cx) 46 is predominately expressed in lens fiber cells, where they function in maintaining the homeostasis and transparency of the lens. Cx46 mutations are associated with impairment of channel function, which results in the development of congenital cataracts. Cx46 gap junctions and hemichannels are closely regulated by multiple mechanisms. Key regulators of Cx46 channel function include Ca2+ and calmodulin (CaM). Ca2+ plays an essential role in lens homeostasis, and its dysregulation causes cataracts. Ca2+ associated CaM is a well-established inhibitor of gap junction coupling. Recent studies suggest that elevated intracellular Ca2+ activates Cx hemichannels in lens fiber cells and Cx46 directly interacts with CaM. A Cx46 site mutation (Cx46-G143R), which is associated with congenital Coppock cataracts, shows an increased Cx46-CaM interaction and this interaction is insensitive to Ca2+, given that depletion of Ca2+ reduces the interaction between CaM and wild-type Cx46. Moreover, inhibition of CaM function greatly reduces the hemichannel activity in the Cx46 G143R mutant. These research findings suggest a new regulatory mechanism by which enhanced association of Cx46 with CaM leads to the increase in hemichannel activity and dysregulation may lead to cataract development. In this review, we will first discuss the involvement of Ca2+/CaM in lens homeostasis and pathology, and follow by providing a general overview of Ca2+/CaM in the regulation of Cx46 gap junctions. We discuss the most recent studies concerning the molecular mechanism of Ca2+/CaM in regulating Cx46 hemichannels. Finally, we will offer perspectives of the impacts of Ca2+/CaM and dysregulation on Cx46 channels and vice versa.
Collapse
Affiliation(s)
- Zhengping Hu
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA 02114, USA;
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Manuel A. Riquelme
- Departments of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA; (M.A.R.); (S.G.)
| | - Sumin Gu
- Departments of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA; (M.A.R.); (S.G.)
| | - Jean X. Jiang
- Departments of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA; (M.A.R.); (S.G.)
| |
Collapse
|
32
|
Ruan X, Liu Z, Luo L, Liu Y. The Structure of the Lens and Its Associations with the Visual Quality. BMJ Open Ophthalmol 2020; 5:e000459. [PMID: 33024825 PMCID: PMC7511618 DOI: 10.1136/bmjophth-2020-000459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/30/2022] Open
Abstract
In humans, the lens is the organ with the ability to change morphology and refractive power, designated as accommodation, to focus light from various distances and obtain clear retinal image. The accommodative ability of the lens depends on its structure and biological parameters. The lens grows throughout the life, forming specific lens sutures and a unique gradient refractive index, and possesses regenerative ability under certain circumstances. Minimally invasive lens surgery that preserves endogenous lens epithelial stem/progenitor cells (LECs) can achieve functional lens regeneration in humans. The lens is the main source of intraocular aberration, especially intraocular higher-order aberrations (IHOAs) which is found to be binocularly symmetrical in phakic eyes. There is a compensation mechanism between corneal aberrations and lens aberrations. Therefore, the structure and the biological parameters of the lens, the binocular relationship of the lens and the correlation between the lens and cornea affect visual quality. This paper summarises the above findings and their current and potential applications in refractive surgeries, providing a comprehensive understanding of the lens as a strong determinant of visual quality in the optical system.
Collapse
Affiliation(s)
- Xiaoting Ruan
- State Key Laboratory of Ophthalmology, Sun Yat-Sen University Zhongshan Ophthalmic Center, Guangzhou, China
| | - Zhenzhen Liu
- State Key Laboratory of Ophthalmology, Sun Yat-Sen University Zhongshan Ophthalmic Center, Guangzhou, China
| | - Lixia Luo
- State Key Laboratory of Ophthalmology, Sun Yat-Sen University Zhongshan Ophthalmic Center, Guangzhou, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Sun Yat-Sen University Zhongshan Ophthalmic Center, Guangzhou, China
| |
Collapse
|
33
|
Jara O, Minogue PJ, Berthoud VM, Beyer EC. Do Connexin Mutants Cause Cataracts by Perturbing Glutathione Levels and Redox Metabolism in the Lens? Biomolecules 2020; 10:E1418. [PMID: 33036381 PMCID: PMC7600092 DOI: 10.3390/biom10101418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/01/2020] [Accepted: 10/03/2020] [Indexed: 02/06/2023] Open
Abstract
Cataracts of many different etiologies are associated with oxidation of lens components. The lens is protected by maintenance of a pool of reduced glutathione (GSH) and other antioxidants. Because gap junction channels made of the lens connexins, Cx46 and Cx50, are permeable to GSH, we tested whether mice expressing two different mutants, Cx46fs380 and Cx50D47A, cause cataracts by impairing lens glutathione metabolism and facilitating oxidative damage. Levels of GSH were not reduced in homogenates of whole mutant lenses. Oxidized glutathione (GSSG) and the GSSG/GSH ratio were increased in whole lenses of Cx50D47A, but not Cx46fs380 mice. The GSSG/GSH ratio was increased in the lens nucleus (but not cortex) of Cx46fs380 mice at 4.5 months of age, but it was not altered in younger animals. Carbonylated proteins were increased in Cx50D47A, but not Cx46fs380 lenses. Thus, both mouse lines have oxidizing lens environments, but oxidative modification is greater in Cx50D47A than in Cx46fs380 mice. The results suggest that GSH permeation through lens connexin channels is not a critical early event in cataract formation in these mice. Moreover, because oxidative damage was only detected in animals with significant cataracts, it cannot be an early event in their cataractogenesis.
Collapse
Affiliation(s)
| | | | | | - Eric C. Beyer
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA; (O.J.); (P.J.M.); (V.M.B.)
| |
Collapse
|
34
|
Li B, Kim JY, Martis RM, Donaldson PJ, Lim JC. Characterisation of Glutathione Export from Human Donor Lenses. Transl Vis Sci Technol 2020; 9:37. [PMID: 32855883 PMCID: PMC7422761 DOI: 10.1167/tvst.9.8.37] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/03/2020] [Indexed: 01/13/2023] Open
Abstract
Purpose To investigate whether human donor lenses are capable of exporting reduced glutathione. Methods Human lenses of varying ages were cultured in artificial aqueous humor for 1 hour under hypoxic conditions to mimic the physiologic environment and reduced glutathione (GSH) and oxidized glutathione (GSSG) levels measured in the media and in the lens. Results Human donor lenses released both GSH and GSSG into the media. Donor lenses cultured in the presence of acivicin, a γ-glutamyltranspeptidase inhibitor, exhibited a significant increase in GSSG levels (P < 0.05), indicating that GSSG undergoes degradation into its constituent amino acids. Screening of GSH/GSSG efflux transporters revealed Mrp1, Mrp4, and Mrp5 to be present at the transcript level, but only Mrp5 was expressed at the protein level. Blocking Mrp5 function with the Mrp inhibitor MK571 led to a significant decrease in GSSG efflux (P < 0.05), indicating that Mrp5 is likely to be involved in mediating GSSG efflux. Measurements of efflux from the anterior and posterior surface of the lens revealed that GSH and GSSG efflux occurs at both surfaces but predominantly at the anterior surface. Conclusions Human lenses export GSH and GSSG into the surrounding ocular humors, which can be recycled by the lens to maintain intracellular GSH homeostasis or used by neighboring tissues to maintain GSH levels. Translational Relevance Early removal of a clear lens, as occurs to treat myopia and presbyopia, would eliminate this GSH reservoir and reduce the supply of GSH to other tissues, which, over time, may have clinical implications for the progression of other ocular diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Bo Li
- Department of Physiology, University of Auckland, New Zealand
- New Zealand-National Eye Centre, University of Auckland, New Zealand
- School of Medical Sciences, University of Auckland, New Zealand
| | - Ji-Youn Kim
- Department of Physiology, University of Auckland, New Zealand
- New Zealand-National Eye Centre, University of Auckland, New Zealand
- School of Medical Sciences, University of Auckland, New Zealand
| | - Renita M. Martis
- Department of Physiology, University of Auckland, New Zealand
- New Zealand-National Eye Centre, University of Auckland, New Zealand
- School of Medical Sciences, University of Auckland, New Zealand
| | - Paul J. Donaldson
- Department of Physiology, University of Auckland, New Zealand
- New Zealand-National Eye Centre, University of Auckland, New Zealand
- School of Medical Sciences, University of Auckland, New Zealand
| | - Julie C. Lim
- Department of Physiology, University of Auckland, New Zealand
- New Zealand-National Eye Centre, University of Auckland, New Zealand
- School of Medical Sciences, University of Auckland, New Zealand
| |
Collapse
|
35
|
Figueroa VA, Jara O, Oliva CA, Ezquer M, Ezquer F, Retamal MA, Martínez AD, Altenberg GA, Vargas AA. Contribution of Connexin Hemichannels to the Decreases in Cell Viability Induced by Linoleic Acid in the Human Lens Epithelial Cells (HLE-B3). Front Physiol 2020; 10:1574. [PMID: 32038277 PMCID: PMC6984129 DOI: 10.3389/fphys.2019.01574] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 12/16/2019] [Indexed: 01/16/2023] Open
Abstract
Connexin (Cx) proteins form gap junction channels (GJC) and hemichannels that a allow bidirectional flow of ions and metabolites between the cytoplasm and extracellular space, respectively. Under physiological conditions, hemichannels have a very low probability of opening, but in certain pathologies, hemichannels activity can increase and induce and/or accelerate cell death. Several mechanisms control hemichannels activity, including phosphorylation and oxidation (i.e., S-nitrosylation). Recently, the effect of polyunsaturated fatty acids (PUFAs) such as linoleic acid (LA), were found to modulate Cxs. It has been seen that LA increase cell death in bovine and human lens cells. The lens is a structure allocated in the eye that highly depends on Cx for the metabolic coupling between its cells, a condition necessary for its transparency. Therefore, we hypothesized that LA induces lens cells death by modulating hemichannel activity. In this work, we characterized the effect of LA on hemichannel activity and survival of HLE-B3 cells (a human lens epithelial cell line). We found that HLE-B3 cells expresses Cx43, Cx46, and Cx50 and can form functional hemichannels in their plasma membrane. The extracellular exposure to 10–50 μM of LA increases hemichannels activity (dye uptake) in a concentration-dependent manner, which was reduced by Cx-channel blockers, such as the Cx-mimetic peptide Gap27 and TATGap19, La3+, carbenoxolone (CBX) and the Akt kinase inhibitor. Additionally, LA increases intracellular calcium, which is attenuated in the presence of TATGap19, a specific Cx43-hemichannel inhibitor. Finally, the long exposure of HLE-B3 cells to LA 20 and 50 μM, reduced cell viability, which was prevented by CBX. Moreover, LA increased the proportion of apoptotic HLE-B3 cells, effect that was prevented by the Cx-mimetic peptide TAT-Gap19 but not by Akt inhibitor. Altogether, these findings strongly suggest a contribution of hemichannels opening in the cell death induced by LA in HLE-B3 cells. These cells can be an excellent tool to develop pharmacological studies in vitro.
Collapse
Affiliation(s)
- Vania A Figueroa
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile.,Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| | - Oscar Jara
- Department of Pediatrics, University of Chicago, Chicago, IL, United States
| | - Carolina A Oliva
- Centro de Envejecimiento y Regeneración (CARE-UC), Departamento Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcelo Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Fernando Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Mauricio A Retamal
- Universidad del Desarrollo, Centro de Fisiología Celular e Integrativa, Facultad de Medicina Clínica Alemana, Santiago, Chile.,Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Agustín D Martínez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Guillermo A Altenberg
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Aníbal A Vargas
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile.,Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
36
|
Li L, Fan DB, Zhao YT, Li Y, Yang ZB, Zheng GY. GJA8 missense mutation disrupts hemichannels and induces cell apoptosis in human lens epithelial cells. Sci Rep 2019; 9:19157. [PMID: 31844091 PMCID: PMC6915756 DOI: 10.1038/s41598-019-55549-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 11/29/2019] [Indexed: 12/16/2022] Open
Abstract
Autosomal dominant congenital cataract (ADCC), the most common hereditary disease, is a major cause of eye disease in children. Due to its high genetic and clinical heterogeneity, the identification of ADCC-associated gene mutations is essential for the development of molecular therapies. In this study, we examined a four-generation Chinese pedigree with ADCC and identified putative mutations in ADCC candidate genes via next-generation sequencing (NGS) followed by Sanger sequencing. A novel missense mutation in GJA8 (c.T217C) in ADCC patients causes a serine-to-proline substitution at residue 73 of connexin 50 (Cx50); no mutation was found in unaffected family members and unrelated healthy individuals. Functional analysis revealed that this missense mutation disrupts protein function in human lens epithelial cells (HLEpiCs), which fails to form calcium-sensitive hemichannels. Furthermore, mutant Cx50 leads to decreased ROS scavenging by inhibiting G6PD expression and thus induces cell apoptosis via aberrant activation of the unfolded protein response (UPR). In conclusion, we report a novel GJA8 heterozygous mutation in a Chinese family with a vital role in ADCC, broadening the genetic spectrum of this disease.
Collapse
Affiliation(s)
- Li Li
- Ophthalmologic Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Da-Bei Fan
- Endocrine Department, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ya-Ting Zhao
- Ophthalmologic Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yun Li
- Ophthalmologic Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zi-Bing Yang
- Ophthalmologic Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Guang-Ying Zheng
- Ophthalmologic Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
37
|
Knöpfel EB, Vilches C, Camargo SMR, Errasti-Murugarren E, Stäubli A, Mayayo C, Munier FL, Miroshnikova N, Poncet N, Junza A, Bhattacharya SS, Prat E, Berry V, Berger W, Heon E, Moore AT, Yanes Ó, Nunes V, Palacín M, Verrey F, Kloeckener-Gruissem B. Dysfunctional LAT2 Amino Acid Transporter Is Associated With Cataract in Mouse and Humans. Front Physiol 2019; 10:688. [PMID: 31231240 PMCID: PMC6558864 DOI: 10.3389/fphys.2019.00688] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/16/2019] [Indexed: 11/13/2022] Open
Abstract
Cataract, the loss of ocular lens transparency, accounts for ∼50% of worldwide blindness and has been associated with water and solute transport dysfunction across lens cellular barriers. We show that neutral amino acid antiporter LAT2 (Slc7a8) and uniporter TAT1 (Slc16a10) are expressed on mouse ciliary epithelium and LAT2 also in lens epithelium. Correspondingly, deletion of LAT2 induced a dramatic decrease in lens essential amino acid levels that was modulated by TAT1 defect. Interestingly, the absence of LAT2 led to increased incidence of cataract in mice, in particular in older females, and a synergistic effect was observed with simultaneous lack of TAT1. Screening SLC7A8 in patients diagnosed with congenital or age-related cataract yielded one homozygous single nucleotide deletion segregating in a family with congenital cataract. Expressed in HeLa cells, this LAT2 mutation did not support amino acid uptake. Heterozygous LAT2 variants were also found in patients with cataract some of which showed a reduced transport function when expressed in HeLa cells. Whether heterozygous LAT2 variants may contribute to the pathology of cataract needs to be further investigated. Overall, our results suggest that defects of amino acid transporter LAT2 are implicated in cataract formation, a situation that may be aggravated by TAT1 defects.
Collapse
Affiliation(s)
- Emilia Boiadjieva Knöpfel
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
- Swiss National Centre of Competence in Research Kidney.CH, University of Zurich, Zurich, Switzerland
| | - Clara Vilches
- Genes, Disease and Therapy Program, Molecular Genetics Laboratory – IDIBELL, Barcelona, Spain
- U730 and U731, Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain
| | - Simone M. R. Camargo
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Ekaitz Errasti-Murugarren
- U730 and U731, Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Andrina Stäubli
- Institute of Medical Molecular Genetics, University of Zurich, Zurich, Switzerland
- Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Clara Mayayo
- Genes, Disease and Therapy Program, Molecular Genetics Laboratory – IDIBELL, Barcelona, Spain
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Francis L. Munier
- Jules-Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland
| | | | - Nadège Poncet
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Alexandra Junza
- Metabolomics Platform, IISPV, Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Shomi S. Bhattacharya
- Andalusian Molecular Biology and Regenerative Medicine Centre – CABIMER, Seville, Spain
- UCL Institute of Ophthalmology, London, United Kingdom
| | - Esther Prat
- Genes, Disease and Therapy Program, Molecular Genetics Laboratory – IDIBELL, Barcelona, Spain
- U730 and U731, Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain
- Genetics Section, Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Vanita Berry
- Andalusian Molecular Biology and Regenerative Medicine Centre – CABIMER, Seville, Spain
| | - Wolfgang Berger
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
- Institute of Medical Molecular Genetics, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich – ZNZ, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Elise Heon
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, ON, Canada
| | - Anthony T. Moore
- Andalusian Molecular Biology and Regenerative Medicine Centre – CABIMER, Seville, Spain
- Moorfields Eye Hospital, London, United Kingdom
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Óscar Yanes
- Metabolomics Platform, IISPV, Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Virginia Nunes
- Genes, Disease and Therapy Program, Molecular Genetics Laboratory – IDIBELL, Barcelona, Spain
- U730 and U731, Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain
- Genetics Section, Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Manuel Palacín
- U730 and U731, Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Francois Verrey
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
- Swiss National Centre of Competence in Research Kidney.CH, University of Zurich, Zurich, Switzerland
| | - Barbara Kloeckener-Gruissem
- Institute of Medical Molecular Genetics, University of Zurich, Zurich, Switzerland
- Department of Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
38
|
Cx46 hemichannel modulation by nitric oxide: Role of the fourth transmembrane helix cysteine and its possible involvement in cataract formation. Nitric Oxide 2019; 86:54-62. [DOI: 10.1016/j.niox.2019.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/08/2019] [Accepted: 02/20/2019] [Indexed: 01/09/2023]
|
39
|
Mustafi S, Camarena V, Qureshi R, Yoon H, Volmar CH, Huff TC, Sant DW, Zheng L, Brothers SP, Wahlestedt C, Slingerland J, Wang G. Vitamin C supplementation expands the therapeutic window of BETi for triple negative breast cancer. EBioMedicine 2019; 43:201-210. [PMID: 30975544 PMCID: PMC6557781 DOI: 10.1016/j.ebiom.2019.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 12/25/2022] Open
Abstract
Background Bromodomain and extra-terminal inhibitors (BETi) have shown efficacy for the treatment of aggressive triple negative breast cancer (TNBC). However, BETi are plagued by a narrow therapeutic window as manifested by severe toxicities at effective doses. Therefore, it is a limitation to their clinical implementation in patient care. Methods The impact of vitamin C on the efficacy of small compounds including BETi was assessed by high-throughput screening. Co-treatment of TNBC by BETi especially JQ1 and vitamin C was evaluated in vitro and in vivo. Findings High-throughput screening revealed that vitamin C improves the efficacy of a number of structurally-unrelated BETi including JQ1, I-BET762, I-BET151, and CPI-203 in treating TNBC cells. The synergy between BETi and vitamin C is due to suppressed histone acetylation (H3ac and H4ac), which is in turn caused by upregulated histone deacetylase 1 (HDAC1) expression upon vitamin C addition. Treatment with JQ1 at lower doses together with vitamin C induces apoptosis and inhibits the clonogenic ability of cultured TNBC cells. Oral vitamin C supplementation renders a sub-therapeutic dose of JQ1 able to inhibit human TNBC xenograft growth and metastasis in mice. Interpretation Vitamin C expands the therapeutic window of BETi by sensitizing TNBC to BETi. Using vitamin C as a co-treatment, lower doses of BETi could be used to achieve an increased therapeutic index in patients, which will translate to a reduced side effect profile. Fund University of Miami Sylvester Comprehensive Cancer Center, Bankhead Coley Cancer Research program (7BC10), Flight Attendant Medical Research Institute, and NIH R21CA191668 (to GW) and 1R56AG061911 (to CW and CHV).
Collapse
Affiliation(s)
- Sushmita Mustafi
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Vladimir Camarena
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Rehana Qureshi
- Braman Family Breast Cancer Institute at Sylvester, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Hyunho Yoon
- Braman Family Breast Cancer Institute at Sylvester, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Claude-Henry Volmar
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Tyler C Huff
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - David W Sant
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lihong Zheng
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Shaun P Brothers
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Claes Wahlestedt
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joyce Slingerland
- Braman Family Breast Cancer Institute at Sylvester, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Gaofeng Wang
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|