1
|
Vural A. Activators of G-Protein Signaling 3 (AGS3) Puncta: Potential Novel Biomolecular Condensates in Signal Transduction. JOURNAL OF CELL SCIENCE & THERAPY 2024; 15:462. [PMID: 39328265 PMCID: PMC11426551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Affiliation(s)
- Ali Vural
- Department of Biomedical Sciences, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, Michigan, USA
| |
Collapse
|
2
|
Vural A, Lanier SM. Properties of biomolecular condensates defined by Activator of G-protein Signaling 3. J Cell Sci 2024; 137:jcs261326. [PMID: 38264908 PMCID: PMC10911133 DOI: 10.1242/jcs.261326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 01/11/2024] [Indexed: 01/25/2024] Open
Abstract
Activator of G-protein signaling 3 (AGS3; also known as GPSM1), a receptor-independent activator of G-protein signaling, oscillates among defined subcellular compartments and biomolecular condensates (BMCs) in a regulated manner that is likely related to the functional diversity of the protein. We determined the influence of cell stress on the cellular distribution of AGS3 and core material properties of AGS3 BMCs. Cellular stress (oxidative, pHi and thermal) induced the formation of AGS3 BMCs in HeLa and COS-7 cells, as determined by fluorescent microscopy. Oxidative stress-induced AGS3 BMCs were distinct from G3BP1 stress granules and from RNA processing BMCs defined by the P-body protein Dcp1a. Immunoblots indicated that cellular stress shifted AGS3, but not the stress granule protein G3BP1 to a membrane pellet fraction following cell lysis. The stress-induced generation of AGS3 BMCs was reduced by co-expression of the signaling protein Gαi3, but not the AGS3-binding partner DVL2. Fluorescent recovery following photobleaching of individual AGS3 BMCs indicated that there are distinct diffusion kinetics and restricted fluidity for AGS3 BMCs. These data suggest that AGS3 BMCs represent a distinct class of stress granules that serve as a previously unrecognized signal processing node.
Collapse
Affiliation(s)
- Ali Vural
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Stephen M. Lanier
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
3
|
Xu X, Wu G. Non-canonical Golgi-compartmentalized Gβγ signaling: mechanisms, functions, and therapeutic targets. Trends Pharmacol Sci 2023; 44:98-111. [PMID: 36494204 PMCID: PMC9901158 DOI: 10.1016/j.tips.2022.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022]
Abstract
G protein Gβγ subunits are key mediators of G protein-coupled receptor (GPCR) signaling under physiological and pathological conditions; their inhibitors have been tested for the treatment of human disease. Conventional wisdom is that the Gβγ complex is activated and subsequently exerts its functions at the plasma membrane (PM). Recent studies have revealed non-canonical activation of Gβγ at intracellular organelles, where the Golgi apparatus is a major locale, via translocation or local activation. Golgi-localized Gβγ activates specific signaling cascades and regulates fundamental cell processes such as membrane trafficking, proliferation, and migration. More recent studies have shown that inhibiting Golgi-compartmentalized Gβγ signaling attenuates cardiomyocyte hypertrophy and prostate tumorigenesis, indicating new therapeutic targets. We review novel activation mechanisms and non-canonical functions of Gβγ at the Golgi, and discuss potential therapeutic interventions by targeting Golgi-biased Gβγ-directed signaling.
Collapse
Affiliation(s)
- Xin Xu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
4
|
Larasati YA, Savitsky M, Koval A, Solis GP, Valnohova J, Katanaev VL. Restoration of the GTPase activity and cellular interactions of Gα o mutants by Zn 2+ in GNAO1 encephalopathy models. SCIENCE ADVANCES 2022; 8:eabn9350. [PMID: 36206333 PMCID: PMC9544338 DOI: 10.1126/sciadv.abn9350] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
De novo point mutations in GNAO1, gene encoding the major neuronal G protein Gαo, have recently emerged in patients with pediatric encephalopathy having motor, developmental, and epileptic dysfunctions. Half of clinical cases affect codons Gly203, Arg209, or Glu246; we show that these mutations accelerate GTP uptake and inactivate GTP hydrolysis through displacement Gln205 critical for GTP hydrolysis, resulting in constitutive GTP binding by Gαo. However, the mutants fail to adopt the activated conformation and display aberrant interactions with signaling partners. Through high-throughput screening of approved drugs, we identify zinc pyrithione and Zn2+ as agents restoring active conformation, GTPase activity, and cellular interactions of the encephalopathy mutants, with negligible effects on wild-type Gαo. We describe a Drosophila model of GNAO1 encephalopathy where dietary zinc restores the motor function and longevity of the mutant flies. Zinc supplements are approved for diverse human neurological conditions. Our work provides insights into the molecular etiology of GNAO1 encephalopathy and defines a potential therapy for the patients.
Collapse
Affiliation(s)
- Yonika A. Larasati
- Translational Research Centre in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Mikhail Savitsky
- Translational Research Centre in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Alexey Koval
- Translational Research Centre in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Gonzalo P. Solis
- Translational Research Centre in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Jana Valnohova
- Translational Research Centre in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Vladimir L. Katanaev
- Translational Research Centre in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690090 Vladivostok, Russia
| |
Collapse
|
5
|
Yip JLK, Lee MMK, Leung CCY, Tse MK, Cheung AST, Wong YH. AGS3 and Gα i3 Are Concomitantly Upregulated as Part of the Spindle Orientation Complex during Differentiation of Human Neural Progenitor Cells. Molecules 2020; 25:molecules25215169. [PMID: 33172018 PMCID: PMC7664263 DOI: 10.3390/molecules25215169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 11/16/2022] Open
Abstract
Adult neurogenesis is modulated by many Gi-coupled receptors but the precise mechanism remains elusive. A key step for maintaining the population of neural stem cells in the adult is asymmetric cell division (ACD), a process which entails the formation of two evolutionarily conserved protein complexes that establish the cell polarity and spindle orientation. Since ACD is extremely difficult to monitor in stratified tissues such as the vertebrate brain, we employed human neural progenitor cell lines to examine the regulation of the polarity and spindle orientation complexes during neuronal differentiation. Several components of the spindle orientation complex, but not those of the polarity complex, were upregulated upon differentiation of ENStem-A and ReNcell VM neural progenitor cells. Increased expression of nuclear mitotic apparatus (NuMA), Gαi subunit, and activators of G protein signaling (AGS3 and LGN) coincided with the appearance of a neuronal marker (β-III tubulin) and the concomitant loss of neural progenitor cell markers (nestin and Sox-2). Co-immunoprecipitation assays demonstrated that both Gαi3 and NuMA were associated with AGS3 in differentiated ENStem-A cells. Interestingly, AGS3 appeared to preferentially interact with Gαi3 in ENStem-A cells, and this specificity for Gαi3 was recapitulated in co-immunoprecipitation experiments using HEK293 cells transiently overexpressing GST-tagged AGS3 and different Gαi subunits. Moreover, the binding of Gαi3 to AGS3 was suppressed by GTPγS and pertussis toxin. Disruption of AGS3/Gαi3 interaction by pertussis toxin indicates that AGS3 may recognize the same site on the Gα subunit as G protein-coupled receptors. Regulatory mechanisms controlling the formation of spindle orientation complex may provide novel means to manipulate ACD which in turn may have an impact on neurogenesis.
Collapse
Affiliation(s)
- Jackson L. K. Yip
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China; (J.L.K.Y.); (M.M.K.L.); (C.C.Y.L.); (M.K.T.); (A.S.T.C.)
| | - Maggie M. K. Lee
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China; (J.L.K.Y.); (M.M.K.L.); (C.C.Y.L.); (M.K.T.); (A.S.T.C.)
| | - Crystal C. Y. Leung
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China; (J.L.K.Y.); (M.M.K.L.); (C.C.Y.L.); (M.K.T.); (A.S.T.C.)
| | - Man K. Tse
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China; (J.L.K.Y.); (M.M.K.L.); (C.C.Y.L.); (M.K.T.); (A.S.T.C.)
| | - Annie S. T. Cheung
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China; (J.L.K.Y.); (M.M.K.L.); (C.C.Y.L.); (M.K.T.); (A.S.T.C.)
| | - Yung H. Wong
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China; (J.L.K.Y.); (M.M.K.L.); (C.C.Y.L.); (M.K.T.); (A.S.T.C.)
- State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- Correspondence: ; Tel.: +852-2358-7328; Fax: +852-2358-1552
| |
Collapse
|
6
|
Vural A, Lanier SM. Intersection of two key signal integrators in the cell: activator of G-protein signaling 3 and dishevelled-2. J Cell Sci 2020; 133:jcs247908. [PMID: 32737219 PMCID: PMC7490517 DOI: 10.1242/jcs.247908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/23/2020] [Indexed: 10/23/2022] Open
Abstract
Activator of G-protein signaling 3 (AGS3, encoded by GPSM1) was discovered as a one of several receptor-independent activators of G-protein signaling, which are postulated to provide a platform for divergence between canonical and noncanonical G-protein signaling pathways. Similarly, Dishevelled (DVL) proteins serve as a point of divergence for β-catenin-dependent and -independent signaling pathways involving the family of Frizzled (FZD) ligands and cell-surface WNT receptors. We recently discovered the apparent regulated localization of dishevelled-2 (DVL2) and AGS3 to distinct cellular puncta, suggesting that the two proteins interact as part of various cell signaling systems. To address this hypothesis, we asked the following questions: (1) do AGS3 signaling pathways influence the activation of β-catenin (CTNNB1)-regulated transcription through the WNT-Frizzled-Dishevelled axis, and (2) is the AGS3 and DVL2 interaction regulated? The interaction of AGS3 and DVL2 was regulated by protein phosphorylation, subcellular distribution, and a cell-surface G-protein-coupled receptor. These data, and the commonality of functional system impacts observed for AGS3 and DVL2, suggest that the AGS3-DVL2 complex presents an unexpected path for functional integration within the cell.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Ali Vural
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Stephen M Lanier
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
7
|
Griffith CM, Huang SA, Cho C, Khare TM, Rich M, Lee GH, Ligler FS, Diekman BO, Polacheck WJ. Microfluidics for the study of mechanotransduction. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2020; 53:224004. [PMID: 33840837 PMCID: PMC8034607 DOI: 10.1088/1361-6463/ab78d4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Mechanical forces regulate a diverse set of biological processes at cellular, tissue, and organismal length scales. Investigating the cellular and molecular mechanisms that underlie the conversion of mechanical forces to biological responses is challenged by limitations of traditional animal models and in vitro cell culture, including poor control over applied force and highly artificial cell culture environments. Recent advances in fabrication methods and material processing have enabled the development of microfluidic platforms that provide precise control over the mechanical microenvironment of cultured cells. These devices and systems have proven to be powerful for uncovering and defining mechanisms of mechanotransduction. In this review, we first give an overview of the main mechanotransduction pathways that function at sites of cell adhesion, many of which have been investigated with microfluidics. We then discuss how distinct microfluidic fabrication methods can be harnessed to gain biological insight, with description of both monolithic and replica molding approaches. Finally, we present examples of how microfluidics can be used to apply both solid forces (substrate mechanics, strain, and compression) and fluid forces (luminal, interstitial) to cells. Throughout the review, we emphasize the advantages and disadvantages of different fabrication methods and applications of force in order to provide perspective to investigators looking to apply forces to cells in their own research.
Collapse
Affiliation(s)
- Christian M Griffith
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC
| | - Stephanie A Huang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC
| | - Crescentia Cho
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC
| | - Tanmay M Khare
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC
| | - Matthew Rich
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| | - Gi-Hun Lee
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC
| | - Frances S Ligler
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC
| | - Brian O Diekman
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| | - William J Polacheck
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC
- McAllister Heart Institute, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
- Cancer Cell Biology Program, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| |
Collapse
|
8
|
Richter JF, Hildner M, Schmauder R, Turner JR, Schumann M, Reiche J. Occludin knockdown is not sufficient to induce transepithelial macromolecule passage. Tissue Barriers 2019; 7:1612661. [PMID: 31161924 DOI: 10.1080/21688370.2019.1608759] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Occludin, a tight junction protein, has been reported to regulate barrier function - particularly the leak pathway for larger solutes - in epithelia. Therefore, we aimed to precisely define its role in macromolecule passage at single cell-cell junctions. A combination of varying occludin expression by transient and stable knockdown including systematic seeding strategies was employed to achieve a broad and defined pattern of variance in occludin expression over epithelia. This variance model enabled us to examine occludin function in the leak pathway using global and local analysis, i.e. to analyze macromolecule flux across epithelia and macromolecule passage at single-cell level. Macromolecular flux was found not to correlate with occludin expression in intestinal epithelial cells. In fact, by spatially resolving macromolecular permeation sites using a recently developed method we uncovered leaky cell junctions at the edge of Transwells resulting in increased passage. This demonstrates that rare leaks can determine net flux of macromolecules across epithelia while the vast majority of cellular junctions do not contribute significantly. Hence, concomitant local analysis of macromolecule passage across epithelial barriers is indispensable for interpretation of global flux data. By combining this new approach with cell culture models of the leak pathway, we can present evidence that lack of occludin is not sufficient to stimulate the epithelial leak pathway.
Collapse
Affiliation(s)
- Jan F Richter
- a Institute of Anatomy II , Jena University Hospital , Jena , Germany
| | - Markus Hildner
- a Institute of Anatomy II , Jena University Hospital , Jena , Germany
| | - Ralf Schmauder
- b Institute of Physiology II , Jena University Hospital , Jena , Germany
| | - Jerrold R Turner
- c Department of Pathology , Brigham and Women's Hospital and Harvard Medical School , Boston , MA , USA
| | - Michael Schumann
- d Dept. of Gastroenterology, Infectious Diseases and Rheumatology , Campus Benjamin Franklin, Charité - University medicine Berlin , Berlin , Germany
| | - Juliane Reiche
- e Institute of Biochemistry II , Jena University Hospital , Jena , Germany
| |
Collapse
|