1
|
Listian SA, Mazur AC, Kol M, Ufelmann E, Eising S, Fröhlich F, Walter S, Holthuis JCM, Barisch C. Complex sphingolipid profiling and identification of an inositol-phosphorylceramide synthase in Dictyostelium discoideum. iScience 2024; 27:110609. [PMID: 39286488 PMCID: PMC11402645 DOI: 10.1016/j.isci.2024.110609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/12/2024] [Accepted: 07/26/2024] [Indexed: 09/19/2024] Open
Abstract
Dictyostelium discoideum is a professional phagocyte frequently used to study cellular processes underlying the recognition, engulfment, and infection course of microbial pathogens. Sphingolipids are abundant components of the plasma membrane that bind cholesterol, control membrane properties, participate in signal transmission, and serve as adhesion molecules in recognition processes relevant to immunity and infection. By combining lipidomics with a bioinformatics-based cloning strategy, we show here that D. discoideum produces phosphoinositol-containing sphingolipids with predominantly phytoceramide backbones. Cell-free expression of candidate inositol-phosphorylceramide (IPC) synthases from D. discoideum enabled identification of an enzyme that selectively catalyzes the transfer of phosphoinositol from phosphatidylinositol onto ceramide. The IPC synthase, DdIPCS1, shares multiple sequence motifs with yeast IPC and human sphingomyelin synthases and localizes to the Golgi apparatus as well as the contractile vacuole of D. discoideum. These findings open up important opportunities for exploring a role of sphingolipids in phagocytosis and infection across major evolutionary boundaries.
Collapse
Affiliation(s)
- Stevanus A Listian
- Division of Molecular Infection Biology, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Anna-Carina Mazur
- Division of Molecular Infection Biology, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Division of Host-Microbe Interactome, Research Center Borstel (FZB) - Leibniz Lung Center, Borstel, Germany
- Department of Biology, University of Hamburg, Hamburg, Germany
| | - Matthijs Kol
- Division of Molecular Cell Biology, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
- Center of Cellular Nanoanalytics (CellNanOs), University of Osnabrück, Osnabrück, Germany
| | - Edwin Ufelmann
- Division of Molecular Infection Biology, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Sebastian Eising
- Division of Molecular Membrane Biology, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Florian Fröhlich
- Division of Molecular Membrane Biology, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
- Center of Cellular Nanoanalytics (CellNanOs), University of Osnabrück, Osnabrück, Germany
| | - Stefan Walter
- Center of Cellular Nanoanalytics (CellNanOs), University of Osnabrück, Osnabrück, Germany
| | - Joost C M Holthuis
- Division of Molecular Cell Biology, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
- Center of Cellular Nanoanalytics (CellNanOs), University of Osnabrück, Osnabrück, Germany
| | - Caroline Barisch
- Division of Molecular Infection Biology, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
- Center of Cellular Nanoanalytics (CellNanOs), University of Osnabrück, Osnabrück, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Division of Host-Microbe Interactome, Research Center Borstel (FZB) - Leibniz Lung Center, Borstel, Germany
- Department of Biology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
2
|
João MED, Tavanti AG, de Vargas AN, Kmetzsch L, Staats CC. The influence of amoeba metal homeostasis on antifungal activity against Cryptococcus gattii. Genet Mol Biol 2024; 47:e20230320. [PMID: 39093931 PMCID: PMC11290705 DOI: 10.1590/1678-4685-gmb-2023-0320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 06/05/2024] [Indexed: 08/04/2024] Open
Abstract
Free-living amoebas are natural predators of fungi, including human pathogens of the Cryptococcus genus. To survive and proliferate inside phagocytes, cryptococcal cells must acquire several nutrients. Zinc is fundamental for all life forms and develops a crucial role in the virulence of fungal pathogens, phagocytes reduce the availability of this metal to reduce the development of infection. The Acanthamoeba castellanii ACA1_271600 gene codes a metal transporter that is possibly associated with such antifungal strategy. Here, we evaluated the impact of A. castellanii metal homeostasis on C. gattii survival. Gene silencing of ACA1_271600 was performed and the interaction outcome of amoeba cells with both WT and zinc homeostasis-impaired mutant cryptococcal cells was evaluated. Decreased levels of ACA1_271600 in silenced amoeba cells led to higher proliferation of such cryptococcal strains. This effect was more pronounced in the zip1 mutant of C. gattii, suggesting that ACA1_271600 gene product modulates metal availability in Cryptococcus-infected amoebae. In addition, a systems biology analysis allowed us to infer that ACA1_271600 may also be involved in other biological processes that could compromise amoebae activity over cryptococcal cells. These results support the hypothesis that A. castellanii can apply nutritional immunity to hamper cryptococcal survival.
Collapse
Affiliation(s)
- Maria Eduarda Deluca João
- Universidade Federal do Rio Grande do Sul (UFRGS), Centro de
Biotecnologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Porto
Alegre, RS, Brazil
| | - Andrea Gomes Tavanti
- Universidade Federal do Rio Grande do Sul (UFRGS), Centro de
Biotecnologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Porto
Alegre, RS, Brazil
| | - Alexandre Nascimento de Vargas
- Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de
Biociências, Departamento de Biologia Molecular e Biotecnologia, Porto Alegre, RS,
Brazil
| | - Livia Kmetzsch
- Universidade Federal do Rio Grande do Sul (UFRGS), Centro de
Biotecnologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Porto
Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de
Biociências, Departamento de Biologia Molecular e Biotecnologia, Porto Alegre, RS,
Brazil
| | - Charley Christian Staats
- Universidade Federal do Rio Grande do Sul (UFRGS), Centro de
Biotecnologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Porto
Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de
Biociências, Departamento de Biologia Molecular e Biotecnologia, Porto Alegre, RS,
Brazil
| |
Collapse
|
3
|
Guallar-Garrido S, Soldati T. Exploring host-pathogen interactions in the Dictyostelium discoideum-Mycobacterium marinum infection model of tuberculosis. Dis Model Mech 2024; 17:dmm050698. [PMID: 39037280 PMCID: PMC11552500 DOI: 10.1242/dmm.050698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024] Open
Abstract
Mycobacterium tuberculosis is a pathogenic mycobacterium that causes tuberculosis. Tuberculosis is a significant global health concern that poses numerous clinical challenges, particularly in terms of finding effective treatments for patients. Throughout evolution, host immune cells have developed cell-autonomous defence strategies to restrain and eliminate mycobacteria. Concurrently, mycobacteria have evolved an array of virulence factors to counteract these host defences, resulting in a dynamic interaction between host and pathogen. Here, we review recent findings, including those arising from the use of the amoeba Dictyostelium discoideum as a model to investigate key mycobacterial infection pathways. D. discoideum serves as a scalable and genetically tractable model for human phagocytes, providing valuable insights into the intricate mechanisms of host-pathogen interactions. We also highlight certain similarities between M. tuberculosis and Mycobacterium marinum, and the use of M. marinum to more safely investigate mycobacteria in D. discoideum.
Collapse
Affiliation(s)
- Sandra Guallar-Garrido
- Department of Biochemistry, Faculty of Science, University of Geneva, 30 quai Ernest-Ansermet, Science II, 1211 Geneva-4, Switzerland
| | - Thierry Soldati
- Department of Biochemistry, Faculty of Science, University of Geneva, 30 quai Ernest-Ansermet, Science II, 1211 Geneva-4, Switzerland
| |
Collapse
|
4
|
Lefrançois LH, Nitschke J, Wu H, Panis G, Prados J, Butler RE, Mendum TA, Hanna N, Stewart GR, Soldati T. Temporal genome-wide fitness analysis of Mycobacterium marinum during infection reveals the genetic requirement for virulence and survival in amoebae and microglial cells. mSystems 2024; 9:e0132623. [PMID: 38270456 PMCID: PMC10878075 DOI: 10.1128/msystems.01326-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024] Open
Abstract
Tuberculosis remains the most pervasive infectious disease and the recent emergence of drug-resistant strains emphasizes the need for more efficient drug treatments. A key feature of pathogenesis, conserved between the human pathogen Mycobacterium tuberculosis and the model pathogen Mycobacterium marinum, is the metabolic switch to lipid catabolism and altered expression of virulence genes at different stages of infection. This study aims to identify genes involved in sustaining viable intracellular infection. We applied transposon sequencing (Tn-Seq) to M. marinum, an unbiased genome-wide strategy combining saturation insertional mutagenesis and high-throughput sequencing. This approach allowed us to identify the localization and relative abundance of insertions in pools of transposon mutants. Gene essentiality and fitness cost of mutations were quantitatively compared between in vitro growth and different stages of infection in two evolutionary distinct phagocytes, the amoeba Dictyostelium discoideum and the murine BV2 microglial cells. In the M. marinum genome, 57% of TA sites were disrupted and 568 genes (10.2%) were essential, which is comparable to previous Tn-Seq studies on M. tuberculosis and M. bovis. Major pathways involved in the survival of M. marinum during infection of D. discoideum are related to DNA damage repair, lipid and vitamin metabolism, the type VII secretion system (T7SS) ESX-1, and the Mce1 lipid transport system. These pathways, except Mce1 and some glycolytic enzymes, were similarly affected in BV2 cells. These differences suggest subtly distinct nutrient availability or requirement in different host cells despite the known predominant use of lipids in both amoeba and microglial cells.IMPORTANCEThe emergence of biochemically and genetically tractable host model organisms for infection studies holds the promise to accelerate the pace of discoveries related to the evolution of innate immunity and the dissection of conserved mechanisms of cell-autonomous defenses. Here, we have used the genetically and biochemically tractable infection model system Dictyostelium discoideum/Mycobacterium marinum to apply a genome-wide transposon-sequencing experimental strategy to reveal comprehensively which mutations confer a fitness advantage or disadvantage during infection and compare these to a similar experiment performed using the murine microglial BV2 cells as host for M. marinum to identify conservation of virulence pathways between hosts.
Collapse
Affiliation(s)
- Louise H. Lefrançois
- Department of Biochemistry, Faculty of Science, University of Geneva, Science II, Geneva, Switzerland
| | - Jahn Nitschke
- Department of Biochemistry, Faculty of Science, University of Geneva, Science II, Geneva, Switzerland
| | - Huihai Wu
- Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Gaël Panis
- Department of Microbiology and Molecular Medicine, Faculty of Medicine/CMU, University of Geneva, Institute of Genetics and Genomics in Geneva (iGE3), Genève, Switzerland
| | - Julien Prados
- Department of Microbiology and Molecular Medicine, Faculty of Medicine/CMU, University of Geneva, Institute of Genetics and Genomics in Geneva (iGE3), Genève, Switzerland
- Bioinformatics Support Platform for data analysis, Geneva University, Medicine Faculty, Geneva, Switzerland
| | - Rachel E. Butler
- Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Tom A. Mendum
- Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Nabil Hanna
- Department of Biochemistry, Faculty of Science, University of Geneva, Science II, Geneva, Switzerland
| | - Graham R. Stewart
- Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Thierry Soldati
- Department of Biochemistry, Faculty of Science, University of Geneva, Science II, Geneva, Switzerland
| |
Collapse
|
5
|
Liu Y, Li X, Liu S, Du J, Xu J, Liu Y, Guo L. The changes and potential effects of zinc homeostasis in periodontitis microenvironment. Oral Dis 2023; 29:3063-3077. [PMID: 35996971 DOI: 10.1111/odi.14354] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/28/2022] [Accepted: 08/14/2022] [Indexed: 11/29/2022]
Abstract
Zinc is a very important and ubiquitous element, which is present in oral environment, daily diet, oral health products, dental restorative materials, and so on. However, there is a lack of attention to the role of both extracellular or intracellular zinc in the progression of periodontitis and periodontal regeneration. This review summarizes the characteristics of immunological microenvironment and host cells function in several key stages of periodontitis progression, and explores the regulatory effect of zinc during this process. We find multiple evidence indicate that zinc may be involved and play a key role in the stages of immune defense, inflammatory response and bone remodeling. Zinc supplementation in an appropriate dose range or regulation of zinc transport proteins can promote periodontal regeneration by either enhancing immune defense or up-regulating local cells proliferation and differentiation functions. Therefore, zinc homeostasis is essential in periodontal remodeling and regeneration. More attention is suggested to be focused on zinc homeostasis regulation and consider it as a potential strategy in the studies on periodontitis treatment, periodontal-guided tissue regeneration, implant material transformation, and so on.
Collapse
Affiliation(s)
- Yitong Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaoyan Li
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Siyan Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lijia Guo
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Anand A, Mazur AC, Rosell-Arevalo P, Franzkoch R, Breitsprecher L, Listian SA, Hüttel SV, Müller D, Schäfer DG, Vormittag S, Hilbi H, Maniak M, Gutierrez MG, Barisch C. ER-dependent membrane repair of mycobacteria-induced vacuole damage. mBio 2023; 14:e0094323. [PMID: 37676004 PMCID: PMC10653851 DOI: 10.1128/mbio.00943-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/13/2023] [Indexed: 09/08/2023] Open
Abstract
IMPORTANCE Tuberculosis still remains a global burden and is one of the top infectious diseases from a single pathogen. Mycobacterium tuberculosis, the causative agent, has perfected many ways to replicate and persist within its host. While mycobacteria induce vacuole damage to evade the toxic environment and eventually escape into the cytosol, the host recruits repair machineries to restore the MCV membrane. However, how lipids are delivered for membrane repair is poorly understood. Using advanced fluorescence imaging and volumetric correlative approaches, we demonstrate that this involves the recruitment of the endoplasmic reticulum (ER)-Golgi lipid transfer protein OSBP8 in the Dictyostelium discoideum/Mycobacterium marinum system. Strikingly, depletion of OSBP8 affects lysosomal function accelerating mycobacterial growth. This indicates that an ER-dependent repair pathway constitutes a host defense mechanism against intracellular pathogens such as M. tuberculosis.
Collapse
Affiliation(s)
- Aby Anand
- Division of Molecular Infection Biology, Department of Biology & Center of Cellular Nanoanalytics, University of Osnabrück, Osnabrück, Germany
| | - Anna-Carina Mazur
- Division of Molecular Infection Biology, Department of Biology & Center of Cellular Nanoanalytics, University of Osnabrück, Osnabrück, Germany
| | - Patricia Rosell-Arevalo
- Host–Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Rico Franzkoch
- Integrated Bioimaging Facility, Center of Cellular Nanoanalytics, University of Osnabrück, Osnabrück, Germany
| | - Leonhard Breitsprecher
- Integrated Bioimaging Facility, Center of Cellular Nanoanalytics, University of Osnabrück, Osnabrück, Germany
| | - Stevanus A. Listian
- Division of Molecular Infection Biology, Department of Biology & Center of Cellular Nanoanalytics, University of Osnabrück, Osnabrück, Germany
| | - Sylvana V. Hüttel
- Division of Molecular Infection Biology, Department of Biology & Center of Cellular Nanoanalytics, University of Osnabrück, Osnabrück, Germany
| | - Danica Müller
- Division of Molecular Infection Biology, Department of Biology & Center of Cellular Nanoanalytics, University of Osnabrück, Osnabrück, Germany
| | - Deise G. Schäfer
- Division of Molecular Infection Biology, Department of Biology & Center of Cellular Nanoanalytics, University of Osnabrück, Osnabrück, Germany
| | - Simone Vormittag
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Markus Maniak
- Department of Cell Biology, University of Kassel, Kassel, Germany
| | - Maximiliano G. Gutierrez
- Host–Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Caroline Barisch
- Division of Molecular Infection Biology, Department of Biology & Center of Cellular Nanoanalytics, University of Osnabrück, Osnabrück, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Division of Host-Microbe Interactome, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| |
Collapse
|
7
|
Li C, Fu Y, Tian Y, Zang Z, Gentekaki E, Wang Z, Warren A, Li L. Comparative transcriptome and antioxidant biomarker response reveal molecular mechanisms to cope with zinc ion exposure in the unicellular eukaryote Paramecium. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131364. [PMID: 37080029 DOI: 10.1016/j.jhazmat.2023.131364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/20/2023] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
The development of industry has resulted in excessive environmental zinc exposure which has caused various health problems in a wide range of organisms including humans. The mechanisms by which aquatic microorganisms respond to environmental zinc stress are still poorly understood. Paramecium, a well-known ciliated protozoan and a popular cell model in heavy metal stress response studies, was chosen as the test unicellular eukaryotic organism in the present research. In this work, Paramecium cf. multimicronucleatum cells were exposed in different levels of zinc ion (0.1 and 1.0 mg/L) for different periods of exposure (1 and 4 days), and then analyzed population growth, transcriptomic profiles and physiological changes in antioxidant enzymes to explore the toxicity and detoxification mechanisms during the zinc stress response. Results demonstrated that long-term zinc exposure could have restrained population growth in ciliates, however, the response mechanism to zinc exposure in ciliates is likely to show a dosage-dependent and time-dependent manner. The differentially expressed genes (DEGs) were identified the characters by high-throughput sequencing, which remarkably enriched in the phagosome, indicating that the phagosome pathway might mediate the uptake of zinc, while the pathways of ABC transporters and Na+/K+-transporting ATPase contributed to the efflux transport of excessive zinc ions and the maintenance of osmotic balance, respectively. The accumulation of zinc ions triggered a series of adverse effects, including damage to DNA and proteins, disturbance of mitochondrial function, and oxidative stress. In addition, we found that gene expression changed significantly for metal ion binding, energy metabolism, and oxidation-reduction processes. RT-qPCR of ten genes involved in important biological functions further validated the results of the transcriptome analysis. We also continuously monitored changes in activity of four antioxidant enzymes (SOD, CAT, POD and GSH-PX), all of which peaked on day 4 in cells subjected to zinc stress. Collectively, our results indicate that excessive environmental zinc exposure initially causes damage to cellular structure and function and then initiates detoxification mechanisms to maintain homeostasis in P. cf. multimicronucleatum cells.
Collapse
Affiliation(s)
- Congjun Li
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, China
| | - Yu Fu
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, China
| | - Yingxuan Tian
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, China
| | - Zihan Zang
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, China
| | - Eleni Gentekaki
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Zhenyuan Wang
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, China
| | - Alan Warren
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
| | - Lifang Li
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, China.
| |
Collapse
|
8
|
Lv Z, Xu M, Liu Y, Rønn R, Rensing C, Liu S, Gao S, Liao H, Liu YR, Chen W, Zhu YG, Huang Q, Hao X. Phagotrophic Protists Modulate Copper Resistance of the Bacterial Community in Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3590-3601. [PMID: 36811608 DOI: 10.1021/acs.est.2c07136] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Protist predation is a crucial biotic driver modulating bacterial populations and functional traits. Previous studies using pure cultures have demonstrated that bacteria with copper (Cu) resistance exhibited fitness advantages over Cu-sensitive bacteria under the pressure of protist predation. However, the impact of diverse natural communities of protist grazers on bacterial Cu resistance in natural environments remains unknown. Here, we characterized the communities of phagotrophic protists in long-term Cu-contaminated soils and deciphered their potential ecological impacts on bacterial Cu resistance. Long-term field Cu pollution increased the relative abundances of most of the phagotrophic lineages in Cercozoa and Amoebozoa but reduced the relative abundance of Ciliophora. After accounting for soil properties and Cu pollution, phagotrophs were consistently identified as the most important predictor of the Cu-resistant (CuR) bacterial community. Phagotrophs positively contributed to the abundance of a Cu resistance gene (copA) through influencing the cumulative relative abundance of Cu-resistant and -sensitive ecological clusters. Microcosm experiments further confirmed the promotion effect of protist predation on bacterial Cu resistance. Our results indicate that the selection by protist predation can have a strong impact on the CuR bacterial community, which broadens our understanding of the ecological function of soil phagotrophic protists.
Collapse
Affiliation(s)
- Zhenguang Lv
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Min Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Regin Rønn
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Song Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shenghan Gao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Liao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu-Rong Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuli Hao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
9
|
Ducret V, Gonzalez D, Perron K. Zinc homeostasis in Pseudomonas. Biometals 2022:10.1007/s10534-022-00475-5. [PMID: 36472780 PMCID: PMC10393844 DOI: 10.1007/s10534-022-00475-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
AbstractIn the genus Pseudomonas, zinc homeostasis is mediated by a complete set of import and export systems, whose expression is precisely controlled by three transcriptional regulators: Zur, CzcR and CadR. In this review, we describe in detail our current knowledge of these systems, their regulation, and the biological significance of zinc homeostasis, taking Pseudomonas aeruginosa as our paradigm. Moreover, significant parts of this overview are dedicated to highlight interactions and cross-regulations between zinc and copper import/export systems, and to shed light, through a review of the literature and comparative genomics, on differences in gene complement and function across the whole Pseudomonas genus. The impact and importance of zinc homeostasis in Pseudomonas and beyond will be discussed throughout this review.
Graphical abstract
Collapse
|
10
|
The Important Role of Metal Ions for Survival of Francisella in Water within Amoeba Environment. BIOMED RESEARCH INTERNATIONAL 2021. [DOI: 10.1155/2021/6673642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Francisella tularensis is a gram-negative facultative intracellular bacterium that resists harsh environments. Several outbreaks of tularemia are linked to the consumption and contact with spring water. The number of F. tularensis in some waters is high, while in others, this bacterium does not survive. Except organic compounds, metals could be important for the survival of F. tularensis in water. Some Francisella strains showed the association with amoeba, which may act as the environmental reservoir. This study was aimed at following the role of metal ions and/or amoeba in the existence and replication of F. novicida in spring waters by growth kinetics, acquisition of metals, and ultrastructural analyses of bacteria. The bacteria showed a longer survival in water with higher initial concentrations of Mn and Zn. Although Mn and Zn were necessary for the survival of F. novicida, the results also showed that the bacterium does not grow in water with high levels of Zn. In contrast, high levels of Mn did not have such a negative effect on the survival of this bacterium in water. In addition, while F. novicida benefits presence of amoeba in spring water, the number of amoebae is decreasing in a coculture model with F. novicida.
Collapse
|
11
|
Abstract
The study of metabolic changes associated with host-pathogen interactions have largely focused on the strategies that microbes use to subvert host metabolism to support their own proliferation. However, recent reports demonstrate that changes in host cell metabolism can also be detrimental to pathogens and restrict their growth. In this Review, I present a framework to consider how the host cell exploits the multifaceted roles of metabolites to defend against microbes. I also highlight how the rewiring of metabolic processes can strengthen cellular barriers to microbial invasion, regulate microbial virulence programs and factors, limit microbial access to nutrient sources and generate toxic environments for microbes. Collectively, the studies described here support a critical role for the rewiring of cellular metabolism in the defense against microbes. Further study of host-pathogen interactions from this framework has the potential to reveal novel aspects of host defense and metabolic control, and may inform how human metabolism impacts the progression of infectious disease.
Collapse
Affiliation(s)
- Lena Pernas
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany .,Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
12
|
Zn 2+ Intoxication of Mycobacterium marinum during Dictyostelium discoideum Infection Is Counteracted by Induction of the Pathogen Zn 2+ Exporter CtpC. mBio 2021; 12:mBio.01313-20. [PMID: 33531393 PMCID: PMC7858047 DOI: 10.1128/mbio.01313-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Microelements are essential for the function of the innate immune system. A deficiency in zinc or copper results in an increased susceptibility to bacterial infections. Macrophages use diverse strategies to restrict intracellular pathogens, including either depriving the bacteria of (micro)nutrients such as transition metals or intoxicating them via metal accumulation. Little is known about the chemical warfare between Mycobacterium marinum, a close relative of Mycobacterium tuberculosis (Mtb), and its hosts. We use the professional phagocyte Dictyostelium discoideum to investigate the role of Zn2+ during M. marinum infection. We show that M. marinum senses toxic levels of Zn2+ and responds by upregulating one of its isoforms of the Zn2+ efflux transporter CtpC. Deletion of ctpC (MMAR_1271) leads to growth inhibition in broth supplemented with Zn2+ as well as reduced intracellular growth. Both phenotypes were fully rescued by constitutive ectopic expression of the Mtb CtpC orthologue demonstrating that MMAR_1271 is the functional CtpC Zn2+ efflux transporter in M. marinum. Infection leads to the accumulation of Zn2+ inside the Mycobacterium-containing vacuole (MCV), achieved by the induction and recruitment of the D. discoideum Zn2+ efflux pumps ZntA and ZntB. In cells lacking ZntA, there is further attenuation of M. marinum growth, presumably due to a compensatory efflux of Zn2+ into the MCV, carried out by ZntB, the main Zn2+ transporter in endosomes and phagosomes. Counterintuitively, bacterial growth is also impaired in zntB KO cells, in which MCVs appear to accumulate less Zn2+ than in wild-type cells, suggesting restriction by other Zn2+-mediated mechanisms. Absence of CtpC further epistatically attenuates the intracellular proliferation of M. marinum in zntA and zntB KO cells, confirming that mycobacteria face noxious levels of Zn2+.
Collapse
|
13
|
von Pein JB, Stocks CJ, Schembri MA, Kapetanovic R, Sweet MJ. An alloy of zinc and innate immunity: Galvanising host defence against infection. Cell Microbiol 2020; 23:e13268. [PMID: 32975847 DOI: 10.1111/cmi.13268] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 12/16/2022]
Abstract
Innate immune cells such as macrophages and neutrophils initiate protective inflammatory responses and engage antimicrobial responses to provide frontline defence against invading pathogens. These cells can both restrict the availability of certain transition metals that are essential for microbial growth and direct toxic concentrations of metals towards pathogens as antimicrobial responses. Zinc is important for the structure and function of many proteins, however excess zinc can be cytotoxic. In recent years, several studies have revealed that innate immune cells can deliver toxic concentrations of zinc to intracellular pathogens. In this review, we discuss the importance of zinc status during infectious disease and the evidence for zinc intoxication as an innate immune antimicrobial response. Evidence for pathogen subversion of this response is also examined. The likely mechanisms, including the involvement of specific zinc transporters that facilitate delivery of zinc by innate immune cells for metal ion poisoning of pathogens are also considered. Precise mechanisms by which excess levels of zinc can be toxic to microorganisms are then discussed, particularly in the context of synergy with other antimicrobial responses. Finally, we highlight key unanswered questions in this emerging field, which may offer new opportunities for exploiting innate immune responses for anti-infective development.
Collapse
Affiliation(s)
- Jessica B von Pein
- Institute for Molecular Bioscience (IMB), The University of Queensland, St. Lucia, Queensland, Australia.,IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Claudia J Stocks
- Institute for Molecular Bioscience (IMB), The University of Queensland, St. Lucia, Queensland, Australia.,IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Mark A Schembri
- Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Ronan Kapetanovic
- Institute for Molecular Bioscience (IMB), The University of Queensland, St. Lucia, Queensland, Australia.,IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience (IMB), The University of Queensland, St. Lucia, Queensland, Australia.,IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| |
Collapse
|
14
|
Bosmani C, Leuba F, Hanna N, Bach F, Burdet F, Pagni M, Hagedorn M, Soldati T. Vacuolins and myosin VII are required for phagocytic uptake and phagosomal membrane recycling in Dictyostelium discoideum. J Cell Sci 2020; 133:jcs242974. [PMID: 32482795 DOI: 10.1242/jcs.242974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/18/2020] [Indexed: 12/17/2022] Open
Abstract
Flotillins are lipid raft residents involved in membrane trafficking and recycling of plasma membrane proteins. Dictyostelium discoideum uses phagocytosis to kill, digest and feed on bacteria. It possesses three flotillin-like vacuolins that are strongly associated with membranes and that gradually accumulate on maturing phagosomes. Absence of vacuolins reduced adhesion and particle recognition resulting in a drastic reduction in the uptake of various types of particles. This was caused by a block in the recycling of plasma membrane components and the absence of their specific cortex-associated proteins. In addition, absence of vacuolins also impaired phagolysosome biogenesis, without significantly impacting killing and digestion of a range of bacteria. Strikingly, both absence and overexpression of vacuolins induced a strong downregulation of myosin VII (also known as MyoI) expression, as well as its binding partner talin A. Episomal expression of myosin VII fully rescued defects in uptake and adhesion but not in phagosome maturation. These results suggest a dual role for vacuolins: a novel mechanism involving membrane microdomains and myosin VII-talin A in clustering phagosomal receptors and adhesion molecules at the plasma membrane, and a role in phagolysosomal biogenesis.
Collapse
Affiliation(s)
- Cristina Bosmani
- Départment de Biochimie, Faculté des Sciences, Université de Genève, CH-1205 Geneva, Switzerland
| | - Florence Leuba
- Départment de Biochimie, Faculté des Sciences, Université de Genève, CH-1205 Geneva, Switzerland
| | - Nabil Hanna
- Départment de Biochimie, Faculté des Sciences, Université de Genève, CH-1205 Geneva, Switzerland
| | - Frauke Bach
- Section Parasitology, Bernhard Nocht Institute for Tropical Medicine, D-20359 Hamburg, Germany
| | - Frédéric Burdet
- Vital-IT, Swiss Institute of Bioinformatics, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Marco Pagni
- Vital-IT, Swiss Institute of Bioinformatics, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Monica Hagedorn
- Section Parasitology, Bernhard Nocht Institute for Tropical Medicine, D-20359 Hamburg, Germany
| | - Thierry Soldati
- Départment de Biochimie, Faculté des Sciences, Université de Genève, CH-1205 Geneva, Switzerland
| |
Collapse
|
15
|
Neyrolles O. Antimicrobial zinc toxicity in Mϕs: ZnT1 pays the toll. J Leukoc Biol 2020; 109:281-282. [PMID: 32531830 DOI: 10.1002/jlb.4ce0520-256r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/15/2020] [Accepted: 05/21/2020] [Indexed: 11/05/2022] Open
Abstract
Transition metals, including zinc, are essential to all living organisms. They are also toxic in high amounts, and their intracellular concentration must be tightly regulated. In this edition of JLB, Stocks et al. report that the zinc transporter, ZnT1 (SLC30A1) is induced by TLR4 activation in Mϕs, in which it contributes to zinc accumulation in Escherichia coli-containing phagosomes, resulting in increased bacterial clearance.
Collapse
Affiliation(s)
- Olivier Neyrolles
- Institut de Pharmacologie et de Biologie Structurale, CNRS, UPS, Université de Toulouse, Toulouse, France
| |
Collapse
|
16
|
Stocks CJ, von Pein JB, Curson JEB, Rae J, Phan MD, Foo D, Bokil NJ, Kambe T, Peters KM, Parton RG, Schembri MA, Kapetanovic R, Sweet MJ. Frontline Science: LPS-inducible SLC30A1 drives human macrophage-mediated zinc toxicity against intracellular Escherichia coli. J Leukoc Biol 2020; 109:287-297. [PMID: 32441444 PMCID: PMC7891337 DOI: 10.1002/jlb.2hi0420-160r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/22/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
TLR-inducible zinc toxicity is an antimicrobial mechanism utilized by macrophages, however knowledge of molecular mechanisms mediating this response is limited. Here, we show that E. coli exposed to zinc stress within primary human macrophages reside in membrane-bound vesicular compartments. Since SLC30A zinc exporters can deliver zinc into the lumen of vesicles, we examined LPS-regulated mRNA expression of Slc30a/SLC30A family members in primary mouse and human macrophages. A number of these transporters were dynamically regulated in both cell populations. In human monocyte-derived macrophages, LPS strongly up-regulated SLC30A1 mRNA and protein expression. In contrast, SLC30A1 was not LPS-inducible in macrophage-like PMA-differentiated THP-1 cells. We therefore ectopically expressed SLC30A1 in these cells, finding that this was sufficient to promote zinc-containing vesicle formation. The response was similar to that observed following LPS stimulation. Ectopically expressed SLC30A1 localized to both the plasma membrane and intracellular zinc-containing vesicles within LPS-stimulated THP-1 cells. Inducible overexpression of SLC30A1 in THP-1 cells infected with the Escherichia coli K-12 strain MG1655 augmented the zinc stress response of intracellular bacteria and promoted clearance. Furthermore, in THP-1 cells infected with an MG1655 zinc stress reporter strain, all bacteria contained within SLC30A1-positive compartments were subjected to zinc stress. Thus, SLC30A1 marks zinc-containing compartments associated with TLR-inducible zinc toxicity in human macrophages, and its ectopic over-expression is sufficient to initiate this antimicrobial pathway in these cells. Finally, SLC30A1 silencing did not compromise E. coli clearance by primary human macrophages, suggesting that other zinc exporters may also contribute to the zinc toxicity response.
Collapse
Affiliation(s)
- Claudia J Stocks
- Institute for Molecular Bioscience (IMB), The University of Queensland, St. Lucia, Queensland, Australia.,IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Jessica B von Pein
- Institute for Molecular Bioscience (IMB), The University of Queensland, St. Lucia, Queensland, Australia.,IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - James E B Curson
- Institute for Molecular Bioscience (IMB), The University of Queensland, St. Lucia, Queensland, Australia.,IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - James Rae
- Institute for Molecular Bioscience (IMB), The University of Queensland, St. Lucia, Queensland, Australia
| | - Minh-Duy Phan
- Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Darren Foo
- Institute for Molecular Bioscience (IMB), The University of Queensland, St. Lucia, Queensland, Australia.,IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Nilesh J Bokil
- Institute for Molecular Bioscience (IMB), The University of Queensland, St. Lucia, Queensland, Australia.,IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kate M Peters
- Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience (IMB), The University of Queensland, St. Lucia, Queensland, Australia.,Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, Queensland, Australia
| | - Mark A Schembri
- Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Ronan Kapetanovic
- Institute for Molecular Bioscience (IMB), The University of Queensland, St. Lucia, Queensland, Australia.,IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience (IMB), The University of Queensland, St. Lucia, Queensland, Australia.,IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| |
Collapse
|
17
|
Uropathogenic Escherichia coli employs both evasion and resistance to subvert innate immune-mediated zinc toxicity for dissemination. Proc Natl Acad Sci U S A 2019; 116:6341-6350. [PMID: 30846555 PMCID: PMC6442554 DOI: 10.1073/pnas.1820870116] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is responsible for most urinary tract infections and is also a frequent cause of sepsis, thus necessitating an understanding of UPEC-mediated subversion of innate immunity. The role of zinc in the innate immune response against UPEC infection, and whether this pathogen counters this response, has not been examined. Here we demonstrate, both in vitro and in vivo, that UPEC both evades and resists innate immune-mediated zinc toxicity to persist and disseminate within the host. Moreover, we have defined the set of UPEC genes conferring zinc resistance and have developed highly selective E. coli reporter systems to track zinc toxicity. These innovative approaches substantially enhance our understanding of immune-mediated metal ion toxicity and bacterial pathogenesis. Toll-like receptor (TLR)-inducible zinc toxicity is a recently described macrophage antimicrobial response used against bacterial pathogens. Here we investigated deployment of this pathway against uropathogenic Escherichia coli (UPEC), the major cause of urinary tract infections. Primary human macrophages subjected EC958, a representative strain of the globally disseminated multidrug-resistant UPEC ST131 clone, to zinc stress. We therefore used transposon-directed insertion site sequencing to identify the complete set of UPEC genes conferring protection against zinc toxicity. Surprisingly, zinc-susceptible EC958 mutants were not compromised for intramacrophage survival, whereas corresponding mutants in the nonpathogenic E. coli K-12 strain MG1655 displayed significantly reduced intracellular bacterial loads within human macrophages. To investigate whether the intramacrophage zinc stress response of EC958 reflected the response of only a subpopulation of bacteria, we generated and validated reporter systems as highly specific sensors of zinc stress. Using these tools we show that, in contrast to MG1655, the majority of intramacrophage EC958 evades the zinc toxicity response, enabling survival within these cells. In addition, EC958 has a higher tolerance to zinc than MG1655, with this likely being important for survival of the minor subset of UPEC cells exposed to innate immune-mediated zinc stress. Indeed, analysis of zinc stress reporter strains and zinc-sensitive mutants in an intraperitoneal challenge model in mice revealed that EC958 employs both evasion and resistance against zinc toxicity, enabling its dissemination to the liver and spleen. We thus demonstrate that a pathogen of global significance uses multiple mechanisms to effectively subvert innate immune-mediated zinc poisoning for systemic spread.
Collapse
|