1
|
Fu G, Wang Z, Hu S. Exercise improves cardiac fibrosis by stimulating the release of endothelial progenitor cell-derived exosomes and upregulating miR-126 expression. Front Cardiovasc Med 2024; 11:1323329. [PMID: 38798919 PMCID: PMC11119291 DOI: 10.3389/fcvm.2024.1323329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/18/2024] [Indexed: 05/29/2024] Open
Abstract
Cardiac fibrosis is an important pathological manifestation of various cardiac diseases such as hypertension, coronary heart disease, and cardiomyopathy, and it is also a key link in heart failure. Previous studies have confirmed that exercise can enhance cardiac function and improve cardiac fibrosis, but the molecular target is still unclear. In this review, we introduce the important role of miR-126 in cardiac protection, and find that it can regulate TGF-β/Smad3 signaling pathway, inhibit cardiac fibroblasts transdifferentiation, and reduce the production of collagen fibers. Recent studies have shown that exosomes secreted by cells can play a specific role through intercellular communication through the microRNAs carried by exosomes. Cardiac endothelial progenitor cell-derived exosomes (EPC-Exos) carry miR-126, and exercise training can not only enhance the release of exosomes, but also up-regulate the expression of miR-126. Therefore, through derivation and analysis, it is believed that exercise can inhibit TGF-β/Smad3 signaling pathway by up-regulating the expression of miR-126 in EPC-Exos, thereby weakening the transdifferentiation of cardiac fibroblasts into myofibroblasts. This review summarizes the specific pathways of exercise to improve cardiac fibrosis by regulating exosomes, which provides new ideas for exercise to promote cardiovascular health.
Collapse
Affiliation(s)
- Genzhuo Fu
- School of Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Zhao Wang
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Siyuan Hu
- School of Sports and Arts, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
2
|
Srikuea R, Hirunsai M. TGF-β1 stimulation and VDR-dependent activation modulate calcitriol action on skeletal muscle fibroblasts and Smad signalling-associated fibrogenesis. Sci Rep 2023; 13:13811. [PMID: 37612333 PMCID: PMC10447566 DOI: 10.1038/s41598-023-40978-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023] Open
Abstract
Fibroblasts play a pivotal role in fibrogenesis after skeletal muscle injury. Excess fibrous formation can disrupt contractile functions and delay functional recovery. Although vitamin D receptor (VDR) is expressed explicitly in regenerating muscle compared with uninjured muscle, how calcitriol [1α,25(OH)2D3] directly regulates skeletal muscle primary fibroblast proliferation, the transition to myofibroblasts, and Smad signalling-associated fibrogenesis is currently unknown. Herein, the effects of calcitriol on cultured skeletal muscle primary fibroblasts of male C57BL/6 mice (aged 1 month old) were investigated. The percentage of BrdU+ nuclei in primary fibroblasts was significantly decreased after calcitriol treatment; however, the antiproliferative effect of calcitriol was diminished after TGF-β1 stimulation to induce fibroblast to myofibroblast transition. This suppressive effect was associated with significantly decreased VDR expression in TGF-β1-treated cells. In addition, Vdr siRNA transfection abolished the effects of calcitriol on the suppression of α-SMA expression and Smad2/3 signalling in myofibroblasts, supporting that its antifibrogenic effect requires VDR activation. Compared with calcitriol, the antifibrotic agent suramin could inhibit fibroblast/myofibroblast proliferation and suppress the expression of TCF-4, which regulates fibrogenic determination. Collectively, these findings suggest that profibrotic stimulation and VDR-dependent activation could modulate the effects of calcitriol on skeletal muscle fibroblast proliferation and fibrogenesis processes. Therefore, TGF-β1 and VDR expression levels are crucial determinants for the antifibrogenic effect of calcitriol on skeletal muscle after injury.
Collapse
Affiliation(s)
- Ratchakrit Srikuea
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| | - Muthita Hirunsai
- Department of Biopharmacy, Faculty of Pharmacy, Srinakharinwirot University, Ongkharak, Nakhon Nayok, 26120, Thailand
| |
Collapse
|
3
|
Liu L, Xu Y, Jia S, Chen X, He S. Prognostic significance of serum alkaline phosphatase for all-cause mortality in patients with hypertrophic cardiomyopathy: A cohort of the hospitalized population. Ann Clin Biochem 2022; 59:387-395. [PMID: 35815613 DOI: 10.1177/00045632221113986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Higher levels of serum alkaline phosphatase (ALP) as a novel risk factor was recently found associated with mortality in different population, whereas, the relationship remains unknown in hypertrophic cardiomyopathy (HCM) population. In this study, we hypothesized that increased ALP could predict all-cause mortality in the adult HCM population. In this cohort study, retrospective data from 538 HCM patients consecutively recruited in West China Hospital were collected. Patients were divided into two groups by baseline ALP with 80 IU/L as the cutoff. All-cause mortality was set as the endpoint. Subgroup analysis was conducted in patients with normal liver function. In total, 461 adult HCM patients were included. After a median follow-up of 4.7 years, 91 patients died. Alkaline phosphatase was an independent predictor of all-cause mortality since patients in the higher ALP group had an increased risk (adjusted HR 2.0, 95% CI: 1.3-3.3, P < 0.01) compared with those in the lower ALP group. In subgroup analysis, the relationship was consistent with the overall (adjusted HR: 3.0, 95% CI: 1.7-5.3, P < 0.01 for the higher ALP group). In the Chinese cohort study of HCM patients, serum ALP is independently associated with all-cause mortality. Patients with a measured value above 80 IU/L had an increased risk of all-cause mortality and this cutoff might help with risk stratification in HCM population.
Collapse
Affiliation(s)
- Lu Liu
- Department of Cardiology, 34753West China Hospital of Sichuan University, Chengdu, China
| | - Ying Xu
- Department of Cardiology, 34753West China Hospital of Sichuan University, Chengdu, China
| | - Shanshan Jia
- Department of Cardiology, 34753West China Hospital of Sichuan University, Chengdu, China
| | - Xiaoping Chen
- Department of Cardiology, 34753West China Hospital of Sichuan University, Chengdu, China
| | - Sen He
- Department of Cardiology, 34753West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
4
|
The Traditional Chinese Medicine Formula FTZ Protects against Cardiac Fibrosis by Suppressing the TGFβ1-Smad2/3 Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5642307. [PMID: 35497919 PMCID: PMC9042631 DOI: 10.1155/2022/5642307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/09/2022] [Accepted: 03/30/2022] [Indexed: 11/26/2022]
Abstract
Background Fu fang Zhen Zhu Tiao Zhi (FTZ) is a patented preparation of Chinese herbal medicine that has been used as a natural medicine to treat several chronic diseases including cardiovascular disease. However, its effects on cardiac fibrosis remain unclear. Therefore, this study was designed to investigate the effects and potential mechanisms of FTZ in treating cardiac fibrosis. Methods FTZ was administered to mice by oral gavage daily at a dosage of 1.2 g/kg or 2.4 g/kg of body weight for 7 weeks after a transverse aorta constriction (TAC) surgery. Doppler echocardiography, hematoxylin and eosin staining, and Masson's trichrome staining were used to assess the effect of FTZ on the cardiac structure and function of mice that had undergone TAC. EdU and wound-healing assays were performed to measure the proliferative and migratory abilities of cardiac fibroblasts. Western blotting and qRT-PCR were used to determine the expression of TGFβ1, Col1A2, Col3, and α-SMA proteins and mRNA levels. Results FTZ treatment reduced collagen synthesis, attenuated cardiac fibrosis, and improved cardiac function in mice subjected to TAC. Moreover, FTZ treatment prevented the proliferation and migration of cardiac fibroblasts and reduced Ang-II-induced collagen synthesis. Furthermore, FTZ downregulated the expression of TGFβ1, p-smad2, and p-smad3 and inhibited the TGFβ1-Smad2/3 pathway in the setting of cardiac fibrosis. Conclusion FTZ alleviated the proliferation and migration of cardiac fibroblasts and suppressed collagen synthesis via the TGFβ1-Smad2/3 pathway during the progression of cardiac fibrosis. These findings indicated the therapeutic potential of FTZ in treating cardiac fibrosis.
Collapse
|
5
|
Lin J, Luo Z, Liu S, Chen Q, Liu S, Chen J. Long non-coding RNA H19 promotes myoblast fibrogenesis via regulating the miR-20a-5p-Tgfbr2 axis. Clin Exp Pharmacol Physiol 2021; 48:921-931. [PMID: 33615521 DOI: 10.1111/1440-1681.13489] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023]
Abstract
Emerging evidence has indicated long non-coding RNAs (lncRNAs) play important roles in diverse biological processes, including fibrosis. Here, we report that lncRNA H19 is able to promote skeletal muscle fibrosis. lnc-H19 was identified to be highly expressed in skeletal muscle fibrosis in vivo and in vitro; while lnc-H19 knockdown attenuated fibrosis in vitro. The knockdown of lnc-H19 was proved to inhibit the activation of the TGFβ/Smad pathway in C2C12 myoblasts by sponging miR-20a-5p to regulate Tgfbr2 expression through the competing endogenous RNA function. Our study elucidates the roles of the lnc-H19-miR-20a-5p-Tgfbr2 axis in regulating the TGFβ/Smad pathway of myoblast fibrogenesis, which might provide a promising therapeutic target for skeletal muscle fibrosis.
Collapse
Affiliation(s)
- Jinrong Lin
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhiwen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shaohua Liu
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Qingyan Chen
- Biology Department, Boston University, Boston, MA, USA
| | - Siyang Liu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiwu Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Nwafor DC, Brichacek AL, Ali A, Brown CM. Tissue-Nonspecific Alkaline Phosphatase in Central Nervous System Health and Disease: A Focus on Brain Microvascular Endothelial Cells. Int J Mol Sci 2021; 22:5257. [PMID: 34067629 PMCID: PMC8156423 DOI: 10.3390/ijms22105257] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/21/2022] Open
Abstract
Tissue-nonspecific alkaline phosphatase (TNAP) is an ectoenzyme bound to the plasma membranes of numerous cells via a glycosylphosphatidylinositol (GPI) moiety. TNAP's function is well-recognized from earlier studies establishing its important role in bone mineralization. TNAP is also highly expressed in cerebral microvessels; however, its function in brain cerebral microvessels is poorly understood. In recent years, few studies have begun to delineate a role for TNAP in brain microvascular endothelial cells (BMECs)-a key component of cerebral microvessels. This review summarizes important information on the role of BMEC TNAP, and its implication in health and disease. Furthermore, we discuss current models and tools that may assist researchers in elucidating the function of TNAP in BMECs.
Collapse
Affiliation(s)
- Divine C. Nwafor
- Department of Neuroscience, School of Medicine, West Virginia University Health Science Center, Morgantown, WV 26506, USA; (D.C.N.); (A.A.)
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Allison L. Brichacek
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University Health Science Center, Morgantown, WV 26506, USA;
| | - Ahsan Ali
- Department of Neuroscience, School of Medicine, West Virginia University Health Science Center, Morgantown, WV 26506, USA; (D.C.N.); (A.A.)
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Candice M. Brown
- Department of Neuroscience, School of Medicine, West Virginia University Health Science Center, Morgantown, WV 26506, USA; (D.C.N.); (A.A.)
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University Health Science Center, Morgantown, WV 26506, USA;
| |
Collapse
|
7
|
Extracellular matrix: an important regulator of cell functions and skeletal muscle development. Cell Biosci 2021; 11:65. [PMID: 33789727 PMCID: PMC8011170 DOI: 10.1186/s13578-021-00579-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 03/23/2021] [Indexed: 12/15/2022] Open
Abstract
Extracellular matrix (ECM) is a kind of connective tissue in the cell microenvironment, which is of great significance to tissue development. ECM in muscle fiber niche consists of three layers: the epimysium, the perimysium, and the endomysium (basal lamina). These three layers of connective tissue structure can not only maintain the morphology of skeletal muscle, but also play an important role in the physiological functions of muscle cells, such as the transmission of mechanical force, the regeneration of muscle fiber, and the formation of neuromuscular junction. In this paper, detailed discussions are made for the structure and key components of ECM in skeletal muscle tissue, the role of ECM in skeletal muscle development, and the application of ECM in biomedical engineering. This review will provide the reader with a comprehensive overview of ECM, as well as a comprehensive understanding of the structure, physiological function, and application of ECM in skeletal muscle tissue.
Collapse
|
8
|
Wong A, Garcia SM, Tamaki S, Striedinger K, Barruet E, Hansen SL, Young DM, Pomerantz JH. Satellite cell activation and retention of muscle regenerative potential after long-term denervation. Stem Cells 2021; 39:331-344. [PMID: 33326654 DOI: 10.1002/stem.3316] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022]
Abstract
Irreversible denervation atrophy remains an unsolved clinical problem, and the role of skeletal muscle stem cell (MuSC, satellite cell) depletion in this process is unclear. We investigated the ability of MuSCs to regenerate muscle in the context of denervation. Three to 12 months following sciatic denervation in mice, MuSC number, size, EdU uptake, rate of division, and mitochondrial activity were increased. Following acute myotoxin injury, denervated muscles formed new muscle fibers in situ. MuSCs isolated via flow cytometry from denervated mouse muscle, or from atrophic denervated gluteus maximus muscles of humans with complete spinal cord injuries two decades prior, formed new muscle fibers and reoccupied the anatomic niche after transplantation into uninjured muscle. Our results show unequivocally that, even after prolonged denervation, MuSCs retain intrinsic regenerative potential similar to that of uninjured MuSCs. Treatment of denervation atrophy will require elucidating the non-MuSC environmental changes in muscle that prevent functional regeneration.
Collapse
Affiliation(s)
- Alvin Wong
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Program in Craniofacial Biology, Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, California, USA
| | - Steven M Garcia
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Program in Craniofacial Biology, Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, California, USA
| | - Stanley Tamaki
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Program in Craniofacial Biology, Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, California, USA
| | - Katharine Striedinger
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Program in Craniofacial Biology, Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, California, USA
| | - Emilie Barruet
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Program in Craniofacial Biology, Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, California, USA
| | - Scott L Hansen
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Program in Craniofacial Biology, Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, California, USA
| | - David M Young
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Program in Craniofacial Biology, Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, California, USA
| | - Jason H Pomerantz
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Program in Craniofacial Biology, Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, California, USA
- Department of Orofacial Sciences, University of California, San Francisco, California, USA
| |
Collapse
|
9
|
Gao L, Wang LY, Liu ZQ, Jiang D, Wu SY, Guo YQ, Tao HM, Sun M, You LN, Qin S, Cheng XC, Xie JS, Chang GL, Zhang DY. TNAP inhibition attenuates cardiac fibrosis induced by myocardial infarction through deactivating TGF-β1/Smads and activating P53 signaling pathways. Cell Death Dis 2020; 11:44. [PMID: 31969558 PMCID: PMC6976710 DOI: 10.1038/s41419-020-2243-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/30/2019] [Accepted: 01/08/2020] [Indexed: 02/07/2023]
Abstract
Tissue nonspecific alkaline phosphatase (TNAP) is expressed widely in different tissues, modulating functions of metabolism and inflammation. However, the effect of TNAP on cardiac fibrosis remains controversial and needs to be further studied. The present study aims to investigate the role of TNAP on myocardial infarction (MI)-induced fibrosis and its mechanism. TNAP was upregulated in patients with MI, both in serum and injured hearts, and predicted in-hospital mortality. TNAP was also significantly upregulated after MI in rats, mostly in the border zone of the infarcted hearts combined with collagen synthesis. Administration of TNAP inhibitor, tetramisole, markedly improved cardiac function and fibrosis after MI. In the primary cultures of neonatal rat cardiac fibroblasts (CFs), TNAP inhibition significantly attenuated migration, differentiation, and expression of collagen-related genes. The TGF-β1/Smads signaling suppression, and p-AMPK and p53 upregulation were involved in the process. When p53 inhibitor was administered, the antifibrotic effect of TNAP inhibition can be blocked. This study provides a direct evidence that inhibition of TNAP might be a novel regulator in cardiac fibrosis and exert an antifibrotic effect mainly through AMPK-TGF-β1/Smads and p53 signals.
Collapse
Affiliation(s)
- Lei Gao
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Li-You Wang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhi-Qiang Liu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Dan Jiang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Shi-Yong Wu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yu-Qian Guo
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hong-Mei Tao
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Min Sun
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Lin-Na You
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Shu Qin
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiao-Cheng Cheng
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jun-Shi Xie
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Guang-Lei Chang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Dong-Ying Zhang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|