1
|
Bernardi YE, Sanchez-Vasquez E, Márquez RB, Piacentino ML, Urrutia H, Rossi I, Alcântara Saraiva KL, Pereira-Neves A, Ramirez MI, Bronner ME, de Miguel N, Strobl-Mazzulla PH. miR-203 secreted in extracellular vesicles mediates the communication between neural crest and placode cells required for trigeminal ganglia formation. PLoS Biol 2024; 22:e3002074. [PMID: 39038054 PMCID: PMC11293684 DOI: 10.1371/journal.pbio.3002074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 08/01/2024] [Accepted: 06/17/2024] [Indexed: 07/24/2024] Open
Abstract
While interactions between neural crest and placode cells are critical for the proper formation of the trigeminal ganglion, the mechanisms underlying this process remain largely uncharacterized. Here, by using chick embryos, we show that the microRNA (miR)-203, whose epigenetic repression is required for neural crest migration, is reactivated in coalescing and condensing trigeminal ganglion cells. Overexpression of miR-203 induces ectopic coalescence of neural crest cells and increases ganglion size. By employing cell-specific electroporations for either miR-203 sponging or genomic editing using CRISPR/Cas9, we elucidated that neural crest cells serve as the source, while placode cells serve as the site of action for miR-203 in trigeminal ganglion condensation. Demonstrating intercellular communication, overexpression of miR-203 in the neural crest in vitro or in vivo represses an miR-responsive sensor in placode cells. Moreover, neural crest-secreted extracellular vesicles (EVs), visualized using pHluorin-CD63 vector, become incorporated into the cytoplasm of placode cells. Finally, RT-PCR analysis shows that small EVs isolated from condensing trigeminal ganglia are selectively loaded with miR-203. Together, our findings reveal a critical role in vivo for neural crest-placode communication mediated by sEVs and their selective microRNA cargo for proper trigeminal ganglion formation.
Collapse
Affiliation(s)
- Yanel E. Bernardi
- Laboratory of Developmental Biology, Instituto Tecnológico de Chascomús (INTECH), CONICET-UNSAM, Chascomús, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
| | - Estefania Sanchez-Vasquez
- Laboratory of Developmental Biology, Instituto Tecnológico de Chascomús (INTECH), CONICET-UNSAM, Chascomús, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
| | - Rocío Belén Márquez
- Laboratory of Developmental Biology, Instituto Tecnológico de Chascomús (INTECH), CONICET-UNSAM, Chascomús, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
| | - Michael L. Piacentino
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Hugo Urrutia
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Izadora Rossi
- Laboratorio de biologia molecular e sistematica de tripanossomatideos, Instituto Carlos Chagas, Fiocruz Parana, Curitiba, Brazil
| | | | | | - Marcel I. Ramirez
- Laboratorio de biologia molecular e sistematica de tripanossomatideos, Instituto Carlos Chagas, Fiocruz Parana, Curitiba, Brazil
| | - Marianne E. Bronner
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Natalia de Miguel
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Chascomús, Argentina
| | - Pablo H. Strobl-Mazzulla
- Laboratory of Developmental Biology, Instituto Tecnológico de Chascomús (INTECH), CONICET-UNSAM, Chascomús, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
| |
Collapse
|
2
|
Follmer ML, Isner T, Ozekin YH, Levitt C, Bates EA. Depolarization induces calcium-dependent BMP4 release from mouse embryonic palate mesenchyme. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598333. [PMID: 38915514 PMCID: PMC11195066 DOI: 10.1101/2024.06.11.598333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Ion channels are essential for proper morphogenesis of the craniofacial skeleton. However, the molecular mechanisms underlying this phenomenon are unknown. Loss of the Kcnj2 potassium channel disrupts Bone Morphogenetic Protein (BMP) signaling within the developing palate. BMP signaling is essential for the correct development of several skeletal structures, including the palate, though little is known about the mechanisms that govern BMP secretion. We introduce a tool to image the release of bone morphogenetic protein 4 (BMP4) from mammalian cells. Using this tool, we show that depolarization induces BMP4 release from mouse embryonic palate mesenchyme cells in a calcium-dependent manner. We show native transient changes in intracellular calcium occur in cranial neural crest cells, the cells from which embryonic palate mesenchyme derives. Waves of transient changes in intracellular calcium suggest that these cells are electrically coupled and may temporally coordinate BMP release. These transient changes in intracellular calcium persist in palate mesenchyme cells from embryonic day (E) 9.5 to 13.5 mice. Disruption of Kcnj2 significantly decreases the amplitude of calcium transients and the ability of cells to secrete BMP. Together, these data suggest that temporal control of developmental cues is regulated by ion channels, depolarization, and changes in intracellular calcium for mammalian craniofacial morphogenesis. SUMMARY We show that embryonic palate mesenchyme cells undergo transient changes in intracellular calcium. Depolarization of these cells induces BMP4 release suggesting that ion channels are a node in BMP4 signaling.
Collapse
|
3
|
Héja L, Simon Á, Kardos J. Simulation of gap junction formation reveals critical role of Cys disulfide redox state in connexin hemichannel docking. Cell Commun Signal 2024; 22:185. [PMID: 38500186 PMCID: PMC10949817 DOI: 10.1186/s12964-023-01439-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/12/2023] [Indexed: 03/20/2024] Open
Abstract
Video Abstract.
Collapse
Affiliation(s)
- László Héja
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, 1117, Budapest, Hungary.
| | - Ágnes Simon
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, 1117, Budapest, Hungary
| | - Julianna Kardos
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, 1117, Budapest, Hungary
| |
Collapse
|
4
|
Zhang X, Yao L, Meng Y, Li B, Yang Y, Gao F. Migrasome: a new functional extracellular vesicle. Cell Death Discov 2023; 9:381. [PMID: 37852963 PMCID: PMC10584828 DOI: 10.1038/s41420-023-01673-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 10/20/2023] Open
Abstract
Migrasome is a novel cellular organelle produced during cell migration, and its biogenesis depends on the migration process. It is generated in a variety of cells such as immune cells, metastatic tumor cells, other special functional cells like podocytes and cells in developing organisms. It plays important roles in various fields especially in the information exchange between cells. The discovery of migrasome, as an important supplement to the extracellular vesicle system, provides new mechanisms and targets for comprehending various biological or pathological processes. In this article, we will review the discovery, structure, distribution, detection, biogenesis, and removal of migrasomes and mainly focus on summarizing its biological functions in cell-to-cell communication, homeostatic maintenance, embryonic development and multiple diseases. This review also creates prospects for the possible research directions and clinical applications of migrasomes in the future.
Collapse
Affiliation(s)
- Xide Zhang
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 200433, Shanghai, P. R. China
| | - Liuhuan Yao
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 200433, Shanghai, P. R. China
| | - Yuanyuan Meng
- Naval Medical University, Department of Traditional Chinese Medicine, Affiliated Hospital 1, 200433, Shanghai, P. R. China
| | - Bailong Li
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 200433, Shanghai, P. R. China.
| | - Yanyong Yang
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 200433, Shanghai, P. R. China.
| | - Fu Gao
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 200433, Shanghai, P. R. China.
| |
Collapse
|
5
|
Basu I, Li H, Trease AJ, Sorgen PL. Regulation of Cx43 Gap Junction Intercellular Communication by Bruton's Tyrosine Kinase and Interleukin-2-Inducible T-Cell Kinase. Biomolecules 2023; 13:biom13040660. [PMID: 37189407 DOI: 10.3390/biom13040660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
T and B cell receptor signaling involves the activation of Akt, MAPKs, and PKC as well as an increase in intracellular Ca2+ and calmodulin activation. While these coordinate the rapid turnover of gap junctions, also implicated in this process is Src, which is not activated as part of T and B cell receptor signaling. An in vitro kinase screen identified that Bruton's tyrosine kinase (BTK) and interleukin-2-inducible T-cell kinase (ITK) phosphorylate Cx43. Mass spectroscopy revealed that BTK and ITK phosphorylate Cx43 residues Y247, Y265, and Y313, which are identical to the residues phosphorylated by Src. Overexpression of BTK or ITK in the HEK-293T cells led to increased Cx43 tyrosine phosphorylation as well as decreased gap junction intercellular communication (GJIC) and Cx43 membrane localization. In the lymphocytes, activation of the B cell receptor (Daudi cells) or T cell receptor (Jurkat cells) increased the BTK and ITK activity, respectively. While this led to increased tyrosine phosphorylation of Cx43 and decreased GJIC, the cellular localization of Cx43 changed little. We have previously identified that Pyk2 and Tyk2 also phosphorylate Cx43 at residues Y247, Y265, and Y313 with a similar cellular fate to that of Src. With phosphorylation critical to Cx43 assembly and turnover, and kinase expression varying between different cell types, there would be a need for different kinases to achieve the same regulation of Cx43. The work presented herein suggests that in the immune system, ITK and BTK have the capacity for the tyrosine phosphorylation of Cx43 to alter the gap junction function in a similar manner as Pyk2, Tyk2, and Src.
Collapse
Affiliation(s)
- Ishika Basu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Hanjun Li
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Andrew J Trease
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Paul L Sorgen
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
6
|
Bernardi YE, Sanchez-Vasquez E, Piacentino ML, Urrutia H, Rossi I, Saraiva KLA, Pereira-Neves A, Ramirez MI, Bronner ME, de Miguel N, Strobl-Mazzulla PH. Extracellular vesicle-localized miR-203 mediates neural crest-placode communication required for trigeminal ganglia formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532527. [PMID: 36993487 PMCID: PMC10055076 DOI: 10.1101/2023.03.14.532527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
While interactions between neural crest and placode cells are critical for the proper formation of the trigeminal ganglion, the mechanisms underlying this process remain largely uncharacterized. Here, we show that the microRNA-(miR)203, whose epigenetic repression is required for neural crest migration, is reactivated in coalescing and condensing trigeminal ganglion cells. Overexpression of miR-203 induces ectopic coalescence of neural crest cells and increases ganglion size. Reciprocally, loss of miR-203 function in placode, but not neural crest, cells perturbs trigeminal ganglion condensation. Demonstrating intercellular communication, overexpression of miR-203 in the neural crest in vitro or in vivo represses a miR-responsive sensor in placode cells. Moreover, neural crest-secreted extracellular vesicles (EVs), visualized using pHluorin-CD63 vector, become incorporated into the cytoplasm of placode cells. Finally, RT-PCR analysis shows that small EVs isolated from condensing trigeminal ganglia are selectively loaded with miR-203. Together, our findings reveal a critical role in vivo for neural crest-placode communication mediated by sEVs and their selective microRNA cargo for proper trigeminal ganglion formation.
Collapse
Affiliation(s)
- Yanel E Bernardi
- Laboratory of Developmental Biology. Instituto Tecnológico de Chascomús (INTECH), CONICET-UNSAM. Chascomús, ARGENTINA
- Escuela de Bio y Nanotecnologías (UNSAM). Chascomús, ARGENTINA
| | - Estefania Sanchez-Vasquez
- Laboratory of Developmental Biology. Instituto Tecnológico de Chascomús (INTECH), CONICET-UNSAM. Chascomús, ARGENTINA
- Escuela de Bio y Nanotecnologías (UNSAM). Chascomús, ARGENTINA
| | | | - Hugo Urrutia
- Division of Biology, California Institute of Technology, Pasadena, CA, USA
| | - Izadora Rossi
- Laboratorio de biologia molecular e sistematica de tripanossomatideos. Instituto Carlos Chagas, Fiocruz Parana, BRAZIL
| | | | - Antonio Pereira-Neves
- Departamento de Microbiologia, Instituto Aggeu Magalhães, Fiocruz, Recife, Pernambuco, BRAZIL
| | - Marcel Ivan Ramirez
- Laboratorio de biologia molecular e sistematica de tripanossomatideos. Instituto Carlos Chagas, Fiocruz Parana, BRAZIL
| | | | - Natalia de Miguel
- Escuela de Bio y Nanotecnologías (UNSAM). Chascomús, ARGENTINA
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Chascomús, ARGENTINA
| | - Pablo H. Strobl-Mazzulla
- Laboratory of Developmental Biology. Instituto Tecnológico de Chascomús (INTECH), CONICET-UNSAM. Chascomús, ARGENTINA
- Escuela de Bio y Nanotecnologías (UNSAM). Chascomús, ARGENTINA
| |
Collapse
|
7
|
Baracaldo-Santamaría D, Corrales-Hernández MG, Ortiz-Vergara MC, Cormane-Alfaro V, Luque-Bernal RM, Calderon-Ospina CA, Cediel-Becerra JF. Connexins and Pannexins: Important Players in Neurodevelopment, Neurological Diseases, and Potential Therapeutics. Biomedicines 2022; 10:2237. [PMID: 36140338 PMCID: PMC9496069 DOI: 10.3390/biomedicines10092237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Cell-to-cell communication is essential for proper embryonic development and its dysfunction may lead to disease. Recent research has drawn attention to a new group of molecules called connexins (Cxs) and pannexins (Panxs). Cxs have been described for more than forty years as pivotal regulators of embryogenesis; however, the exact mechanism by which they provide this regulation has not been clearly elucidated. Consequently, Cxs and Panxs have been linked to congenital neurodegenerative diseases such as Charcot-Marie-Tooth disease and, more recently, chronic hemichannel opening has been associated with adult neurodegenerative diseases (e.g., Alzheimer's disease). Cell-to-cell communication via gap junctions formed by hexameric assemblies of Cxs, known as connexons, is believed to be a crucial component in developmental regulation. As for Panxs, despite being topologically similar to Cxs, they predominantly seem to form channels connecting the cytoplasm to the extracellular space and, despite recent research into Panx1 (Pannexin 1) expression in different regions of the brain during the embryonic phase, it has been studied to a lesser degree. When it comes to the nervous system, Cxs and Panxs play an important role in early stages of neuronal development with a wide span of action ranging from cellular migration during early stages to neuronal differentiation and system circuitry formation. In this review, we describe the most recent available evidence regarding the molecular and structural aspects of Cx and Panx channels, their role in neurodevelopment, congenital and adult neurological diseases, and finally propose how pharmacological modulation of these channels could modify the pathogenesis of some diseases.
Collapse
Affiliation(s)
- Daniela Baracaldo-Santamaría
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - María Gabriela Corrales-Hernández
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Maria Camila Ortiz-Vergara
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Valeria Cormane-Alfaro
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Ricardo-Miguel Luque-Bernal
- Anatomy and Embriology Units, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Carlos-Alberto Calderon-Ospina
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
- GENIUROS Research Group, Center for Research in Genetics and Genomics (CIGGUR), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Juan-Fernando Cediel-Becerra
- Histology and Embryology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| |
Collapse
|
8
|
Gustafson CM, Roffers-Agarwal J, Gammill LS. Chick cranial neural crest cells release extracellular vesicles that are critical for their migration. J Cell Sci 2022; 135:jcs260272. [PMID: 35635292 PMCID: PMC9270958 DOI: 10.1242/jcs.260272] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 01/09/2023] Open
Abstract
The content and activity of extracellular vesicles purified from cell culture media or bodily fluids have been studied extensively; however, the physiological relevance of exosomes within normal biological systems is poorly characterized, particularly during development. Although exosomes released by invasive metastatic cells alter migration of neighboring cells in culture, it is unclear whether cancer cells misappropriate exosomes released by healthy differentiated cells or reactivate dormant developmental programs that include exosome cell-cell communication. Using chick cranial neural fold cultures, we show that migratory neural crest cells, a developmentally critical cell type and model for metastasis, release and deposit CD63-positive 30-100 nm particles into the extracellular environment. Neural crest cells contain ceramide-rich multivesicular bodies and produce larger vesicles positive for migrasome markers as well. We conclude that neural crest cells produce extracellular vesicles including exosomes and migrasomes. When Rab27a plasma membrane docking is inhibited, neural crest cells become less polarized and rounded, leading to a loss of directional migration and reduced speed. These results indicate that neural crest cell exosome release is critical for migration.
Collapse
Affiliation(s)
- Callie M. Gustafson
- Departmentof Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
- Developmental Biology Center, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
| | - Julaine Roffers-Agarwal
- Departmentof Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
- Developmental Biology Center, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
| | - Laura S. Gammill
- Departmentof Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
- Developmental Biology Center, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
| |
Collapse
|
9
|
Karpinski BA, Maynard TM, Bryan CA, Yitsege G, Horvath A, Lee NH, Moody SA, LaMantia AS. Selective disruption of trigeminal sensory neurogenesis and differentiation in a mouse model of 22q11.2 deletion syndrome. Dis Model Mech 2022; 15:dmm047357. [PMID: 33722956 PMCID: PMC8126478 DOI: 10.1242/dmm.047357] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/09/2021] [Indexed: 12/13/2022] Open
Abstract
22q11.2 Deletion Syndrome (22q11DS) is a neurodevelopmental disorder associated with cranial nerve anomalies and disordered oropharyngeal function, including pediatric dysphagia. Using the LgDel 22q11DS mouse model, we investigated whether sensory neuron differentiation in the trigeminal ganglion (CNgV), which is essential for normal orofacial function, is disrupted. We did not detect changes in cranial placode cell translocation or neural crest migration at early stages of LgDel CNgV development. However, as the ganglion coalesces, proportions of placode-derived LgDel CNgV cells increase relative to neural crest cells. In addition, local aggregation of placode-derived cells increases and aggregation of neural crest-derived cells decreases in LgDel CNgV. This change in cell-cell relationships was accompanied by altered proliferation of placode-derived cells at embryonic day (E)9.5, and premature neurogenesis from neural crest-derived precursors, reflected by an increased frequency of asymmetric neurogenic divisions for neural crest-derived precursors by E10.5. These early differences in LgDel CNgV genesis prefigure changes in sensory neuron differentiation and gene expression by postnatal day 8, when early signs of cranial nerve dysfunction associated with pediatric dysphagia are observed in LgDel mice. Apparently, 22q11 deletion destabilizes CNgV sensory neuron genesis and differentiation by increasing variability in cell-cell interaction, proliferation and sensory neuron differentiation. This early developmental divergence and its consequences may contribute to oropharyngeal dysfunction, including suckling, feeding and swallowing disruptions at birth, and additional orofacial sensory/motor deficits throughout life.
Collapse
Affiliation(s)
- Beverly A. Karpinski
- Department of Anatomy and Cell Biology, The George Washington School of Medicine and Health Sciences, Washington DC, 20037, USA
| | - Thomas M. Maynard
- The Fralin Biomedical Research Institute, Virginia Tech Carilion School of Medicine, Roanoke, VA 24014, USA
| | - Corey A. Bryan
- Department of Anatomy and Cell Biology, The George Washington School of Medicine and Health Sciences, Washington DC, 20037, USA
| | - Gelila Yitsege
- Department of Anatomy and Cell Biology, The George Washington School of Medicine and Health Sciences, Washington DC, 20037, USA
| | - Anelia Horvath
- Department of Pharmacology and Physiology, The George Washington School of Medicine and Health Sciences, Washington DC, 20037, USA
| | - Norman H. Lee
- Department of Pharmacology and Physiology, The George Washington School of Medicine and Health Sciences, Washington DC, 20037, USA
| | - Sally A. Moody
- Department of Anatomy and Cell Biology, The George Washington School of Medicine and Health Sciences, Washington DC, 20037, USA
| | - Anthony-Samuel LaMantia
- The Fralin Biomedical Research Institute, Virginia Tech Carilion School of Medicine, Roanoke, VA 24014, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| |
Collapse
|
10
|
Olszewski C, Maassen J, Guenther R, Skazik-Voogt C, Gutermuth A. Mechanotransductive Differentiation of Hair Follicle Stem Cells Derived from Aged Eyelid Skin into Corneal Endothelial-Like Cells. Stem Cell Rev Rep 2021; 18:1668-1685. [PMID: 34515937 PMCID: PMC9209348 DOI: 10.1007/s12015-021-10249-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 11/25/2022]
Abstract
Corneal endothelial insufficiency is one of the leading causes of blindness. The main contemporary treatment for corneal blindness is endothelial keratoplasty, which, however, is unsatisfactory as a medical therapy due to the lack of donor corneas and graft rejection. Therefore, autologous stem cell-based corneal endothelial tissue substitutes may be a promising alternative to conventional grafts in the future. To address the age of most patients suffering from corneal endothelial deficiencies, we investigated the presence and potential of hair-derived stem cells from older tissue donors. Our studies revealed the presence of pluripotency- and neural crest-associated markers in tissue sections from blepharoplasty patients aged 50 to 80 years. In vitro outgrowths from eyelid hair follicles on collagen-coated tissue culture plates revealed a weak decrease in stem-cell potency. In contrast, cells within the spheres that spontaneously formed from the adherent cell layer retained full stem-cell potency and could be differentiated into cells of the ecto- meso and endodermal lineages. Although these highly potent hair follicle derived stem cells (HFSC) were only very slightly expandable, they were able to recognize the biomimicry of the Descemet’s-like topography and differentiate into corneal endothelial-like cells. In conclusion, HFSCs derived from epidermal skin of eyelid biopsies are a promising cell source to provide autologous corneal endothelial replacement for any age group of patients.
Collapse
Affiliation(s)
- Christian Olszewski
- Fraunhofer Institute for Production Technology, Steinbachstraße 17, 52074, Aachen, Germany
| | - Jessika Maassen
- Fraunhofer Institute for Production Technology, Steinbachstraße 17, 52074, Aachen, Germany
| | - Rebecca Guenther
- Fraunhofer Institute for Production Technology, Steinbachstraße 17, 52074, Aachen, Germany
| | - Claudia Skazik-Voogt
- Fraunhofer Institute for Production Technology, Steinbachstraße 17, 52074, Aachen, Germany
| | - Angela Gutermuth
- Fraunhofer Institute for Production Technology, Steinbachstraße 17, 52074, Aachen, Germany.
| |
Collapse
|
11
|
Wang G, Wang J, Xin C, Xiao J, Liang J, Wu X. Inflammatory response in epilepsy is mediated by glial cell gap junction pathway (Review). Mol Med Rep 2021; 24:493. [PMID: 33955516 PMCID: PMC8127031 DOI: 10.3892/mmr.2021.12132] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 04/21/2021] [Indexed: 01/31/2023] Open
Abstract
Epilepsy is a common neurological disease that affects more than 50 million people worldwide. Neuroinflammation plays an important role in epilepsy. Activation of the immune system and an excessive inflammatory response can increase the frequency of seizures and increase the susceptibility to epilepsy. Therefore, anti-inflammatory therapies may have antiepileptic effects. Connexin 43 (Cx43) is a major component of astroglial hemichannels and gap junctions. Gap junctions are important for the direct exchange of substances and information between cells, as well as regulating the neuroinflammatory response, changing neuronal excitability, neuronal apoptosis, and synaptic remodeling. Cx43-mediated gap junction pathway can be crucial in epilepsy-induced neuroinflammatory cascades. Further, pro-inflammatory cytokines may in turn directly affect the expression of the Cx43 protein in astrocytes. Therefore, examining the association between neuroinflammation and epilepsy can be instrumental in uncovering the pathogenesis of epilepsy, which can lead to the development of novel and more effective antiepileptic drugs.
Collapse
Affiliation(s)
- Guangliang Wang
- Department of Cardiology, Dalinghe Hospital of Far Eastern Horizon, Linghai, Liaoning 121200, P.R. China
| | - Jiangtao Wang
- Department of Pediatric Neurology, Jilin University, Changchun, Jilin 130000, P.R. China
| | - Cuijuan Xin
- Department of Pediatric Neurology, Jilin University, Changchun, Jilin 130000, P.R. China
| | - Jinyu Xiao
- Department of Pediatric Neurology, Jilin University, Changchun, Jilin 130000, P.R. China
| | - Jianmin Liang
- Department of Pediatric Neurology, Jilin University, Changchun, Jilin 130000, P.R. China
| | - Xuemei Wu
- Department of Pediatric Neurology, Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
12
|
He J, Yan J, Wang J, Zhao L, Xin Q, Zeng Y, Sun Y, Zhang H, Bai Z, Li Z, Ni Y, Gong Y, Li Y, He H, Bian Z, Lan Y, Ma C, Bian L, Zhu H, Liu B, Yue R. Dissecting human embryonic skeletal stem cell ontogeny by single-cell transcriptomic and functional analyses. Cell Res 2021; 31:742-757. [PMID: 33473154 PMCID: PMC8249634 DOI: 10.1038/s41422-021-00467-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/22/2020] [Indexed: 01/15/2023] Open
Abstract
Human skeletal stem cells (SSCs) have been discovered in fetal and adult long bones. However, the spatiotemporal ontogeny of human embryonic SSCs during early skeletogenesis remains elusive. Here we map the transcriptional landscape of human limb buds and embryonic long bones at single-cell resolution to address this fundamental question. We found remarkable heterogeneity within human limb bud mesenchyme and epithelium, and aligned them along the proximal–distal and anterior–posterior axes using known marker genes. Osteo-chondrogenic progenitors first appeared in the core limb bud mesenchyme, which give rise to multiple populations of stem/progenitor cells in embryonic long bones undergoing endochondral ossification. Importantly, a perichondrial embryonic skeletal stem/progenitor cell (eSSPC) subset was identified, which could self-renew and generate the osteochondral lineage cells, but not adipocytes or hematopoietic stroma. eSSPCs are marked by the adhesion molecule CADM1 and highly enriched with FOXP1/2 transcriptional network. Interestingly, neural crest-derived cells with similar phenotypic markers and transcriptional networks were also found in the sagittal suture of human embryonic calvaria. Taken together, this study revealed the cellular heterogeneity and lineage hierarchy during human embryonic skeletogenesis, and identified distinct skeletal stem/progenitor cells that orchestrate endochondral and intramembranous ossification.
Collapse
Affiliation(s)
- Jian He
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, 100071, China
| | - Jing Yan
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, 100071, China
| | - Jianfang Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Liangyu Zhao
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Qian Xin
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, 100071, China
| | - Yang Zeng
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Yuxi Sun
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Han Zhang
- Department of Transfusion, Daping Hospital, Army Military Medical University, Chongqing, 400042, China
| | - Zhijie Bai
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, 100071, China
| | - Zongcheng Li
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Yanli Ni
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Yandong Gong
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Yunqiao Li
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, 100071, China
| | - Han He
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, 100071, China
| | - Zhilei Bian
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yu Lan
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, 510632, China.,Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Guangzhou, Guangdong, 510530, China
| | - Chunyu Ma
- Department of Gynecology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Lihong Bian
- Department of Gynecology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Heng Zhu
- Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Bing Liu
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, 100071, China. .,State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China. .,Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Rui Yue
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
13
|
Smart JA, Oleksak JE, Hartsough EJ. Cell Adhesion Molecules in Plasticity and Metastasis. Mol Cancer Res 2021; 19:25-37. [PMID: 33004622 PMCID: PMC7785660 DOI: 10.1158/1541-7786.mcr-20-0595] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/08/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022]
Abstract
Prior to metastasis, modern therapeutics and surgical intervention can provide a favorable long-term survival for patients diagnosed with many types of cancers. However, prognosis is poor for patients with metastasized disease. Melanoma is the deadliest form of skin cancer, yet in situ and localized, thin melanomas can be biopsied with little to no postsurgical follow-up. However, patients with metastatic melanoma require significant clinical involvement and have a 5-year survival of only 34% to 52%, largely dependent on the site of colonization. Melanoma metastasis is a multi-step process requiring dynamic changes in cell surface proteins regulating adhesiveness to the extracellular matrix (ECM), stroma, and other cancer cells in varied tumor microenvironments. Here we will highlight recent literature to underscore how cell adhesion molecules (CAM) contribute to melanoma disease progression and metastasis.
Collapse
Affiliation(s)
- Jessica A Smart
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Julia E Oleksak
- Graduate School of Biomedical Sciences and Professional Studies, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Edward J Hartsough
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|
14
|
de Waard DM, Bugiani M. Astrocyte-Oligodendrocyte-Microglia Crosstalk in Astrocytopathies. Front Cell Neurosci 2020; 14:608073. [PMID: 33328899 PMCID: PMC7710860 DOI: 10.3389/fncel.2020.608073] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
Abstract
Defective astrocyte function due to a genetic mutation can have major consequences for microglia and oligodendrocyte physiology, which in turn affects the white matter integrity of the brain. This review addresses the current knowledge on shared and unique pathophysiological mechanisms of astrocytopathies, including vanishing white matter, Alexander disease, megalencephalic leukoencephalopathy with subcortical cysts, Aicardi-Goutières syndrome, and oculodentodigital dysplasia. The mechanisms of disease include protein accumulation, unbalanced secretion of extracellular matrix proteins, pro- and anti-inflammatory molecules, cytokines and chemokines by astrocytes, as well as an altered gap junctional network and a changed ionic and nutrient homeostasis. Interestingly, the extent to which astrogliosis and microgliosis are present in these astrocytopathies is highly variable. An improved understanding of astrocyte-microglia-oligodendrocyte crosstalk might ultimately lead to the identification of druggable targets for these, currently untreatable, severe conditions.
Collapse
Affiliation(s)
| | - Marianna Bugiani
- Department of Pathology, VU Medical center, Amsterdam UMC, Amsterdam, Netherlands
| |
Collapse
|
15
|
Epithelial-to-mesenchymal transition and different migration strategies as viewed from the neural crest. Curr Opin Cell Biol 2020; 66:43-50. [PMID: 32531659 DOI: 10.1016/j.ceb.2020.05.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/08/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) is a dynamic process that produces migratory cells from epithelial precursors. However, EMT is not binary; rather it results in migratory cells which adopt diverse strategies including collective and individual cell migration to arrive at target destinations. Of the many embryonic cells that undergo EMT, the vertebrate neural crest is a particularly good example which has provided valuable insight into these processes. Neural crest cells from different species often adopt different migratory strategies with collective migration predominating in anamniotes, whereas individual cell migration is more prevalent in amniotes. Here, we will provide a perspective on recent work toward understanding the process of neural crest EMT focusing on how these cells undergo collective and individual cell migration.
Collapse
|