1
|
DeSouza-Vieira T, Pretti MAM, Lima Gomes PS, Paula-Neto HA, Goundry A, Nascimento MT, Ganesan S, Gonçalves da Silva T, Kamenyeva O, Kabat J, Manzella-Lapeira J, B. Canto F, Fraga-Junior VDS, Eustáquio Lopes M, Gomes Vaz L, Pessenda G, Paun A, Freitas-Mesquita AL, Meyer-Fernandes JR, Boroni M, Bellio M, Batista Menezes G, Brzostowski J, Mottram J, Sacks D, Lima APCA, Saraiva EM. Functional plasticity shapes neutrophil response to Leishmania major infection in susceptible and resistant strains of mice. PLoS Pathog 2024; 20:e1012592. [PMID: 39378227 PMCID: PMC11488723 DOI: 10.1371/journal.ppat.1012592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/18/2024] [Accepted: 09/14/2024] [Indexed: 10/10/2024] Open
Abstract
Neutrophils rapidly infiltrate sites of infection and possess several microbicidal strategies, such as neutrophil extracellular traps release and phagocytosis. Enhanced neutrophil infiltration is associated with higher susceptibility to Leishmania infection, but neutrophil effector response contribution to this phenotype is uncertain. Here, we show that neutrophils from susceptible BALB/c mice (B/c) produce more NETs in response to Leishmania major than those from resistant C57BL/6 mice (B6), which are more phagocytic. The absence of neutrophil elastase contributes to phagocytosis regulation. Microarray analysis shows enrichment of genes involved in NET formation (mpo, pi3kcg, il1b) in B/c, while B6 shows upregulation of genes involved in phagocytosis and cell death (Arhgap12, casp9, mlkl, FasL). scRNA-seq in L. major-infected B6 showed heterogeneity in the pool of intralesional neutrophils, and we identified the N1 subset as the putative subpopulation involved with phagocytosis. In vivo, imaging validates NET formation in infected B/c ears where NETing neutrophils were mainly uninfected cells. NET digestion in vivo augmented parasite lymphatic drainage. Hence, a balance between NET formation and phagocytosis in neutrophils may contribute to the divergent phenotype observed in these mice.
Collapse
Affiliation(s)
- Thiago DeSouza-Vieira
- Laboratório de Imunobiologia das Leishmanioses, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Marco Antônio M. Pretti
- Laboratório de Bioinformática e Biologia Computacional, Divisão de Pesquisa Experimental Translacional, Instituto Nacional do Câncer (INCA), Rio de Janeiro, Brasil
| | - Phillipe Souza Lima Gomes
- Laboratório de Imunobiologia das Leishmanioses, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Heitor A. Paula-Neto
- Laboratório de Alvos Moleculares, Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Amy Goundry
- Laboratório de Bioquímica e Biologia Molecular de Proteases, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Michelle T. Nascimento
- Laboratório de Imunobiologia das Leishmanioses, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Sundar Ganesan
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Triciana Gonçalves da Silva
- National Center for Structural Biology and Bioimaging, CENABIO, Universidade Federal do Rio de Janeiro, Brazil
| | - Olena Kamenyeva
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Juraj Kabat
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Javier Manzella-Lapeira
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Fábio B. Canto
- Laboratório de Tolerância Imunológica e Homeostase Linfocitária, Departamento de Imunobiologia, Universidade Federal Fluminense, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Vanderlei da Silva Fraga-Junior
- Laboratório de Imunologia Molecular e Celular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Mateus Eustáquio Lopes
- Centro de Biologia Gastrointestinal, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Leonardo Gomes Vaz
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brasil
| | - Gabriela Pessenda
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Andrea Paun
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Anita L. Freitas-Mesquita
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - José Roberto Meyer-Fernandes
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Mariana Boroni
- Laboratório de Bioinformática e Biologia Computacional, Divisão de Pesquisa Experimental Translacional, Instituto Nacional do Câncer (INCA), Rio de Janeiro, Brasil
| | - Maria Bellio
- Laboratório de Imunobiologia, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Gustavo Batista Menezes
- Centro de Biologia Gastrointestinal, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Joseph Brzostowski
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Jeremy Mottram
- York Biomedical Research Institute and Department of Biology, University of York, York, United Kingdom
| | - David Sacks
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ana Paula C. A. Lima
- Laboratório de Bioquímica e Biologia Molecular de Proteases, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Elvira M. Saraiva
- Laboratório de Imunobiologia das Leishmanioses, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| |
Collapse
|
2
|
Du C, Cai N, Dong J, Xu C, Wang Q, Zhang Z, Li J, Huang C, Ma T. Uncovering the role of cytoskeleton proteins in the formation of neutrophil extracellular traps. Int Immunopharmacol 2023; 123:110607. [PMID: 37506501 DOI: 10.1016/j.intimp.2023.110607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023]
Abstract
Neutrophils are a type of lymphocyte involved in innate immune defense. In response to specific stimuli, these phagocytic cells undergo a unique form of cell death, NETosis, during which they release neutrophil extracellular traps (NETs) composed of modified chromatin structures decorated with cytoplasmic and granular proteins. Multiple proteins and pathways have been implicated in the formation of NETs. The cytoskeleton, an interconnected network of filamentous polymers and regulatory proteins, plays a crucial role in resisting deformation, transporting intracellular cargo, and changing shape during movement of eukaryotic cells. It may also have evolved to defend eukaryotic organisms against infection. Recent research focuses on understanding the mechanisms underlying NETs formation and how cytoskeletal networks contribute to this process, by identifying enzymes that trigger NETosis or interact with NETs and influence cellular behavior through cytoskeletal dynamics. An enhanced understanding of the complex relationship between the cytoskeleton and NET formation will provide a framework for future research and the development of targeted therapeutic strategies, and supports the notion that the long-lived cytoskeleton structures may have a lasting impact on this area of research.
Collapse
Affiliation(s)
- Changlin Du
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Na Cai
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jiahui Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Chuanting Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Qi Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Zhenming Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Taotao Ma
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
3
|
Sergunova V, Inozemtsev V, Vorobjeva N, Kozlova E, Sherstyukova E, Lyapunova S, Chernysh A. Morphology of Neutrophils during Their Activation and NETosis: Atomic Force Microscopy Study. Cells 2023; 12:2199. [PMID: 37681931 PMCID: PMC10486724 DOI: 10.3390/cells12172199] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023] Open
Abstract
Confocal microscopy and fluorescence staining of cellular structures are commonly used to study neutrophil activation and NETosis. However, they do not reveal the specific characteristics of the neutrophil membrane surface, its nanostructure, and morphology. The aim of this study was to reveal the topography and nanosurface characteristics of neutrophils during activation and NETosis using atomic force microscopy (AFM). We showed the main stages of neutrophil activation and NETosis, which include control cell spreading, cell fragment formation, fusion of nuclear segments, membrane disruption, release of neutrophil extracellular traps (NETs), and final cell disintegration. Changes in neutrophil membrane nanosurface parameters during activation and NETosis were quantified. It was shown that with increasing activation time there was a decrease in the spectral intensity of the spatial periods. Exposure to the activator A23187 resulted in an increase in the number and average size of cell fragments over time. Exposure to the activators A23187 and PMA (phorbol 12-myristate 13-acetate) caused the same pattern of cell transformation from spherical cells with segmented nuclei to disrupted cells with NET release. A23187 induced NETosis earlier than PMA, but PMA resulted in more cells with NETosis at the end of the specified time interval (180 min). In our study, we used AFM as the main research tool. Confocal laser-scanning microscopy (CLSM) images are provided for identification and detailed analysis of the phenomena studied. In this way, we exploited the advantages of both techniques.
Collapse
Affiliation(s)
- Viktoria Sergunova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (V.I.); (E.K.); (E.S.); (S.L.); (A.C.)
| | - Vladimir Inozemtsev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (V.I.); (E.K.); (E.S.); (S.L.); (A.C.)
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 119334 Moscow, Russia
| | - Nina Vorobjeva
- Department of Immunology, Biology Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Elena Kozlova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (V.I.); (E.K.); (E.S.); (S.L.); (A.C.)
- Department of Medical and Biological Physics, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Ekaterina Sherstyukova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (V.I.); (E.K.); (E.S.); (S.L.); (A.C.)
- Department of Medical and Biological Physics, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Snezhanna Lyapunova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (V.I.); (E.K.); (E.S.); (S.L.); (A.C.)
| | - Aleksandr Chernysh
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (V.I.); (E.K.); (E.S.); (S.L.); (A.C.)
| |
Collapse
|
4
|
Zhu Y, Xia X, He Q, Xiao QA, Wang D, Huang M, Zhang X. Diabetes-associated neutrophil NETosis: pathogenesis and interventional target of diabetic complications. Front Endocrinol (Lausanne) 2023; 14:1202463. [PMID: 37600700 PMCID: PMC10435749 DOI: 10.3389/fendo.2023.1202463] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are known as extracellular fibers networks consisting of antimicrobial proteins and decondensated chromatin DNA released by activated neutrophils. NETosis is a NETs-induced neutrophilic cell death which is unique from necrosis or apoptosis. Besides its neutralizing pathogen, NETosis plays a crucial role in diabetes and diabetes-related complications. In patients with diabetes, NETs-releasing products are significantly elevated in blood, and these findings confirm the association of NETosis and diabetic complications, including diabetic wound healing, diabetic retinopathy, and atherosclerosis. This article briefly summarizes the mechanisms of NETosis and discusses its contribution to the pathogenesis of diabetes-related complications and suggests new therapeutic targets by some small molecule compounds.
Collapse
Affiliation(s)
- Yuyan Zhu
- College of Basic Medical Science, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Xuan Xia
- College of Basic Medical Science, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- Department of Physiology and Pathophysiology, College of Basic Medical Science, China Three Gorges University, Yichang, China
| | - Qian He
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qing-Ao Xiao
- Department of Interventional Radiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China
- Department of Interventional Radiology, Yichang Central People’s Hospital, Yichang, Hubei, China
| | - Decheng Wang
- College of Basic Medical Science, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Meirong Huang
- College of Basic Medical Science, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- Department of Physiology and Pathophysiology, College of Basic Medical Science, China Three Gorges University, Yichang, China
| | - Xiaolin Zhang
- Department of Interventional Radiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China
- Department of Interventional Radiology, Yichang Central People’s Hospital, Yichang, Hubei, China
| |
Collapse
|
5
|
Inozemtsev V, Sergunova V, Vorobjeva N, Kozlova E, Sherstyukova E, Lyapunova S, Chernysh A. Stages of NETosis Development upon Stimulation of Neutrophils with Activators of Different Types. Int J Mol Sci 2023; 24:12355. [PMID: 37569729 PMCID: PMC10418979 DOI: 10.3390/ijms241512355] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Before NETs are released, the neutrophil undergoes structural changes. First, it flattens, accompanied by a change in cell shape and rearrangement of the cytoskeleton. Then, nuclear swelling begins, which ends with the ejection of NETs into the extracellular space. We used widefield and confocal fluorescence microscopy to register morphological and structural changes in neutrophils during activation and NETosis. Different types of activators were used, such as NOX-dependent PMA and calcium ionophore A23187. The measurements were performed in a series of sequential stages. In the first stage (30 s after addition of activators and immediately after stimulation of neutrophils), the response of neutrophils to A23187 and PMA exposure was studied. Subsequently, the characteristics of neutrophils in different phases of activation were examined over a longer period of time (30, 60, 120, 180, and 240 min). The specific features of NETosis development were analyzed separately. During the first 30 s, neutrophils appeared to be heterogeneous in shape and structure of the actin cytoskeleton. Characteristic cell shapes included 30″ type 1 cells, similar in shape to the control, with F-actin concentrated in the center of the cytoplasm, and 30″ type 2 cells, which had flattened (spread) shapes with increased frontal dimensions and F-actin distributed throughout the cell. Later, the development of nuclear swelling, the corresponding changes in neutrophil membranes, and NET release into the extracellular space were evaluated. The conditions determining the initiation of chromatin ejection and two characteristic types of decondensed chromatin ejection were revealed. The results obtained contribute to a better understanding of the biophysical mechanisms of neutrophil activation and NETosis development.
Collapse
Affiliation(s)
- Vladimir Inozemtsev
- Laboratory of Biophysics of Cell Membranes under Critical State, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Scientific Research Institute of General Reanimatology, Petrovka Street 25c2, 107031 Moscow, Russia; (V.S.); (E.K.); (E.S.); (S.L.); (A.C.)
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia
| | - Viktoria Sergunova
- Laboratory of Biophysics of Cell Membranes under Critical State, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Scientific Research Institute of General Reanimatology, Petrovka Street 25c2, 107031 Moscow, Russia; (V.S.); (E.K.); (E.S.); (S.L.); (A.C.)
| | - Nina Vorobjeva
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, Lenin Hills 1/12, 119234 Moscow, Russia;
| | - Elena Kozlova
- Laboratory of Biophysics of Cell Membranes under Critical State, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Scientific Research Institute of General Reanimatology, Petrovka Street 25c2, 107031 Moscow, Russia; (V.S.); (E.K.); (E.S.); (S.L.); (A.C.)
- Department of Medical and Biological Physics, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Ekaterina Sherstyukova
- Laboratory of Biophysics of Cell Membranes under Critical State, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Scientific Research Institute of General Reanimatology, Petrovka Street 25c2, 107031 Moscow, Russia; (V.S.); (E.K.); (E.S.); (S.L.); (A.C.)
| | - Snezhanna Lyapunova
- Laboratory of Biophysics of Cell Membranes under Critical State, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Scientific Research Institute of General Reanimatology, Petrovka Street 25c2, 107031 Moscow, Russia; (V.S.); (E.K.); (E.S.); (S.L.); (A.C.)
| | - Aleksandr Chernysh
- Laboratory of Biophysics of Cell Membranes under Critical State, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Scientific Research Institute of General Reanimatology, Petrovka Street 25c2, 107031 Moscow, Russia; (V.S.); (E.K.); (E.S.); (S.L.); (A.C.)
- General Pathology Department, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Scientific Research Institute of General Reanimatology, Petrovka Street 25c2, 107031 Moscow, Russia
| |
Collapse
|
6
|
Holsapple JS, Schnitzler L, Rusch L, Baldeweg TH, Neubert E, Kruss S, Erpenbeck L. Expansion microscopy of neutrophil nuclear structure and extracellular traps. BIOPHYSICAL REPORTS 2022; 3:100091. [PMID: 36619899 PMCID: PMC9813678 DOI: 10.1016/j.bpr.2022.100091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Neutrophils are key players of the immune system and possess an arsenal of effector functions, including the ability to form and expel neutrophil extracellular traps (NETs) in a process termed NETosis. During NETosis, the nuclear DNA/chromatin expands until it fills the whole cell and is released into the extracellular space. NETs are composed of DNA decorated with histones, proteins, or peptides, and NETosis is implicated in many diseases. Resolving the structure of the nucleus in great detail is essential to understand the underlying processes, but so far, superresolution methods have not been applied. Here, we developed an expansion-microscopy-based method and determined the spatial distribution of chromatin/DNA, histone H1, and nucleophosmin with an over fourfold improved resolution (<40-50 nm) and increased information content. It allowed us to identify the punctate localization of nucleophosmin in the nucleus and histone-rich domains in NETotic cells with a size of 54-66 nm. The technique could also be applied to components of the nuclear envelope (lamins B1 and B2) and myeloperoxidase, providing a complete picture of nuclear composition and structure. In conclusion, expansion microscopy enables superresolved imaging of the highly dynamic structure of nuclei in immune cells.
Collapse
Affiliation(s)
| | - Lena Schnitzler
- Department of Chemistry, Ruhr-University Bochum, Bochum, Germany
| | - Louisa Rusch
- Department of Dermatology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Elsa Neubert
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Sebastian Kruss
- Department of Chemistry, Ruhr-University Bochum, Bochum, Germany,Fraunhofer Institute for Microelectronic Circuits and Systems, Duisburg, Germany,Center for Nanointegration Duisburg-Essen (CENIDE), Duisburg, Germany,Corresponding author
| | - Luise Erpenbeck
- Department of Dermatology, University Hospital Münster, Münster, Germany,Corresponding author
| |
Collapse
|
7
|
Li B, Cao X, Ai G, Liu Y, Lv C, Jin L, Xu R, Zhao G, Yuan H. Interleukin-37 alleviates myocardial injury induced by coxsackievirus B3 via inhibiting neutrophil extracellular traps formation. Int Immunopharmacol 2022; 113:109343. [DOI: 10.1016/j.intimp.2022.109343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/19/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022]
|
8
|
Schoen J, Euler M, Schauer C, Schett G, Herrmann M, Knopf J, Yaykasli KO. Neutrophils' Extracellular Trap Mechanisms: From Physiology to Pathology. Int J Mol Sci 2022; 23:12855. [PMID: 36361646 PMCID: PMC9653572 DOI: 10.3390/ijms232112855] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 07/30/2023] Open
Abstract
Neutrophils are an essential part of the innate immune system and the first line of defense against invading pathogens. They phagocytose, release granular contents, produce reactive oxygen species, and form neutrophil extracellular traps (NETs) to fight pathogens. With the characterization of NETs and their components, neutrophils were identified as players of the innate adaptive crosstalk. This has placed NETs at the center not only of physiological but also pathological processes. Aside from their role in pathogen uptake and clearance, NETs have been demonstrated to contribute to the resolution of inflammation by forming aggregated NETs able to degrade inflammatory mediators. On the other hand, NETs have the potential to foster severe pathological conditions. When homeostasis is disrupted, they occlude vessels and ducts, serve as sources of autoantigens and danger or damage associated molecular patterns, directly damage tissues, and exaggerate complement activity and inflammation. This review focusses on the understanding of NETs from their formation to their functions in both physiological and pathological processes.
Collapse
Affiliation(s)
- Janina Schoen
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Maximilien Euler
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Christine Schauer
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Jasmin Knopf
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Kursat Oguz Yaykasli
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
9
|
Kalashnikov N, Moraes C. Engineering physical microenvironments to study innate immune cell biophysics. APL Bioeng 2022; 6:031504. [PMID: 36156981 PMCID: PMC9492295 DOI: 10.1063/5.0098578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/22/2022] [Indexed: 12/04/2022] Open
Abstract
Innate immunity forms the core of the human body's defense system against infection, injury, and foreign objects. It aims to maintain homeostasis by promoting inflammation and then initiating tissue repair, but it can also lead to disease when dysregulated. Although innate immune cells respond to their physical microenvironment and carry out intrinsically mechanical actions such as migration and phagocytosis, we still do not have a complete biophysical description of innate immunity. Here, we review how engineering tools can be used to study innate immune cell biophysics. We first provide an overview of innate immunity from a biophysical perspective, review the biophysical factors that affect the innate immune system, and then explore innate immune cell biophysics in the context of migration, phagocytosis, and phenotype polarization. Throughout the review, we highlight how physical microenvironments can be designed to probe the innate immune system, discuss how biophysical insight gained from these studies can be used to generate a more comprehensive description of innate immunity, and briefly comment on how this insight could be used to develop mechanical immune biomarkers and immunomodulatory therapies.
Collapse
Affiliation(s)
- Nikita Kalashnikov
- Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0G4, Canada
| | | |
Collapse
|
10
|
Pfister H. Neutrophil Extracellular Traps and Neutrophil-Derived Extracellular Vesicles: Common Players in Neutrophil Effector Functions. Diagnostics (Basel) 2022; 12:diagnostics12071715. [PMID: 35885618 PMCID: PMC9323717 DOI: 10.3390/diagnostics12071715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023] Open
Abstract
Neutrophil granulocytes are a central component of the innate immune system. In recent years, they have gained considerable attention due to newly discovered biological effector functions and their involvement in various pathological conditions. They have been shown to trigger mechanisms that can either promote or inhibit the development of autoimmunity, thrombosis, and cancer. One mechanism for their modulatory effect is the release of extracellular vesicles (EVs), that trigger appropriate signaling pathways in immune cells and other target cells. In addition, activated neutrophils can release bactericidal DNA fibers decorated with proteins from neutrophil granules (neutrophil extracellular traps, NETs). While NETs are very effective in limiting pathogens, they can also cause severe damage if released in excess or cleared inefficiently. Since NETs and EVs share a variety of neutrophil molecules and initially act in the same microenvironment, differential biochemical and functional analysis is particularly challenging. This review focuses on the biochemical and functional parallels and the extent to which the overlapping spectrum of effector molecules has an impact on biological and pathological effects.
Collapse
Affiliation(s)
- Heiko Pfister
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center Munich, Technical University Munich, D-80636 Munich, Germany
| |
Collapse
|
11
|
Liu ML, Lyu X, Werth VP. Recent progress in the mechanistic understanding of NET formation in neutrophils. FEBS J 2022; 289:3954-3966. [PMID: 34042290 PMCID: PMC9107956 DOI: 10.1111/febs.16036] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/11/2021] [Accepted: 05/24/2021] [Indexed: 01/03/2023]
Abstract
Neutrophils are the most abundant circulating white blood cells and one of the major cell types of the innate immune system. Neutrophil extracellular traps (NETs) are a result of the extracellular release of nuclear chromatin from the ruptured nuclear envelope and plasma membrane. The externalized chromatin is an ancient defense weapon for animals to entrap and kill microorganisms in the extracellular milieu, thus protecting animals ranging from lower invertebrates to higher vertebrates. Although the externalized chromatin has the advantage of acting as anti-infective to protect against infections, extracellular chromatin might be problematic in higher vertebrate animals as they have an adaptive immune system that can trigger further immune or autoimmune responses. NETs and their associated nuclear and/or cytoplasmic components may induce sterile inflammation, immune, and autoimmune responses, leading to various human diseases. Though important in human pathophysiology, the cellular and molecular mechanisms of NET formation (also called NETosis) are not well understood. Given that nuclear chromatin forms the backbone of NETs, the nucleus is the root of the nuclear DNA extracellular traps. Thus, nuclear chromatin decondensation, along with the rupture of nuclear envelope and plasma membrane, is required for nuclear chromatin extracellular release and NET formation. So far, most of the literature focuses on certain signaling pathways, which are involved in NET formation but without explanation of cellular events and morphological changes described above. Here, we have summarized emerging evidence and discuss new mechanistic understanding, with our perspectives, in NET formation in neutrophils.
Collapse
Affiliation(s)
- Ming-Lin Liu
- Corporal Michael J. Crescenz VAMC, Philadelphia, PA, 19104, USA,Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Xing Lyu
- Corporal Michael J. Crescenz VAMC, Philadelphia, PA, 19104, USA,Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA,Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Victoria P. Werth
- Corporal Michael J. Crescenz VAMC, Philadelphia, PA, 19104, USA,Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
12
|
Schön MP. The tick and I: Parasite-host interactions between ticks and humans. J Dtsch Dermatol Ges 2022; 20:818-853. [PMID: 35674196 DOI: 10.1111/ddg.14821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/25/2022] [Indexed: 11/28/2022]
Abstract
Ticks, particularly hard ticks (Ixodidae), which are among the most important vectors of dangerous infectious agents, feed on their hosts for extended periods of time. With this lifestyle, numerous adaptations have evolved in ticks and their hosts, the pharmacological importance of which is increasingly being recognized. Many bioactive substances in tick saliva are being considered as the basis of new drugs. For example, components of tick cement can be developed into tissue adhesives or wound closures. Analgesic and antipruritic salivary components inhibit histamine or bradykinin, while other tick-derived molecules bind opioid or cannabinoid receptors. Tick saliva inhibits the extrinsic, intrinsic, or common pathway of blood coagulation with implications for the treatment of thromboembolic diseases. It contains vasodilating substances and affects wound healing. The broad spectrum of immunomodulatory and immunosuppressive effects of tick saliva, such as inhibition of chemokines or cellular immune responses, allows development of drugs against inflammation in autoimmune diseases and/or infections. Finally, modern vaccines against ticks can curb the spread of serious infections. The medical importance of the complex tick-host interactions is increasingly being recognized and translated into first clinical applications. Using selected examples, an overview of the mutual adaptations of ticks and hosts is given here, focusing on their significance to medical advance.
Collapse
Affiliation(s)
- Michael P Schön
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Germany
| |
Collapse
|
13
|
Schön MP. Die Zecke und ich: Parasiten-Wirt-Interaktionen zwischen Zecken und Menschen. J Dtsch Dermatol Ges 2022; 20:818-855. [PMID: 35711058 DOI: 10.1111/ddg.14821_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Michael P Schön
- Klinik für Dermatologie, Venerologie und Allergologie, Universitätsmedizin Göttingen
| |
Collapse
|
14
|
Ding Z, Du F, Rönnow CF, Wang Y, Rahman M, Thorlacius H. Actin-related protein 2/3 complex regulates neutrophil extracellular trap expulsion and lung damage in abdominal sepsis. Am J Physiol Lung Cell Mol Physiol 2022; 322:L662-L672. [PMID: 35272488 DOI: 10.1152/ajplung.00318.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neutrophil extracellular trap (NET) formation is a key feature in sepsis. The aim of the present study was to examine the role of the actin cytoskeleton in regulating the expulsion of NETs. Actin-related protein 2/3 (Arp 2/3) complex is an important regulator of F-actin polymerization. Co-incubation with CK666, a specific Arp 2/3 inhibitor, decreased PMA-induced NET formation in vitro. CK666 not only abolished F-actin polymerization but also caused intracellular retention of NETs. Inhibition of Arp 2/3 reduced NET formation on circulating neutrophils and in the bronchoalveolar space in mice undergoing cecal ligation and puncture (CLP). Notably, treatment with CK666 attenuated CLP-induced neutrophil recruitment, edema formation and tissue damage in the lungs. Moreover, Arp 2/3 inhibition decreased levels of CXCL-1 and interleukin-6 in the lung and plasma of septic animals. Taken together, this study shows that expulsion of NETs is regulated by the actin cytoskeleton and that inhibition of Arp 2/3-dependent F-actin polymerization not only decrease NET formation but also protect against pathological inflammation and tissue damage in septic lung injury. Thus, we suggest that targeting NET release is a novel and useful way to ameliorate lung damage in abdominal sepsis.
Collapse
Affiliation(s)
- Zhiyi Ding
- Department of Clinical Sciences, Section for Surgery, Lund University, Malmö, Sweden
| | - Feifei Du
- Department of Clinical Sciences, Section for Surgery, Lund University, Malmö, Sweden
| | - Carl-Fredrik Rönnow
- Department of Clinical Sciences, Section for Surgery, Lund University, Malmö, Sweden
| | - Yongzhi Wang
- Department of Clinical Sciences, Section for Surgery, Lund University, Malmö, Sweden
| | - Milladur Rahman
- Department of Clinical Sciences, Section for Surgery, Lund University, Malmö, Sweden
| | - Henrik Thorlacius
- Department of Clinical Sciences, Section for Surgery, Lund University, Malmö, Sweden
| |
Collapse
|
15
|
Amara N, Cooper MP, Voronkova MA, Webb BA, Lynch EM, Kollman JM, Ma T, Yu K, Lai Z, Sangaraju D, Kayagaki N, Newton K, Bogyo M, Staben ST, Dixit VM. Selective activation of PFKL suppresses the phagocytic oxidative burst. Cell 2021; 184:4480-4494.e15. [PMID: 34320407 PMCID: PMC8802628 DOI: 10.1016/j.cell.2021.07.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/20/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022]
Abstract
In neutrophils, nicotinamide adenine dinucleotide phosphate (NADPH) generated via the pentose phosphate pathway fuels NADPH oxidase NOX2 to produce reactive oxygen species for killing invading pathogens. However, excessive NOX2 activity can exacerbate inflammation, as in acute respiratory distress syndrome (ARDS). Here, we use two unbiased chemical proteomic strategies to show that small-molecule LDC7559, or a more potent designed analog NA-11, inhibits the NOX2-dependent oxidative burst in neutrophils by activating the glycolytic enzyme phosphofructokinase-1 liver type (PFKL) and dampening flux through the pentose phosphate pathway. Accordingly, neutrophils treated with NA-11 had reduced NOX2-dependent outputs, including neutrophil cell death (NETosis) and tissue damage. A high-resolution structure of PFKL confirmed binding of NA-11 to the AMP/ADP allosteric activation site and explained why NA-11 failed to agonize phosphofructokinase-1 platelet type (PFKP) or muscle type (PFKM). Thus, NA-11 represents a tool for selective activation of PFKL, the main phosphofructokinase-1 isoform expressed in immune cells.
Collapse
Affiliation(s)
- Neri Amara
- Physiological Chemistry Department, Genentech, South San Francisco, CA 94080, USA
| | - Madison P Cooper
- Biochemistry Department, West Virginia University, Morgantown, WV 26506, USA
| | - Maria A Voronkova
- Biochemistry Department, West Virginia University, Morgantown, WV 26506, USA
| | - Bradley A Webb
- Biochemistry Department, West Virginia University, Morgantown, WV 26506, USA
| | - Eric M Lynch
- Biochemistry Department, University of Washington, Seattle, WA 98195, USA
| | - Justin M Kollman
- Biochemistry Department, University of Washington, Seattle, WA 98195, USA
| | - Taylur Ma
- Microchemistry, Proteomics, and Lipidomics Department, Genentech, South San Francisco, CA 94080, USA
| | - Kebing Yu
- Microchemistry, Proteomics, and Lipidomics Department, Genentech, South San Francisco, CA 94080, USA
| | - Zijuan Lai
- Drug Metabolism and Pharmacokinetics Department, Genentech, South San Francisco, CA 94080, USA
| | - Dewakar Sangaraju
- Drug Metabolism and Pharmacokinetics Department, Genentech, South San Francisco, CA 94080, USA
| | - Nobuhiko Kayagaki
- Physiological Chemistry Department, Genentech, South San Francisco, CA 94080, USA
| | - Kim Newton
- Physiological Chemistry Department, Genentech, South San Francisco, CA 94080, USA
| | - Matthew Bogyo
- Pathology Department, Stanford University, Stanford, CA 94305, USA
| | - Steven T Staben
- Discovery Chemistry Department, Genentech, South San Francisco, CA 94080, USA
| | - Vishva M Dixit
- Physiological Chemistry Department, Genentech, South San Francisco, CA 94080, USA.
| |
Collapse
|
16
|
Cichon I, Ortmann W, Kolaczkowska E. Metabolic Pathways Involved in Formation of Spontaneous and Lipopolysaccharide-Induced Neutrophil Extracellular Traps (NETs) Differ in Obesity and Systemic Inflammation. Int J Mol Sci 2021; 22:ijms22147718. [PMID: 34299338 PMCID: PMC8303382 DOI: 10.3390/ijms22147718] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
Obesity manifests itself with low-grade chronic inflammation that shapes immune responses during infection. Albeit obese individuals are at risk of higher mortality due to comorbidities, they are better protected from systemic inflammation. Recently, we showed that in the vasculature of obese mice kept on high-fat diet (HFD), neutrophils produce less neutrophil extracellular traps (NETs) than in lean controls (normal diet, ND). NETs are used by neutrophils to counteract severe infection, but they also cause collateral damage. Hardly anything is known about metabolic requirements for their formation, especially in the context of obesity and/or sepsis. Thus, we aimed to study the immunometabolism of NET formation by application of ex vivo neutrophil analyses (Seahorse analyzer, selective inhibitors, confocal imaging) and intravital microscopy. The obtained data show that glycolysis and/or pentose phosphate pathway are involved in NETs release by ND neutrophils in both physiological and inflammatory conditions. In contrast, such cells of septic HFD mice utilize these routes only to spontaneously cast NETs, while after secondary ex vivo activation they exhibit so called "exhausted phenotype", which manifests itself in diminished NET release despite high glycolytic potential and flexibility to oxidize fatty acids. Moreover, impact of ATP synthase inhibition on NET formation is revealed. Overall, the study shows that the neutrophil potential to cast NETs depends on both the metabolic and inflammatory state of the individual.
Collapse
|
17
|
Sahu S, Sharma K, Sharma M, Narang T, Dogra S, Minz RW, Chhabra S. Neutrophil NETworking in ENL: Potential as a Putative Biomarker: Future Insights. Front Med (Lausanne) 2021; 8:697804. [PMID: 34336901 PMCID: PMC8316588 DOI: 10.3389/fmed.2021.697804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/17/2021] [Indexed: 12/11/2022] Open
Abstract
Erythema nodosum leprosum (ENL), also known as type 2 reaction (T2R) is an immune complex mediated (type III hypersensitivity) reactional state encountered in patients with borderline lepromatous and lepromatous leprosy (BL and LL) either before, during, or after the institution of anti-leprosy treatment (ALT). The consequences of ENL may be serious, leading to permanent nerve damage and deformities, constituting a major cause of leprosy-related morbidity. The incidence of ENL is increasing with the increasing number of multibacillary cases. Although the diagnosis of ENL is not difficult to make for physicians involved in the care of leprosy patients, its management continues to be a most challenging aspect of the leprosy eradication program: the chronic and recurrent painful skin lesions, neuritis, and organ involvement necessitates prolonged treatment with prednisolone, thalidomide, and anti-inflammatory and immunosuppressive drugs, which further adds to the existing morbidity. In addition, the use of immunosuppressants like methotrexate, azathioprine, cyclosporine, or biologics carries a risk of reactivation of persisters (Mycobacterium leprae), apart from their own end-organ toxicities. Most ENL therapeutic guidelines are primarily designed for acute episodes and there is scarcity of literature on management of patients with chronic and recurrent ENL. It is difficult to predict which patients will develop chronic or recurrent ENL and plan the treatment accordingly. We need simple point-of-care or ELISA-based tests from blood or skin biopsy samples, which can help us in identifying patients who are likely to require prolonged treatment and also inform us about the prognosis of reactions so that appropriate therapy may be started and continued for better ENL control in such patients. There is a significant unmet need for research for better understanding the immunopathogenesis of, and biomarkers for, ENL to improve clinical stratification and therapeutics. In this review we will discuss the potential of neutrophils (polymorphonuclear granulocytes) as putative diagnostic and prognostic biomarkers by virtue of their universal abundance in human blood, functional versatility, phenotypic heterogeneity, metabolic plasticity, differential hierarchical cytoplasmic granule mobilization, and their ability to form NETs (neutrophil extracellular traps). We will touch upon the various aspects of neutrophil biology relevant to ENL pathophysiology in a step-wise manner. We also hypothesize about an element of metabolic reprogramming of neutrophils by M. leprae that could be investigated and exploited for biomarker discovery. In the end, a potential role for neutrophil derived exosomes as a novel biomarker for ENL will also be explored.
Collapse
Affiliation(s)
- Smrity Sahu
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Keshav Sharma
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Maryada Sharma
- Department of Otolaryngology and Head and Neck Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Tarun Narang
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sunil Dogra
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ranjana Walker Minz
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Seema Chhabra
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
18
|
Sabbatini M, Magnelli V, Renò F. NETosis in Wound Healing: When Enough Is Enough. Cells 2021; 10:cells10030494. [PMID: 33668924 PMCID: PMC7996535 DOI: 10.3390/cells10030494] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 12/15/2022] Open
Abstract
The neutrophils extracellular traps (NETs) are a meshwork of chromatin, histonic and non-histonic proteins, and microbicidal agents spread outside the cell by a series of nuclear and cytoplasmic events, collectively called NETosis. NETosis, initially only considered a defensive/apoptotic mechanism, is now considered an extreme defensive solution, which in particular situations induces strong negative effects on tissue physiology, causing or exacerbating pathologies as recently shown in NETs-mediated organ damage in COVID-19 patients. The positive effects of NETs on wound healing have been linked to their antimicrobial activity, while the negative effects appear to be more common in a plethora of pathological conditions (such as diabetes) and linked to a NETosis upregulation. Recent evidence suggests there are other positive physiological NETs effects on wound healing that are worthy of a broader research effort.
Collapse
Affiliation(s)
- Maurizio Sabbatini
- Department of Science and Innovation Technology (DISIT), Università del Piemonte Orientale—via T. Michel 11, 15121 Alessandria, Italy; (M.S.); (V.M.)
| | - Valeria Magnelli
- Department of Science and Innovation Technology (DISIT), Università del Piemonte Orientale—via T. Michel 11, 15121 Alessandria, Italy; (M.S.); (V.M.)
| | - Filippo Renò
- Innovative Research Laboratory for Wound Healing, Health Sciences Department, Università del Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy
- Correspondence: ; Tel.: +39-0321-66-0634
| |
Collapse
|
19
|
Blanter M, Gouwy M, Struyf S. Studying Neutrophil Function in vitro: Cell Models and Environmental Factors. J Inflamm Res 2021; 14:141-162. [PMID: 33505167 PMCID: PMC7829132 DOI: 10.2147/jir.s284941] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/04/2020] [Indexed: 01/21/2023] Open
Abstract
Neutrophils are the most abundant immune cell type in the blood and constitute the first line of defense against invading pathogens. Despite their important role in many diseases, they are challenging to study due to their short life span and the inability to cryopreserve or expand them in vitro. Thus, research into neutrophils has to rely on cells freshly isolated from peripheral blood of human donors, introducing donor-dependent variation in the experimental data. To counteract these problems, researchers tried to develop adequate cell models, such as cell lines. For those functional studies that cannot rely on cell models, a standardization of protocols regarding neutrophil purification and culturing could be a solution. In this review, we provide an overview of the most commonly used models for neutrophil function (HL-60, PLB-985, NB4, Kasumi-1 and induced pluripotent stem cells). In addition, we describe the effects of glucose concentration, pH, oxygen tension and temperature on neutrophil function.
Collapse
Affiliation(s)
- Marfa Blanter
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven 3000, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven 3000, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven 3000, Belgium
| |
Collapse
|
20
|
Yang J, Wu Z, Long Q, Huang J, Hong T, Liu W, Lin J. Insights Into Immunothrombosis: The Interplay Among Neutrophil Extracellular Trap, von Willebrand Factor, and ADAMTS13. Front Immunol 2020; 11:610696. [PMID: 33343584 PMCID: PMC7738460 DOI: 10.3389/fimmu.2020.610696] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/02/2020] [Indexed: 12/24/2022] Open
Abstract
Both neutrophil extracellular traps (NETs) and von Willebrand factor (VWF) are essential for thrombosis and inflammation. During these processes, a complex series of events, including endothelial activation, NET formation, VWF secretion, and blood cell adhesion, aggregation and activation, occurs in an ordered manner in the vasculature. The adhesive activity of VWF multimers is regulated by a specific metalloprotease ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin type 1 motifs, member 13). Increasing evidence indicates that the interaction between NETs and VWF contributes to arterial and venous thrombosis as well as inflammation. Furthermore, contents released from activated neutrophils or NETs induce the reduction of ADAMTS13 activity, which may occur in both thrombotic microangiopathies (TMAs) and acute ischemic stroke (AIS). Recently, NET is considered as a driver of endothelial damage and immunothrombosis in COVID-19. In addition, the levels of VWF and ADAMTS13 can predict the mortality of COVID-19. In this review, we summarize the biological characteristics and interactions of NETs, VWF, and ADAMTS13, and discuss their roles in TMAs, AIS, and COVID-19. Targeting the NET-VWF axis may be a novel therapeutic strategy for inflammation-associated TMAs, AIS, and COVID-19.
Collapse
Affiliation(s)
- Junxian Yang
- Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Zhiwei Wu
- Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Quan Long
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Jiaqi Huang
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Tiantian Hong
- Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Wang Liu
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Jiangguo Lin
- Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
21
|
Functional actin cytoskeleton is required in early stage of NETosis induction. Proc Natl Acad Sci U S A 2020; 117:22653-22654. [PMID: 32943582 DOI: 10.1073/pnas.2013790117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|