1
|
Arruda VM, Azevedo GT, Granato MJMG, Matos ACP, Araújo TG, Guerra JFDC. Oxidative Stress and Annexin A2 Differential Expression in Free Fatty Acids-Induced Non-Alcoholic Fatty Liver Disease in HepG2 Cells. Int J Mol Sci 2024; 25:9591. [PMID: 39273539 PMCID: PMC11395542 DOI: 10.3390/ijms25179591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a rising global burden, affecting one in four adults. Despite the increasing prevalence of NAFLD, the exact cellular and molecular mechanisms remain unclear, and effective therapeutic strategies are still limited. In vitro models of NAFLD are critical to understanding the pathogenesis and searching for effective therapies; thus, we evaluated the effects of free fatty acids (FFAs) on NAFLD hallmarks and their association with the modulation of Annexin A2 (ANXA2) and Keratin 17 (KRT17) in HepG2 cells. Our results show that oleic and palmitic acids can differentially induce intracellular lipid accumulation, cell death, and promote oxidative stress by increasing lipid peroxidation, protein carbonylation, and antioxidant defense depletion. Moreover, a markedly increased expression of inflammatory cytokines demonstrated the activation of inflammation pathways associated with lipotoxicity and oxidative stress. ANXA2 overexpression and KRT17 nuclear translocation were also observed, supporting the role of both molecules in the progression of liver disease. Taken together, these data provide insights into the interplay between ANXA2 and KRT17 in NAFLD, paving the way for understanding molecular mechanisms involved with the disease and developing new therapeutic strategies.
Collapse
Affiliation(s)
- Vinícius Marques Arruda
- Laboratory of Metabolic Biochemistry and Redox Processes, Institute of Biotechnology, Federal University of Uberlandia, Patos de Minas 38700-002, Brazil; (V.M.A.); (G.T.A.); (M.J.M.G.G.)
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Federal University of Uberlandia, Patos de Minas 38700-002, Brazil; (A.C.P.M.); (T.G.A.)
| | - Gabriela Tolentino Azevedo
- Laboratory of Metabolic Biochemistry and Redox Processes, Institute of Biotechnology, Federal University of Uberlandia, Patos de Minas 38700-002, Brazil; (V.M.A.); (G.T.A.); (M.J.M.G.G.)
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Federal University of Uberlandia, Patos de Minas 38700-002, Brazil; (A.C.P.M.); (T.G.A.)
| | - Maria Júlia Maia Gonçalves Granato
- Laboratory of Metabolic Biochemistry and Redox Processes, Institute of Biotechnology, Federal University of Uberlandia, Patos de Minas 38700-002, Brazil; (V.M.A.); (G.T.A.); (M.J.M.G.G.)
| | - André Carlos Pereira Matos
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Federal University of Uberlandia, Patos de Minas 38700-002, Brazil; (A.C.P.M.); (T.G.A.)
| | - Thaise Gonçalves Araújo
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Federal University of Uberlandia, Patos de Minas 38700-002, Brazil; (A.C.P.M.); (T.G.A.)
| | - Joyce Ferreira da Costa Guerra
- Laboratory of Metabolic Biochemistry and Redox Processes, Institute of Biotechnology, Federal University of Uberlandia, Patos de Minas 38700-002, Brazil; (V.M.A.); (G.T.A.); (M.J.M.G.G.)
| |
Collapse
|
2
|
Romashin DD, Tolstova TV, Varshaver AM, Kozhin PM, Rusanov AL, Luzgina NG. Keratins 6, 16, and 17 in Health and Disease: A Summary of Recent Findings. Curr Issues Mol Biol 2024; 46:8627-8641. [PMID: 39194725 DOI: 10.3390/cimb46080508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Keratins 6, 16, and 17 occupy unique positions within the keratin family. These proteins are not commonly found in the healthy, intact epidermis, but their expression increases in response to damage, inflammation, and hereditary skin conditions, as well as cancerous cell transformations and tumor growth. As a result, there is an active investigation into the potential use of these proteins as biomarkers for different pathologies. Recent studies have revealed the role of these keratins in regulating keratinocyte migration, proliferation, and growth, and more recently, their nuclear functions, including their role in maintaining nuclear structure and responding to DNA damage, have also been identified. This review aims to summarize the latest research on keratins 6, 16, and 17, their regulation in the epidermis, and their potential use as biomarkers in various skin conditions.
Collapse
Affiliation(s)
| | | | | | - Peter M Kozhin
- Institute of Biomedical Chemistry, Moscow 119121, Russia
| | | | | |
Collapse
|
3
|
Xu Y, Cohen E, Johnson CN, Parent CA, Coulombe PA. Repeated stress to the skin amplifies neutrophil infiltration in a keratin 17- and PKCα-dependent manner. PLoS Biol 2024; 22:e3002779. [PMID: 39159283 PMCID: PMC11361748 DOI: 10.1371/journal.pbio.3002779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 08/29/2024] [Accepted: 07/31/2024] [Indexed: 08/21/2024] Open
Abstract
Neutrophils are the first immune cells to reach inflamed sites and contribute to the pathogenesis of chronic inflammatory skin diseases. Yet, little is known about the pattern of neutrophil infiltration in inflamed skin in vivo and the mechanisms mediating their recruitment. Here, we provide insight into the dynamics of neutrophil infiltration in skin in response to acute or repeated inflammatory stress, highlighting a novel keratinocyte- and keratin 17 (K17)-dependent mechanism that regulates neutrophil recruitment to inflamed skin. We used the phorbol ester TPA and UVB, alone or in combination, to induce sterile inflammation in mouse skin. A single TPA treatment results in a neutrophil influx in the dermis that peaks at 12 h and resolves within 24 h. A subsequent TPA treatment or a UVB challenge, when applied 24 h but not 48 h later, accelerates, amplifies, and prolongs neutrophil infiltration. This transient amplification response (TAR) is mediated by local signals in inflamed skin, can be recapitulated in ex vivo culture, and involves the K17-dependent sustainment of protein kinase Cα (PKCα) activity and release of chemoattractants by stressed keratinocytes. K17 binds RACK1, a scaffold protein essential for PKCα activity. The N-terminal head domain of K17 is crucial for its association with RACK1 and regulation of PKCα activity. Analysis of RNAseq data reveals a signature consistent with TAR and PKCα activation in inflammatory skin diseases. These findings uncover a novel, keratin-dependent mechanism that amplifies neutrophil recruitment in skin under stress, with direct implications for inflammatory skin disorders.
Collapse
Affiliation(s)
- Yang Xu
- Graduate Program in Pharmacology and Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Erez Cohen
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Craig N. Johnson
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Carole A. Parent
- Graduate Program in Pharmacology and Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Life Science Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Pierre A. Coulombe
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
4
|
Romashin D, Rusanov A, Tolstova T, Varshaver A, Netrusov A, Kozhin P, Luzgina N. Loss of mutant p53 in HaCaT keratinocytes promotes cadmium-induced keratin 17 expression and cell death. Biochem Biophys Res Commun 2024; 709:149834. [PMID: 38547608 DOI: 10.1016/j.bbrc.2024.149834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Cadmium exposure induces dermatotoxicity and epidermal barrier disruption and leads to the development of various pathologies. HaCaT cells are immortalized human keratinocytes that are widely used as alternatives to primary human keratinocytes, particularly for evaluating cadmium toxicity. HaCaT cells bear two gain-of-function (GOF) mutations in the TP53 gene, which strongly affect p53 function. Mutant forms of p53 are known to correlate with increased resistance to various stimuli, including exposure to cytotoxic substances. In addition, keratin 17 (KRT17) was recently shown to be highly expressed in HaCaT cells in response to genotoxic stress. Moreover, p53 is a direct transcriptional repressor of KRT17. However, the impact of TP53 mutations in HaCaT cells on the regulation of cell death and keratin 17 expression is unclear. In this study, we aimed to evaluate the impact of p53 on the response to Cd-induced cytotoxicity. METHODS AND RESULTS Employing the MTT assay and Annexin V/propidium iodide staining, we demonstrated that knockout of TP53 leads to a decrease in the sensitivity of HaCaT cells to the cytotoxic effects of cadmium. Specifically, HaCaT cells with TP53 knockout (TP53 KO HaCaT) exhibited cell death at a cadmium concentration of 10 μM or higher, whereas wild-type cells displayed cell death at a concentration of 30 μM. Furthermore, apoptotic cells were consistently detected in TP53 KO HaCaT cells upon exposure to low concentrations of cadmium (10 and 20 μM) but not in wild-type cells. Our findings also indicate that cadmium cytotoxicity is mediated by reactive oxygen species (ROS), which were significantly increased only in TP53 knockout cells treated with 30 μM cadmium. An examination of proteomic data revealed that TP53 knockout in HaCaT cells resulted in the upregulation of proteins involved in the regulation of apoptosis, redox systems, and DNA repair. Moreover, RT‒qPCR and immunoblotting showed that cadmium toxicity leads to dose-dependent induction of keratin 17 in p53-deficient cells but not in wild-type cells. CONCLUSIONS The connection between mutant p53 in HaCaT keratinocytes and increased resistance to cadmium toxicity was demonstrated for the first time. Proteomic profiling revealed that TP53 knockout in HaCaT cells led to the activation of apoptosis regulatory circuits, redox systems, and DNA repair. In addition, our data support the involvement of keratin 17 in the regulation of DNA repair and cell death. Apparently, the induction of keratin 17 is p53-independent but may be inhibited by mutant p53.
Collapse
Affiliation(s)
- Daniil Romashin
- Institute of Biomedical Chemistry, 10 Pogodinskaya St., Moscow, 119121, Russia
| | - Alexander Rusanov
- Institute of Biomedical Chemistry, 10 Pogodinskaya St., Moscow, 119121, Russia.
| | - Tatiana Tolstova
- Institute of Biomedical Chemistry, 10 Pogodinskaya St., Moscow, 119121, Russia
| | - Alexandra Varshaver
- Institute of Biomedical Chemistry, 10 Pogodinskaya St., Moscow, 119121, Russia
| | - Alexander Netrusov
- Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, 119991, Russia
| | - Peter Kozhin
- Institute of Biomedical Chemistry, 10 Pogodinskaya St., Moscow, 119121, Russia
| | - Nataliya Luzgina
- Institute of Biomedical Chemistry, 10 Pogodinskaya St., Moscow, 119121, Russia
| |
Collapse
|
5
|
Demchenko A, Belova L, Balyasin M, Kochergin-Nikitsky K, Kondrateva E, Voronina E, Pozhitnova V, Tabakov V, Salikhova D, Bukharova T, Goldshtein D, Kondratyeva E, Kyian T, Amelina E, Zubkova O, Popova O, Ozharovskaia T, Lavrov A, Smirnikhina S. Airway basal cells from human-induced pluripotent stem cells: a new frontier in cystic fibrosis research. Front Cell Dev Biol 2024; 12:1336392. [PMID: 38737127 PMCID: PMC11082282 DOI: 10.3389/fcell.2024.1336392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/08/2024] [Indexed: 05/14/2024] Open
Abstract
Human-induced airway basal cells (hiBCs) derived from human-induced pluripotent stem cells (hiPSCs) offer a promising cell model for studying lung diseases, regenerative medicine, and developing new gene therapy methods. We analyzed existing differentiation protocols and proposed our own protocol for obtaining hiBCs, which involves step-by-step differentiation of hiPSCs into definitive endoderm, anterior foregut endoderm, NKX2.1+ lung progenitors, and cultivation on basal cell medium with subsequent cell sorting using the surface marker CD271 (NGFR). We derived hiBCs from two healthy cell lines and three cell lines with cystic fibrosis (CF). The obtained hiBCs, expressing basal cell markers (NGFR, KRT5, and TP63), could differentiate into lung organoids (LOs). We demonstrated that LOs derived from hiBCs can assess cystic fibrosis transmembrane conductance regulator (CFTR) channel function using the forskolin-induced swelling (FIS) assay. We also carried out non-viral (electroporation) and viral (recombinant adeno-associated virus (rAAV)) serotypes 6 and 9 and recombinant adenovirus (rAdV) serotype 5 transgene delivery to hiBCs and showed that rAAV serotype 6 is most effective against hiBCs, potentially applicable for gene therapy research.
Collapse
Affiliation(s)
- Anna Demchenko
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russia
| | - Lyubava Belova
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russia
| | - Maxim Balyasin
- Scientific and Educational Resource Center, Peoples’ Friendship University of Russia, Moscow, Russia
- Department of Cell Technology, Endocrinology Research Center, Moscow, Russia
| | | | - Ekaterina Kondrateva
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russia
| | - Ekaterina Voronina
- Laboratory of Mutagenesis, Research Centre for Medical Genetics, Moscow, Russia
| | - Victoria Pozhitnova
- Laboratory of Mutagenesis, Research Centre for Medical Genetics, Moscow, Russia
| | - Vyacheslav Tabakov
- Moscow Branch of the Biobank “All-Russian Collection of Biological Samples of Hereditary Diseases”, Research Centre for Medical Genetics, Moscow, Russia
| | - Diana Salikhova
- Stem Cell Genetics Laboratory, Research Centre for Medical Genetics, Moscow, Russia
| | - Tatiana Bukharova
- Stem Cell Genetics Laboratory, Research Centre for Medical Genetics, Moscow, Russia
| | - Dmitry Goldshtein
- Stem Cell Genetics Laboratory, Research Centre for Medical Genetics, Moscow, Russia
| | - Elena Kondratyeva
- Scientific and Clinical Department of Cystic Fibrosis, Research Centre for Medical Genetics, Moscow, Russia
| | - Tatiana Kyian
- Scientific and Clinical Department of Cystic Fibrosis, Research Centre for Medical Genetics, Moscow, Russia
| | - Elena Amelina
- Laboratory of Cystic Fibrosis, Research Institute of Pulmonology, Moscow, Russia
| | - Olga Zubkova
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named After Honorary Academician N F Gamaleya” of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Olga Popova
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named After Honorary Academician N F Gamaleya” of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Tatiana Ozharovskaia
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named After Honorary Academician N F Gamaleya” of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alexander Lavrov
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russia
| | - Svetlana Smirnikhina
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russia
| |
Collapse
|
6
|
Coulombe PA, Pineda CM, Jacob JT, Nair RR. Nuclear roles for non-lamin intermediate filament proteins. Curr Opin Cell Biol 2024; 86:102303. [PMID: 38113712 PMCID: PMC11056187 DOI: 10.1016/j.ceb.2023.102303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/21/2023] [Accepted: 11/26/2023] [Indexed: 12/21/2023]
Abstract
The nuclear-localized lamins have long been thought to be the only intermediate filaments (IFs) with an impact on the architecture, properties, and functions of the nucleus. Recent studies, however, uncovered significant roles for IFs other than lamins (here referred to as "non-lamin IFs") in regulating key properties of the nucleus in various cell types and biological settings. In the cytoplasm, IFs often occur in the perinuclear space where they contribute to local stiffness and impact the shape and/or the integrity of the nucleus, particularly in cells under stress. In addition, selective non-lamin IF proteins can occur inside the nucleus where they partake in fundamental processes including nuclear architecture and chromatin organization, regulation of gene expression, cell cycle progression, and the repair of DNA damage. This text reviews the evidence supporting a role for non-lamin IF proteins in regulating various properties of the nucleus and highlights opportunities for further study.
Collapse
Affiliation(s)
- Pierre A Coulombe
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Christopher M Pineda
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Justin T Jacob
- Public Health Laboratory Division, District of Columbia Department of Forensic Sciences, Washington, DC 20024, USA
| | - Raji R Nair
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
7
|
King MC. Dynamic regulation of LINC complex composition and function across tissues and contexts. FEBS Lett 2023; 597:2823-2832. [PMID: 37846646 DOI: 10.1002/1873-3468.14757] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023]
Abstract
The concept of mechanotransduction to the nucleus through a direct force transmission mechanism has fascinated cell biologists for decades. Central to such a mechanism is the linker of nucleoskeleton and cytoskeleton (LINC) complex, which spans the nuclear envelope to couple the cytoplasmic cytoskeleton to the nuclear lamina. In reality, there is not one LINC complex identity, but instead, a family of protein configurations of varied composition that exert both shared and unique functions. Regulated expression of LINC complex components, splice variants, and mechanoresponsive protein turnover mechanisms together shape the complement of LINC complex forms present in a given cell type. Disrupting specific gene(s) encoding LINC complex components therefore gives rise to a range of organismal defects. Moreover, evidence suggests that the mechanical environment remodels LINC complexes, providing a feedback mechanism by which cellular context influences the integration of the nucleus into the cytoskeleton. In particular, evidence for crosstalk between the nuclear and cytoplasmic intermediate filament networks communicated through the LINC complex represents an emerging theme in this active area of ongoing investigation.
Collapse
Affiliation(s)
- Megan C King
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
- Department of Molecular, Cell and Developmental Biology, Yale University, New Haven, CT, USA
| |
Collapse
|
8
|
Buchwalter A. Intermediate, but not average: The unusual lives of the nuclear lamin proteins. Curr Opin Cell Biol 2023; 84:102220. [PMID: 37619289 DOI: 10.1016/j.ceb.2023.102220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
The nuclear lamins are polymeric intermediate filament proteins that scaffold the nucleus and organize the genome in nearly all eukaryotic cells. This review focuses on the dynamic regulation of lamin filaments through their biogenesis, assembly, disassembly, and degradation. The lamins are unusually long-lived proteins under homeostatic conditions, but their turnover can be induced in select contexts that are highlighted in this review. Finally, we discuss recent investigations into the influence of laminopathy-linked mutations on the assembly, folding, and stability of the nuclear lamins.
Collapse
Affiliation(s)
- Abigail Buchwalter
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
9
|
Stenvall CGA, Nyström JH, Butler-Hallissey C, Jansson T, Heikkilä TRH, Adam SA, Foisner R, Goldman RD, Ridge KM, Toivola DM. Cytoplasmic keratins couple with and maintain nuclear envelope integrity in colonic epithelial cells. Mol Biol Cell 2022; 33:ar121. [PMID: 36001365 PMCID: PMC9634972 DOI: 10.1091/mbc.e20-06-0387] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/20/2022] [Accepted: 08/18/2022] [Indexed: 01/18/2023] Open
Abstract
Keratin intermediate filaments convey mechanical stability and protection against stress to epithelial cells. Keratins are essential for colon health, as seen in keratin 8 knockout (K8-/-) mice exhibiting a colitis phenotype. We hypothesized that keratins support the nuclear envelope and lamina in colonocytes. K8-/- colonocytes in vivo exhibit significantly decreased levels of lamins A/C, B1, and B2 in a colon-specific and cell-intrinsic manner. CRISPR/Cas9- or siRNA-mediated K8 knockdown in Caco-2 cells similarly decreased lamin levels, which recovered after reexpression of K8 following siRNA treatment. Nuclear area was not decreased, and roundness was only marginally increased in cells without K8. Down-regulation of K8 in adult K8flox/flox;Villin-CreERt2 mice following tamoxifen administration significantly decreased lamin levels at day 4 when K8 levels had reduced to 40%. K8 loss also led to reduced levels of plectin, LINC complex, and lamin-associated proteins. While keratins were not seen in the nucleoplasm without or with leptomycin B treatment, keratins were found intimately located at the nuclear envelope and complexed with SUN2 and lamin A. Furthermore, K8 loss in Caco-2 cells compromised nuclear membrane integrity basally and after shear stress. In conclusion, colonocyte K8 helps maintain nuclear envelope and lamina composition and contributes to nuclear integrity.
Collapse
Affiliation(s)
| | - Joel H. Nyström
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University
| | - Ciarán Butler-Hallissey
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University
- Turku Bioscience Centre, University of Turku, and Åbo Akademi University, and
- Aix Marseille Université, CNRS, INP UMR7051, NeuroCyto, 13005 Marseille, France
| | - Theresia Jansson
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University
| | - Taina R. H. Heikkilä
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University
| | | | - Roland Foisner
- Max Perutz Labs, Medical University of Vienna, Vienna Biocenter Campus, 1030 Vienna, Austria
| | | | - Karen M. Ridge
- Department of Cell and Developmental Biology and
- Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Diana M. Toivola
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University
- InFLAMES Research Flagship Center, Åbo Akademi University, 20500 Turku, Finland
- Turku Center for Disease Modeling, University of Turku, 20520 Turku, Finland
| |
Collapse
|
10
|
Salvador J, Iruela-Arispe ML. Nuclear Mechanosensation and Mechanotransduction in Vascular Cells. Front Cell Dev Biol 2022; 10:905927. [PMID: 35784481 PMCID: PMC9247619 DOI: 10.3389/fcell.2022.905927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/31/2022] [Indexed: 11/24/2022] Open
Abstract
Vascular cells are constantly subjected to physical forces associated with the rhythmic activities of the heart, which combined with the individual geometry of vessels further imposes oscillatory, turbulent, or laminar shear stresses on vascular cells. These hemodynamic forces play an important role in regulating the transcriptional program and phenotype of endothelial and smooth muscle cells in different regions of the vascular tree. Within the aorta, the lesser curvature of the arch is characterized by disturbed, oscillatory flow. There, endothelial cells become activated, adopting pro-inflammatory and athero-prone phenotypes. This contrasts the descending aorta where flow is laminar and endothelial cells maintain a quiescent and atheroprotective phenotype. While still unclear, the specific mechanisms involved in mechanosensing flow patterns and their molecular mechanotransduction directly impact the nucleus with consequences to transcriptional and epigenetic states. The linker of nucleoskeleton and cytoskeleton (LINC) protein complex transmits both internal and external forces, including shear stress, through the cytoskeleton to the nucleus. These forces can ultimately lead to changes in nuclear integrity, chromatin organization, and gene expression that significantly impact emergence of pathology such as the high incidence of atherosclerosis in progeria. Therefore, there is strong motivation to understand how endothelial nuclei can sense and respond to physical signals and how abnormal responses to mechanical cues can lead to disease. Here, we review the evidence for a critical role of the nucleus as a mechanosensor and the importance of maintaining nuclear integrity in response to continuous biophysical forces, specifically shear stress, for proper vascular function and stability.
Collapse
Affiliation(s)
| | - M. Luisa Iruela-Arispe
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
11
|
Maurizi E, Merra A, Schiroli D, Ghezzi B, Macaluso C, Pellegrini G. Fluctuations in Corneal Endothelial LAP2 Expression Levels Correlate with Passage Dependent Declines in Their Cell Proliferative Activity. Int J Mol Sci 2022; 23:ijms23105859. [PMID: 35628669 PMCID: PMC9146651 DOI: 10.3390/ijms23105859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/19/2022] [Accepted: 05/22/2022] [Indexed: 01/27/2023] Open
Abstract
The corneal endothelium is the inner corneal mono-layered epithelium, fundamental for preserving corneal hydration and transparency. However, molecular mechanisms that regulate corneal endothelial cells (CEnCs), in particular regarding their proliferative capacity, have been only partially elucidated. CEnCs are quiescent in vivo and they easily undergo endothelial to mesenchymal transition (EnMT) in vitro. This study aims to analyze CEnCs behavior and expression in vitro, either in sub-confluent growing (S) or confluent (C) CEnCs cultures. Primary rabbit and human CEnCs were cultured and used for RT-PCR, immunofluorescence or western blot analysis. These methods allowed identifying a novel molecular marker, LAP2, that is upregulated in S while downregulated in C human or rabbit CEnCs. Those results were observed for several subsequent passages in culture and this, together with the correlation between ki67 and LAP2 expression, suggested LAP2 as a novel possible indicator for culture ageing. Finally, treatment with FGF and TGFβ in rCEnCs highlighted how LAP2 can vary as the cells regulate their proliferative state. In conclusion, we have identified a novel marker for CEnCs, LAP2, that regulates its expression depending on the cells sub/confluent state and that correlates with CEnCs proliferation.
Collapse
Affiliation(s)
- Eleonora Maurizi
- Centre for Regenerative Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy;
- Correspondence:
| | - Alessia Merra
- Holostem Terapie Avanzate S.r.l., 41125 Modena, Italy;
| | - Davide Schiroli
- Transfusion Medicine Unit, Azienda USL-IRCCS, 42123 Reggio Emilia, Italy;
| | - Benedetta Ghezzi
- Dentistry Centre Lab, University of Parma, 43126 Parma, Italy; (B.G.); (C.M.)
| | - Claudio Macaluso
- Dentistry Centre Lab, University of Parma, 43126 Parma, Italy; (B.G.); (C.M.)
| | - Graziella Pellegrini
- Centre for Regenerative Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy;
- Holostem Terapie Avanzate S.r.l., 41125 Modena, Italy;
| |
Collapse
|
12
|
Baraks G, Tseng R, Pan CH, Kasliwal S, Leiton CV, Shroyer KR, Escobar-Hoyos LF. Dissecting the Oncogenic Roles of Keratin 17 in the Hallmarks of Cancer. Cancer Res 2021; 82:1159-1166. [PMID: 34921015 PMCID: PMC9016724 DOI: 10.1158/0008-5472.can-21-2522] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/08/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022]
Affiliation(s)
- Gabriella Baraks
- Undergraduate Program in Biomedical Engineering, Stony Brook University, Stony Brook, New York
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York
| | - Robert Tseng
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York
| | - Chun-Hao Pan
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York
- Molecular and Cellular Biology Graduate Program, Stony Brook University, New York
| | - Saumya Kasliwal
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York
| | - Cindy V. Leiton
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York
| | - Kenneth R. Shroyer
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York
- Corresponding Authors: Kenneth R. Shroyer, Pathology, Stony Brook University, 101 Nicolls Rd, Stony Brook, NY 11794. Phone: 631-444-3000; E-mail: Kenneth.; and Luisa F. Escobar-Hoyos, 15 York Street PO Box 208040, New Haven, CT 06513. Phone: 203-737-2003; E-mail:
| | - Luisa F. Escobar-Hoyos
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York
- Department of Therapeutic Radiology and Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut
- Corresponding Authors: Kenneth R. Shroyer, Pathology, Stony Brook University, 101 Nicolls Rd, Stony Brook, NY 11794. Phone: 631-444-3000; E-mail: Kenneth.; and Luisa F. Escobar-Hoyos, 15 York Street PO Box 208040, New Haven, CT 06513. Phone: 203-737-2003; E-mail:
| |
Collapse
|
13
|
Abstract
Cell morphology, architecture and dynamics primarily rely on intracellular cytoskeletal networks, which in metazoans are mainly composed of actin microfilaments, microtubules and intermediate filaments (IFs). The diameter size of 10 nm - intermediate between the diameters of actin microfilaments and microtubules - initially gave IFs their name. However, the structure, dynamics, mechanical properties and functions of IFs are not intermediate but set them apart from actin and microtubules. Because of their nucleotide-independent assembly, the lack of intrinsic polarity, their relative stability and their complex composition, IFs had long been overlooked by cell biologists. Now, the numerous human diseases identified to be associated with IF gene mutations and the accumulating evidence of IF functions in cell and tissue integrity explain the growing attention that is being given to the structural characteristics, dynamics and functions of these filaments. In this Primer, we highlight the growing evidence that has revealed a role for IFs as a key element of the cytoskeleton, providing versatile, tunable, cell-type-specific filamentous networks with unique cytoplasmic and nuclear functions.
Collapse
Affiliation(s)
- Gaëlle Dutour-Provenzano
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Équipe Labellisée Ligue Contre le Cancer, F-75015 Paris, France; Sorbonne Université, Collège Doctoral, F-75005 Paris, France
| | - Sandrine Etienne-Manneville
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Équipe Labellisée Ligue Contre le Cancer, F-75015 Paris, France.
| |
Collapse
|
14
|
Nair RR, Hsu J, Jacob JT, Pineda CM, Hobbs RP, Coulombe PA. A role for keratin 17 during DNA damage response and tumor initiation. Proc Natl Acad Sci U S A 2021; 118:e2020150118. [PMID: 33762306 PMCID: PMC8020757 DOI: 10.1073/pnas.2020150118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
High levels of the intermediate filament protein keratin 17 (K17) are associated with poor prognoses for several human carcinomas. Studies in mouse models have shown that K17 expression is positively associated with growth, survival, and inflammation in skin and that lack of K17 delays onset of tumorigenesis. K17 occurs in the nucleus of human and mouse tumor keratinocytes where it impacts chromatin architecture, gene expression, and cell proliferation. We report here that K17 is induced following DNA damage and promotes keratinocyte survival. The presence of nuclear K17 is required at an early stage of the double-stranded break (DSB) arm of the DNA damage and repair (DDR) cascade, consistent with its ability to associate with key DDR effectors, including γ-H2A.X, 53BP1, and DNA-PKcs. Mice lacking K17 or with attenuated K17 nuclear import showed curtailed initiation in a two-step skin carcinogenesis paradigm. The impact of nuclear-localized K17 on DDR and cell survival provides a basis for the link between K17 induction and poor clinical outcomes for several human carcinomas.
Collapse
MESH Headings
- 9,10-Dimethyl-1,2-benzanthracene/administration & dosage
- 9,10-Dimethyl-1,2-benzanthracene/toxicity
- Active Transport, Cell Nucleus
- Animals
- Carcinogenesis/chemically induced
- Carcinogenesis/genetics
- Carcinogenesis/pathology
- Carcinoma/chemically induced
- Carcinoma/genetics
- Carcinoma/pathology
- Cell Nucleus/metabolism
- Cell Survival/genetics
- DNA Breaks, Double-Stranded/drug effects
- DNA Repair
- Female
- Gene Knockout Techniques
- HeLa Cells
- Humans
- Intravital Microscopy
- Keratin-17/genetics
- Keratin-17/metabolism
- Keratinocytes
- Keratins/genetics
- Keratins/metabolism
- Male
- Mice, Knockout
- Neoplasms, Experimental/chemically induced
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/pathology
- Time-Lapse Imaging
- Mice
Collapse
Affiliation(s)
- Raji R Nair
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Joshua Hsu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205
| | - Justin T Jacob
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205
| | - Christopher M Pineda
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Ryan P Hobbs
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205;
| | - Pierre A Coulombe
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109;
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
15
|
First person – Justin Jacob. J Cell Sci 2020. [DOI: 10.1242/jcs.255190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT
First Person is a series of interviews with the first authors of a selection of papers published in Journal of Cell Science, helping early-career researchers promote themselves alongside their papers. Justin Jacob is first author on ‘Keratin 17 regulates nuclear morphology and chromatin organization’, published in JCS. Justin conducted the research described in this article while a PhD candidate in the laboratories of Pierre A. Coulombe (primary) and Michael J. Matunis, PhD (secondary) at Johns Hopkins University, Bloomberg School of Public Health, Department of Biochemistry & Molecular Biology, Baltimore, MD, USA. He is now a supervisory chemist and chemical terrorism coordinator at the Clinical Toxicology Unit in the Public Health Lab Division at the Washington D.C. Department of Forensic Sciences. This unit involves a (1) drug monitoring program and a (2) laboratory response network for a chemical threats program.
Collapse
|