1
|
D'Antonio C, Liguori GL. Dormancy and awakening of cancer cells: the extracellular vesicle-mediated cross-talk between Dr. Jekill and Mr. Hyde. Front Immunol 2024; 15:1441914. [PMID: 39301024 PMCID: PMC11410588 DOI: 10.3389/fimmu.2024.1441914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/08/2024] [Indexed: 09/22/2024] Open
Abstract
Cancer cell dormancy is a reversible process whereby cancer cells enter a quiescent state characterized by cell cycle arrest, inhibition of cell migration and invasion, and increased chemoresistance. Because of its reversibility and resistance to treatment, dormancy is a key process to study, monitor, and interfere with, in order to prevent tumor recurrence and metastasis and improve the prognosis of cancer patients. However, to achieve this goal, further studies are needed to elucidate the mechanisms underlying this complex and dynamic dual process. Here, we review the contribution of extracellular vesicles (EVs) to the regulation of cancer cell dormancy/awakening, focusing on the cross-talk between tumor and non-tumor cells in both the primary tumor and the (pre-)metastatic niche. Although EVs are recognized as key players in tumor progression and metastasis, as well as in tumor diagnostics and therapeutics, their role specifically in dormancy induction/escape is still largely elusive. We report on the most recent and promising results on this topic, focusing on the EV-associated nucleic acids involved. We highlight how EV studies could greatly contribute to the identification of dormancy signaling pathways and a dormancy/early awakening signature for the development of successful diagnostic/prognostic and therapeutic approaches.
Collapse
Affiliation(s)
- Concetta D'Antonio
- Institute of Genetics and Biophysics (IGB) "Adriano Buzzati-Traverso", National Research Council (CNR) of Italy, Naples, Italy
| | - Giovanna L Liguori
- Institute of Genetics and Biophysics (IGB) "Adriano Buzzati-Traverso", National Research Council (CNR) of Italy, Naples, Italy
| |
Collapse
|
2
|
Cappe B, Vandenabeele P, Riquet FB. A guide to the expanding field of extracellular vesicles and their release in regulated cell death programs. FEBS J 2024; 291:2068-2090. [PMID: 37872002 DOI: 10.1111/febs.16981] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/26/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
Homeostasis disruption is visible at the molecular and cellular levels and may often lead to cell death. This vital process allows us to maintain the more extensive system's integrity by keeping the different features (genetic, metabolic, physiologic, and individual) intact. Interestingly, while cells can die in different manners, dying cells still communicate with their environment. This communication was, for a long time, perceived as only driven by the release of soluble factors. However, it has now been reconsidered with the increasing interest in extracellular vesicles (EVs), which are discovered to be released during different regulated cell death programs, with the observation of specific effects. EVs are game changers in the paradigm of cell-cell communication with tremendous implications in fundamental research with regard to noncell autonomous functions, as well as in biomarkers research, all of which are geared toward diagnostic and therapeutic purposes. This review is composed of two main parts. The first is a comprehensive presentation of the state of the art of the EV field at large. In the second part, we focus on EVs discovered to be released during different regulated cell death programs, also known as cell death EVs (cdEVs), and EV-associated specific effects on recipient cells in the context of cell death and inflammation/inflammatory responses.
Collapse
Affiliation(s)
- Benjamin Cappe
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research (IRC), Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Peter Vandenabeele
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research (IRC), Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Franck B Riquet
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research (IRC), Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
- University of Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, France
| |
Collapse
|
3
|
Kumar A, Nader MA, Deep G. Emergence of Extracellular Vesicles as "Liquid Biopsy" for Neurological Disorders: Boom or Bust. Pharmacol Rev 2024; 76:199-227. [PMID: 38351075 PMCID: PMC10877757 DOI: 10.1124/pharmrev.122.000788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 11/11/2023] [Accepted: 11/27/2023] [Indexed: 02/16/2024] Open
Abstract
Extracellular vesicles (EVs) have emerged as an attractive liquid biopsy approach in the diagnosis and prognosis of multiple diseases and disorders. The feasibility of enriching specific subpopulations of EVs from biofluids based on their unique surface markers has opened novel opportunities to gain molecular insight from various tissues and organs, including the brain. Over the past decade, EVs in bodily fluids have been extensively studied for biomarkers associated with various neurological disorders, such as Alzheimer's disease, Parkinson's disease, schizophrenia, bipolar disorder, major depressive disorders, substance use disorders, human immunodeficiency virus-associated neurocognitive disorder, and cancer/treatment-induced neurodegeneration. These studies have focused on the isolation and cargo characterization of either total EVs or brain cells, such as neuron-, astrocyte-, microglia-, oligodendrocyte-, pericyte-, and endothelial-derived EVs from biofluids to achieve early diagnosis and molecular characterization and to predict the treatment and intervention outcomes. The findings of these studies have demonstrated that EVs could serve as a repetitive and less invasive source of valuable molecular information for these neurological disorders, supplementing existing costly neuroimaging techniques and relatively invasive measures, like lumbar puncture. However, the initial excitement surrounding blood-based biomarkers for brain-related diseases has been tempered by challenges, such as lack of central nervous system specificity in EV markers, lengthy protocols, and the absence of standardized procedures for biological sample collection, EV isolation, and characterization. Nevertheless, with rapid advancements in the EV field, supported by improved isolation methods and sensitive assays for cargo characterization, brain cell-derived EVs continue to offer unparallel opportunities with significant translational implications for various neurological disorders. SIGNIFICANCE STATEMENT: Extracellular vesicles present a less invasive liquid biopsy approach in the diagnosis and prognosis of various neurological disorders. Characterizing these vesicles in biofluids holds the potential to yield valuable molecular information, thereby significantly impacting the development of novel biomarkers for various neurological disorders. This paper has reviewed the methodology employed to isolate extracellular vesicles derived from various brain cells in biofluids, their utility in enhancing the molecular understanding of neurodegeneration, and the potential challenges in this research field.
Collapse
Affiliation(s)
- Ashish Kumar
- Departments of Cancer Biology (A.K., G.D.), Physiology and Pharmacology (M.A.N.), Radiology (M.A.N.), and Center for Addiction Research (M.A.N., G.D.), Wake Forest University School of Medicine, Winston-Salem, North Carolina; Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, North Carolina (G.D.); and Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina (G.D.)
| | - Michael A Nader
- Departments of Cancer Biology (A.K., G.D.), Physiology and Pharmacology (M.A.N.), Radiology (M.A.N.), and Center for Addiction Research (M.A.N., G.D.), Wake Forest University School of Medicine, Winston-Salem, North Carolina; Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, North Carolina (G.D.); and Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina (G.D.)
| | - Gagan Deep
- Departments of Cancer Biology (A.K., G.D.), Physiology and Pharmacology (M.A.N.), Radiology (M.A.N.), and Center for Addiction Research (M.A.N., G.D.), Wake Forest University School of Medicine, Winston-Salem, North Carolina; Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, North Carolina (G.D.); and Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina (G.D.)
| |
Collapse
|
4
|
Adduri RSR, Cai K, Velasco‐Alzate K, Vasireddy R, Miller JW, de Frías SP, de Frías FP, Horimasu Y, Iwamoto H, Hattori N, Zhang Y, Gibson KF, Pal AK, Chen Z, Nicastro D, Li L, Cherian S, Sholl LM, Shetty S, Ndetan H, Maeda AH, Ferretto MAP, Hunninghake GM, Schwartz DA, Kass DJ, Rosas IO, Konduru NV. Plasma extracellular vesicle proteins as promising noninvasive biomarkers for diagnosis of idiopathic pulmonary fibrosis. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e98. [PMID: 38939072 PMCID: PMC11080873 DOI: 10.1002/jex2.98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 05/03/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2024]
Abstract
High-resolution computed tomography (HRCT) imaging is critical for diagnostic evaluation of Idiopathic Pulmonary Fibrosis (IPF). However, several other interstitial lung diseases (ILDs) often exhibit radiologic pattern similar to IPF on HRCT making the diagnosis of the disease difficult. Therefore, biomarkers that distinguish IPF from other ILDs can be a valuable aid in diagnosis. Using mass spectrometry, we performed proteomic analysis of plasma extracellular vesicles (EVs) in patients diagnosed with IPF, chronic hypersensitivity pneumonitis, nonspecific interstitial pneumonitis, and healthy subjects. A five-protein signature was identified by lasso regression and was validated in an independent cohort using ELISA. The five-protein signature derived from mass spectrometry data showed an area under the receiver operating characteristic curve of 0.915 (95%CI: 0.819-1.011) and 0.958 (95%CI: 0.882-1.034) for differentiating IPF from other ILDs and from healthy subjects, respectively. Stepwise backwards elimination yielded a model with 3 and 2 proteins for discriminating IPF from other ILDs and healthy subjects, respectively, without compromising diagnostic accuracy. In summary, we discovered and validated EV protein biomarkers for differential diagnosis of IPF in independent cohorts. Interestingly, the biomarker panel could also distinguish IPF and healthy subjects with high accuracy. The biomarkers need to be evaluated in large prospective cohorts to establish their clinical utility.
Collapse
Affiliation(s)
- Raju S. R. Adduri
- Department of Cellular and Molecular BiologyUniversity of Texas Health Science Center at TylerTylerTexasUSA
| | - Kai Cai
- Departments of Cell Biology and BiophysicsUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Karen Velasco‐Alzate
- Department of Cellular and Molecular BiologyUniversity of Texas Health Science Center at TylerTylerTexasUSA
| | - Ravikiran Vasireddy
- Department of Cellular and Molecular BiologyUniversity of Texas Health Science Center at TylerTylerTexasUSA
| | - Jeffrey W. Miller
- Department of BiostatisticsHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | - Sergio Poli de Frías
- Pulmonary Critical Care Medicine, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Internal MedicineMount Sinai Medical CenterMiami BeachFloridaUSA
| | - Fernando Poli de Frías
- Pulmonary Critical Care Medicine, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Pulmonary, Critical Care, and Sleep MedicineBaylor College of MedicineHoustonTexasUSA
| | - Yasushi Horimasu
- Department of Molecular and Internal MedicineGraduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Hiroshi Iwamoto
- Department of Molecular and Internal MedicineGraduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Noboru Hattori
- Department of Molecular and Internal MedicineGraduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Yingze Zhang
- Division of Pulmonary, Allergy and Critical Care MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Kevin F. Gibson
- Division of Pulmonary, Allergy and Critical Care MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | | | - Zhe Chen
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Daniela Nicastro
- Departments of Cell Biology and BiophysicsUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Li Li
- Division of Environmental and Occupational Health SciencesDivision of Pulmonary Sciences and Critical Care MedicineDepartment of MedicineSchool of MedicineUniversity of Colorado DenverDenverColoradoUSA
| | - Sujith Cherian
- Department of Internal MedicineMcGovern Medical SchoolUniversity of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Lynette M. Sholl
- Department of PathologyBrigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Sreerama Shetty
- Department of Cellular and Molecular BiologyUniversity of Texas Health Science Center at TylerTylerTexasUSA
| | - Harrison Ndetan
- Department of BiostatisticsSchool of Health ProfessionsUniversity of Texas Health Science Center at TylerTylerTexasUSA
| | - Anthony H. Maeda
- Pulmonary Critical Care Medicine, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | | | - Gary M. Hunninghake
- Pulmonary Critical Care Medicine, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - David A. Schwartz
- Department of MedicineUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Daniel J. Kass
- Division of Pulmonary, Allergy and Critical Care MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Ivan O. Rosas
- Pulmonary Critical Care Medicine, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Pulmonary, Critical Care, and Sleep MedicineBaylor College of MedicineHoustonTexasUSA
| | - Nagarjun V. Konduru
- Department of Cellular and Molecular BiologyUniversity of Texas Health Science Center at TylerTylerTexasUSA
| |
Collapse
|
5
|
Vach Agocsova S, Culenova M, Birova I, Omanikova L, Moncmanova B, Danisovic L, Ziaran S, Bakos D, Alexy P. Resorbable Biomaterials Used for 3D Scaffolds in Tissue Engineering: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4267. [PMID: 37374451 PMCID: PMC10301242 DOI: 10.3390/ma16124267] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/28/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023]
Abstract
This article provides a thorough overview of the available resorbable biomaterials appropriate for producing replacements for damaged tissues. In addition, their various properties and application possibilities are discussed as well. Biomaterials are fundamental components in tissue engineering (TE) of scaffolds and play a critical role. They need to exhibit biocompatibility, bioactivity, biodegradability, and non-toxicity, to ensure their ability to function effectively with an appropriate host response. With ongoing research and advancements in biomaterials for medical implants, the objective of this review is to explore recently developed implantable scaffold materials for various tissues. The categorization of biomaterials in this paper includes fossil-based materials (e.g., PCL, PVA, PU, PEG, and PPF), natural or bio-based materials (e.g., HA, PLA, PHB, PHBV, chitosan, fibrin, collagen, starch, and hydrogels), and hybrid biomaterials (e.g., PCL/PLA, PCL/PEG, PLA/PEG, PLA/PHB PCL/collagen, PCL/chitosan, PCL/starch, and PLA/bioceramics). The application of these biomaterials in both hard and soft TE is considered, with a particular focus on their physicochemical, mechanical, and biological properties. Furthermore, the interactions between scaffolds and the host immune system in the context of scaffold-driven tissue regeneration are discussed. Additionally, the article briefly mentions the concept of in situ TE, which leverages the self-renewal capacities of affected tissues and highlights the crucial role played by biopolymer-based scaffolds in this strategy.
Collapse
Affiliation(s)
- Sara Vach Agocsova
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava, Slovakia; (S.V.A.); (B.M.); (D.B.); (P.A.)
| | - Martina Culenova
- Panara a.s., Krskanska 21, 949 05 Nitra, Slovakia; (I.B.); (L.O.)
| | - Ivana Birova
- Panara a.s., Krskanska 21, 949 05 Nitra, Slovakia; (I.B.); (L.O.)
| | - Leona Omanikova
- Panara a.s., Krskanska 21, 949 05 Nitra, Slovakia; (I.B.); (L.O.)
| | - Barbora Moncmanova
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava, Slovakia; (S.V.A.); (B.M.); (D.B.); (P.A.)
| | - Lubos Danisovic
- National Institute of Rheumatic Diseases, Nabrezie I. Krasku 4, 921 12 Piestany, Slovakia; (L.D.); (S.Z.)
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia
| | - Stanislav Ziaran
- National Institute of Rheumatic Diseases, Nabrezie I. Krasku 4, 921 12 Piestany, Slovakia; (L.D.); (S.Z.)
- Department of Urology, Faculty of Medicine, Comenius University, Limbova 5, 833 05 Bratislava, Slovakia
| | - Dusan Bakos
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava, Slovakia; (S.V.A.); (B.M.); (D.B.); (P.A.)
- Panara a.s., Krskanska 21, 949 05 Nitra, Slovakia; (I.B.); (L.O.)
| | - Pavol Alexy
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava, Slovakia; (S.V.A.); (B.M.); (D.B.); (P.A.)
- Panara a.s., Krskanska 21, 949 05 Nitra, Slovakia; (I.B.); (L.O.)
| |
Collapse
|
6
|
Antich-Rosselló M, Forteza-Genestra MA, Ronold HJ, Lyngstadaas SP, García-González M, Permuy M, López-Peña M, Muñoz F, Monjo M, Ramis JM. Platelet-derived extracellular vesicles formulated with hyaluronic acid gels for application at the bone-implant interface: An animal study. J Orthop Translat 2023; 40:72-79. [PMID: 37457308 PMCID: PMC10338901 DOI: 10.1016/j.jot.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/05/2023] [Accepted: 05/30/2023] [Indexed: 07/18/2023] Open
Abstract
Background/Objective Platelet derived extracellular vesicles (pEV) are promising therapeutical tools for bone healing applications. In fact, several in vitro studies have already demonstrated the efficacy of Extracellular Vesicles (EV) in promoting bone regeneration and repair in various orthopedic models. Therefore, to evaluate the translational potential in this field, an in vivo study was performed. Methods Here, we used hyaluronic acid (HA) gels formulated with pEVs, as a way to directly apply pEVs and retain them at the bone defect. In this study, pEVs were isolated from Platelet Lysate (PL) through size exclusion chromatography and used to formulate 2% HA gels. Then, the gels were locally applied on the tibia cortical bone defect of New Zeland White rabbits before the surgical implantation of coin-shaped titanium implants. After eight weeks, the bone healing process was analyzed through biomechanical, micro-CT, histological and biochemical analysis. Results Although no biomechanical differences were observed between pEV formulated gels and non-formulated gels, biochemical markers of the wound fluid at the interface presented a decrease in Lactate dehydrogenase (LDH) activity and alkaline phosphatase (ALP) activity for pEV HA treated implants. Moreover, histological analyses showed that none of the treatments induced an irritative effect and, a decrease in the fibrotic response surrounding the implant for pEV HA treated implants was described. Conclusion In conclusion, pEVs improve titanium implants biocompatibility at the bone-implant interface, decreasing the necrotic effects of the surgery and diminishing the fibrotic layer associated to the implant encapsulation that can lead to implant failure.
Collapse
Affiliation(s)
- Miquel Antich-Rosselló
- Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands (UIB), Ctra. Valldemossa Km 7.5, 07122, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Maria Antònia Forteza-Genestra
- Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands (UIB), Ctra. Valldemossa Km 7.5, 07122, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Hans Jacob Ronold
- Department of Prosthetic Dentistry, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | | | - Mario García-González
- Departamento de Ciencias Clínicas Veterinarias. Universidade de Santiago de Compostela. Campus Universitario S/n, 27002, Lugo, Spain
| | - María Permuy
- IBoneLab SL, Avenida da Coruña 500; 27003, Lugo, Spain
| | - Mónica López-Peña
- Departamento de Ciencias Clínicas Veterinarias. Universidade de Santiago de Compostela. Campus Universitario S/n, 27002, Lugo, Spain
- IBoneLab SL, Avenida da Coruña 500; 27003, Lugo, Spain
| | - Fernando Muñoz
- Departamento de Ciencias Clínicas Veterinarias. Universidade de Santiago de Compostela. Campus Universitario S/n, 27002, Lugo, Spain
- IBoneLab SL, Avenida da Coruña 500; 27003, Lugo, Spain
| | - Marta Monjo
- Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands (UIB), Ctra. Valldemossa Km 7.5, 07122, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Departament de Biologia Fonamental I Ciències de La Salut, UIB, Palma, Spain
| | - Joana M. Ramis
- Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands (UIB), Ctra. Valldemossa Km 7.5, 07122, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Departament de Biologia Fonamental I Ciències de La Salut, UIB, Palma, Spain
| |
Collapse
|
7
|
De Sousa KP, Rossi I, Abdullahi M, Ramirez MI, Stratton D, Inal JM. Isolation and characterization of extracellular vesicles and future directions in diagnosis and therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1835. [PMID: 35898167 PMCID: PMC10078256 DOI: 10.1002/wnan.1835] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 01/31/2023]
Abstract
Extracellular vesicles (EVs) are a unique and heterogeneous class of lipid bilayer nanoparticles secreted by most cells. EVs are regarded as important mediators of intercellular communication in both prokaryotic and eukaryotic cells due to their ability to transfer proteins, lipids and nucleic acids to recipient cells. In addition to their physiological role, EVs are recognized as modulators in pathological processes such as cancer, infectious diseases, and neurodegenerative disorders, providing new potential targets for diagnosis and therapeutic intervention. For a complete understanding of EVs as a universal cellular biological system and its translational applications, optimal techniques for their isolation and characterization are required. Here, we review recent progress in those techniques, from isolation methods to characterization techniques. With interest in therapeutic applications of EVs growing, we address fundamental points of EV-related cell biology, such as cellular uptake mechanisms and their biodistribution in tissues as well as challenges to their application as drug carriers or biomarkers for less invasive diagnosis or as immunogens. This article is categorized under: Diagnostic Tools > Biosensing Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Karina P. De Sousa
- Bioscience Research Group, School of Life and Medical SciencesUniversity of HertfordshireHertfordshireUK
| | - Izadora Rossi
- School of Human SciencesLondon Metropolitan UniversityLondonUK
- Federal University of ParanáCuritibaBrazil
| | | | - Marcel Ivan Ramirez
- Federal University of ParanáCuritibaBrazil
- Carlos Chagas Institute (ICC)CuritibaBrazil
| | - Dan Stratton
- Open UniversityThe School of Life, Health and Chemical SciencesMilton KeynesUK
| | - Jameel Malhador Inal
- Bioscience Research Group, School of Life and Medical SciencesUniversity of HertfordshireHertfordshireUK
- School of Human SciencesLondon Metropolitan UniversityLondonUK
| |
Collapse
|