1
|
Chetverikova R, Dautaj G, Schwigon L, Dedek K, Mouritsen H. Double cones in the avian retina form an oriented mosaic which might facilitate magnetoreception and/or polarized light sensing. J R Soc Interface 2022; 19:20210877. [PMID: 35414212 PMCID: PMC9006000 DOI: 10.1098/rsif.2021.0877] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To navigate between breeding and wintering grounds, night-migratory songbirds are aided by a light-dependent magnetic compass sense and maybe also by polarized light vision. Although the underlying mechanisms for magnetoreception and polarized light sensing remain unclear, double cone photoreceptors in the avian retina have been suggested to represent the primary sensory cells. To use these senses, birds must be able to separate the directional information from the Earth's magnetic field and/or light polarization from variations in light intensity. Theoretical considerations suggest that this could be best achieved if neighbouring double cones were oriented in an ordered pattern. Therefore, we investigate the orientation patterns of double cones in European robins (Erithacus rubecula) and domestic chickens (Gallus gallus domesticus). We used whole-mounted retinas labelled with double cone markers to quantify the orientations of individual double cones in relation to their nearest neighbours. In both species, our data show that the double cone array is highly ordered: the angles between neighbouring double cones were more likely to be 90°/-90° in the central retina and 180°/0° in the peripheral retina, respectively. The observed regularity in double cone orientation could aid the cells' putative function in light-dependent magnetoreception and/or polarized light sensing.
Collapse
Affiliation(s)
- Raisa Chetverikova
- Animal Navigation/Neurosensorics Group, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| | - Glen Dautaj
- Animal Navigation/Neurosensorics Group, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| | - Leonard Schwigon
- Animal Navigation/Neurosensorics Group, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| | - Karin Dedek
- Animal Navigation/Neurosensorics Group, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| | - Henrik Mouritsen
- Animal Navigation/Neurosensorics Group, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
2
|
McNerney C, Johnston RJ. Thyroid hormone signaling specifies cone photoreceptor subtypes during eye development: Insights from model organisms and human stem cell-derived retinal organoids. VITAMINS AND HORMONES 2021; 116:51-90. [PMID: 33752828 DOI: 10.1016/bs.vh.2021.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Cones are the color-detecting photoreceptors of the vertebrate eye. Cones are specialized into subtypes whose functions are determined by the expression of color-sensitive opsin proteins. Organisms differ greatly in the number and patterning of cone subtypes. Despite these differences, thyroid hormone is an important regulator of opsin expression in most vertebrates. In this chapter, we outline how the timing of thyroid hormone signaling controls cone subtype fates during retinal development. We first examine our current understanding of cone subtype specification in model organisms and then describe advances in human stem cell-derived organoid technology that identified mechanisms controlling development of the human retina.
Collapse
Affiliation(s)
- Christina McNerney
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Robert J Johnston
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
3
|
Marshall NJ, Cortesi F, de Busserolles F, Siebeck UE, Cheney KL. Colours and colour vision in reef fishes: Past, present and future research directions. JOURNAL OF FISH BIOLOGY 2019; 95:5-38. [PMID: 30357835 DOI: 10.1111/jfb.13849] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/22/2018] [Indexed: 06/08/2023]
Abstract
Many fishes, both freshwater or marine, have colour vision that may outperform humans. As a result, to understand the behavioural tasks that vision enables; including mate choice, feeding, agonistic behaviour and camouflage, we need to see the world through a fish's eye. This includes quantifying the variable light environment underwater and its various influences on vision. As well as rapid loss of light with depth, light attenuation underwater limits visual interaction to metres at most and in many instances, less than a metre. We also need to characterize visual sensitivities, fish colours and behaviours relative to both these factors. An increasingly large set of techniques over the past few years, including improved photography, submersible spectrophotometers and genetic sequencing, have taken us from intelligent guesswork to something closer to sensible hypotheses. This contribution to the special edition on the Ecology of Fish Senses under a shifting environment first reviews our knowledge of fish colour vision and visual ecology, past, present and very recent, and then goes on to examine how climate change may impinge on fish visual capability. The review is limited to mostly colour vision and to mostly reef fishes. This ignores a large body of work, both from other marine environments and freshwater systems, but the reef contains examples of many of the challenges to vision from the aquatic environment. It is also a concentrate of life, perhaps the most specious and complex on earth, suffering now catastrophically from the consequences of our lack of action on climate change. A clear course of action to prevent destruction of this habitat is the need to spend more time in it, in the study of it and sharing it with those not fortunate enough to see coral reefs first-hand. Sir David Attenborough on The Great Barrier Reef: "Do we really care so little about the Earth upon which we live that we don't wish to protect one of its greatest wonders from the consequences of our behaviours?"
Collapse
Affiliation(s)
- N Justin Marshall
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Fabio Cortesi
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Fanny de Busserolles
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Uli E Siebeck
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Karen L Cheney
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
- School of Biology, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
4
|
Suliman T, Novales Flamarique I. Visual pigments and opsin expression in the juveniles of three species of fish (rainbow trout, zebrafish, and killifish) following prolonged exposure to thyroid hormone or retinoic acid. J Comp Neurol 2014; 522:98-117. [PMID: 23818308 DOI: 10.1002/cne.23391] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 06/05/2013] [Accepted: 06/19/2013] [Indexed: 02/02/2023]
Abstract
Thyroid hormone (TH) and retinoic acid (RA) are powerful modulators of photoreceptor differentiation during vertebrate retinal development. In the embryos and young juveniles of salmonid fishes and rodents, TH induces switches in opsin expression within individual cones, a phenomenon that also occurs in adult rodents following prolonged (12 week) hypothyroidism. Whether changes in TH levels also modulate opsin expression in the differentiated retina of fish is unknown. Like TH, RA is essential for retinal development, but its role in inducing opsin switches, if any, has not been studied. Here we investigate the action of TH and RA on single-cone opsin expression in juvenile rainbow trout, zebrafish, and killifish and on the absorbance of visual pigments in rainbow trout and zebrafish. Prolonged TH exposure increased the wavelength of maximum absorbance (λmax ) of the rod and the medium (M, green) and long (L, red) wavelength visual pigments in all fish species examined. However, unlike the opsin switch that occurred following TH exposure in the single cones of small juvenile rainbow trout (alevin), opsin expression in large juvenile rainbow trout (smolt), zebrafish, or killifish remained unchanged. RA did not induce any opsin switches or change the visual pigment absorbance of photoreceptors. Neither ligand altered cone photoreceptor densities. We conclude that RA has no effect on opsin expression or visual pigment properties in the differentiated retina of these fishes. In contrast, TH affected both single-cone opsin expression and visual pigment absorbance in the rainbow trout alevin but only visual pigment absorbance in the smolt and in zebrafish. The latter results could be explained by a combination of opsin switches and chromophore shifts from vitamin A1 to vitamin A2.
Collapse
Affiliation(s)
- Tarek Suliman
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | | |
Collapse
|
5
|
Bhumika S, Darras VM. Role of thyroid hormones in different aspects of nervous system regeneration in vertebrates. Gen Comp Endocrinol 2014; 203:86-94. [PMID: 24681191 DOI: 10.1016/j.ygcen.2014.03.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 03/08/2014] [Accepted: 03/11/2014] [Indexed: 12/19/2022]
Abstract
Spontaneous functional recovery from injury in the adult human nervous system is rare and trying to improve recovery remains a clinical challenge. Nervous system regeneration is a complicated sequence of events involving cell death or survival, cell proliferation, axon extension and remyelination, and finally reinnervation and functional recovery. Successful recovery depends on the cell-specific and time-dependent activation and repression of a wide variety of growth factors and guidance molecules. Thyroid hormones (THs), well known for their regulatory role in neurodevelopment, have recently emerged as important modulators of neuroregeneration. This review focuses on the endogenous changes in the proteins regulating TH availability and action in different cell types of the adult mammalian nervous system during regeneration as well as the impact of TH supplementation on the consecutive steps in this process. It also addresses possible differences in TH involvement between different vertebrate classes, early or late developmental stages and peripheral or central nervous system. The available data show that THs are able to stimulate many signaling pathways necessary for successful neurogeneration. They however also suggest that supplementation with T4 and/or T3 may have beneficial or detrimental influences depending on the dose and more importantly on the specific phase of the regeneration process.
Collapse
Affiliation(s)
- Stitipragyan Bhumika
- Laboratory of Comparative Endocrinology, Division Animal Physiology and Neurobiology, Biology Department, KU Leuven, B-3000 Leuven, Belgium
| | - Veerle M Darras
- Laboratory of Comparative Endocrinology, Division Animal Physiology and Neurobiology, Biology Department, KU Leuven, B-3000 Leuven, Belgium.
| |
Collapse
|
6
|
Fuller RC, Claricoates KM. Rapid light-induced shifts in opsin expression: finding new opsins, discerning mechanisms of change, and implications for visual sensitivity. Mol Ecol 2011; 20:3321-35. [PMID: 21749514 DOI: 10.1111/j.1365-294x.2011.05180.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Light-induced shifts in cone frequency and opsin expression occur in many aquatic species. Yet little is known about how quickly animals can alter opsin expression and, thereby, track their visual environments. Similarly, little is known about whether adult animals can alter opsin expression or whether shifts in opsin expression are limited to critical developmental windows. We took adult wild-caught bluefin killifish (Lucania goodei) from three different lighting environments (spring, swamp and variable), placed them under two different lighting treatments (clear vs. tea-stained water) and monitored opsin expression over 4 weeks. We measured opsin expression for five previously described opsins (SWS1, SWS2B, SWS2A, RH2-1 and LWS) as well as RH2-2 which we discovered via 454 sequencing. We used two different metrics of opsin expression. We measured expression of each opsin relative to a housekeeping gene and the proportional expression of each opsin relative to the total pool of opsins. Population and lighting environment had large effects on opsin expression which were present at the earliest time points indicating rapid shifts in expression. The two measures of expression produced radically different patterns. Proportional measures indicated large effects of light on SWS1 expression, whereas relative measures indicated no such effect. Instead, light had large effects on the relative expression of SWS2B, RH2-2, RH2-1 and LWS. We suggest that proportional measures of opsin expression are best for making inferences about colour vision, but that measures relative to a housekeeping gene are better for making conclusions about which opsins are differentially regulated.
Collapse
Affiliation(s)
- Rebecca C Fuller
- Department of Animal Biology, School of Integrative Biology, University of Illinois, Champaign, IL 61820, USA.
| | | |
Collapse
|
7
|
Kamermans M, Hawryshyn C. Teleost polarization vision: how it might work and what it might be good for. Philos Trans R Soc Lond B Biol Sci 2011; 366:742-56. [PMID: 21282178 DOI: 10.1098/rstb.2010.0211] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this review, we will discuss the recent literature on fish polarization vision and we will present a model on how the retina processes polarization signals. The model is based on a general retinal-processing scheme and will be compared with the available electrophysiological data on polarization processing in the retina. The results of this model will help illustrate the functional significance of polarization vision for both feeding behaviour and navigation. First, we examine the linkage between structure and function in polarization vision in general.
Collapse
Affiliation(s)
- Maarten Kamermans
- Retinal Signal Processing, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | | |
Collapse
|
8
|
Hawryshyn CW, Ramsden SD, Betke KM, Sabbah S. Spectral and polarization sensitivity of juvenile Atlantic salmon (Salmo salar): phylogenetic considerations. ACTA ACUST UNITED AC 2010; 213:3187-97. [PMID: 20802121 DOI: 10.1242/jeb.038760] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We were interested in comparing the characteristics of polarization sensitivity in Atlantic salmon to those in Pacific salmon. Here we show that the common ancestor to the clade containing Salmo salar, Oncorhynchus mykiss, O. nerka, O. clarkii and Salvelinus fontinalis has the trait of ultraviolet polarization sensitivity. We examined spectral and polarization sensitivity of juvenile Atlantic salmon (Salmo salar) using both optic nerve compound action potential (CAP) and electroretinogram (ERG) recordings. Our experiments employed photic manipulation to adjust the sensitivity of the four cone mechanisms of Atlantic salmon. A spectrally broad background was used to ensure a contribution of all cone mechanisms to both spectral and polarization sensitivity. Chromatic adaptation was used to isolate the sensitivity of each of the four cone mechanisms for both spectral and polarization sensitivity. Under spectrally broad conditions, UV sensitive (UVS), mid wavelength sensitive (MWS) and long wavelength sensitive (LWS) cone mechanisms contributed to polarization sensitivity. CAP recordings produced the typical 'W' shaped polarization sensitivity curve reflecting two active polarization detectors with peaks at e-vector orientations of 0 deg, 90 deg and 180 deg, and troughs at 30 deg and 150 deg. ERG recordings produced a four-peaked polarization sensitivity curve reflecting two active polarization detectors and negative feedback activity, with peaks at e-vectors 0 deg, 45 deg, 90 deg, 135 deg and 180 deg, and troughs at 30 deg, 60 deg, 120 deg and 150 deg. Polarization-sensitivity measurements of isolated cone mechanisms revealed two orthogonal polarization detector mechanisms in Atlantic salmon, identical to that found in rainbow trout and other Pacific salmonid fishes. Moreover, under spectrally broad background conditions, CAP and ERG polarization sensitivity of Atlantic salmon did not differ significantly from that reported in Pacific salmonids.
Collapse
Affiliation(s)
- C W Hawryshyn
- Department of Biology and Center for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | | | |
Collapse
|
9
|
No evidence of UV cone input to mono- and biphasic horizontal cells in the goldfish retina. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2010; 196:913-25. [PMID: 20734051 DOI: 10.1007/s00359-010-0574-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 08/09/2010] [Accepted: 08/13/2010] [Indexed: 10/19/2022]
Abstract
Many animal species make use of ultraviolet (UV) light in a number of behaviors, such as feeding and mating. The goldfish (Carassius auratus) is among those with a UV photoreceptor and pronounced UV sensitivity. Little is known, however, about the retinal processing of this input. We addressed this issue by recording intracellularly from second-order neurons in the adult goldfish retina. In order to test whether cone-driven horizontal cells (HCs) receive UV cone inputs, we performed chromatic adaptation experiments with mono- and biphasic HCs. We found no functional evidence of a projection from the UV-sensitive cones to these neurons in adult animals. This suggests that goldfish UV receptors may contact preferentially triphasic HCs, which is at odds with the hypothesis that all cones contact all cone-driven HC types. However, we did find evidence of direct M-cone input to monophasic HCs, favoring the idea that cone-HC contacts are more promiscuous than originally proposed. Together, our results suggest that either UV cones have a more restricted set of post-synaptic partners than the other three cone types, or that the UV input to mono- and biphasic HCs is not very pronounced in adult animals.
Collapse
|
10
|
Raine JC, Coffin AB, Hawryshyn CW. Systemic thyroid hormone is necessary and sufficient to induce ultraviolet-sensitive cone loss in the juvenile rainbow trout retina. ACTA ACUST UNITED AC 2010; 213:493-501. [PMID: 20086135 DOI: 10.1242/jeb.036301] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rainbow trout possess ultraviolet-sensitive (UVS) cones in their retina that degenerate naturally during development. This phenomenon can be induced with exogenous thyroxine [T4, a thyroid hormone (TH)] treatment. However, the previous T4 exposure experiments employed static water immersion; a method that could introduce confounding stress effects on the fish. Because of this, it was uncertain if T4 alone was sufficient to induce retinal changes or if stress-related hormones were also necessary to initiate this process. Furthermore, it was unclear whether endogenous T4 was the factor responsible for initiating natural UVS cone loss during development. The current study examined the role of systemic T4 on the juvenile rainbow trout retina using a slow-release implant. Exogenous T4 treatment resulted in SWS1 opsin downregulation and UVS cone loss after four weeks of exposure, signifying that T4 is sufficient to induce this process. Blocking endogenous T4 production with propylthiouracil (PTU, an anti-thyroid agent) attenuated SWS1 downregulation and UVS cone loss in the retina of naturally developing rainbow trout, suggesting that endogenous T4 is necessary to initiate retinal remodelling during development. Quantitative real-time RT-PCR analysis demonstrated that several TH-regulating components are expressed in the trout retina, and that expression levels of the TH receptor isoform TRbeta and the type 2 deiodinase (D2) change with T4 treatment. This suggests that T4 may act directly on the retina to induce UVS cone loss. Taken together, these results demonstrate that systemic TH is necessary and sufficient to induce SWS1 opsin downregulation and UVS cone loss in the retina of juvenile rainbow trout.
Collapse
Affiliation(s)
- J C Raine
- Department of Biology, Queen's University, Kingston, Ontario, Canada, K7L 3N6
| | | | | |
Collapse
|
11
|
Raine JC, Hawryshyn CW. Changes in thyroid hormone reception precede SWS1 opsin downregulation in trout retina. ACTA ACUST UNITED AC 2009; 212:2781-8. [PMID: 19684211 DOI: 10.1242/jeb.030866] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rainbow trout undergo natural cone degeneration and thus are interesting models for examining mechanisms of neural degeneration. They have ultraviolet-sensitive (UVS) cones that are lost over most of the retina during development; only a small functional population remains in the dorsal retina. How this spatial distribution of UVS cones is maintained is unclear. Thyroxine (T4) induces UVS cone loss, and local thyroid hormone regulation was hypothesized to control UVS cone distribution. Thyroid hormone receptor alpha (TRalpha), thyroid hormone receptor beta (TRbeta) and Type 2 deiodinase (D2) regulate thyroid hormone exposure to target cells. Regional retinal expression of these genes was investigated during exogenous T4 treatment and natural smoltification of rainbow trout. Each retina from dark-adapted parr, T4-treated parr and natural smolts was divided into four quadrants, and total RNA was isolated. Quantitative real-time RT-PCR analysis demonstrated that all retinal quadrants had increased accumulation of TRbeta transcripts 2 days post-T4 treatment, corresponding to initiation of SWS1 opsin downregulation. Smolts exhibited decreased accumulation of TRalpha and TRbeta transcripts in all quadrants, but this effect was most pronounced in the dorso-temporal (DT) retinal quadrant where UVS cones persist. By contrast, in 2 day T4-treated parr, the DT quadrant showed increased expression of TRalpha and TRbeta. Furthermore, D2 transcripts decreased in the DT quadrant of T4-treated parr but increased in the DT quadrant of smolts. These results suggest that T4 upregulates TRbeta expression to initiate SWS1 opsin downregulation, while TRalpha and TRbeta downregulation occurs to prevent natural loss of UVS cones from the DT retina.
Collapse
Affiliation(s)
- J C Raine
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | |
Collapse
|
12
|
Hofmann CM, Carleton KL. Gene duplication and differential gene expression play an important role in the diversification of visual pigments in fish. Integr Comp Biol 2009; 49:630-43. [DOI: 10.1093/icb/icp079] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
13
|
Temple SE, Veldhoen KM, Phelan JT, Veldhoen NJ, Hawryshyn CW. Ontogenetic changes in photoreceptor opsin gene expression in coho salmon (Oncorhynchus kisutch, Walbaum). ACTA ACUST UNITED AC 2009; 211:3879-88. [PMID: 19043060 DOI: 10.1242/jeb.020289] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pacific salmonids start life in fresh water then migrate to the sea, after a metamorphic event called smoltification, later returning to their natal freshwater streams to spawn and die. To accommodate changes in visual environments throughout life history, salmon may adjust their spectral sensitivity. We investigated this possibility by examining ontogenetic and thyroid hormone (TH)-induced changes in visual pigments in coho salmon (Oncorhynchus kisutch, Walbaum). Using microspectrophotometry, we measured the spectral absorbance (quantified by lambda(max)) of rods, and middle and long wavelength-sensitive (MWS and LWS) cones in three age classes of coho, representing both freshwater and marine phases. The lambda(max) of MWS and LWS cones differed among freshwater (alevin and parr) and ocean (smolt) phases. The lambda(max) of rods, on the other hand, did not vary, which is evidence that vitamin A(1)/A(2) visual pigment chromophore ratios were similar among freshwater and ocean phases when sampled at the same time of year. Exogenous TH treatment long wavelength shifted the lambda(max) of rods, consistent with an increase in A(2). However, shifts in cones were greater than predicted for a change in chromophore ratio. Real-time quantitative RT-PCR demonstrated that at least two RH2 opsin subtypes were expressed in MWS cones, and these were differentially expressed among alevin, parr and TH-treated alevin groups. Combined with changes in A(1)/A(2) ratio, differential expression of opsin subtypes allows coho to alter the spectral absorbance of their MWS and LWS cones by as much as 60 and 90 nm, respectively. To our knowledge, this is the largest spectral shift reported in a vertebrate photoreceptor.
Collapse
Affiliation(s)
- S E Temple
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | | | | | | | | |
Collapse
|
14
|
Hitchcock PF, Raymond PA. The teleost retina as a model for developmental and regeneration biology. Zebrafish 2008; 1:257-71. [PMID: 18248236 DOI: 10.1089/zeb.2004.1.257] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Retinal development in teleosts can broadly be divided into three epochs. The first is the specification of cellular domains in the larval forebrain that give rise to the retinal primordia and undergo early morphogenetic movements. The second is the neurogenic events within the retina proper-proliferation, cell fate determination, and pattern formation-that establish neuronal identities and form retinal laminae and cellular mosaics. The third, which is unique to teleosts and occurs in the functioning eye, is stretching of the retina and persistent neurogenesis that allows the growth of the retina to keep pace with the growth of the eye and other tissues. The first two events are rapid, complete by about 3 days postfertilization in the zebrafish embryo. The third is life-long and accounts for the bulk of retinal growth and the vast majority of adult retinal neurons. In addition, but clearly related to the retina's developmental history, lesions that kill retinal neurons elicit robust neuronal regeneration that originates from cells intrinsic to the retina. This paper reviews recent studies of retinal development in teleosts, focusing on those that shed light on the genetic and molecular regulation of retinal specification and morphogenesis in the embryo, retinal neurogenesis in larvae and adults, and injury-induced neuronal regeneration.
Collapse
Affiliation(s)
- Peter F Hitchcock
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, W. K. Kellogg Eye Center, 1000 Wall Street, Ann Arbor, MI 48105, USA.
| | | |
Collapse
|
15
|
Cheng CL, Flamarique IN. Chromatic organization of cone photoreceptors in the retina of rainbow trout: single cones irreversibly switch from UV (SWS1) to blue (SWS2) light sensitive opsin during natural development. J Exp Biol 2007; 210:4123-35. [DOI: 10.1242/jeb.009217] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYThe retinas of salmonid fishes have single and double cones arranged in square to row formations termed mosaics. The square mosaic unit is formed by four double cones that make the sides of the square with a single (centre)cone in the middle, and a single (corner) cone at each corner of the square when present. Previous research using coho salmon-derived riboprobes on four species of anadromous Pacific salmon has shown that all single cones express a SWS1 (UV sensitive) visual pigment protein (opsin) at hatching, and that these cones switch to a SWS2 (blue light sensitive) opsin during the juvenile period. Whether this opsin switch applies to non-anadromous species, like the rainbow trout, is under debate as species-specific riboprobes have not been used to study opsin expression during development of a trout. As well, a postulated recovery of SWS1 opsin expression in the retina of adult rainbow trout, perhaps via a reverse process to that occurring in the juvenile, has not been investigated. Here, we used in situhybridization with species-specific riboprobes and microspectrophotometry on rainbow trout retina to show that: (1) single cones in the juvenile switch opsin expression from SWS1 to SWS2, (2) this switch is not reversed in the adult, i.e. all single cones in the main retina continue to express SWS2 opsin, and (3) opsin switches do not occur in double cones: each member expresses one opsin, maximally sensitive to green (RH2) or red (LWS) light. The opsin switch in the single cones of salmonid fishes may be a general process of chromatic organization that occurs during retinal development of most vertebrates.
Collapse
Affiliation(s)
- Christiana L. Cheng
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6
| | - Iñigo Novales Flamarique
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6
| |
Collapse
|
16
|
Siebeck UE, Marshall NJ. Potential ultraviolet vision in pre-settlement larvae and settled reef fish—A comparison across 23 families. Vision Res 2007; 47:2337-52. [PMID: 17632200 DOI: 10.1016/j.visres.2007.05.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2007] [Revised: 05/18/2007] [Accepted: 05/23/2007] [Indexed: 10/23/2022]
Abstract
After hatching, larvae of coral reef fishes experience a pelagic phase during which they are diurnal planktivores. It has been suggested that ultraviolet (UV) vision is beneficial for the detection of planktonic prey. Aims were therefore to investigate whether ocular media of pre-settlement reef fish differ from those of respective adults, and whether larvae have UV-transparent ocular media required for UV vision. The ocular media of 84 pre-settlement and 98 adult species belonging to the same families were measured and compared. We suggest that adult lifestyle rather than planktivory in general shapes the ocular media properties of pre-settlement larvae.
Collapse
Affiliation(s)
- U E Siebeck
- Vision Touch and Hearing Research Laboratory, School of Biomedical Sciences, University of Queensland, St. Lucia 4072, Australia.
| | | |
Collapse
|
17
|
Cheng CL, Flamarique IN. Photoreceptor distribution in the retina of adult Pacific salmon: corner cones express blue opsin. Vis Neurosci 2007; 24:269-76. [PMID: 17592670 DOI: 10.1017/s0952523807070137] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Accepted: 01/29/2007] [Indexed: 11/06/2022]
Abstract
The retina of salmonid fishes has two types of cone photoreceptors: single and double cones. At the nuclear level, these cones are distributed in a square mosaic such that the double cones form the sides of the square and the single cones occupy positions at the centre and at the corners of the square. Double cones consist of two members, one having visual pigment protein maximally sensitive to green light (RH2 opsin), the other maximally sensitive to red light (LWS opsin). Single cones can have opsins maximally sensitive to ultraviolet (UV) or blue light (SWS1 and SWS2 opsins, respectively). In Pacific salmonids, all single cones express UV opsin at hatching. Around the time of yolk sac absorption, single cones start switching opsin expression from UV to blue, in an event that proceeds from the ventral to the dorsal retina. This transformation is accompanied by a loss of single corner cones such that the large juvenile shows corner cones and UV opsin expression in the dorsal retina only. Previous research has shown that adult Pacific salmon have corner cones over large areas of retina suggesting that these cones may be regenerated and that they may express UV opsin. Here we used in-situ hybridization with cRNA probes and RT-PCR to show that: (1) all single cones in non-growth zone areas of the retina express blue opsin and (2) double cone opsin expression alternates around the square mosaic unit. Our results indicate that single cone driven UV sensitivity in adult salmon must emanate from stimulation of growth zone areas.
Collapse
Affiliation(s)
- Christiana L Cheng
- Department of Biological Sciences, Simon Fraser University, British Columbia, Canada
| | | |
Collapse
|
18
|
Applebury ML, Farhangfar F, Glösmann M, Hashimoto K, Kage K, Robbins JT, Shibusawa N, Wondisford FE, Zhang H. Transient expression of thyroid hormone nuclear receptor TRβ2 sets S opsin patterning during cone photoreceptor genesis. Dev Dyn 2007; 236:1203-12. [PMID: 17436273 DOI: 10.1002/dvdy.21155] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cone photoreceptors in the murine retina are patterned by dorsal repression and ventral activation of S opsin. TR beta 2, the nuclear thyroid hormone receptor beta isoform 2, regulates dorsal repression. To determine the molecular mechanism by which TR beta 2 acts, we compared the spatiotemporal expression of TR beta 2 and S opsin from embryonic day (E) 13 through adulthood in C57BL/6 retinae. TR beta 2 and S opsin are expressed in cone photoreceptors only. Both are transcribed by E13, and their levels increase with cone genesis. TR beta 2 is expressed uniformly, but transiently, across the retina. mRNA levels are maximal by E17 at completion of cone genesis and again minimal before P5. S opsin is also transcribed by E13, but only in ventral cones. Repression in dorsal cones is established by E17, consistent with the occurrence of patterning during cone cell genesis. The uniform expression of TR beta 2 suggests that repression of S opsin requires other dorsal-specific factors in addition to TR beta 2. The mechanism by which TR beta 2 functions was probed in transgenic animals with TR beta 2 ablated, TR beta 2 that is DNA binding defective, and TR beta 2 that is ligand binding defective. These studies show that TR beta 2 is necessary for dorsal repression, but not ventral activation of S opsin. TR beta 2 must bind DNA and the ligand T3 (thyroid hormone) to repress S opsin. Once repression is established, T3 no longer regulates dorsal S opsin repression in adult animals. The transient, embryonic action of TR beta 2 is consistent with a role (direct and/or indirect) in chromatin remodeling that leads to permanent gene silencing in terminally differentiated, dorsal cone photoreceptors.
Collapse
Affiliation(s)
- M L Applebury
- The Howe Laboratory, Harvard Medical School and Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Allison WT, Hallows TE, Johnson T, Hawryshyn CW, Allen DM. Photic history modifies susceptibility to retinal damage in albino trout. Vis Neurosci 2006; 23:25-34. [PMID: 16597348 DOI: 10.1017/s0952523806231031] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Accepted: 09/29/2005] [Indexed: 11/07/2022]
Abstract
Albino vertebrates exposed to intense light typically lose photoreceptors via apoptosis, and thus serve as useful models of retinal degeneration. In contrast, albino rainbow trout exposed to intense light maintain populations of rod and cone nuclei despite substantial damage to rod outer segments (ROS). The aim of this study was to differentiate between two hypotheses that could account for this divergent result: (1) trout rod nuclei remain intact during light damage, or (2) rod nuclei die but are replaced by cell proliferation. A further aim was to examine whether photic history modulates retinal damage, as in rodents. Albino and normally pigmented trout were moved from defined photic regimes into full daylight, while some were not moved to serve as protected controls. ROS were always maintained in pigmented fish and in albinos protected from full daylight. In albinos exposed to full daylight, ROS were removed over most of the central retina, whereas rod nuclei were maintained in the outer nuclear layer over 10 days. Pyknotic and TUNEL-labeled rod nuclei were abundant in affected albinos at all time-points tested. Rod death occurred without a decrease in the number of rod nuclei, confirming that proliferation must be replacing cells. Indeed a transient increase in proliferation was observed in retinal progenitors of albinos receiving 5 days of damaging light. This proliferative response was decreased with further damage. Cones remained intact even in areas where rod nuclei had degenerated. Pretreatment with light of moderate versus low intensity light affected the cell death and proliferative responses, and the ectopic localization of rod opsin. We conclude that apoptotic demise of rods, but not cones, occurred during light damage in retinas of albino trout and proliferative responses have a limited a capacity to replace lost rods.
Collapse
Affiliation(s)
- W Ted Allison
- The University of Michigan, Department of Molecular, Cellular, and Developmental Biology, Ann Arbor, Michigan, USA
| | | | | | | | | |
Collapse
|
20
|
Veldhoen K, Allison WT, Veldhoen N, Anholt BR, Helbing CC, Hawryshyn CW. Spatio-temporal characterization of retinal opsin gene expression during thyroid hormone-induced and natural development of rainbow trout. Vis Neurosci 2006; 23:169-79. [PMID: 16638170 DOI: 10.1017/s0952523806232139] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Accepted: 02/04/2006] [Indexed: 11/07/2022]
Abstract
The abundance and spatial distribution of retinal cone photoreceptors change during thyroid hormone (TH)-induced and natural development of rainbow trout (Oncorhynchus mykiss). These changes are thought to allow the fish to adapt to different photic environments throughout its life history. To date, the ontogeny of rainbow trout cone photoreceptors has been examined using physiological and morphological approaches. In this study, we extended these observations by measuring opsin gene expression in retinal quadrants during natural and TH-induced development. Gene expression during natural development was investigated in retinae from fish at both parr and smolt stages. The role of TH in modulating opsin gene expression was determined in TH-treated parr and control fish sampled after two, nine, and 22 days of treatment. Total RNA was isolated from each retinal quadrant and steady-state opsin mRNA levels were measured using reverse transcriptase real-time quantitative polymerase chain reaction (QPCR) analysis. Expression of ultraviolet-sensitive opsin (SWS1), rod opsin (RH1), middle wavelength-sensitive opsin (RH2), and long wavelength-sensitive opsin (LWS) transcripts vary spatially in the parr retina. Smolts, compared to parr, had downregulated SWS1 expression in all quadrants, lower LWS expression dorsally, higher RH1 expression nasally, and higher RH2 expression dorsally. In TH-treated parr, SWS1 opsin expression was downregulated in the nasal quadrants by two days. SWS1 displayed the greatest degree of downregulation in all quadrants after nine days of treatment, with an increase in short wavelength-sensitive (SWS2) and RH2 opsin mRNA expression in the temporal quadrants. This study reveals that opsin genes display spatially significant differences within rainbow trout retina in their level of mRNA expression, and that regulation of opsin expression is a dynamic process that is influenced by TH. This is particularly evident for SWS1 gene expression in parr following TH-induced and natural development.
Collapse
Affiliation(s)
- Kathy Veldhoen
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
21
|
Allison WT, Dann SG, Veldhoen KM, Hawryshyn CW. Degeneration and regeneration of ultraviolet cone photoreceptors during development in rainbow trout. J Comp Neurol 2006; 499:702-15. [PMID: 17048226 DOI: 10.1002/cne.21164] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ultraviolet-sensitive (UVS) cones disappear from the retina of salmonid fishes during a metamorphosis that prepares them for deeper/marine waters. UVS cones subsequently reappear in the retina near sexual maturation and the return migration to natal streams. Cellular mechanisms of this UVS cone ontogeny were investigated using electroretinograms, in situ hybridization, and immunohistochemistry against opsins during and after thyroid hormone (TH) treatments of rainbow trout (Oncorhynchus mykiss). Increasing TH levels led to UVS cone degeneration. Labeling demonstrated that UVS cone degeneration occurs via programmed cell death and caspase inhibitors can inhibit this death. After the cessation of TH treatment, UVS cones regenerated in the retina. Bromodeoxyuridine (BrdU) was applied after the termination of TH treatment and was detected in the nuclei of cells expressing UVS opsin. BrdU was found in UVS cones but not other cone types. The most parsimonious explanation for the data is that UVS cones degenerated and UVS cones were regenerated from intrinsic retinal progenitor cells. Regenerating UVS cones were functionally integrated such that they were able to elicit electrical responses from second-order neurons. This is the first report of cones regenerating during natural development. Both the death and regeneration of cones in retinae represent novel mechanisms for tuning visual systems to new visual tasks or environments.
Collapse
Affiliation(s)
- W Ted Allison
- Department of Biology, University of Victoria, Victoria, British Columbia V8W 3N5, Canada
| | | | | | | |
Collapse
|
22
|
Dann SG, Allison WT, Levin DB, Taylor JS, Hawryshyn CW. Salmonid opsin sequences undergo positive selection and indicate an alternate evolutionary relationship in oncorhynchus. J Mol Evol 2004; 58:400-12. [PMID: 15114419 DOI: 10.1007/s00239-003-2562-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2003] [Accepted: 10/28/2003] [Indexed: 10/26/2022]
Abstract
Positive selection can be demonstrated by statistical analysis when non-synonymous nucleotide substitutions occur more frequently than synonymous substitutions (dN>dS). This pattern of sequence evolution has been observed in the rhodopsin gene of cichlids. Mutations in opsin genes resulting in amino acid (AA) replacement appear to be associated with the evolution of specific color patterns and the evolution of courtship behaviors. Within fish, AA replacements in opsin proteins have improved vision at great depths and have occurred in deep-sea species. Salmonids experience diverse photic environments during their life history. Furthermore, sexual selection has resulted in species-specific male and female coloration during spawning. To look for evidence of positive selection in salmonid opsins, we sequenced the RH1, RH2, LWS, SWS1, and SWS2 genes from six Pacific salmon species as well as the Atlantic salmon. These salmonids include landlocked and migratory species and species that vary in their coloration during spawning. In each opsin gene comparison from all species sampled, traditional dN:dS analysis did not indicate positive selection. However, the more sensitive Creevey-McInerney statistical analysis indicates that RH1 and RH2 experienced positive selection early in the evolution and speciation of salmonids.
Collapse
Affiliation(s)
- Stephen G Dann
- Department of Biology, University of Victoria, P.O. Box 3020 STN CSC, Victoria, British Columbia, Canada V8W 3N5
| | | | | | | | | |
Collapse
|