1
|
Abd-Elhafeez HH, Massoud D, Mahmoud MS, Abdellah N, Salah AS, Mohamed NE, Sayed MAA, Shaalan M, Rutland CS, Abu-ELhamed AS, Soliman SA, Mustafa FEZA. Microstructural architecture of the bony scutes, spine, and rays of the bony fins in the common pleco (Hypostomus plecostomus). Int J Vet Sci Med 2024; 12:101-124. [PMID: 39239634 PMCID: PMC11376312 DOI: 10.1080/23144599.2024.2374201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 09/07/2024] Open
Abstract
Studying scute and fin morphology are advantageous approaches for phylogenetic identification and provide information on biological linkages and evolutionary history that are essential for deciphering the fossil record. Despite this, no prior research has precisely characterized the histological structures of scutes in the common pleco. Therefore, this research investigated the microstructure and organization of bone tissue within the dermal skeleton, including the scutes and fins, in the common pleco, using light microscopy, stereomicroscopy, and scanning electron microscopy. The dermal scutes were organized in a pentagonal shape with denticular coverage and were obliquely aligned with the caudal portion pointing dorsally. The dermal scutes consisted of three distinct portions: the central, preterminal, and terminal portions. Each portion comprised three layers: a superficial bony plate, a basal bony plate, and a mid-plate. Both the superficial and basal bony plates were composed of lamellar bone and lamellar zonal bone, whilst the mid-plate consisted of secondary osteons and woven bone. In the terminal portion, the superficial and basal bony plates became thinner. The pectoral fin consists of spines and rays composed of lepidotrichium (two symmetrical hemi-rays). The spine contained centrifugal and centripetal lamellar and trabecular bones. A centripetal fibrous bone was implanted between the lamellar bones. Besides being oriented in a V shape, the hemi-rays were also composed of thin centrifugal and centripetal lamellar bones and trabecular bones. A fibrous bone was identified between the centrifugal and centripetal bones. The trabecular bone and lamellar bone were made up of bone spicules.
Collapse
Affiliation(s)
- Hanan H Abd-Elhafeez
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Diaa Massoud
- Department of Biology, College of Science, Jouf University, Sakaka, Saudi Arabia
- Department of Zoology, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Mohammed S Mahmoud
- Department of Zoology, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Nada Abdellah
- Department of Histology, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
- Department of Histology and Anatomy, School of Veterinary Medicine, Badr University in Assiut, New Nasser City, Egypt
| | - Abdallah S Salah
- Institute of Aquaculture, University of Stirling, Stirling, UK
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Nor-Elhoda Mohamed
- Faculty of Science, Biomedicine Branch, University of Science & Technology, Zewail, Egypt
| | | | - Mohamed Shaalan
- Department of Pathology, Faculty of Veterinary Medicine, Caio University, Giza, Egypt
- Polymer Institute, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Catrin S Rutland
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Alaa Sayed Abu-ELhamed
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
- Department of Respiratory Therapy, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Soha A Soliman
- Department of Histology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | | |
Collapse
|
2
|
Duncan WP, Júnior JNA, Mendonça WCS, Santa Cruz IF, Samonek JF, Morais EJF, Marcon JL, Da Silveira R. Physiological stress response in free-living Amazonian caimans following experimental capture. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:282-292. [PMID: 34905662 DOI: 10.1002/jez.2565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/09/2021] [Accepted: 11/23/2021] [Indexed: 11/10/2022]
Abstract
When captured, free-living crocodilians respond by hyperstimulation of the hypothalamic-pituitary-adrenal (HPA) axis, which triggers a cascade of downstream events of physiological stress. We examined these responses in two unstressed, and stressed Amazonian caimans, Caiman crocodilus and Melanosuchus niger. Plasma corticosterone levels increased in both stressed caiman species. In M. niger, the levels of this hormone increased 5.2-fold compared with the basal range values, while in C. crocodilus this was only 1.7-fold. After stress, M. niger needed more than 6 h to return its corticosterone levels to basal range values, whereas in C. crocodilus just 0.5 h was enough. Downstream events were characterized by an increase in glucose levels, which is associated with corticosterone increments. Excessive muscle activity resulted in increased plasma lactate content in both species. Lactate levels were also related to plasma calcium concentration, possibly due to the buffering capacity for preventing lactic acidosis. Clearance of excessive lactate load was faster in M. niger (0.5 h) than in C. crocodilus (more than 6 h). Although both caiman species respond in the same way to capture, the amplitude and duration of activation of the HPA axis are different. M. niger may be potentially more sensitive to acute stress than C. crocodilus. On the other hand, C. crocodilus needs more time to recover from the lactic acid load. Our experiment provides a useful diagnostic tool for management and conservation programs, as well as evaluating the impacts of tourism and recreational capture on caimans in the Amazon.
Collapse
Affiliation(s)
- Wallice P Duncan
- Department of Morphology, Federal University of Amazonas, Manaus, Brazil
| | - Janes N A Júnior
- Graduate Program of Zoology, Federal University of Amazonas, Manaus, Brazil
| | | | | | - Jean F Samonek
- Faculty of Veterinary Medicine, Nilton Lins University, Manaus, Brazil
| | - Ester J F Morais
- Department of Biology, Federal University of Amazonas, Manaus, Brazil
| | - Jaydione L Marcon
- Graduate Program of Zoology, Federal University of Amazonas, Manaus, Brazil.,Department of Physiological Sciences, Federal University of Amazonas, Manaus, Brazil
| | - Ronis Da Silveira
- Graduate Program of Zoology, Federal University of Amazonas, Manaus, Brazil.,Department of Biology, Federal University of Amazonas, Manaus, Brazil
| |
Collapse
|
3
|
|
4
|
Williams C, Kirby A, Marghoub A, Kéver L, Ostashevskaya-Gohstand S, Bertazzo S, Moazen M, Abzhanov A, Herrel A, Evans SE, Vickaryous M. A review of the osteoderms of lizards (Reptilia: Squamata). Biol Rev Camb Philos Soc 2021; 97:1-19. [PMID: 34397141 PMCID: PMC9292694 DOI: 10.1111/brv.12788] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/24/2022]
Abstract
Osteoderms are mineralised structures consisting mainly of calcium phosphate and collagen. They form directly within the skin, with or without physical contact with the skeleton. Osteoderms, in some form, may be primitive for tetrapods as a whole, and are found in representatives of most major living lineages including turtles, crocodilians, lizards, armadillos, and some frogs, as well as extinct taxa ranging from early tetrapods to dinosaurs. However, their distribution in time and space raises questions about their evolution and homology in individual groups. Among lizards and their relatives, osteoderms may be completely absent; present only on the head or dorsum; or present all over the body in one of several arrangements, including non-overlapping mineralised clusters, a continuous covering of overlapping plates, or as spicular mineralisations that thicken with age. This diversity makes lizards an excellent focal group in which to study osteoderm structure, function, development and evolution. In the past, the focus of researchers was primarily on the histological structure and/or the gross anatomy of individual osteoderms in a limited sample of taxa. Those studies demonstrated that lizard osteoderms are sometimes two-layered structures, with a vitreous, avascular layer just below the epidermis and a deeper internal layer with abundant collagen within the deep dermis. However, there is considerable variation on this model, in terms of the arrangement of collagen fibres, presence of extra tissues, and/or a cancellous bone core bordered by cortices. Moreover, there is a lack of consensus on the contribution, if any, of osteoblasts in osteoderm development, despite research describing patterns of resorption and replacement that would suggest both osteoclast and osteoblast involvement. Key to this is information on development, but our understanding of the genetic and skeletogenic processes involved in osteoderm development and patterning remains minimal. The most common proposition for the presence of osteoderms is that they provide a protective armour. However, the large morphological and distributional diversity in lizard osteoderms raises the possibility that they may have other roles such as biomechanical reinforcement in response to ecological or functional constraints. If lizard osteoderms are primarily for defence, whether against predators or conspecifics, then this 'bony armour' might be predicted to have different structural and/or mechanical properties compared to other hard tissues (generally intended for support and locomotion). The cellular and biomineralisation mechanisms by which osteoderms are formed could also be different from those of other hard tissues, as reflected in their material composition and nanostructure. Material properties, especially the combination of malleability and resistance to impact, are of interest to the biomimetics and bioinspired material communities in the development of protective clothing and body armour. Currently, the literature on osteoderms is patchy and is distributed across a wide range of journals. Herein we present a synthesis of current knowledge on lizard osteoderm evolution and distribution, micro- and macrostructure, development, and function, with a view to stimulating further work.
Collapse
Affiliation(s)
- Catherine Williams
- Department of Biomedical Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.,Department of Biology, Aarhus University, Ny Munkegade 114-116, Aarhus C, DK-8000, Denmark
| | - Alexander Kirby
- Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, U.K.,Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, U.K
| | - Arsalan Marghoub
- Department of Mechanical Engineering, University College London, London, WC1E 7JE, U.K
| | - Loïc Kéver
- Département Adaptations du Vivant, UMR 7179 MECADEV C.N.R.S/M.N.H.N., Bâtiment d'Anatomie Comparée, 55 rue Buffon, Paris, 75005, France
| | - Sonya Ostashevskaya-Gohstand
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, Silwood Park Campus, Berkshire, SL5 7PY, U.K
| | - Sergio Bertazzo
- Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, U.K
| | - Mehran Moazen
- Department of Mechanical Engineering, University College London, London, WC1E 7JE, U.K
| | - Arkhat Abzhanov
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, Silwood Park Campus, Berkshire, SL5 7PY, U.K
| | - Anthony Herrel
- Département Adaptations du Vivant, UMR 7179 MECADEV C.N.R.S/M.N.H.N., Bâtiment d'Anatomie Comparée, 55 rue Buffon, Paris, 75005, France
| | - Susan E Evans
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, U.K
| | - Matt Vickaryous
- Department of Biomedical Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
5
|
Clarac F, Scheyer TM, Desojo JB, Cerda IA, Sanchez S. The evolution of dermal shield vascularization in Testudinata and Pseudosuchia: phylogenetic constraints versus ecophysiological adaptations. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190132. [PMID: 31928197 PMCID: PMC7017437 DOI: 10.1098/rstb.2019.0132] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2019] [Indexed: 01/18/2023] Open
Abstract
Studies on living turtles have demonstrated that shells are involved in the resistance to hypoxia during apnea via bone acidosis buffering; a process which is complemented with cutaneous respiration, transpharyngeal and cloacal gas exchanges in the soft-shell turtles. Bone acidosis buffering during apnea has also been identified in crocodylian osteoderms, which are also known to employ heat transfer when basking. Although diverse, many of these functions rely on one common trait: the vascularization of the dermal shield. Here, we test whether the above ecophysiological functions played an adaptive role in the evolutionary transitions between land and aquatic environments in both Pseudosuchia and Testudinata. To do so, we measured the bone porosity as a proxy for vascular density in a set of dermal plates before performing phylogenetic comparative analyses. For both lineages, the dermal plate porosity obviously varies depending on the animal lifestyle, but these variations prove to be highly driven by phylogenetic relationships. We argue that the complexity of multi-functional roles of the post-cranial dermal skeleton in both Pseudosuchia and Testudinata probably is the reason for a lack of obvious physiological signal, and we discuss the role of the dermal shield vascularization in the evolution of these groups. This article is part of the theme issue 'Vertebrate palaeophysiology'.
Collapse
Affiliation(s)
- François Clarac
- Department of Organismal Biology, Subdepartment of Evolution and Development, Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden
| | - Torsten M. Scheyer
- Paleontological Institute and Museum, University of Zurich, Karl Schmid-Strasse 4, 8006 Zurich, Switzerland
| | - Julia B. Desojo
- CONICET, División Paleontología Vertebrados, Museo de La Plata, Paseo del Bosque s/n°, B1900FWA La Plata, Argentina
| | - Ignacio A. Cerda
- CONICET, Argentina y Instituto de Investigacion en Paleobiología y Geología, Universidad Nacional de Río Negro, Museo Carlos Ameghino, Belgrano 1700, Paraje Pichi Ruca (predio Marabunta), 8300 Cipolletti, Río Negro, Argentina
| | - Sophie Sanchez
- Department of Organismal Biology, Subdepartment of Evolution and Development, Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS-40220, 38043 Grenoble Cedex, France
| |
Collapse
|
6
|
Janis CM, Napoli JG, Warren DE. Palaeophysiology of pH regulation in tetrapods. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190131. [PMID: 31928199 DOI: 10.1098/rstb.2019.0131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The involvement of mineralized tissues in acid-base homeostasis was likely important in the evolution of terrestrial vertebrates. Extant reptiles encounter hypercapnia when submerged in water, but early tetrapods may have experienced hypercapnia on land due to their inefficient mode of lung ventilation (likely buccal pumping, as in extant amphibians). Extant amphibians rely on cutaneous carbon dioxide elimination on land, but early tetrapods were considerably larger forms, with an unfavourable surface area to volume ratio for such activity, and evidence of a thick integument. Consequently, they would have been at risk of acidosis on land, while many of them retained internal gills and would not have had a problem eliminating carbon dioxide in water. In extant tetrapods, dermal bone can function to buffer the blood during acidosis by releasing calcium and magnesium carbonates. This review explores the possible mechanisms of acid-base regulation in tetrapod evolution, focusing on heavily armoured, basal tetrapods of the Permo-Carboniferous, especially the physiological challenges associated with the transition to air-breathing, body size and the adoption of active lifestyles. We also consider the possible functions of dermal armour in later tetrapods, such as Triassic archosaurs, inferring palaeophysiology from both fossil record evidence and phylogenetic patterns, and propose a new hypothesis relating the archosaurian origins of the four-chambered heart and high systemic blood pressures to the perfusion of the osteoderms. This article is part of the theme issue 'Vertebrate palaeophysiology'.
Collapse
Affiliation(s)
- Christine M Janis
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA.,School of Earth Sciences, University of Bristol, Bristol BS8 1RL, UK
| | - James G Napoli
- Richard Gilder Graduate School and Division of Paleontology, American Museum of Natural History, New York, NY 10024-5102, USA
| | - Daniel E Warren
- Department of Biology, Saint Louis University, St Louis, MO 63103, USA
| |
Collapse
|
7
|
Canoville A, Schweitzer MH, Zanno L. Identifying medullary bone in extinct avemetatarsalians: challenges, implications and perspectives. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190133. [PMID: 31928189 DOI: 10.1098/rstb.2019.0133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Medullary bone (MB) is a sex-specific tissue produced by female birds during the laying cycle, and it is hypothesized to have arisen within Avemetatarsalia, possibly outside Avialae. Over the years, researchers have attempted to define a set of criteria from which to evaluate the nature of purported MB-like tissues recovered from fossil specimens. However, we argue that the prevalence, microstructural and chemical variability of MB in Neornithes is, as of yet, incompletely known and thus current diagnoses of MB do not capture the extent of variability that exists in modern birds. Based on recently published data and our own observations of MB distribution and structure using computed tomography and histochemistry, we attempt to advance the discourse on identifying MB in fossil specimens. We propose: (i) new insights into the phylogenetic breadth and structural diversity of MB within extant birds; (ii) a reevaluation and refinement of the most recently published list of criteria suggested for confidently identifying MB in the fossil record; (iii) reconsideration of some prior identifications of MB-like tissues in fossil specimens by taking into account the newly acquired data; and (iv) discussions on the challenges of characterizing MB in Neornithes with the goal of improving its diagnosis in extinct avemetatarsalians. This article is part of the theme issue 'Vertebrate palaeophysiology'.
Collapse
Affiliation(s)
- Aurore Canoville
- Paleontology, North Carolina Museum of Natural Sciences, Raleigh, NC 27601, USA.,Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Mary H Schweitzer
- Paleontology, North Carolina Museum of Natural Sciences, Raleigh, NC 27601, USA.,Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA.,Museum of the Rockies, Montana State University, Bozeman, MT 59717, USA.,Department of Geology, Lund University, 223 62 Lund, Sweden
| | - Lindsay Zanno
- Paleontology, North Carolina Museum of Natural Sciences, Raleigh, NC 27601, USA.,Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
8
|
Heterogeneous bioapatite carbonation in western painted turtles is unchanged after anoxia. Comp Biochem Physiol A Mol Integr Physiol 2019; 233:74-83. [PMID: 30930203 DOI: 10.1016/j.cbpa.2019.03.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/09/2019] [Accepted: 03/25/2019] [Indexed: 11/23/2022]
Abstract
Adsorbed and structurally incorporated carbonate in bioapatite, the primary mineral phase of bone, is observed across vertebrates, typically at 2-8 wt%, and supports critical physiological and biochemical functions. Several turtle species contain elevated bone-associated carbonate, a property linked to pH buffering and overwintering survival. Prior studies of turtle bone utilized bulk analyses, which do not provide spatial resolution of carbonate. Using Raman spectroscopy, the goals of this study were to: (1) quantify and spatially resolve carbonate heterogeneity within the turtle shell; (2) determine if cortical and trabecular bone contain distinct carbonate concentrations; and (3) assess if simulated overwintering conditions result in decreased bioapatite carbonation. Here, we demonstrate the potential for Raman spectroscopic analysis to spatially resolve bioapatite carbonation, using the western painted turtle as a model species. Carbonate concentration was highly variable within cortical and trabecular bone, based on calibrated Raman spot analyses and mapping, suggesting heterogeneous carbonate distribution among crystallites. Mean carbonate concentration did not significantly differ between cortical and trabecular bone, which indicates random distribution of crystallites with elevated and depleted carbonate. Carbonate concentrations (range: 5-22 wt%) were not significantly different in overwintering and control animals, deviating from previous bulk analyses. In reconciling bulk and Raman analyses, two hypotheses explain how overwintering turtles potentially access carbonate: (1) mobilization of mineral-associated, surface components of bone crystallites; and (2) selective, dispersed crystallite dissolution. Elevated bioapatite carbonate in the western painted turtle, averaging 11.8 wt%, represents the highest carbonation observed in vertebrates, and is one physiological trait that facilitates overwintering survival.
Collapse
|
9
|
The crocodylian skull and osteoderms: A functional exaptation to ectothermy? ZOOLOGY 2018; 132:31-40. [PMID: 30736927 DOI: 10.1016/j.zool.2018.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 12/08/2018] [Accepted: 12/11/2018] [Indexed: 10/27/2022]
Abstract
The crocodylians are ectothermic semi-aquatic vertebrates which are assessed to have evolved from endothermic terrestrial forms during the Mesozoic. Such a physiological transition should have involved modifications in their cardio-vascular system allowing to increase the heat transfers with the surrounding environment by growing a peripheral vascularization which would be mainly located in the dermal skeleton: the dermatocranium and the osteoderms. In order to assess the implication of these anatomical regions in thermal exchanges, we have recorded the temperature above a set of representative skin areas in order to draw comparisons between the skull, the osteoderms, and the rest of the body parts which present either none or residual dermal ossification. We computed the data after the specimens were successively laid in different stereotyped environmental conditions which involved significant variations in the environmental temperature. Our results show that the osteoderms collect the external heat during the basking periods as they become significantly warmer than the surrounding skin; they further release the heat into the core of the organism as they turn out to be colder than the surrounding skin after a significant cooling period. In disregard of the environmental temperature variations, the skull table (which encloses the braincase) remains warmer than the rest of the cranial regions and shows less temperature variations than the osteoderms; a result which has lead us to think that the braincase temperature is monitored and controlled by a thermoregulatory system. Therefore, as hypothesized by previous authors regarding the ectothermic diapsids, we assume that the crocodylian skull possesses shunting blood pathways which tend to maintain both the braincase and the main sensory organs at the nearest to the optimal physiological temperature depending on the external temperature variations. Concerning the skin vascularization, the study of an albino Alligator mississippiensis specimen permitted to observe the repartition of the superficial blood vessels by transparency through the skin. We thus testify that the skin which covers either the skull or the osteoderms is more vascularized than the skin which does not present any subjacent dermal ossification. We consequently deduce that the significant contrast in the thermal behavior between the dermal skeleton and the rest of the body is indeed correlated with a difference in the relative degree of skin vascularization. This last assessment confirms that the development of the dermal skeleton should have played a functional role in the crocodylian transition from endothermy to ectothermy through the set-up of a peripheral vessel network.
Collapse
|
10
|
Dróżdż D. Osteology of a forelimb of an aetosaur Stagonolepis olenkae (Archosauria: Pseudosuchia: Aetosauria) from the Krasiejów locality in Poland and its probable adaptations for a scratch-digging behavior. PeerJ 2018; 6:e5595. [PMID: 30310738 PMCID: PMC6173166 DOI: 10.7717/peerj.5595] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/14/2018] [Indexed: 02/01/2023] Open
Abstract
Aetosaurs are armored basal archosaurs that played a significant role in land ecosystems during the Late Triassic (237–201 Ma). The polish species Stagonolepis olenkae Sulej, 2010 described from the Krasiejów locality (southern Poland) is one of the oldest known representatives of the group. Abundant and well-preserved material, including partially articulated specimens, allows a detailed description of the forelimbs in this species. The forelimbs of S. olenkae are the most similar to that of large aetosaurs like Desmatosuchus smalli, Desmatosuchus spurensis, Longosuchus meadei, Typothorax coccinarum or Stagonolepis robertsoni. Several characters recognized in the forelimbs of S. olenkae suggest its adaptation for scratch-digging. The most salient of these features are: short forearm, carpus, and hands, with the radius shorter than the humerus, carpus and manus shorter than the radius (excluding terminal phalanges); a prominent deltopectoral crest that extends distally on the humerus and a wide prominent entepicondyle, a long olecranon process with well-marked attachment of triceps muscle; hooked, laterally compressed, claw-like terminal phalanges with ornamentation of small pits (indicative of well-developed keratin sheaths). S. olenkae might have used its robust forelimbs to break through the compacted soil with its claws and proceed to dig in search of food in softened substrate with the shovel-like expansion at the tip of its snout. The entire forelimb of S. olenkae is covered by osteoderms, including the dorsal surface of the hand, which is unusual among aetosaurs and have not been noted for any species up to date.
Collapse
Affiliation(s)
- Dawid Dróżdż
- Institute of Paleobiology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
11
|
Odegard DT, Sonnenfelt MA, Bledsoe JG, Keenan SW, Hill CA, Warren DE. Changes in the material properties of the shell during simulated aquatic hibernation in the anoxia-tolerant painted turtle. J Exp Biol 2018; 221:jeb.176990. [DOI: 10.1242/jeb.176990] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/25/2018] [Indexed: 11/20/2022]
Abstract
Western painted turtles (Chrysemys picta bellii) tolerate anoxic submergence longer than any other tetrapod, surviving more than 170 days at 3°C. This ability is due, in part, to the shell and skeleton simultaneously releasing calcium and magnesium carbonates, and sequestering lactate and H+ to prevent lethal decreases in body fluid pH. We evaluated the effects of anoxic submergence at 3°C on various material properties of painted turtle bone after 60, 130, and 167-170 days, and compared them to normoxic turtles held at the same temperature for the same time periods. To assess changes in the mechanical properties, beams (4×25 mm) were milled from the plastron and broken in a three-point flexural test. Bone mineral density, CO2 concentration (a measure of total bone HCO3−/CO32-), and elemental composition were measured using microCT, HCO3−/CO32- titration, and inductively coupled plasma mass spectrometry (ICP-MS), respectively. Tissue mineral density of the sampled bone beams were not significantly altered by 167-170 days of aquatic overwintering in anoxic or normoxic water, but bone CO2 and Mg were depleted in anoxic compared normoxic turtles. At this time point, the plastron beams from anoxic turtles yielded at stresses that were significantly smaller and strains significantly greater than the plastron beams of normoxic turtles. When data from anoxic and normoxic turtles were pooled, plastron beams had a diminished elastic modulus after 167-170 days compared to control turtles sampled on Day 1, indicating an effect of prolonged housing of the turtles in 3°C water without access to basking sites. There were no changes in the mechanical properties of the plastron beams at any of the earlier time points in either group. We conclude that anoxic hibernation can weaken the painted turtle's plastron, but likely only after durations that exceed what it might naturally experience. The duration of aquatic overwintering, regardless of oxygenation state, is likely to be an important factor determining the mechanical properties of the turtle shell during spring emergence.
Collapse
Affiliation(s)
- Dean T. Odegard
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA
| | - Michael A. Sonnenfelt
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO 63103, USA
| | - J. Gary Bledsoe
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO 63103, USA
| | - Sarah W. Keenan
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA
| | - Craig A. Hill
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA
| | - Daniel E. Warren
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA
| |
Collapse
|
12
|
Clarac F, De Buffrénil V, Cubo J, Quilhac A. Vascularization in Ornamented Osteoderms: Physiological Implications in Ectothermy and Amphibious Lifestyle in the Crocodylomorphs? Anat Rec (Hoboken) 2017; 301:175-183. [PMID: 29024422 DOI: 10.1002/ar.23695] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/20/2017] [Accepted: 08/07/2017] [Indexed: 11/10/2022]
Abstract
Vascularization in the core of crocodylian osteoderms, and in their superficial pits has been hypothesized to be a key feature involved in physiological thermoregulation and/or acidosis buffering during anoxia (apnea). However, up to now, there have been no quantitative data showing that the inner, or superficial, blood supply of the osteoderms is greater than that occurring in neighboring dermal tissues. We provide such data: our results clearly indicate that the vascular networks in both the osteoderms and the pits forming their superficial ornamentation are denser than in the overlying dermis. These results support previous physiological assumptions and indicate that vascularization in pseudosuchian (crocodylians and close relatives) ornamented osteoderms could be part of a broad eco-physiological adaptation towards ectothermy and aquatic ambush predation acquired by the crocodylomorphs during their post-Triassic evolution. Moreover, regressions demonstrate that the number of enclosed vessels is correlated with the sectional area of the cavities housing them (superficial pits and inner cavities). These regressions can be used to infer the degree of vascularization on dry and fossilized osteoderms and thus document the evolution of the putative function of the osteoderms in the Pseudosuchia. Anat Rec, 2017. © 2017 Wiley Periodicals, Inc. Anat Rec, 301:175-183, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- F Clarac
- Sorbonne Universités, UPMC Université Paris 06, CNRS, Institut des Sciences de la Terre Paris (ISTeP), Paris, F-75005, France.,Département Histoire de la Terre, Museum National d'Histoire Naturelle, UMR 7207 (CR2P), Sorbonne Universités, MNHN/CNRS/UPMC, F-75231, France
| | - V De Buffrénil
- Département Histoire de la Terre, Museum National d'Histoire Naturelle, UMR 7207 (CR2P), Sorbonne Universités, MNHN/CNRS/UPMC, F-75231, France
| | - J Cubo
- Sorbonne Universités, UPMC Université Paris 06, CNRS, Institut des Sciences de la Terre Paris (ISTeP), Paris, F-75005, France
| | - A Quilhac
- Sorbonne Universités, UPMC Université Paris 06, CNRS, Institut des Sciences de la Terre Paris (ISTeP), Paris, F-75005, France
| |
Collapse
|
13
|
English LT. Variation in crocodilian dorsal scute organization and geometry with a discussion of possible functional implications. J Morphol 2017; 279:154-162. [DOI: 10.1002/jmor.20760] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/22/2017] [Accepted: 09/26/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Lauren T. English
- Department of Geology, Jackson School of Geosciences; The University of Texas at Austin; Austin Texas U.S.A
| |
Collapse
|
14
|
Clarac F, Souter T, Cornette R, Cubo J, de Buffrénil V. A quantitative assessment of bone area increase due to ornamentation in the Crocodylia. J Morphol 2015; 276:1183-92. [DOI: 10.1002/jmor.20408] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/16/2015] [Accepted: 04/30/2015] [Indexed: 11/05/2022]
Affiliation(s)
- François Clarac
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), UPMC Univ Paris 06, UMR 7193, Institut Des Sciences De La Terre Paris (ISTeP); 4 Place Jussieu, BC 19 Paris F-75005 France
- CNRS, UMR 7193, Institut Des Sciences De La Terre Paris (ISTeP); 4 Place Jussieu, BC 19 Paris F-75005 France
- Département Histoire De La Terre; Museum National D'histoire Naturelle, UMR 7207 (CR2P), Sorbonne Universités, Muséum National d'Histoire Naturelle (MNHN)/CNRS/UPMC; Bâtiment De Géologie Paris Cedex 05 F-75231 France
| | - Thibaud Souter
- Plateforme De Morphométrie Du MNHN -UMS 2700 Outils Et Méthodes De La Systématique Intégrative; 55 Rue Buffon Paris 75005 France
| | - Raphaël Cornette
- Institut De Systématique, Evolution, Biodiversité, ISYEB, UMR 7205, CNRS, MNHN, UPMC, EPHE, Muséum National D'histoire Naturelle, Sorbonne Universités; 57 Rue Cuvier 75005 Paris France
| | - Jorge Cubo
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), UPMC Univ Paris 06, UMR 7193, Institut Des Sciences De La Terre Paris (ISTeP); 4 Place Jussieu, BC 19 Paris F-75005 France
- CNRS, UMR 7193, Institut Des Sciences De La Terre Paris (ISTeP); 4 Place Jussieu, BC 19 Paris F-75005 France
| | - Vivian de Buffrénil
- Département Histoire De La Terre; Museum National D'histoire Naturelle, UMR 7207 (CR2P), Sorbonne Universités, Muséum National d'Histoire Naturelle (MNHN)/CNRS/UPMC; Bâtiment De Géologie Paris Cedex 05 F-75231 France
| |
Collapse
|
15
|
Preferential intracellular pH regulation represents a general pattern of pH homeostasis during acid-base disturbances in the armoured catfish, Pterygoplichthys pardalis. J Comp Physiol B 2014; 184:709-18. [PMID: 24973965 DOI: 10.1007/s00360-014-0838-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/04/2014] [Accepted: 06/05/2014] [Indexed: 01/03/2023]
Abstract
Preferential intracellular pH (pHi) regulation, where pHi is tightly regulated in the face of a blood acidosis, has been observed in a few species of fish, but only during elevated blood PCO2. To determine whether preferential pHi regulation may represent a general pattern for acid-base regulation during other pH disturbances we challenged the armoured catfish, Pterygoplichthys pardalis, with anoxia and exhaustive exercise, to induce a metabolic acidosis, and bicarbonate injections to induce a metabolic alkalosis. Fish were terminally sampled 2-3 h following the respective treatments and extracellular blood pH, pHi of red blood cells (RBC), brain, heart, liver and white muscle, and plasma lactate and total CO2 were measured. All treatments resulted in significant changes in extracellular pH and RBC pHi that likely cover a large portion of the pH tolerance limits of this species (pH 7.15-7.86). In all tissues other than RBC, pHi remained tightly regulated and did not differ significantly from control values, with the exception of a decrease in white muscle pHi after anoxia and an increase in liver pHi following a metabolic alkalosis. Thus preferential pHi regulation appears to be a general pattern for acid-base homeostasis in the armoured catfish and may be a common response in Amazonian fishes.
Collapse
|
16
|
Burns ME, Vickaryous MK, Currie PJ. Histological variability in fossil and recent alligatoroid osteoderms: systematic and functional implications. J Morphol 2013; 274:676-86. [PMID: 23381912 DOI: 10.1002/jmor.20125] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 11/12/2012] [Accepted: 12/08/2012] [Indexed: 11/08/2022]
Abstract
Statements about morphological variation in extinct taxa often suffer from insufficient sampling that can be remedied by taking advantage of larger sample sizes provided by related, extant taxa. This analysis quantitatively and qualitatively examines histological and morphological variation of osteoderms from extant and extinct alligatoroid specimens. Statistically significant differences were correlated with changes in osteoderm size and shape. These differences are independent of position on the body, taxonomy, or evolution. Histological variation in alligatoroid osteoderms is due to morphological constraints on the elements themselves, and not taxonomic differences. This has implications for the recognition of histological characters in the osteoderms of extinct archosaur groups that lack extant representatives.
Collapse
Affiliation(s)
- Michael E Burns
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | | | | |
Collapse
|
17
|
Janis CM, Devlin K, Warren DE, Witzmann F. Dermal bone in early tetrapods: a palaeophysiological hypothesis of adaptation for terrestrial acidosis. Proc Biol Sci 2012; 279:3035-40. [PMID: 22535781 DOI: 10.1098/rspb.2012.0558] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The dermal bone sculpture of early, basal tetrapods of the Permo-Carboniferous is unlike the bone surface of any living vertebrate, and its function has long been obscure. Drawing from physiological studies of extant tetrapods, where dermal bone or other calcified tissues aid in regulating acid-base balance relating to hypercapnia (excess blood carbon dioxide) and/or lactate acidosis, we propose a similar function for these sculptured dermal bones in early tetrapods. Unlike the condition in modern reptiles, which experience hypercapnia when submerged in water, these animals would have experienced hypercapnia on land, owing to likely inefficient means of eliminating carbon dioxide. The different patterns of dermal bone sculpture in these tetrapods largely correlates with levels of terrestriality: sculpture is reduced or lost in stem amniotes that likely had the more efficient lung ventilation mode of costal aspiration, and in small-sized stem amphibians that would have been able to use the skin for gas exchange.
Collapse
Affiliation(s)
- Christine M Janis
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA.
| | | | | | | |
Collapse
|
18
|
Jackson DC, Ultsch GR. Physiology of hibernation under the ice by turtles and frogs. ACTA ACUST UNITED AC 2010; 313:311-27. [DOI: 10.1002/jez.603] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
19
|
Ehrlich H, Koutsoukos PG, Demadis KD, Pokrovsky OS. Principles of demineralization: Modern strategies for the isolation of organic frameworks. Micron 2008; 39:1062-91. [DOI: 10.1016/j.micron.2008.02.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 02/08/2008] [Accepted: 02/10/2008] [Indexed: 11/16/2022]
|
20
|
Lactate metabolism in anoxic turtles: an integrative review. J Comp Physiol B 2007; 178:133-48. [PMID: 17940776 DOI: 10.1007/s00360-007-0212-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 09/11/2007] [Accepted: 09/17/2007] [Indexed: 10/22/2022]
Abstract
Painted turtles can accumulate lactic acid to extremely high concentrations during long-term anoxic submergence, with plasma lactate exceeding 200 mmol l(-1). The aims of this review are twofold: (1) To summarize aspects of lactate metabolism in anoxic turtles that have not been reviewed previously and (2) To identify gaps in our knowledge of turtle lactate metabolism by comparing it with lactate metabolism during and after exercise in other vertebrates. The topics reviewed include analyses of lactate's fate during recovery, the effects of temperature on lactate accumulation and clearance, the interaction of activity and recovery metabolism, fuel utilization during recovery, stress hormone responses during and following anoxia, and cellular lactate transport mechanisms. An analysis of lactate metabolism in anoxic turtles in the context of the 'lactate shuttle' hypothesis is also presented.
Collapse
|
21
|
Furtado-Filho OV, Polcheira C, Machado DP, Mourão G, Hermes-Lima M. Selected oxidative stress markers in a South American crocodilian species. Comp Biochem Physiol C Toxicol Pharmacol 2007; 146:241-254. [PMID: 17383940 DOI: 10.1016/j.cbpc.2006.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2006] [Revised: 11/10/2006] [Accepted: 11/14/2006] [Indexed: 10/23/2022]
Abstract
Crocodilians and other diving vertebrates experience hypoperfusion and hypoxia of several internal organs during long dives. At the end of a dive, reperfusion of aerated blood may cause a physiologically relevant oxidative stress. In this study, we analyzed selected markers of oxidative stress in eight organs of normoxic Paraguayan caiman (Caiman yacare) captured in the Brazilian Pantanal wetlands during the winter of 2001 (six mature-adult males and eight young-adult males; AD-1 and YA-1 groups, respectively), and during the summer of 2002 (six young-adult males (YA-2 group), ten hatchlings and five embryos). Lipid peroxidation products determined by three different assays were generally highest in brain, liver and kidney (in comparison with all other organs), and lowest in white muscles from the tail and hind legs. Liver and kidney showed the highest levels of carbonyl protein, while brain showed low levels. Intermediate levels of oxidative stress markers were mostly found in the heart ventricles and lung. Differences in oxidative stress markers between AD-1 and YA-1 were organ-specific, showing no age-related correlation. However, most oxidative stress markers in YA-2 organs were either higher than (by 1.4- to 3.7-fold) or not significantly different from respective values in hatchlings organs. This pattern (hatchlings versus young-adults) was confirmed using correlation analysis of individual caiman size versus levels of oxidative damage markers in four organs. The higher level of oxidative stress markers in young-adults possibly relates to the fast growth rate (and thus, increased oxidative metabolic rate) of C. yacare in the first years of life. Differences in oxidative stress markers between YA-1 and YA-2 were also observed and were ascribed to seasonal changes in free radical metabolism. These results in normoxic C. yacare represent the first step towards understanding the age-related physiological oxidative stress of a diving reptile from a seasonally changing wetland environment.
Collapse
Affiliation(s)
- Orlando V Furtado-Filho
- Oxyradical Research Group, Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF 70910-900, Brazil; PPG Biologia Molecular, Universidade de Brasília, Brasília, DF 70910-900, Brazil; Colégio Militar de Porto Alegre, Brazilian Army, Porto Alegre, RS, 90040-130, Brazil
| | - Cássia Polcheira
- Oxyradical Research Group, Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF 70910-900, Brazil; Escola Superior de Ciências da Saúde, FEPECS, Brasília, DF 70710-907, Brazil
| | - Daniel P Machado
- PPG Biologia Molecular, Universidade de Brasília, Brasília, DF 70910-900, Brazil
| | - Guilherme Mourão
- Laboratório de Vida Selvagem, Embrapa Pantanal, Corumbá, MS 79320-900, Brazil
| | - Marcelo Hermes-Lima
- Oxyradical Research Group, Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
| |
Collapse
|
22
|
Davis EC, Jackson DC. Lactate uptake by skeletal bone in anoxic turtles, Trachemys scripta. Comp Biochem Physiol A Mol Integr Physiol 2007; 146:299-304. [PMID: 17188012 DOI: 10.1016/j.cbpa.2006.10.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Revised: 10/23/2006] [Accepted: 10/23/2006] [Indexed: 11/21/2022]
Abstract
Previous studies have shown that freshwater turtle shells can accumulate lactate during periods of anoxic submergence. Our objective in this study was to determine lactate uptake in other parts of the turtle's skeleton. We measured lactate concentration of 7 skeletal elements and 4 shell samples of red-eared slider turtles, Trachemys scripta, in control animals (N=12) and in animals following submergence for 4-5 days in N(2)-equilibrated water at 10 degrees C (N=8). We also collected blood samples and measured blood pH, PCO(2), and PO(2), and plasma lactate. Contralateral bone samples from 6 control turtles were analyzed for % water and mineral composition; bone from the other 6 were equilibrated with lactate solution in vitro. Anoxic submergence resulted in a combined respiratory/non-respiratory (lactic) acidosis and plasma lactate of 45.6+/-2.5 mmol l(-1). Shell and skeletal lactates all increased significantly in the anoxic animals (30.1-43.9 mmol kg(-1)) with limb bones having the highest levels and skull the least. Skeletal samples equilibrated in lactate solution in vitro for 2 days accumulated lactate in similar fashion with limb bones, except for fibula, higher, and skull significantly less than other bones. We conclude that the entire skeleton of the red-eared slider, like its shell, sequesters lactate and contributes thereby to lactic acid buffering.
Collapse
Affiliation(s)
- Elizabeth C Davis
- Brown University, Department of Molecular Pharmacology, Physiology, and Biotechnology Providence, RI 02912, USA
| | | |
Collapse
|
23
|
Jackson DC, Taylor SE, Asare VS, Villarnovo D, Gall JM, Reese SA. Comparative shell buffering properties correlate with anoxia tolerance in freshwater turtles. Am J Physiol Regul Integr Comp Physiol 2007; 292:R1008-15. [PMID: 17008457 DOI: 10.1152/ajpregu.00519.2006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Freshwater turtles as a group are more resistant to anoxia than other vertebrates, but some species, such as painted turtles, for reasons not fully understood, can remain anoxic at winter temperatures far longer than others. Because buffering of lactic acid by the shell of the painted turtle is crucial to its long-term anoxic survival, we have tested the hypothesis that previously described differences in anoxia tolerance of five species of North American freshwater turtles may be explained at least in part by differences in their shell composition and buffering capacity. All species tested have large mineralized shells. Shell comparisons included 1) total shell CO2concentration, 2) volume of titrated acid required to hold incubating shell powder at pH 7.0 for 3 h (an indication of buffer release from shell), and 3) lactate concentration of shell samples incubated to equilibrium in a standard lactate solution. For each measurement, the more anoxia-tolerant species (painted turtle, Chrysemys picta; snapping turtle, Chelydra serpentina) had higher values than the less anoxia-tolerant species (musk turtle, Sternotherus odoratus; map turtle, Graptemys geographica; red-eared slider, Trachemys scripta). We suggest that greater concentrations of accessible CO2(as carbonate or bicarbonate) in the more tolerant species enable these species, when acidotic, to release more buffer into the extracellular fluid and to take up more lactic acid into their shells. We conclude that the interspecific differences in shell composition and buffering can contribute to, but cannot explain fully, the variations observed in anoxia tolerance among freshwater turtles.
Collapse
Affiliation(s)
- Donald C Jackson
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Box G, Brown University, Providence, RI 02912, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Hartzler LK, Munns SL, Bennett AF, Hicks JW. Recovery from an activity-induced metabolic acidosis in the American alligator, Alligator mississippiensis. Comp Biochem Physiol A Mol Integr Physiol 2006; 143:368-74. [PMID: 16443382 DOI: 10.1016/j.cbpa.2005.12.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2005] [Revised: 12/13/2005] [Accepted: 12/18/2005] [Indexed: 10/25/2022]
Abstract
The metabolic acidosis resulting from an intense exercise bout is large in crocodilians. Here we studied recovery from this pH perturbation in the American alligator. Metabolic rate, minute ventilation, arterial pH and gases, and strong ion concentration were measured for 10 h after exhaustion to elucidate the mechanisms and time course of recovery. Exhaustion resulted in a significant increase in lactate, metabolic rate, and ventilation, and a decrease in arterial PCO2), pH and bicarbonate. By 15 min after exhaustion, oxygen consumption returned to rest though carbon dioxide excretion remained elevated for 30 min. Arterial PO2), [Na+], and [K+], increased following exhaustion and recovered by 30 min post-exercise. Minute ventilation, tidal volume, [Cl-], and respiratory exchange ratio returned to resting values by 1 h. The air convection requirement for oxygen was elevated between 15 and 60 min of recovery. Breathing frequency and pH returned to resting values by 2 h of recovery. Lactate levels remained elevated until 6 h post-exercise. Arterial PCO2) and [HCO3-] were depressed until 8 h post-exercise. Compensation during recovery of acid-base balance was achieved by altering ventilation: following the initial metabolic acidosis and titration of bicarbonate, a relative hyperventilation prevented a further decrease in pH.
Collapse
Affiliation(s)
- L K Hartzler
- Department of Ecology and Evolutionary Biology, 321 Steinhaus Hall, University of California, Irvine, CA 92697-2525, USA.
| | | | | | | |
Collapse
|
25
|
Maccormack TJ, Lewis JM, Almeida-Val VMF, Val AL, Driedzic WR. Carbohydrate management, anaerobic metabolism, and adenosine levels in the armoured catfish,Liposarcus pardalis (castelnau), during hypoxia. ACTA ACUST UNITED AC 2006; 305:363-75. [PMID: 16493645 DOI: 10.1002/jez.a.274] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The armoured catfish, Liposarcus pardalis, tolerates severe hypoxia at high temperatures. Although this species can breathe air, it also has a strong anaerobic metabolism. We assessed tissue to plasma glucose ratios and glycogen and lactate in a number of tissues under "natural" pond hypoxia, and severe aquarium hypoxia without aerial respiration. Armour lactate content and adenosine in brain and heart were also investigated. During normoxia, tissue to plasma glucose ratios in gill, brain, and heart were close to one. Hypoxia increased plasma glucose and decreased tissue to plasma ratios to less than one, suggesting glucose phosphorylation is activated more than uptake. High normoxic white muscle glucose relative to plasma suggests gluconeogenesis or active glucose uptake. Excess muscle glucose may serve as a metabolic reserve since hypoxia decreased muscle to plasma glucose ratios. Mild pond hypoxia changed glucose management in the absence of lactate accumulation. Lactate was elevated in all tissues except armour following aquarium hypoxia; however, confinement in aquaria increased armour lactate, even under normoxia. A stress-associated acidosis may contribute to armour lactate sequestration. High plasma lactate levels were associated with brain adenosine accumulation. An increase in heart adenosine was triggered by confinement in aquaria, although not by hypoxia alone.
Collapse
Affiliation(s)
- Tyson James Maccormack
- Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1C 5S7.
| | | | | | | | | |
Collapse
|
26
|
Warren DE, Jackson DC. The role of mineralized tissue in the buffering of lactic acid during anoxia and exercise in the leopard frogRana pipiens. J Exp Biol 2005; 208:1117-24. [PMID: 15767312 DOI: 10.1242/jeb.01490] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYTo evaluate the role of mineralized tissues of the leopard frog in buffering acid, we analyzed the composition of femur and auditory capsule, the latter of which encloses a portion of the endolymphatic lime sacs, and investigated the extent to which these tissues are involved in buffering lactic acid after 2.5 h of anoxia and 10-19 min of strenuous exercise at 15°C. We analyzed the following tissues for lactate: plasma, heart, liver,gastrocnemius muscle, femur, auditory capsule and carcass. Plasma[Ca2+], [Mg2+], [inorganic phosphate (Pi)],[Na+] and [K+] were also measured. Femur Ca2+, Pi and CO32- compositions were similar to bone in other vertebrates. Auditory capsule had significantly more CaCO3 than femur. Lactate was significantly elevated in all tissues after anoxia and exercise, including femur and auditory capsule. Anoxia increased plasma [Ca2+], [Mg2+], [Pi]and [K+] and had no effect on plasma [Na+]. Exercise increased plasma [Mg2+], [Pi] and [K+] and had no effect on plasma [Ca2+] or [Na+]. The skeleton and endolymphatic lime sacs buffered 21% of the total lactate load during anoxia, and 9% after exercise. The exact contribution of the entire endolymphatic sac system to lactate buffering could not be determined in the present study. We conclude that the mineralized tissues function as buffers during anoxia and exercised induced lactic acidosis in amphibians.
Collapse
Affiliation(s)
- Daniel E Warren
- Brown University, Department of Molecular Pharmacology, Box G, Providence, RI 02912, USA.
| | | |
Collapse
|
27
|
Jackson DC. Surviving extreme lactic acidosis: the role of calcium lactate formation in the anoxic turtle. Respir Physiol Neurobiol 2004; 144:173-8. [PMID: 15556100 DOI: 10.1016/j.resp.2004.06.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2004] [Indexed: 10/26/2022]
Abstract
During prolonged anoxia at low temperature, freshwater turtles develop high plasma concentrations of both lactate and calcium. At these concentrations the formation of the complex, calcium lactate, normally of little biological significance because of the low association constant for the reaction, significantly reduces the free concentrations of both lactate and calcium. In addition, lactate is taken up by the shell and skeleton to an extent that strongly indicates that calcium lactate formation participates in these structures as well. The binding of calcium to lactate thus contributes to the efflux of lactic acid from the anoxic cells and to the exploitation of the powerful buffering capacity of the shell and skeleton.
Collapse
Affiliation(s)
- Donald C Jackson
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
28
|
Jackson DC. Acid-base balance during hypoxic hypometabolism: selected vertebrate strategies. Respir Physiol Neurobiol 2004; 141:273-83. [PMID: 15288599 DOI: 10.1016/j.resp.2004.01.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2004] [Indexed: 11/15/2022]
Abstract
An important functional advantage of hypoxic hypometabolism is that it blunts the acid-base consequences of hypoxia. Hypoxia can lead to anaerobiosis and metabolic acidosis and, in animals that are apneic, to respiratory acidosis. A fall in blood and tissue pH is a major limiting factor in hypoxic tolerance and a variety of strategies occur in vertebrates, in concert with hypometabolism, to respond to this acid-base challenge. These include sequestering of lactic acid away from the circulating blood during the hypoxic exposure, either in underperfused tissues or in mineralized tissues, supplementing extracellular buffering by releasing bone mineral into the circulation, and utilizing alternative metabolic pathways for anaerobiosis to produce ethanol rather than lactate as the principal end-product. For submerged air-breathing ectotherms, effective cutaneous O2 and CO2 exchange can also allow an animal to avoid or minimize both anaerobiosis and respiratory acidosis. These responses serve to maintain a viable acid-base state in the body and to extend the time that the hypoxic stress can be endured.
Collapse
Affiliation(s)
- Donald C Jackson
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI 02912, USA.
| |
Collapse
|