1
|
Bomkamp C, Musgrove L, Marques DMC, Fernando GF, Ferreira FC, Specht EA. Differentiation and Maturation of Muscle and Fat Cells in Cultivated Seafood: Lessons from Developmental Biology. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:1-29. [PMID: 36374393 PMCID: PMC9931865 DOI: 10.1007/s10126-022-10174-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Cultivated meat, also known as cultured or cell-based meat, is meat produced directly from cultured animal cells rather than from a whole animal. Cultivated meat and seafood have been proposed as a means of mitigating the substantial harms associated with current production methods, including damage to the environment, antibiotic resistance, food security challenges, poor animal welfare, and-in the case of seafood-overfishing and ecological damage associated with fishing and aquaculture. Because biomedical tissue engineering research, from which cultivated meat draws a great deal of inspiration, has thus far been conducted almost exclusively in mammals, cultivated seafood suffers from a lack of established protocols for producing complex tissues in vitro. At the same time, fish such as the zebrafish Danio rerio have been widely used as model organisms in developmental biology. Therefore, many of the mechanisms and signaling pathways involved in the formation of muscle, fat, and other relevant tissue are relatively well understood for this species. The same processes are understood to a lesser degree in aquatic invertebrates. This review discusses the differentiation and maturation of meat-relevant cell types in aquatic species and makes recommendations for future research aimed at recapitulating these processes to produce cultivated fish and shellfish.
Collapse
Affiliation(s)
- Claire Bomkamp
- Department of Science & Technology, The Good Food Institute, Washington, DC USA
| | - Lisa Musgrove
- University of the Sunshine Coast, Sippy Downs, Queensland Australia
| | - Diana M. C. Marques
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Gonçalo F. Fernando
- Department of Science & Technology, The Good Food Institute, Washington, DC USA
| | - Frederico C. Ferreira
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Elizabeth A. Specht
- Department of Science & Technology, The Good Food Institute, Washington, DC USA
| |
Collapse
|
2
|
Liu G, Ito T, Kijima Y, Yoshitake K, Asakawa S, Watabe S, Kinoshita S. Zebrafish Danio rerio myotomal muscle structure and growth from a spatial transcriptomics perspective. Genomics 2022; 114:110477. [PMID: 36058475 DOI: 10.1016/j.ygeno.2022.110477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 08/05/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022]
Abstract
Fish exhibit different muscle structures and growth characteristics compared with mammals. We used a spatial transcriptomics approach and examined myotomal muscle sections from zebrafish. Adult muscles were divided into eight regions according to spatial gene expression characteristics. Slow muscle was located in the wedge-shaped region near the lateral line and at the base of the dorsal fin, intermediate muscle was located in a ribbon-shaped region adjacent to slow muscle, and fast muscle was located in the deep region of the trunk, surrounded by intermediate muscle; the interior of fast muscle was further divided into 6 parts by their transcriptomic features. Combined analysis of adult and larval data revealed that adult muscles contain specific regions similar to larval muscles. These regions showed active myogenesis and a high expression of genes associated with muscle hyperplasia. This is the first study to apply spatial transcriptomics to fish myotomal muscle structure and growth.
Collapse
Affiliation(s)
- Guanting Liu
- Department of Aquatic Bioscience, Graduate School of Agriculture and Life Science, The University of Tokyo, Yayoi 1-1-1, Bunkyo, Tokyo 113-8657, Japan
| | - Takumi Ito
- Department of Aquatic Bioscience, Graduate School of Agriculture and Life Science, The University of Tokyo, Yayoi 1-1-1, Bunkyo, Tokyo 113-8657, Japan
| | - Yusuke Kijima
- Department of Aquatic Bioscience, Graduate School of Agriculture and Life Science, The University of Tokyo, Yayoi 1-1-1, Bunkyo, Tokyo 113-8657, Japan; School of Biomedical Engineering, Faculty of Applied Science and Faculty of Medicine, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Kazutoshi Yoshitake
- Department of Aquatic Bioscience, Graduate School of Agriculture and Life Science, The University of Tokyo, Yayoi 1-1-1, Bunkyo, Tokyo 113-8657, Japan
| | - Shuichi Asakawa
- Department of Aquatic Bioscience, Graduate School of Agriculture and Life Science, The University of Tokyo, Yayoi 1-1-1, Bunkyo, Tokyo 113-8657, Japan
| | - Shugo Watabe
- Kitasato University School of Marine Biosciences, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Shigeharu Kinoshita
- Department of Aquatic Bioscience, Graduate School of Agriculture and Life Science, The University of Tokyo, Yayoi 1-1-1, Bunkyo, Tokyo 113-8657, Japan.
| |
Collapse
|
3
|
Hwang J, Kang S, Jung H. Effects of American wild ginseng and Korean cultivated wild ginseng pharmacopuncture extracts on the regulation of C2C12 myoblasts differentiation through AMPK and PI3K/Akt/mTOR signaling pathway. Mol Med Rep 2022; 25:192. [PMID: 35419614 PMCID: PMC9051998 DOI: 10.3892/mmr.2022.12708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/16/2022] [Indexed: 11/06/2022] Open
Abstract
Targeting impaired myogenesis and mitochondrial biogenesis offers a potential alternative strategy for balancing energy to fight muscle disorders such as sarcopenia. In traditional Korean medicine, it is believed that the herb wild ginseng can help restore energy to the elderly. The present study investigated whether American wild ginseng pharmacopuncture (AWGP) and Korean cultivated wild ginseng pharmacopuncture (KCWGP) regulate energy metabolism in skeletal muscle cells. C2C12 mouse myoblasts were differentiated into myotubes using horse serum for 5 days. An MTT colorimetric assay verified cell viability. AWGP, KCWGP (0.5, 1, or 2 mg/ml), or metformin (2.5 mM) for reference were used to treat the C2C12 myotubes. The expressions of differentiation and mitochondrial biogenetic factors were measured by western blotting in C2C12 myotubes. Treatment of C2C12 cells stimulated with AWGP and KCWGP at a concentration of 10 mg/ml did not affect cell viability. AWGP and KCWGP treatments resulted in significant increases in the myogenesis proteins, myosin heavy chain, myostatin, myoblast determination protein 1 and myogenin, as well as increases to the biogenic regulatory factors, peroxisome proliferator-activated receptor-γ coactivator-1-α, nuclear respiratory factor 1, mitochondrial transcription factor A and Sirtuin 1, in the myotubes through AMPK and PI3K/AKT/mTOR signaling pathway activation. These results suggest that AWGP and KCWGP may be beneficial to muscle function by improving muscle differentiation and energy metabolism.
Collapse
Affiliation(s)
- Ji Hwang
- Department of Acupuncture and Moxibustion Medicine, College of Korean Medicine, Gachon University, Seongnam, Gyeonggi 13120, Republic of Korea
| | - Seok Kang
- Korean Medicine R&D Center, Gyeongju, North Gyeongsang 38066, Republic of Korea
| | - Hyo Jung
- Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, North Gyeongsang 38066, Republic of Korea
| |
Collapse
|
4
|
Skeletal Muscle and the Effects of Ammonia Toxicity in Fish, Mammalian, and Avian Species: A Comparative Review Based on Molecular Research. Int J Mol Sci 2020; 21:ijms21134641. [PMID: 32629824 PMCID: PMC7370143 DOI: 10.3390/ijms21134641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 12/22/2022] Open
Abstract
Typically, mammalian and avian models have been used to examine the effects of ammonia on skeletal muscle. Hyperammonemia causes sarcopenia or muscle wasting, in mammals and has been linked to sarcopenia in liver disease patients. Avian models of skeletal muscle have responded positively to hyperammonemia, differing from the mammalian response. Fish skeletal muscle has not been examined as extensively as mammalian and avian muscle. Fish skeletal muscle shares similarities with avian and mammalian muscle but has notable differences in growth, fiber distribution, and response to the environment. The wide array of body sizes and locomotion needs of fish also leads to greater diversity in muscle fiber distribution and growth between different fish species. The response of fish muscle to high levels of ammonia is important for aquaculture and quality food production but has not been extensively studied to date. Understanding the differences between fish, mammalian and avian species’ myogenic response to hyperammonemia could lead to new therapies for muscle wasting due to a greater understanding of the mechanisms behind skeletal muscle regulation and how ammonia effects these mechanisms. This paper provides an overview of fish skeletal muscle and ammonia excretion and toxicity in fish, as well as a comparison to avian and mammalian species.
Collapse
|
5
|
Lewandowski D, Dubińska-Magiera M, Migocka-Patrzałek M, Niedbalska-Tarnowska J, Haczkiewicz-Leśniak K, Dzięgiel P, Daczewska M. Everybody wants to move-Evolutionary implications of trunk muscle differentiation in vertebrate species. Semin Cell Dev Biol 2019; 104:3-13. [PMID: 31759871 DOI: 10.1016/j.semcdb.2019.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/17/2019] [Indexed: 10/25/2022]
Abstract
In our review we have completed current knowledge on myotomal myogenesis in model and non-model vertebrate species (fishes, amphibians, reptiles, birds and mammals) at morphological and molecular levels. Data obtained from these studies reveal distinct similarities and differences between amniote and anamniote species. Based on the available data, we decided to present evolutionary implications in vertebrate trunk muscle development. Despite the fact that in all vertebrates muscle fibres are multinucleated, the pathways leading to them vary between vertebrate taxa. In fishes during early myogenesis myoblasts differentiate into multinucleated lamellae or multinucleate myotubes. In amphibians, myoblasts fuse to form multinucleated myotubes or, bypassing fusion, directly differentiate into mononucleated myotubes. Furthermore, mononucleated myotubes were also observed during primary myogenesis in amniotes. The mononucleated state of myogenic cells could be considered as an old phylogenetic, plesiomorphic feature, whereas direct multinuclearity of myotubes has a synapomorphic character. On the other hand, the explanation of this phenomenon could also be linked to the environmental conditions in which animals develop. The similarities observed in vertebrate myogenesis might result from a conservative myogenic programme governed by the Pax3/Pax7 and myogenic regulatory factor (MRF) network, whereas differences in anamniotes and amniotes are established by spatiotemporal pattern expression of MRFs during muscle differentiation and/or environmental conditions.
Collapse
Affiliation(s)
- Damian Lewandowski
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, Sienkiewicza 21, 50-335 Wrocław, Poland.
| | - Magda Dubińska-Magiera
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, Sienkiewicza 21, 50-335 Wrocław, Poland
| | - Marta Migocka-Patrzałek
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, Sienkiewicza 21, 50-335 Wrocław, Poland
| | - Joanna Niedbalska-Tarnowska
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, Sienkiewicza 21, 50-335 Wrocław, Poland; Laboratory of Molecular and Cellular Immunology, Department of Tumor Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland
| | | | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Chałubińskiego 6a, 50-368 Wrocław, Poland; Department of Physiotherapy, University School of Physical Education, Paderewskiego 35, 51-612 Wrocław, Poland
| | - Małgorzata Daczewska
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, Sienkiewicza 21, 50-335 Wrocław, Poland
| |
Collapse
|
6
|
Tan X, Xu P, Zhang Y, Zhang PJ. Olive flounder (Paralichthys olivaceus) myogenic regulatory factor 4 and its muscle-specific promoter activity. Comp Biochem Physiol B Biochem Mol Biol 2019; 236:110310. [PMID: 31255700 DOI: 10.1016/j.cbpb.2019.110310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 02/07/2023]
Abstract
Myogenic regulatory factor 4 (MRF4) is a basic helix-loop-helix (bHLH) transcription factor that plays crucial roles in myoblast differentiation and maturation. Here, we report the isolation of the olive flounder (Paralichthys olivaceus) mrf4 gene and the spatiotemporal analysis of its expression patterns. Sequence analysis indicated that flounder mrf4 shared a similar structure with other vertebrate MRF4, including the conserved bHLH domain. Flounder mrf4 contains 3 exons and 2 introns. Sequence alignment and phylogenetic analysis showed that it was highly homologous with Salmo salar, Danio rerio, Takifugu rubripes, and Tetraodon nigroviridis mrf4. Flounder mrf4 was first expressed in the medial region of somites that give rise to slow muscles, and later spread to the lateral region of somites that give rise to fast muscles. Mrf4 transcript levels decreased significantly in mature somites in the trunk region, and expression could only be detected in the caudal somites, consistent with the timing of somite maturation. Transient expression analysis showed that the 506 bp flounder mrf4 promoter was sufficient to direct muscle-specific GFP expression in zebrafish embryos.
Collapse
Affiliation(s)
- Xungang Tan
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China.
| | - Peng Xu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China; University of Chinese Academy of Sciences, Beijing 10049, PR China
| | - Yuqing Zhang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China; University of Chinese Academy of Sciences, Beijing 10049, PR China
| | - Pei-Jun Zhang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China
| |
Collapse
|
7
|
Ma J, Meng X, Kang SY, Zhang J, Jung HW, Park YK. Regulatory effects of the fruit extract of Lycium chinense and its active compound, betaine, on muscle differentiation and mitochondrial biogenesis in C2C12 cells. Biomed Pharmacother 2019; 118:109297. [PMID: 31404771 DOI: 10.1016/j.biopha.2019.109297] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/24/2019] [Accepted: 07/31/2019] [Indexed: 12/15/2022] Open
Abstract
Our study was conducted to investigate the effects of the fruits of Lycium chinense Mill. (Lycii Fructus, LF) and its bioactive compound, betaine, on muscle differentiation and mitochondrial biogenesis in C2C12 cells. LF extract and betaine was analyzed by high-performance liquid chromatography (HPLC). The expression of myosin heavy chain (MyHC) and peroxisome proliferator-activated receptor gamma coactivator1-alpha (PGC-1α), sirtuin-1(Sirt-1), nuclear respiratory factor-1 (NRF-1), transcription factor A, mitochondrial (TFAM) and the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC), were determined in cellular or mitochondrial levels by quantitative polymerase chain reaction (qPCR) or Western blot, respectively. The glucose levels and total ATP contents were measured by the glucose consumption in a culture medium, cellular glucose uptake and ATP assays. LF extract at 4 mg/ml and betaine at 2 and 5 mM significantly increased the expression of MyHC in C2C12 myotubes, compared with non-treated cells. LF extract and betaine significantly increased the expression of PGC-1α, Sirt-1, NRF-1 and TFAM mRNA and protein in the myotubes, as well as phosphorylation of AMPK and ACC. Furthermore, LF extract and betaine significantly increased the mitochondrial protein contents, as the TFAM and NRF-1 expressions were increased. LF extract and betaine also significantly increased the glucose uptake and ATP contents in the myotubes. The LF extract contained 3.18% betaine was quantitated by HPLC. LF extract and betaine enhanced muscle differentiation and energy metabolism through the up-regulation of mitochondrial biogenesis-regulating factors, suggesting that LF extract and betaine can help to prevent the dysfunction of skeletal muscle.
Collapse
Affiliation(s)
- Junnan Ma
- Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066, South Korea.
| | - Xianglong Meng
- Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066, South Korea.
| | - Seok Yong Kang
- Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066, South Korea.
| | - Jie Zhang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Department of Traditional Chinese and Western Medicine, Yangzhou University, Yangzhou, 225001, China.
| | - Hyo Won Jung
- Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066, South Korea; Korean Medicine R&D Center, Dongguk University, Gyeongju, 38066, South Korea.
| | - Yong-Ki Park
- Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066, South Korea; Korean Medicine R&D Center, Dongguk University, Gyeongju, 38066, South Korea.
| |
Collapse
|
8
|
Keenan SR, Currie PD. The Developmental Phases of Zebrafish Myogenesis. J Dev Biol 2019; 7:E12. [PMID: 31159511 PMCID: PMC6632013 DOI: 10.3390/jdb7020012] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/16/2019] [Accepted: 05/31/2019] [Indexed: 01/11/2023] Open
Abstract
The development and growth of vertebrate axial muscle have been studied for decades at both the descriptive and molecular level. The zebrafish has provided an attractive model system for investigating both muscle patterning and growth due to its simple axial musculature with spatially separated fibre types, which contrasts to complex muscle groups often deployed in amniotes. In recent years, new findings have reshaped previous concepts that define how final teleost muscle form is established and maintained. Here, we summarise recent findings in zebrafish embryonic myogenesis with a focus on fibre type specification, followed by an examination of the molecular mechanisms that control muscle growth with emphasis on the role of the dermomyotome-like external cell layer. We also consider these data sets in a comparative context to gain insight into the evolution of axial myogenic patterning systems within the vertebrate lineage.
Collapse
Affiliation(s)
- Samuel R Keenan
- Australian Regenerative Medicine Institute, Monash University, Victoria 3800, Australia.
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Victoria 3800, Australia.
| |
Collapse
|
9
|
Effects of Rhizome Extract of Dioscorea batatas and Its Active Compound, Allantoin, on the Regulation of Myoblast Differentiation and Mitochondrial Biogenesis in C2C12 Myotubes. Molecules 2018; 23:molecules23082023. [PMID: 30104552 PMCID: PMC6222821 DOI: 10.3390/molecules23082023] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 12/16/2022] Open
Abstract
With the aging process, a loss of skeletal muscle mass and dysfunction related to metabolic syndrome is observed in older people. Yams are commonly use in functional foods and medications with various effects. The present study was conducted to investigate the effects of rhizome extract of Dioscorea batatas (Dioscoreae Rhizoma, Chinese yam) and its bioactive compound, allantoin, on myoblast differentiation and mitochondrial biogenesis in skeletal muscle cells. Yams were extracted in water and allantoin was analyzed by high performance liquid chromatography (HPLC). The expression of myosin heavy chain (MyHC) and mitochondrial biogenesis-regulating factors, peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), sirtuin-1 (Sirt-1), nuclear respiratory factor-1 (NRF-1) and transcription factor A, mitochondrial (TFAM), and the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) were determined in C2C12 myotubes by reverse transcriptase (RT)-polymerase chain reaction (RT-PCR) or western blot. The glucose levels and total ATP contents were measured by glucose consumption, glucose uptake and ATP assays, respectively. Treatment with yam extract (1 mg/mL) and allantoin (0.2 and 0.5 mM) significantly increased MyHC expression compared with non-treated myotubes. Yam extract and allantoin significantly increased the expression of PGC-1α, Sirt-1, NRF-1 and TFAM, as well as the phosphorylation of AMPK and ACC in C2C12 myotubes. Furthermore, yam extract and allantoin significantly increased glucose uptake levels and ATP contents. Finally, HPLC analysis revealed that the yam water extract contained 1.53% of allantoin. Yam extract and allantoin stimulated myoblast differentiation into myotubes and increased energy production through the upregulation of mitochondrial biogenesis regulators. These findings indicate that yam extract and allantoin can help to prevent skeletal muscle dysfunction through the stimulation of the energy metabolism.
Collapse
|
10
|
Park JM, Mun SJ, Yim HS, Han KH. Egg Development and Larvae and Juveniles Morphology of Carp, Cyprinus carpio in Korean. Dev Reprod 2017; 21:287-295. [PMID: 29082344 PMCID: PMC5651695 DOI: 10.12717/dr.2017.21.3.287] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 09/19/2017] [Accepted: 09/23/2017] [Indexed: 11/25/2022]
Abstract
This study was conducted to observe egg and larvae morphological development of
carp to obtain basic data for resource conservation and taxonomic research.
Brood carp used in the research (total length 67.3-75.5 cm, average 71.0±3.45
cm) were bred in a circular rearing aquarium (600×300×100 cm) using a running
water system from January to July, 2015. Breeding water temperature was
maintained at 23.0-25.0℃(average 24.0℃). Fertilized carp eggs were translucent
and globular, and their size was 1.75-1.89 mm (average 1.82±0.06 mm).
Blastoderms formed 10 min after fertilization and reached the two-cell stage 30
min after fertilization. Then, the embryo turned dark and exhibited
melanophores, and blood started flowing from the heart across the egg yolk at 42
hrs and 50 min after fertilization. Hatching began 70 hrs and 26 min after
fertilization larvae emerged through the egg membrane, starting from the head.
The length of prelarvae immediately after hatching was 5.23-5.38 mm (average
5.31±0.11 mm) the mouth and anus were closed, and the pectoral fin was formed.
Postlarvae at 18 days after hatching had a total length of 11.9-13.9 mm (average
12.9±1.40 mm), separate anal fin and back membranes, and fin ray. Juveniles fish
at 35 days after hatching had a total length of 29.9-30.2 mm (average 30.1±0.13
mm), with the body covered with scales, and the same number of fin rays, color,
and shape as their broodstork.
Collapse
Affiliation(s)
- Jae Min Park
- Gyeongsangbuk-do Native Fish Business Center, Uiseong 37366, Korea
| | - Seong Jun Mun
- Marine Technology Undergraduate, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Hu Sun Yim
- Gyeongsangbuk-do Native Fish Business Center, Uiseong 37366, Korea
| | - Kyeong Ho Han
- Marine Technology Undergraduate, Chonnam National University, Yeosu 59626, Republic of Korea
| |
Collapse
|
11
|
Zhang H, Anderson JE. Satellite cell activation and populations on single muscle-fiber cultures from adult zebrafish (Danio rerio). ACTA ACUST UNITED AC 2014; 217:1910-7. [PMID: 24577448 DOI: 10.1242/jeb.102210] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Satellite cells (SCs), stem cells in skeletal muscle, are mitotically quiescent in adult mammals until activated for growth or regeneration. In mouse muscle, SCs are activated by nitric oxide (NO), hepatocyte growth factor (HGF) and the mechanically induced NO-HGF signaling cascade. Here, the SC population on fibers from the adult, ectothermic zebrafish and SC responsiveness to activating stimuli were assessed using the model system of isolated fibers cultured at 27 and 21°C. SCs were identified by immunostaining for the HGF receptor, c-met, and activation was determined using bromodeoxyuridine uptake in culture or in vivo. In dose-response studies, SC activation was increased by treatment with the NO-donor drug isosorbide dinitrate (1 mmol l(-1)) or HGF (10 ng ml(-1)) to maximum activation at lower concentrations of both than in previous studies of mouse fibers. HGF-induced activation was blocked by anti-c-met antibody, and reduced by culture at 21°C. The effect of cyclical stretch (3 h at 4 cycles per minute) increased activation and was blocked by nitric oxide synthase inhibition and reduced by culture at 21°C. The number of c-met+ SCs per fiber increased rapidly (by 3 h) after stretching. The character of signaling in SC activation on zebrafish fibers, in particular temperature-dependent responses to HGF and stretch, gives new insights into the influence of ectothermy on regulation of muscle growth in teleosts and suggests the use of the single-fiber model system to explore the basis of fiber hyperplasia and the conservation of regulatory pathways between species.
Collapse
Affiliation(s)
- Helia Zhang
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
| | - Judy E Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
| |
Collapse
|
12
|
Differential Expression of Myogenic Regulatory Factor Genes in the Skeletal Muscles of Tambaqui Colossoma macropomum (Cuvier 1818) from Amazonian Black and Clear Water. Int J Genomics 2013; 2013:465727. [PMID: 24350238 PMCID: PMC3852311 DOI: 10.1155/2013/465727] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 08/30/2013] [Accepted: 09/12/2013] [Indexed: 12/03/2022] Open
Abstract
Hypothesizing that the Amazonian water system differences would affect the expression of muscle growth-related genes in juvenile tambaqui Colossoma macropomum (Cuvier 1818), this study aimed to analyze the morphometric data and expression of myogenic regulatory factors (MRFs) in the white and red muscle from tambaqui obtained from clear and black Amazonian water systems. All of the MRF transcript levels (myod, myf5, myogenin, and mrf4) were significantly lower in the red muscle from black water fish in comparison to clear water fish. However, in white muscle, only the myod transcript level was significantly decreased in the black water tambaqui. The changes in MRFs gene expression in muscle fibers of tambaqui from black water system provide relevant information about the environmental influence as that of water systems on gene expression of muscle growth related genes in the C. macropomum. Our results showed that the physical and chemical water characteristics change the expression of genes that promote muscle growth, and these results may be also widely applicable to future projects that aim to enhance muscle growth in fish that are of substantial interest to the aquaculture.
Collapse
|
13
|
Campos C, Valente LM, Conceição LE, Engrola S, Sousa V, Rocha E, Fernandes JM. Incubation temperature induces changes in muscle cellularity and gene expression in Senegalese sole (Solea senegalensis). Gene 2013; 516:209-17. [DOI: 10.1016/j.gene.2012.12.074] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 12/02/2012] [Accepted: 12/09/2012] [Indexed: 01/21/2023]
|
14
|
Strobel A, Hu MY, Gutowska MA, Lieb B, Lucassen M, Melzner F, Pörtner HO, Mark FC. Influence of Temperature, Hypercapnia, and Development on the Relative Expression of Different Hemocyanin Isoforms in the Common CuttlefishSepia officinalis. ACTA ACUST UNITED AC 2012; 317:511-23. [DOI: 10.1002/jez.1743] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 05/21/2012] [Accepted: 06/05/2012] [Indexed: 12/20/2022]
Affiliation(s)
- Anneli Strobel
- Integrative Ecophysiology; Alfred Wegener Institute for Polar and Marine Research; Bremerhaven; Germany
| | | | | | - Bernhard Lieb
- Institute of Zoology; Johannes Gutenberg University of Mainz; Mainz; Germany
| | - Magnus Lucassen
- Integrative Ecophysiology; Alfred Wegener Institute for Polar and Marine Research; Bremerhaven; Germany
| | - Frank Melzner
- Biological Oceanography; Helmholtz Centre for Ocean Research Kiel (GEOMAR); Kiel; Germany
| | - Hans O. Pörtner
- Integrative Ecophysiology; Alfred Wegener Institute for Polar and Marine Research; Bremerhaven; Germany
| | - Felix C. Mark
- Integrative Ecophysiology; Alfred Wegener Institute for Polar and Marine Research; Bremerhaven; Germany
| |
Collapse
|
15
|
Kacperczyk A, Jagla T, Daczewska M. Pax-3 and Pax-7 label muscle progenitor cells during myotomal myogenesis in Coregonus lavaretus (Teleostei: Coregonidae). Anat Histol Embryol 2009; 38:411-8. [PMID: 19793091 DOI: 10.1111/j.1439-0264.2009.00961.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In Coregonus lavaretus, prior the mesoderm segmentation, in cells adjacent to the notochord called adaxial cells MyoD and slow myosin heavy chain (MyHC-slow) proteins were observed. After somite formation, adaxial cells migrate towards the lateral part of the myotome and form a layer of red muscles. Deeper cells differentiate into white muscle fibres. In situ hybridization using Pax-3 molecular probe revealed, that after somitogenesis, Pax-3 is expressed in a layer of cells superficial to the myotome resembling the "external cells" (found in many teleosts species) or dermomyotome described in Amniota. During later developmental stages Pax-3 gene is expressed in cells in intermyotomal space and then in myoblasts between myotubes. In these cells Pax-7 protein was also observed. Pax-3/7 positive cells which have migrated into the myotomes differentiate into satellite cells/secondary myoblasts and participate in hypertrophic and hyperplastic growth of muscles.
Collapse
Affiliation(s)
- A Kacperczyk
- Department of Animal Developmental Biology, Zoological Institute, University of Wroclaw, Sienkiewicza 21, Wroclaw 50-335, Poland
| | | | | |
Collapse
|
16
|
Rescan PY. New insights into skeletal muscle development and growth in teleost fishes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2008; 310:541-8. [PMID: 18666123 DOI: 10.1002/jez.b.21230] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recent research has significantly broadened our understanding of how the teleost somite is patterned to achieve embryonic and postembryonic myogenesis. Medial (adaxial) cells and posterior cells of the early epithelial somite generate embryonic superficial slow and deep fast muscle fibers, respectively, whereas anterior somitic cells move laterally to form an external cell layer of undifferentiated Pax7-positive myogenic precursors surrounding the embryonic myotome. In late embryo and in larvae, some of the cells contained in the external cell layer incorporate into the myotome and differentiate into new muscle fibers, thus contributing to medio-lateral expansion of the myotome. This supports the suggestion that the teleost external cell layer is homologous to the amniote dermomyotome. Some of the signalling molecules that promote lateral movement or regulate the myogenic differentiation of external cell precursors have been identified and include stromal cell-derived factor 1 (Sdf1), hedgehog proteins, and fibroblast growth factor 8 (Fgf8). Recent studies have shed light on gene activations that underlie the differentiation and maturation of slow and fast muscle fibers, pointing out that both adaxially derived embryonic slow fibers and slow fibers formed during the myotome expansion of larvae initially and transiently bear features of the fast fiber phenotype.
Collapse
Affiliation(s)
- Pierre-Yves Rescan
- INRA (National Institute for Agricultural Research), Joint Research Unit for Fish Physiology, Biodiversity and Environment, Rennes, France.
| |
Collapse
|
17
|
Abstract
Recent work in teleosts has renewed interest in the dermomyotome, which was initially characterized in the late 19th century. We review the evidence for the teleost dermomyotome, comparing it to the more well-characterized amniote dermomyotome. We discuss primary myotome morphogenesis, the relationship between the primary myotome and the dermomyotome, the differentiation of axial muscle, appendicular muscle, and dermis from the dermomyotome, and the signaling molecules that regulate myotome growth from myogenic precursors within the dermomyotome. The recognition of a dermomyotome in teleosts provides a new perspective on teleost muscle growth, as well as a fruitful approach to understanding the vertebrate dermomyotome.
Collapse
Affiliation(s)
- Frank Stellabotte
- Department of Biology, Wesleyan University, Middletown, Connecticut 06459, USA
| | | |
Collapse
|
18
|
Macqueen DJ, Robb D, Johnston IA. Temperature influences the coordinated expression of myogenic regulatory factors during embryonic myogenesis in Atlantic salmon (Salmo salarL.). J Exp Biol 2007; 210:2781-94. [PMID: 17690225 DOI: 10.1242/jeb.006981] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SUMMARYPotential molecular mechanisms regulating developmental plasticity to temperature were investigated in Atlantic salmon embryos (Salmo salarL.). Six orthologues of the four myogenic regulatory factors (MRFs:individually: smyf5, smyoD1a/1b/1c, smyoG and sMRF4), the master transcription factors regulating vertebrate myogenesis, were characterised at the mRNA/genomic level. In situ hybridisation was performed with specific cRNA probes to determine the expression patterns of each gene during embryonic myogenesis. To place the MRF data in the context of known muscle fibre differentiation events, the expression of slow myosin light chain-1 and Pax7 were also investigated. Adaxial myoblasts expressed smyoD1a prior to and during somitogenesis followed by smyoD1c (20-somite stage, ss),and sMRF4 (25–30 ss), before spreading laterally across the myotome, followed closely by the adaxial cells. Smyf5 was detected prior to somitogenesis, but not in the adaxial cells in contrast to other teleosts studied. The expression domains of smyf5, smyoD1band smyoG were not confined to the s-smlc1 expression field,indicating a role in fast muscle myogenesis. From the end of segmentation,each MRF was expressed to a greater or lesser extent in zones of new muscle fibre production, the precursor cells for which probably originated from the Pax7 expressing cell layer external to the single layer of s-smlc1+ fibres. SmyoD1a and smyoGshowed similar expression patterns with respect to somite stage at three different temperatures investigated (2°C, 5°C and 8°C) in spite of different rates of somite formation (one somite added each 5 h, 8 h and 15 h at 8°C, 5°C and 2°C, respectively). In contrast, the expression of smyf5, sMRF4 and s-smlc1 was retarded with respect to somite stage at 2°C compared to 8°C, potentially resulting in heterochronies in downstream pathways influencing later muscle phenotype.
Collapse
Affiliation(s)
- Daniel J Macqueen
- Gatty Marine Laboratory, School of Biology, University of St Andrews, St Andrews, Fife, KY16 8LB, UK
| | | | | |
Collapse
|
19
|
Xu P, Tan X, Zhang Y, Zhang PJ, Xu Y. Cloning and expression analysis of myogenin from flounder (Paralichthys olivaceus) and promoter analysis of muscle-specific expression. Comp Biochem Physiol B Biochem Mol Biol 2007; 147:135-45. [PMID: 17336560 DOI: 10.1016/j.cbpb.2007.01.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 01/07/2007] [Accepted: 01/08/2007] [Indexed: 01/26/2023]
Abstract
Myogenin is a bHLH transcription factor of the MyoD family. It plays a crucial role in myoblast differentiation and maturation. We report here the isolation of flounder myogenin gene and the characterization of its expression patterns. Sequence analysis indicated that flounder myogenin shared a similar structure and the conserved bHLH domain with other vertebrate myogenin genes. Flounder myogenin gene contains 3 exons and 2 introns. Sequence alignment and phylogenetic showed that flounder myogenin was more homologous with halibut (Hippoglossus hippoglossus) myogenin and striped bass (Morone saxatilis) myogenin. Whole-mount embryo in situ hybridization revealed that flounder myogenin was first detected in the medial region of somites that give rise to slow muscles, and expanded later to the lateral region of the somite that become fast muscles. The levels of myogenin transcripts dropped significantly in matured somites at the trunk region. Its expression could only be detected in the caudal somites, which was consistent with the timing of somite maturation. Transient expression analysis showed that the 546 bp flounder myogenin promoter was sufficient to direct muscle-specific GFP expression in zebrafish embryos.
Collapse
Affiliation(s)
- Peng Xu
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, PR China
| | | | | | | | | |
Collapse
|
20
|
Ye HQ, Chen SL, Xu JY. Molecular cloning and characterization of the Myf5 gene in sea perch (Lateolabrax japonicus). Comp Biochem Physiol B Biochem Mol Biol 2007; 147:452-9. [PMID: 17395511 DOI: 10.1016/j.cbpb.2007.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 02/25/2007] [Accepted: 02/25/2007] [Indexed: 10/23/2022]
Abstract
The cDNA of myogenic factor (Myf5) was isolated from sea perch (Lateolabrax japonicus) using Reverse-transcription Polymerase Chain Reaction (RT-PCR) and rapid amplification of cDNA ends (RACE). The 5' flanking sequence of the cDNA contains a TATA box, GC box, CAAT box, several E box sites and muscle-specific regulatory elements determined by genome walking. The Myf5 gene consists of 3 exons and 2 introns. The open reading frame was found to code a protein with 238 amino-acid residues, containing the conserved basic helix-loop-helix domain (bHLH). RT-PCR indicated the Myf5 was highly expressed in muscle, and weakly expressed in brain, eyes, spleen, gill, liver, kidney, intestine and heart. In early embryonic stages, Myf5 mRNA transcripts are highly detectable in the early gastrula stage while decreasing up to a low level at the late gastrula stage, subsequently greatly increased up to the highest level in the somites stage, then gradually decreases from the tail-bud stage to 15 d larvae after hatching, but they are still detectable. Further, Myf5 mRNA was expressed in several sea perch cell lines such as LJES1, LJHK, LJH-1, LJH-2, LJS, LJL, although its expression level varied greatly among different cell lines.
Collapse
Affiliation(s)
- Han-Qing Ye
- Key Lab For Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Nanjing Road 106, Qingdao 266071, China
| | | | | |
Collapse
|
21
|
Nihei Y, Kobiyama A, Ikeda D, Ono Y, Ohara S, Cole NJ, Johnston IA, Watabe S. Molecular cloning and mRNA expression analysis of carp embryonic, slow and cardiac myosin heavy chain isoforms. ACTA ACUST UNITED AC 2006; 209:188-98. [PMID: 16354789 DOI: 10.1242/jeb.01978] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Three embryonic class II myosin heavy chains (MYHs) were cloned from the common carp (Cyprinus carpio L.), MYHemb1, MYHemb2 and MYHemb3. MYH DNA clones were also isolated from the slow muscle of adult carp acclimated to 10 degrees C (MYHS10) and 30 degrees C (MYHS30). Phylogenetic analysis demonstrated that MYHemb1 and MYHemb2 belonged to the fast skeletal muscle MYH clade. By contrast, the sequence of MYHemb3 was similar to the adult slow muscle isoforms, MYHS10 and MYHS30. MYHemb1 and MYHemb2 transcripts were first detected by northern blot analysis in embryos 61 h post-fertilization (h.p.f.) at the heartbeat stage, with peak expression occurring in 1-month-old juveniles. MYHemb1 continued to be expressed at low levels in 7-month-old juveniles when MYHemb2 was not detectable. MYHemb3 transcripts appeared at almost the same stage as MYHemb1 transcripts did (61 h.p.f.), and these genes showed a similar pattern of expression. Whole mount in situ hybridization analysis revealed that the transcripts of MYHemb1 and MYHemb2 were expressed in the inner part of myotome, whereas MYHemb3 was expressed in the superficial compartment. MYHS10 and MYHS30 mRNAs were first detected at hatching. In adult stages, the expression of slow muscle MYH mRNAs was dependent on acclimation temperature. MYHS10 mRNA was expressed at an acclimation temperature of 10 and 20 degrees C, but not at 30 degrees C. In contrast, MYHS30 mRNA was strongly expressed at all acclimation temperatures. The predominant MYH transcripts found in adult slow muscle and in embryos at hatching were expressed in adult fast muscle at some acclimation temperatures but not others. A MYH DNA clone was isolated from the cardiac muscle of 10 degrees C-acclimated adult fish (MYHcard). MYHcard mRNA was first detected at 61 h.p.f., but strong signals were only observed in the adult myocardium. The present study has therefore revealed a complex pattern of expression of MYH genes in relation to developmental stage, muscle type and acclimation temperature. None of the skeletal muscle MYHs identified so far was strongly expressed during the late juvenile stage, indicating further developmentally regulated members of the MYH II gene family remain to be discovered.
Collapse
Affiliation(s)
- Yoshiaki Nihei
- Laboratory of Aquatic Molecular Biology and Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Galloway TF, Bardal T, Kvam SN, Dahle SW, Nesse G, Randøl M, Kjørsvik E, Andersen O. Somite formation and expression ofMyoD,myogeninandmyosinin Atlantic halibut (Hippoglossus hippoglossusL.)embryos incubated at different temperatures: transient asymmetric expression ofMyoD. J Exp Biol 2006; 209:2432-41. [PMID: 16788026 DOI: 10.1242/jeb.02269] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYGenes encoding the myogenic regulating factors MyoD and myogenin and the structural muscle proteins myosin light chain 2 (MyLC2) and myosin heavy chain(MyHC) were isolated from juvenile Atlantic halibut (Hippoglossus hippoglossus L.). The impact of temperature on their temporal and spatial expression during somitogenesis were examined by incubating halibut embryos at 4, 6 and 8°C, and regularly sampling for whole-mount in situhybridisation and reverse transcription (RT)–PCR.There were no significant effects of temperature on the onset of somitogenesis or number of somites at hatching. The rate of somite formation increased with increasing temperature, and the expression of MyoD, myogenin and MyHC followed the cranial-to-caudal somite formation. Hence, no significant effect of temperature on the spatial and temporal expression of the genes studied was found in relation to somite stage. MyoD, which has subsequently been shown to encode the MyoD2 isoform, displayed a novel bilaterally asymmetric expression pattern only in white muscle precursor cells during early halibut somitogenesis. The expression of myogenin resembled that previously described for other fish species, and preceded the MyHC expression by approximately five somites. Two MyLC2 cDNA sequences were for the first time described for a flatfish, probably representing embryonic (MyLC2a) and larval/juvenile(MyLC2b) isoforms.Factors regulating muscle determination, differentiation and development have so far mostly been studied in vertebrates with external bilateral symmetry. The findings of the present study suggest that more such investigations of flatfish species could provide valuable information on how muscle-regulating mechanisms work in species with different anatomical,physiological and ecological traits.
Collapse
Affiliation(s)
- Trina F Galloway
- Department of Biology, Brattøra Research Centre, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Cossins A, Fraser J, Hughes M, Gracey A. Post-genomic approaches to understanding the mechanisms of environmentally induced phenotypic plasticity. J Exp Biol 2006; 209:2328-36. [PMID: 16731809 DOI: 10.1242/jeb.02256] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SUMMARY
Post-genomic techniques offer new and detailed insights into the mechanisms underpinning all biological processes, including phenotypic plasticity and environmentally relevant phenotypes. Although they require access to genomic resources it is now possible to create these for species of comparative or environmental interest even within a modest research project. Here we describe an open transcript screen for genes responding to environmental cold that might account for the acquired cold-specific phenotype in all its complex manifestations. Construction of a cDNA microarray led to a survey of transcript expression levels in seven tissues of carp, as a function of time,and three different extents of cooling. The resulting data delineated a common stress response found in all tissues that comprises genes involved in cellular homeostasis, including energy charge, ATP turnover, protein turnover and stress protein production. These genes respond to kinds of perturbation other than cold and probably form part of a more general stress response common to other species. We also defined tissue-specific response patterns of transcript regulation whose main characteristics were investigated by a profiling technique based on categorisation of gene function. These genes underpin the highly tissue-specific pattern of physiological adaptations observed in the cold-acclimated fish. As a result we have identified a large number of candidate gene targets with which to investigate adaptive responses to environmental challenge.
Collapse
Affiliation(s)
- Andrew Cossins
- School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK.
| | | | | | | |
Collapse
|