1
|
Tang Y, Wang X, Guo J, Yang N, Ma D, Wan F, Zhang C, Lü Z, Guo J, Liu W. Phototactic Changes in Phthorimaea absoluta Long-Wavelength Opsin Gene Mutants ( LW2-/-) and Short-Wavelength Opsin Gene Mutant ( BL-/-) Strains. INSECTS 2024; 15:433. [PMID: 38921148 PMCID: PMC11203937 DOI: 10.3390/insects15060433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/17/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024]
Abstract
Phthorimaea absoluta (Meyrick) is an invasive pest that has caused damage to tomatoes and other crops in China since 2017. Pest control is mainly based on chemical methods that pose significant threats to food safety and environmental and ecological security. Light-induced control, a green prevention and control technology, has gained attention recently. However, current light-trapping technology is non-specific, attracting targeted pests alongside natural enemies and non-target organisms. In this study, we characterized the phototactic behavior of tomato leaf miners for the development a specific light-trapping technology for pest control. In situ hybridization revealed opsin expression throughout the body. Furthermore, we investigated the tropism of pests (wild T. absoluta, Toxoptera graminum, and Bemisia tabaci) and natural enemies (Nesidiocoris tenuis and Trichogramma pintoi) using a wavelength-lamp tropism experiment. We found that 365 ± 5 nm light could accurately trap wild P. absoluta without trapping natural enemies and other insects. Finally, we analyzed the phototactic behavior of the mutant strains LW2(-/-) and BL(-/-). LW2 and BL mutants showed significant differences in phototactic behavior. The LW2(-/-) strain was attracted to light at 390 ± 5 nm and the BL(-/-) strain was unresponsive to any light. Our findings will help to develop specific light-trapping technology for controlling tomato leaf miners, providing a basis for understanding pest population dynamics and protecting crops against natural enemies.
Collapse
Affiliation(s)
- Yanhong Tang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.T.); (X.W.); (J.G.); (N.Y.); (F.W.); (W.L.)
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China;
| | - Xiaodi Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.T.); (X.W.); (J.G.); (N.Y.); (F.W.); (W.L.)
| | - Jianyang Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.T.); (X.W.); (J.G.); (N.Y.); (F.W.); (W.L.)
| | - Nianwan Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.T.); (X.W.); (J.G.); (N.Y.); (F.W.); (W.L.)
- Institute of Western Agriculture, The Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Dongfang Ma
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China;
| | - Fanghao Wan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.T.); (X.W.); (J.G.); (N.Y.); (F.W.); (W.L.)
| | - Chi Zhang
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing 100125, China;
| | - Zhichuang Lü
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.T.); (X.W.); (J.G.); (N.Y.); (F.W.); (W.L.)
| | - Jianying Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.T.); (X.W.); (J.G.); (N.Y.); (F.W.); (W.L.)
| | - Wanxue Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.T.); (X.W.); (J.G.); (N.Y.); (F.W.); (W.L.)
| |
Collapse
|
2
|
Shimizu I. Photoperiodism of Diapause Induction in the Silkworm, Bombyx mori. Zoolog Sci 2024; 41:141-158. [PMID: 38587909 DOI: 10.2108/zs230036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 11/08/2023] [Indexed: 04/10/2024]
Abstract
The silkworm Bombyx mori exhibits a photoperiodic response (PR) for embryonic diapause induction. This article provides a comprehensive review of literature on the silkworm PR, starting from early works on population to recent studies uncovering the molecular mechanism. Makita Kogure (1933) conducted extensive research on the PR, presenting a pioneering paper on insect photoperiodism. In the 1970s and 80s, artificial diets were developed, and the influence of nutrition on PR was well documented. The photoperiodic photoreceptor has been investigated from organ to molecular level in the silkworm. Culture experiments demonstrated that the photoperiodic induction can be programmed in an isolated brain (Br)-subesophageal ganglion (SG) complex with corpora cardiaca (CC)-corpora allata (CA). The requirement of dietary vitamin A for PR suggests the involvement of opsin pigment in the photoperiodic reception, and a cDNA encoding an opsin (Boceropsin) was cloned from the brain. The effector system concerning the production and secretion of diapause hormone (DH) has also been extensively investigated in the silkworm. DH is produced in a pair of posterior cells of SG, transported to CC by nervi corporis cardiaci, and ultimately released into the hemolymph. Possible involvement of GABAergic and corazonin (Crz) signal pathways was suggested in the control of DH secretion. Knockout (KO) experiments of GABA transporter (GAT) and circadian clock genes demonstrated that GAT plays a crucial role in PR through circadian control. A model outlining the PR mechanism, from maternal photoperiodic light reception to DH secretion, has been proposed.
Collapse
Affiliation(s)
- Isamu Shimizu
- Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan,
| |
Collapse
|
3
|
Huang M, Meng JY, Tang X, Shan LL, Yang CL, Zhang CY. Identification, expression analysis, and functional verification of three opsin genes related to the phototactic behaviour of Ostrinia furnacalis. Mol Ecol 2024:e17323. [PMID: 38506493 DOI: 10.1111/mec.17323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/23/2023] [Accepted: 03/12/2024] [Indexed: 03/21/2024]
Abstract
Ostrinia furnacalis is a disreputable herbivorous pest that poses a serious threat to corn crops. Phototaxis in nocturnal moths plays a crucial role in pest prediction and control. Insect opsins are the main component of insect visual system. However, the inherent molecular relationship between phototactic behaviour and vision of insects remains a mystery. Herein, three opsin genes were identified and cloned from O. furnacalis (OfLW, OfBL, and OfUV). Bioinformatics analysis revealed that all opsin genes had visual pigment (opsin) retinal binding sites and seven transmembrane domains. Opsin genes were distributed across different developmental stages and tissues, with the highest expression in adults and compound eyes. The photoperiod-induced assay elucidated that the expression of three opsin genes in females were higher during daytime, while their expression in males tended to increase at night. Under the sustained darkness, the expression of opsin genes increased circularly, although the increasing amplitude in males was lower when compared with females. Furthermore, the expression of OfLW, OfBL, and OfUV was upregulated under green, blue, and ultraviolet light, respectively. The results of RNA interference showed that the knockout of opsin genes decreased the phototaxis efficiency of female and male moths to green, blue, and ultraviolet light. Our results reveal that opsin genes are involved in the phototactic behaviour of moths, providing a potential target gene for pest control and a basis for further investigation on the phototactic behaviour of Lepidoptera insects.
Collapse
Affiliation(s)
- Mei Huang
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou, China
| | - Jian-Yu Meng
- Guizhou Tobacco Science Research Institute, Guiyang, Guizhou, China
| | - Xue Tang
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou, China
| | - Long-Long Shan
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou, China
| | - Chang-Li Yang
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou, China
| | - Chang-Yu Zhang
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
4
|
Wainwright JB, Schofield C, Conway M, Phillips D, Martin-Silverstone E, Brodrick EA, Cicconardi F, How MJ, Roberts NW, Montgomery SH. Multiple axes of visual system diversity in Ithomiini, an ecologically diverse tribe of mimetic butterflies. J Exp Biol 2023; 226:jeb246423. [PMID: 37921078 PMCID: PMC10714147 DOI: 10.1242/jeb.246423] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023]
Abstract
The striking structural variation seen in arthropod visual systems can be explained by the overall quantity and spatio-temporal structure of light within habitats coupled with developmental and physiological constraints. However, little is currently known about how fine-scale variation in visual structures arises across shorter evolutionary and ecological scales. In this study, we characterise patterns of interspecific (between species), intraspecific (between sexes) and intraindividual (between eye regions) variation in the visual system of four ithomiine butterfly species. These species are part of a diverse 26-million-year-old Neotropical radiation where changes in mimetic colouration are associated with fine-scale shifts in ecology, such as microhabitat preference. Using a combination of selection analyses on visual opsin sequences, in vivo ophthalmoscopy, micro-computed tomography (micro-CT), immunohistochemistry, confocal microscopy and neural tracing, we quantify and describe physiological, anatomical and molecular traits involved in visual processing. Using these data, we provide evidence of substantial variation within the visual systems of Ithomiini, including: (i) relaxed selection on visual opsins, perhaps mediated by habitat preference, (ii) interspecific shifts in visual system physiology and anatomy, and (iii) extensive sexual dimorphism, including the complete absence of a butterfly-specific optic neuropil in the males of some species. We conclude that considerable visual system variation can exist within diverse insect radiations, hinting at the evolutionary lability of these systems to rapidly develop specialisations to distinct visual ecologies, with selection acting at the perceptual, processing and molecular level.
Collapse
Affiliation(s)
- J. Benito Wainwright
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Corin Schofield
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Max Conway
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Daniel Phillips
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Elizabeth Martin-Silverstone
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Emelie A. Brodrick
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Francesco Cicconardi
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Martin J. How
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Nicholas W. Roberts
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Stephen H. Montgomery
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
5
|
Mulhair PO, Crowley L, Boyes DH, Lewis OT, Holland PWH. Opsin Gene Duplication in Lepidoptera: Retrotransposition, Sex Linkage, and Gene Expression. Mol Biol Evol 2023; 40:msad241. [PMID: 37935057 PMCID: PMC10642689 DOI: 10.1093/molbev/msad241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
Color vision in insects is determined by signaling cascades, central to which are opsin proteins, resulting in sensitivity to light at different wavelengths. In certain insect groups, lineage-specific evolution of opsin genes, in terms of copy number, shifts in expression patterns, and functional amino acid substitutions, has resulted in changes in color vision with subsequent behavioral and niche adaptations. Lepidoptera are a fascinating model to address whether evolutionary change in opsin content and sequence evolution are associated with changes in vision phenotype. Until recently, the lack of high-quality genome data representing broad sampling across the lepidopteran phylogeny has greatly limited our ability to accurately address this question. Here, we annotate opsin genes in 219 lepidopteran genomes representing 33 families, reconstruct their evolutionary history, and analyze shifts in selective pressures and expression between genes and species. We discover 44 duplication events in opsin genes across ∼300 million years of lepidopteran evolution. While many duplication events are species or family specific, we find retention of an ancient long-wavelength-sensitive (LW) opsin duplication derived by retrotransposition within the speciose superfamily Noctuoidea (in the families Nolidae, Erebidae, and Noctuidae). This conserved LW retrogene shows life stage-specific expression suggesting visual sensitivities or other sensory functions specific to the early larval stage. This study provides a comprehensive order-wide view of opsin evolution across Lepidoptera, showcasing high rates of opsin duplications and changes in expression patterns.
Collapse
Affiliation(s)
- Peter O Mulhair
- Department of Biology, University of Oxford, Oxford OX1 3SZ, UK
| | - Liam Crowley
- Department of Biology, University of Oxford, Oxford OX1 3SZ, UK
| | | | - Owen T Lewis
- Department of Biology, University of Oxford, Oxford OX1 3SZ, UK
| | | |
Collapse
|
6
|
Borrero J, Wright DS, Bacquet CN, Merrill RM. Oviposition behavior is not affected by ultraviolet light in a butterfly with sexually-dimorphic expression of a UV-sensitive opsin. Ecol Evol 2023; 13:e10243. [PMID: 37408633 PMCID: PMC10318619 DOI: 10.1002/ece3.10243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 07/07/2023] Open
Abstract
Animal vision is important for mediating multiple complex behaviors. In Heliconius butterflies, vision guides fundamental behaviors such as oviposition, foraging, and mate choice. Color vision in Heliconius involves ultraviolet (UV), blue and long-wavelength-sensitive photoreceptors (opsins). Additionally, Heliconius possess a duplicated UV opsin, and its expression varies widely within the genus. In Heliconius erato, opsin expression is sexually dimorphic; only females express both UV-sensitive opsins, enabling UV wavelength discrimination. However, the selective pressures responsible for sex-specific differences in opsin expression and visual perception remain unresolved. Female Heliconius invest heavily in finding suitable hostplants for oviposition, a behavior heavily dependent on visual cues. Here, we tested the hypothesis that UV vision is important for oviposition in H. erato and Heliconius himera females by manipulating the availability of UV in behavioral experiments under natural conditions. Our results indicate that UV does not influence the number of oviposition attempts or eggs laid, and the hostplant, Passiflora punctata, does not reflect UV wavelengths. Models of H. erato female vision suggest only minimal stimulation of the UV opsins. Overall, these findings suggest that UV wavelengths do not directly affect the ability of Heliconius females to find suitable oviposition sites. Alternatively, UV discrimination could be used in the context of foraging or mate choice, but this remains to be tested.
Collapse
Affiliation(s)
- Jose Borrero
- Division of Evolutionary BiologyLMU MunichMunichGermany
| | | | | | | |
Collapse
|
7
|
Akiyama T, Uchiyama H, Yajima S, Arikawa K, Terai Y. Parallel evolution of opsin visual pigments in hawkmoths by tuning of spectral sensitivities during transition from a nocturnal to a diurnal ecology. J Exp Biol 2022; 225:285920. [PMID: 36408938 PMCID: PMC10112871 DOI: 10.1242/jeb.244541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
Light environments differ dramatically between day and night. The transition between diurnal and nocturnal visual ecology has happened repeatedly throughout evolution in many species. However, the molecular mechanism underlying the evolution of vision in recent diurnal-nocturnal transition is poorly understood. Here, we focus on hawkmoths (Lepidoptera: Sphingidae) to address this question by investigating five nocturnal and five diurnal species. We performed RNA-sequencing analysis and identified opsin genes corresponding to the ultraviolet (UV), short-wavelength (SW) and long-wavelength (LW)-absorbing visual pigments. We found no significant differences in the expression patterns of opsin genes between the nocturnal and diurnal species. We then constructed the phylogenetic trees of hawkmoth species and opsins. The diurnal lineages had emerged at least three times from the nocturnal ancestors. The evolutionary rates of amino acid substitutions in the three opsins differed between the nocturnal and diurnal species. We found an excess number of parallel amino acid substitutions in the opsins in three independent diurnal lineages. The numbers were significantly more than those inferred from neutral evolution, suggesting that positive selection acted on these parallel substitutions. Moreover, we predicted the visual pigment absorption spectra based on electrophysiologically determined spectral sensitivity in two nocturnal and two diurnal species belonging to different clades. In the diurnal species, the LW pigments shift 10 nm towards shorter wavelengths, and the SW pigments shift 10 nm in the opposite direction. Taken together, our results suggest that parallel evolution of opsins may have enhanced the colour discrimination properties of diurnal hawkmoths in ambient light.
Collapse
Affiliation(s)
- Tokiho Akiyama
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Shonan Village, Hayama, Kanagawa 240-0193, Japan
| | - Hironobu Uchiyama
- NODAI Genome Research Center, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Shunsuke Yajima
- NODAI Genome Research Center, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan.,Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Kentaro Arikawa
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Shonan Village, Hayama, Kanagawa 240-0193, Japan
| | - Yohey Terai
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Shonan Village, Hayama, Kanagawa 240-0193, Japan
| |
Collapse
|
8
|
McCulloch KJ, Macias-Muñoz A, Briscoe AD. Insect opsins and evo-devo: what have we learned in 25 years? Philos Trans R Soc Lond B Biol Sci 2022; 377:20210288. [PMID: 36058243 PMCID: PMC9441233 DOI: 10.1098/rstb.2021.0288] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/16/2022] [Indexed: 12/16/2022] Open
Abstract
The visual pigments known as opsins are the primary molecular basis for colour vision in animals. Insects are among the most diverse of animal groups and their visual systems reflect a variety of life histories. The study of insect opsins in the fruit fly Drosophila melanogaster has led to major advances in the fields of neuroscience, development and evolution. In the last 25 years, research in D. melanogaster has improved our understanding of opsin genotype-phenotype relationships while comparative work in other insects has expanded our understanding of the evolution of insect eyes via gene duplication, coexpression and homologue switching. Even so, until recently, technology and sampling have limited our understanding of the fundamental mechanisms that evolution uses to shape the diversity of insect eyes. With the advent of genome editing and in vitro expression assays, the study of insect opsins is poised to reveal new frontiers in evolutionary biology, visual neuroscience, and animal behaviour. This article is part of the theme issue 'Understanding colour vision: molecular, physiological, neuronal and behavioural studies in arthropods'.
Collapse
Affiliation(s)
- Kyle J. McCulloch
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108, USA
| | - Aide Macias-Muñoz
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Adriana D. Briscoe
- Department of Ecology and Evolutionary Biology, University of California, 321 Steinhaus Hall, Irvine, CA 92697, USA
| |
Collapse
|
9
|
Pirih P, Ilić M, Meglič A, Belušič G. Opponent processing in the retinal mosaic of nymphalid butterflies. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210275. [PMID: 36058238 PMCID: PMC9441239 DOI: 10.1098/rstb.2021.0275] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/21/2022] [Indexed: 11/29/2022] Open
Abstract
The eyes of nymphalid butterflies, investigated with incident illumination, show colourful facet reflection patterns-the eye shine-which is uniform or heterogeneous, dependent on the species. Facet colours suggest that the ommatidia contain different sets of photoreceptors and screening pigments, but how the colours and the cell characteristics are associated has not been clearly established. Here, we analyse the retinae of two nymphalids, Apatura ilia, which has a uniform eyeshine, and Charaxes jasius, a species with a heterogeneous eye shine, using single-cell recordings, spectroscopy and optical pupillometry. Apatura has UV-, blue- and green-sensitive photoreceptors, allocated into three ommatidial types. The UV- and blue-sensitive cells are long visual fibres (LVFs), receiving opponent input from the green-sensitive short visual fibres (SVFs). Charaxes has an expanded set of photoreceptors, allocated into three additional, red-reflecting ommatidial types. All red ommatidia contain green-sensitive LVFs, receiving opponent input from red receptors. In both species, the SVFs do not receive any opponent input. The simple retina of Apatura with three ommatidial types and two colour-opponent channels can support trichromatic vision. Charaxes has six ommatidial types and three colour-opponent channels. Its expanded receptor set can support tetrachromatic vision. This article is part of the theme issue 'Understanding colour vision: molecular, physiological, neuronal and behavioural studies in arthropods'.
Collapse
Affiliation(s)
- Primož Pirih
- Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Marko Ilić
- Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Andrej Meglič
- Eye Hospital, University Medical Centre, Grablovičeva 46, 1000 Ljubljana, Slovenia
| | - Gregor Belušič
- Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| |
Collapse
|
10
|
Wainwright JB, Montgomery SH. Neuroanatomical shifts mirror patterns of ecological divergence in three diverse clades of mimetic butterflies. Evolution 2022; 76:1806-1820. [PMID: 35767896 PMCID: PMC9540801 DOI: 10.1111/evo.14547] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 01/22/2023]
Abstract
Microhabitat partitioning in heterogenous environments can support more diverse communities but may expose partitioned species to distinct perceptual challenges. Divergence across microhabitats could therefore lead to local adaptation to contrasting sensory conditions across small spatial scales, but this aspect of community structuring is rarely explored. Diverse communities of ithomiine butterflies provide an example where closely related species partition tropical forests, where shifts in mimetic coloration are tightly associated with shifts in habitat preference. We test the hypothesis that these mimetic and ecological shifts are associated with distinct patterns of sensory neural investment by comparing brain structure across 164 individuals of 16 species from three ithomiine clades. We find distinct brain morphologies between Oleriina and Hypothyris, which are mimetically homogenous and occupy a single microhabitat. Oleriina, which occurs in low-light microhabitats, invests less in visual brain regions than Hypothyris, with one notable exception, Hyposcada anchiala, the only Oleriina sampled to have converged on mimicry rings found in Hypothyris. We also find that Napeogenes, which has diversified into a range of mimicry rings, shows intermediate patterns of sensory investment. We identify flight height as a critical factor shaping neuroanatomical diversity, with species that fly higher in the canopy investing more in visual structures. Our work suggests that the sensory ecology of species may be impacted by, and interact with, the ways in which communities of closely related organisms are adaptively assembled.
Collapse
|
11
|
Liu J, Li M, Chen S, Yao J, Shi L, Chen X. Comparative analysis on visual and olfactory signals of Papilio xuthus (Lepidoptera: Papilionidae) during foraging and courtship. PLoS One 2022; 17:e0263709. [PMID: 35767532 PMCID: PMC9242464 DOI: 10.1371/journal.pone.0263709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 01/25/2022] [Indexed: 12/01/2022] Open
Abstract
This study examined the roles of visual and olfactory responses during foraging and courtship in butterfly Papilio xuthus. P. xuthus showed obvious orientation to color in the range of 350-500 nm. Visits of P. xuthus females and males to blue, purple, and red artificial cloth flowers were ♀ 54.90% and ♂ 39.22%, ♀ 19.61% and ♂ 35.29%, and ♀ 9.80% and ♂ 19.61%, respectively. Application of 10% honey on these artificial flowers resulted in an increase of 3.41 and 3.26 fold in flower visits by the butterfly compared to controls. When 10% honey water was sprayed on flower branches without colorful flowers, branch visiting was very low, only seven times for females and two times for males, indicating that colors might be more critical than odor for foraging even though visual and olfactory perceptions both play important roles during foraging. During courtship, four types of chasing were observed in a natural population of P. Xuthus; the four types are males chasing females (49%), males chasing males (25%), females chasing males (13%), and females chasing females (10%). However, when odorless artificial models of butterflies were used, no significant differences were observed among these types of chasing, indicating that olfactory perception was crucial for the butterfly during courtship. Profiling volatile organic chemicals (VOCs) and individual bioassays revealed that VOCs contents of butterflies were not related to recognizing sex partners; by contrast, some level of α-farnesene, increased the frequency of male chasing female. This could be due to that α-farnesene is easy to be detected by butterflies because of its volatility and higher content in female.
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory of Breeding and Utilization of Resource Insects of State Forestry Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, P.R. China
| | - Mingtao Li
- Key Laboratory of Breeding and Utilization of Resource Insects of State Forestry Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, P.R. China
| | - Shunan Chen
- Key Laboratory of Breeding and Utilization of Resource Insects of State Forestry Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, P.R. China
| | - Jun Yao
- Key Laboratory of Breeding and Utilization of Resource Insects of State Forestry Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, P.R. China
| | - Lei Shi
- Key Laboratory of Breeding and Utilization of Resource Insects of State Forestry Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, P.R. China
| | - Xiaoming Chen
- Key Laboratory of Breeding and Utilization of Resource Insects of State Forestry Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, P.R. China
| |
Collapse
|
12
|
Murphy MJ, Westerman EL. Evolutionary history limits species' ability to match colour sensitivity to available habitat light. Proc Biol Sci 2022; 289:20220612. [PMID: 35582803 PMCID: PMC9115023 DOI: 10.1098/rspb.2022.0612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The spectrum of light that an animal sees-from ultraviolet to far red light-is governed by the number and wavelength sensitivity of a family of retinal proteins called opsins. It has been hypothesized that the spectrum of light available in an environment influences the range of colours that a species has evolved to see. However, invertebrates and vertebrates use phylogenetically distinct opsins in their retinae, and it remains unclear whether these distinct opsins influence what animals see, or how they adapt to their light environments. Systematically using published visual sensitivity data from across animal phyla, we found that terrestrial animals are more sensitive to shorter and longer wavelengths of light than aquatic animals and that invertebrates are more sensitive to shorter wavelengths of light than vertebrates. Using phylogenetically controlled analyses, we found that closed and open canopy habitat species have different spectral sensitivities when comparing across the Metazoa and excluding habitat generalists, while deepwater animals are no more sensitive to shorter wavelengths of light than shallow-water animals. Our results suggest that animals do adapt to their light environment; however, the invertebrate-vertebrate evolutionary divergence may limit the degree to which animals can perform visual tuning.
Collapse
Affiliation(s)
- Matthew J. Murphy
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Erica L. Westerman
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
13
|
Tunes P, Dötterl S, Guimarães E. Florivory and Pollination Intersection: Changes in Floral Trait Expression Do Not Discourage Hummingbird Pollination. FRONTIERS IN PLANT SCIENCE 2022; 13:813418. [PMID: 35432434 PMCID: PMC9006511 DOI: 10.3389/fpls.2022.813418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Many flowers are fed on by florivores, but we know little about if and how feeding on flowers affects their visual and chemical advertisement and nectar resource, which could disrupt pollination. Here, we investigated if damages caused by florivores compromise a Neotropical hummingbird pollination system, by modifying the floral advertisements and the nectar resource. We surveyed natural florivory levels and patterns, examined short-term local effects of floral damages caused by the most common florivore, a caterpillar, on floral outline, intra-floral colour pattern and floral scent, as well as on the amount of nectar. Following, we experimentally tested if the most severe florivory pattern affected hummingbird pollination. The feeding activity of the most common florivore did not alter the intra-floral colour pattern, floral scent, and nectar volume, but changed the corolla outline. However, this change did not affect hummingbird pollination. Despite visual floral cues being important for foraging in hummingbirds, our results emphasise that changes in the corolla outline had a neutral effect on pollination, allowing the maintenance of florivore-plant-pollinator systems without detriment to any partner.
Collapse
Affiliation(s)
- Priscila Tunes
- Postgraduate Program in Biological Sciences (Botany), Institute of Biosciences, São Paulo State University, Botucatu, Brazil
- Laboratory of Ecology and Evolution of Plant-Animal Interactions, Institute of Biosciences, São Paulo State University, Botucatu, Brazil
| | - Stefan Dötterl
- Department of Environment and Biodiversity, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Elza Guimarães
- Laboratory of Ecology and Evolution of Plant-Animal Interactions, Institute of Biosciences, São Paulo State University, Botucatu, Brazil
| |
Collapse
|
14
|
Dell’Aglio DD, McMillan WO, Montgomery SH. Shifting balances in the weighting of sensory modalities are predicted by divergence in brain morphology in incipient species of Heliconius butterflies. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
15
|
Stella D, Kleisner K. Visible beyond Violet: How Butterflies Manage Ultraviolet. INSECTS 2022; 13:insects13030242. [PMID: 35323542 PMCID: PMC8955501 DOI: 10.3390/insects13030242] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/12/2022] [Accepted: 02/23/2022] [Indexed: 12/04/2022]
Abstract
Ultraviolet (UV) means ‘beyond violet’ (from Latin ‘ultra’, meaning ‘beyond’), whereby violet is the colour with the highest frequencies in the ‘visible’ light spectrum. By ‘visible’ we mean human vision, but, in comparison to many other organisms, human visual perception is rather limited in terms of the wavelengths it can perceive. Still, this is why communication in the UV spectrum is often called hidden, although it most likely plays an important role in communicating various kinds of information among a wide variety of organisms. Since Silberglied’s revolutionary Communication in the Ultraviolet, comprehensive studies on UV signals in a wide list of genera are lacking. This review investigates the significance of UV reflectance (and UV absorption)—a feature often neglected in intra- and interspecific communication studies—mainly in Lepidoptera. Although the text focuses on various butterfly families, links and connections to other animal groups, such as birds, are also discussed in the context of ecology and the evolution of species. The basic mechanisms of UV colouration and factors shaping the characteristics of UV patterns are also discussed in a broad context of lepidopteran communication.
Collapse
Affiliation(s)
- David Stella
- Global Change Research Institute, The Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
- Department of Philosophy and History of Science, Faculty of Science, Charles University, 128 44 Prague, Czech Republic
| | - Karel Kleisner
- Department of Philosophy and History of Science, Faculty of Science, Charles University, 128 44 Prague, Czech Republic
| |
Collapse
|
16
|
Belušič G, Ilić M, Meglič A, Pirih P. Red-green opponency in the long visual fibre photoreceptors of brushfoot butterflies (Nymphalidae). Proc Biol Sci 2021; 288:20211560. [PMID: 34702070 PMCID: PMC8548807 DOI: 10.1098/rspb.2021.1560] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/01/2021] [Indexed: 11/12/2022] Open
Abstract
In many butterflies, the ancestral trichromatic insect colour vision, based on UV-, blue- and green-sensitive photoreceptors, is extended with red-sensitive cells. Physiological evidence for red receptors has been missing in nymphalid butterflies, although some species can discriminate red hues well. In eight species from genera Archaeoprepona, Argynnis, Charaxes, Danaus, Melitaea, Morpho, Heliconius and Speyeria, we found a novel class of green-sensitive photoreceptors that have hyperpolarizing responses to stimulation with red light. These green-positive, red-negative (G+R-) cells are allocated to positions R1/2, normally occupied by UV and blue-sensitive cells. Spectral sensitivity, polarization sensitivity and temporal dynamics suggest that the red opponent units (R-) are the basal photoreceptors R9, interacting with R1/2 in the same ommatidia via direct inhibitory synapses. We found the G+R- cells exclusively in butterflies with red-shining ommatidia, which contain longitudinal screening pigments. The implementation of the red colour channel with R9 is different from pierid and papilionid butterflies, where cells R5-8 are the red receptors. The nymphalid red-green opponent channel and the potential for tetrachromacy seem to have been switched on several times during evolution, balancing between the cost of neural processing and the value of extended colour information.
Collapse
Affiliation(s)
- Gregor Belušič
- Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Marko Ilić
- Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Andrej Meglič
- Eye Hospital, University Medical Centre, Grablovičeva 46, 1000 Ljubljana, Slovenia
| | - Primož Pirih
- Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| |
Collapse
|
17
|
Abstract
Optobiochemical control of protein activities allows the investigation of protein functions in living cells with high spatiotemporal resolution. Over the last two decades, numerous natural photosensory domains have been characterized and synthetic domains engineered and assembled into photoregulatory systems to control protein function with light. Here, we review the field of optobiochemistry, categorizing photosensory domains by chromophore, describing photoregulatory systems by mechanism of action, and discussing protein classes frequently investigated using optical methods. We also present examples of how spatial or temporal control of proteins in living cells has provided new insights not possible with traditional biochemical or cell biological techniques.
Collapse
Affiliation(s)
- Jihye Seong
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea;
| | - Michael Z Lin
- Department of Neurobiology, Stanford University, Stanford, California 94305, USA;
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA
- Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
18
|
Kattupalli D, Barbadikar KM, Balija V, Ballichatla S, R A, Padmakumari AP, Saxena S, Gaikwad K, Yerram S, Kokku P, Madhav MS. The Draft Genome of Yellow Stem Borer, an Agriculturally Important Pest, Provides Molecular Insights into Its Biology, Development and Specificity Towards Rice for Infestation. INSECTS 2021; 12:insects12060563. [PMID: 34205299 PMCID: PMC8234988 DOI: 10.3390/insects12060563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/20/2021] [Accepted: 05/23/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Yellow stem borer (YSB), is the most destructive and widely occurring pest that attacks rice throughout the growing season. Rice (Oryza sativa L.) is a major staple cereal worldwide, providing essential caloric requirements for more than half of the world’s population. Annual losses to rice borers are approximately 5–10%, but losses in individual fields may reach up to 50–60%. The use of traditional pest management strategies in controlling YSB is somewhat challenging due to its unique internal feeding habit. Genome sequence information of economically important crop pests is important for designing or developing pest-resistant rice varieties. In an approach to achieve this, we present our first-ever study on the draft genome sequence of YSB. The information provided from our current study might be useful in developing genome-based approaches for the management of pest species. Abstract Yellow stem borer (YSB), Scirpophaga incertulas (Walker) (Lepidoptera: Crambidae), a major monophagous insect pest of rice, causes significant yield losses. The rice–YSB interaction is very dynamic, making it difficult for management. The development of resistant lines has been unsuccessful as there are no effective resistant sources in the germplasm. Genome information is necessary for a better understanding of interaction with rice in terms of its recognition, response, and infestation mechanism. The draft genome of YSB is predicted to have 46,057 genes with an estimated size of 308 Mb, being correlated with the flow cytometry analysis. The existence of complex metabolic mechanisms and genes related to specific behavior was identified, being conditioned by a higher level of regulation. We deciphered the possible visual, olfactory, and gustatory mechanisms responsible for its evolution as a monophagous pest. Comparative genomic analysis revealed that YSB is unique in the way it has evolved. The obvious presence of high-immunity-related genes, well-developed RNAi machinery, and diverse effectors provides a means for developing genomic tools for its management. The identified 21,696 SSR markers can be utilized for diversity analysis of populations across the rice-growing regions. We present the first draft genome of YSB. The information emanated paves a way for biologists to design novel pest management strategies as well as for the industry to design new classes of safer and specific insecticide molecules.
Collapse
Affiliation(s)
- Divya Kattupalli
- Biotechnology Section, Division of Crop Improvement, ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (D.K.); (K.M.B.); (V.B.); (S.B.)
| | - Kalyani M. Barbadikar
- Biotechnology Section, Division of Crop Improvement, ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (D.K.); (K.M.B.); (V.B.); (S.B.)
| | - Vishalakshi Balija
- Biotechnology Section, Division of Crop Improvement, ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (D.K.); (K.M.B.); (V.B.); (S.B.)
| | - Suneel Ballichatla
- Biotechnology Section, Division of Crop Improvement, ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (D.K.); (K.M.B.); (V.B.); (S.B.)
| | - Athulya R
- Entomology Section, Division of Crop Protection, ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (A.R.); (A.P.P.); (S.Y.)
| | - Ayyagari Phani Padmakumari
- Entomology Section, Division of Crop Protection, ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (A.R.); (A.P.P.); (S.Y.)
| | - Swati Saxena
- Genomics Lab, ICAR-National Institute of Plant Biotechnology, New Delhi 110012, India; (S.S.); (K.G.)
| | - Kishor Gaikwad
- Genomics Lab, ICAR-National Institute of Plant Biotechnology, New Delhi 110012, India; (S.S.); (K.G.)
| | - Sridhar Yerram
- Entomology Section, Division of Crop Protection, ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (A.R.); (A.P.P.); (S.Y.)
| | - Premalatha Kokku
- Department of Chemistry, Osmania University, Hyderabad 500007, India;
| | - Maganti Sheshu Madhav
- Biotechnology Section, Division of Crop Improvement, ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (D.K.); (K.M.B.); (V.B.); (S.B.)
- Correspondence:
| |
Collapse
|
19
|
Liénard MA, Bernard GD, Allen A, Lassance JM, Song S, Childers RR, Yu N, Ye D, Stephenson A, Valencia-Montoya WA, Salzman S, Whitaker MRL, Calonje M, Zhang F, Pierce NE. The evolution of red color vision is linked to coordinated rhodopsin tuning in lycaenid butterflies. Proc Natl Acad Sci U S A 2021; 118:e2008986118. [PMID: 33547236 PMCID: PMC8017955 DOI: 10.1073/pnas.2008986118] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Color vision has evolved multiple times in both vertebrates and invertebrates and is largely determined by the number and variation in spectral sensitivities of distinct opsin subclasses. However, because of the difficulty of expressing long-wavelength (LW) invertebrate opsins in vitro, our understanding of the molecular basis of functional shifts in opsin spectral sensitivities has been biased toward research primarily in vertebrates. This has restricted our ability to address whether invertebrate Gq protein-coupled opsins function in a novel or convergent way compared to vertebrate Gt opsins. Here we develop a robust heterologous expression system to purify invertebrate rhodopsins, identify specific amino acid changes responsible for adaptive spectral tuning, and pinpoint how molecular variation in invertebrate opsins underlie wavelength sensitivity shifts that enhance visual perception. By combining functional and optophysiological approaches, we disentangle the relative contributions of lateral filtering pigments from red-shifted LW and blue short-wavelength opsins expressed in distinct photoreceptor cells of individual ommatidia. We use in situ hybridization to visualize six ommatidial classes in the compound eye of a lycaenid butterfly with a four-opsin visual system. We show experimentally that certain key tuning residues underlying green spectral shifts in blue opsin paralogs have evolved repeatedly among short-wavelength opsin lineages. Taken together, our results demonstrate the interplay between regulatory and adaptive evolution at multiple Gq opsin loci, as well as how coordinated spectral shifts in LW and blue opsins can act together to enhance insect spectral sensitivity at blue and red wavelengths for visual performance adaptation.
Collapse
Affiliation(s)
- Marjorie A Liénard
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142;
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
| | - Gary D Bernard
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA 98195
| | - Andrew Allen
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142
| | - Jean-Marc Lassance
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
| | - Siliang Song
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
| | - Richard Rabideau Childers
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
| | - Nanfang Yu
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027
| | - Dajia Ye
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
| | - Adriana Stephenson
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
| | - Wendy A Valencia-Montoya
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
| | - Shayla Salzman
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
| | - Melissa R L Whitaker
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
| | | | - Feng Zhang
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Howard Hughes Medical Institute, Cambridge, MA 02139
| | - Naomi E Pierce
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138;
| |
Collapse
|
20
|
Sondhi Y, Ellis EA, Bybee SM, Theobald JC, Kawahara AY. Light environment drives evolution of color vision genes in butterflies and moths. Commun Biol 2021; 4:177. [PMID: 33564115 PMCID: PMC7873203 DOI: 10.1038/s42003-021-01688-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 01/04/2021] [Indexed: 01/30/2023] Open
Abstract
Opsins, combined with a chromophore, are the primary light-sensing molecules in animals and are crucial for color vision. Throughout animal evolution, duplications and losses of opsin proteins are common, but it is unclear what is driving these gains and losses. Light availability is implicated, and dim environments are often associated with low opsin diversity and loss. Correlations between high opsin diversity and bright environments, however, are tenuous. To test if increased light availability is associated with opsin diversification, we examined diel niche and identified opsins using transcriptomes and genomes of 175 butterflies and moths (Lepidoptera). We found 14 independent opsin duplications associated with bright environments. Estimating their rates of evolution revealed that opsins from diurnal taxa evolve faster-at least 13 amino acids were identified with higher dN/dS rates, with a subset close enough to the chromophore to tune the opsin. These results demonstrate that high light availability increases opsin diversity and evolution rate in Lepidoptera.
Collapse
Affiliation(s)
- Yash Sondhi
- Department of Biology, Florida International University, Miami, FL, USA.
| | - Emily A Ellis
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Seth M Bybee
- Department of Biology, Brigham Young University, Provo, UT, USA
| | - Jamie C Theobald
- Department of Biology, Florida International University, Miami, FL, USA
| | - Akito Y Kawahara
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| |
Collapse
|
21
|
van der Kooi CJ, Stavenga DG, Arikawa K, Belušič G, Kelber A. Evolution of Insect Color Vision: From Spectral Sensitivity to Visual Ecology. ANNUAL REVIEW OF ENTOMOLOGY 2021; 66:435-461. [PMID: 32966103 DOI: 10.1146/annurev-ento-061720-071644] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Color vision is widespread among insects but varies among species, depending on the spectral sensitivities and interplay of the participating photoreceptors. The spectral sensitivity of a photoreceptor is principally determined by the absorption spectrum of the expressed visual pigment, but it can be modified by various optical and electrophysiological factors. For example, screening and filtering pigments, rhabdom waveguide properties, retinal structure, and neural processing all influence the perceived color signal. We review the diversity in compound eye structure, visual pigments, photoreceptor physiology, and visual ecology of insects. Based on an overview of the current information about the spectral sensitivities of insect photoreceptors, covering 221 species in 13 insect orders, we discuss the evolution of color vision and highlight present knowledge gaps and promising future research directions in the field.
Collapse
Affiliation(s)
- Casper J van der Kooi
- Faculty of Science and Engineering, University of Groningen, 9700 AK Groningen, The Netherlands;
| | - Doekele G Stavenga
- Faculty of Science and Engineering, University of Groningen, 9700 AK Groningen, The Netherlands;
| | - Kentaro Arikawa
- Department of Evolutionary Studies of Biosystems, SOKENDAI Graduate University for Advanced Studies, Kanagawa 240-0193, Japan;
| | - Gregor Belušič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Almut Kelber
- Lund Vision Group, Department of Biology, University of Lund, 22362 Lund, Sweden;
| |
Collapse
|
22
|
Drewniak ME, Briscoe AD, Cocucci AA, Beccacece HM, Zapata AI, Moré M. From the butterfly’s point of view: learned colour association determines differential pollination of two co-occurring mock verbains by Agraulis vanillae (Nymphalidae). Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Learning plays an important role in the location and utilization of nectar sources for pollinators. In this work we focus on the plant-pollinator interaction between the butterfly Agraulis vanillae (Nymphalidae) and two Glandularia plant species (Verbenaceae) that grow in sympatry. Bioassays using arrays of artificial flowers (red vs. lilac-purple) showed that naïve A. vanillae butterflies do not have innate colour preferences for any of the tested colours. Trained butterflies were able to learn to associate both floral colours with the presence of nectar rewards. Wild A. vanillae butterflies visited the red flowers of Glandularia peruviana much more frequently than the lilac-purple flowers of Glandularia venturii. Standing nectar crop measurements showed that G. peruviana flowers offered three times more sucrose than the flowers of G. venturii. Analyses confirmed that corolla colour of G. peruviana (red flowers) and G. venturii (lilac-purple flowers) were discriminable in the butterfly’s colour space. These findings may indicate flexibility in A. vanillae preferences due to a learned association between red coloration and higher nectar rewards.
Collapse
Affiliation(s)
- M Eugenia Drewniak
- Instituto Multidisciplinario de Biología Vegetal (CONICET-UNC), Córdoba, Argentina
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Adriana D Briscoe
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | - Andrea A Cocucci
- Instituto Multidisciplinario de Biología Vegetal (CONICET-UNC), Córdoba, Argentina
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Hernán M Beccacece
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Adriana I Zapata
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Marcela Moré
- Instituto Multidisciplinario de Biología Vegetal (CONICET-UNC), Córdoba, Argentina
| |
Collapse
|
23
|
Thayer RC, Allen FI, Patel NH. Structural color in Junonia butterflies evolves by tuning scale lamina thickness. eLife 2020; 9:52187. [PMID: 32254023 PMCID: PMC7138606 DOI: 10.7554/elife.52187] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/24/2020] [Indexed: 11/13/2022] Open
Abstract
In diverse organisms, nanostructures that coherently scatter light create structural color, but how such structures are built remains mysterious. We investigate the evolution and genetic regulation of butterfly scale laminae, which are simple photonic nanostructures. In a lineage of buckeye butterflies artificially selected for blue wing color, we found that thickened laminae caused a color shift from brown to blue. Deletion of the optix patterning gene also altered color via lamina thickening, revealing shared regulation of pigments and lamina thickness. Finally, we show how lamina thickness variation contributes to the color diversity that distinguishes sexes and species throughout the genus Junonia. Thus, quantitatively tuning one dimension of scale architecture facilitates both the microevolution and macroevolution of a broad spectrum of hues. Because the lamina is an intrinsic component of typical butterfly scales, our findings suggest that tuning lamina thickness is an available mechanism to create structural color across the Lepidoptera. From iridescent blues to vibrant purples, many butterflies display dazzling ‘structural colors’ created not by pigments but by microscopic structures that interfere with light. For instance, the scales that coat their wings can contain thin films of chitin, the substance that normally makes the external skeleton of insects. In slim layers, however, chitin can also scatter light to produce color, the way that oil can create iridescence at the surface of water. The thickness of the film, which is encoded by the genes of the butterfly, determines what color will be produced. Yet, little is known about how common thin films are in butterflies, exactly how genetic information codes for them, and how their thickness and the colors they produce can evolve. To investigate, Thayer et al. used a technique called Helium Ion Microscopy and examined the wings of ten related species of butterflies, showing that thin film structures were present across this sample. However, the different species have evolved many different structural colors over the past millions of years by changing the thickness of the films. Next, Thayer et al. showed that this evolution could be reproduced at a faster pace in the laboratory using common buckeye butterflies. These insects mostly have brown wings, but they can have specks of blue created by thin film structures. Individuals with more blue on their wings were mated and over the course of a year, the thickness of the film structures increased by 74%, leading to shiny blue butterflies. Deleting a gene called optix from the insects also led to blue wings. Optix was already known to control the patterns of pigments in butterflies, but it now appears that it controls structural colors as well. From solar panels to new fabrics, microscopic structures that can scatter light are useful in a variety of industries. Understanding how these elements exist and evolve in organisms may help to better design them for human purposes.
Collapse
Affiliation(s)
- Rachel C Thayer
- Department of Integrative Biology, University of California, Berkeley, Berkeley, United States
| | - Frances I Allen
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States
| | - Nipam H Patel
- Department of Integrative Biology, University of California, Berkeley, Berkeley, United States.,Marine Biological Laboratory, Woods Hole, United States
| |
Collapse
|
24
|
Zhang W, Leon-Ricardo BX, van Schooten B, Van Belleghem SM, Counterman BA, McMillan WO, Kronforst MR, Papa R. Comparative Transcriptomics Provides Insights into Reticulate and Adaptive Evolution of a Butterfly Radiation. Genome Biol Evol 2019; 11:2963-2975. [PMID: 31518398 PMCID: PMC6821300 DOI: 10.1093/gbe/evz202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2019] [Indexed: 12/14/2022] Open
Abstract
Butterfly eyes are complex organs that are composed of a diversity of proteins and they play a central role in visual signaling and ultimately, speciation, and adaptation. Here, we utilized the whole eye transcriptome to obtain a more holistic view of the evolution of the butterfly eye while accounting for speciation events that co-occur with ancient hybridization. We sequenced and assembled transcriptomes from adult female eyes of eight species representing all major clades of the Heliconius genus and an additional outgroup species, Dryas iulia. We identified 4,042 orthologous genes shared across all transcriptome data sets and constructed a transcriptome-wide phylogeny, which revealed topological discordance with the mitochondrial phylogenetic tree in the Heliconius pupal mating clade. We then estimated introgression among lineages using additional genome data and found evidence for ancient hybridization leading to the common ancestor of Heliconius hortense and Heliconius clysonymus. We estimated the Ka/Ks ratio for each orthologous cluster and performed further tests to demonstrate genes showing evidence of adaptive protein evolution. Furthermore, we characterized patterns of expression for a subset of these positively selected orthologs using qRT-PCR. Taken together, we identified candidate eye genes that show signatures of adaptive molecular evolution and provide evidence of their expression divergence between species, tissues, and sexes. Our results demonstrate: 1) greater evolutionary changes in younger Heliconius lineages, that is, more positively selected genes in the cydno-melpomene-hecale group as opposed to the sara-hortense-erato group, and 2) suggest an ancient hybridization leading to speciation among Heliconius pupal-mating species.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, and School of Life Sciences, Peking University, Beijing, China
- Department of Ecology and Evolution, University of Chicago
| | | | - Bas van Schooten
- Department of Biology, University of Puerto Rico
- Molecular Sciences and Research Center, University of Puerto Rico
| | | | | | | | | | - Riccardo Papa
- Department of Biology, University of Puerto Rico
- Molecular Sciences and Research Center, University of Puerto Rico
| |
Collapse
|
25
|
Macias-Muñoz A, Rangel Olguin AG, Briscoe AD. Evolution of Phototransduction Genes in Lepidoptera. Genome Biol Evol 2019; 11:2107-2124. [PMID: 31298692 PMCID: PMC6698658 DOI: 10.1093/gbe/evz150] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2019] [Indexed: 12/17/2022] Open
Abstract
Vision is underpinned by phototransduction, a signaling cascade that converts light energy into an electrical signal. Among insects, phototransduction is best understood in Drosophila melanogaster. Comparison of D. melanogaster against three insect species found several phototransduction gene gains and losses, however, lepidopterans were not examined. Diurnal butterflies and nocturnal moths occupy different light environments and have distinct eye morphologies, which might impact the expression of their phototransduction genes. Here we investigated: 1) how phototransduction genes vary in gene gain or loss between D. melanogaster and Lepidoptera, and 2) variations in phototransduction genes between moths and butterflies. To test our prediction of phototransduction differences due to distinct visual ecologies, we used insect reference genomes, phylogenetics, and moth and butterfly head RNA-Seq and transcriptome data. As expected, most phototransduction genes were conserved between D. melanogaster and Lepidoptera, with some exceptions. Notably, we found two lepidopteran opsins lacking a D. melanogaster ortholog. Using antibodies we found that one of these opsins, a candidate retinochrome, which we refer to as unclassified opsin (UnRh), is expressed in the crystalline cone cells and the pigment cells of the butterfly, Heliconius melpomene. Our results also show that butterflies express similar amounts of trp and trpl channel mRNAs, whereas moths express ∼50× less trp, a potential adaptation to darkness. Our findings suggest that while many single-copy D. melanogaster phototransduction genes are conserved in lepidopterans, phototransduction gene expression differences exist between moths and butterflies that may be linked to their visual light environment.
Collapse
Affiliation(s)
- Aide Macias-Muñoz
- Department of Ecology and Evolutionary Biology, University of California, Irvine
| | | | - Adriana D Briscoe
- Department of Ecology and Evolutionary Biology, University of California, Irvine
| |
Collapse
|
26
|
Fenner J, Rodriguez-Caro L, Counterman B. Plasticity and divergence in ultraviolet reflecting structures on Dogface butterfly wings. ARTHROPOD STRUCTURE & DEVELOPMENT 2019; 51:14-22. [PMID: 31176003 DOI: 10.1016/j.asd.2019.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/24/2019] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
The vast diversity of animal coloration is generated through a combination of pigment and structural colors. These colors can greatly influence the fitness and life history of an organism. Butterflies and their wing colors are an excellent model to study how these colors can impact the development and success of an organism. In this study, we explore species differences in structurally-based ultraviolet coloration in the Zerene butterfly. We show clear species differences in ultraviolet (UV) pattern and reflectance spectra. By varying larval diet, we show evidence for developmental plasticity in the structure and organization of UV reflecting scales in Zerene cesonia. We further show that feeding the larval host plant of Zerene eurydice to Z. cesonia does not result in greater similarity in scale structure or UV coloration to the sister species. These results not only demonstrate a connection between plasticity in a male ornamentation, UV wing pattern, and larval resource acquisition, but also identify candidate structural and organizational changes in wing scales responsible for the trait variation.
Collapse
Affiliation(s)
- Jennifer Fenner
- Department of Biological Sciences, Mississippi State University, MS, 39762, United States.
| | - Luis Rodriguez-Caro
- Department of Biological Sciences, Mississippi State University, MS, 39762, United States
| | - Brian Counterman
- Department of Biological Sciences, Mississippi State University, MS, 39762, United States
| |
Collapse
|
27
|
Shrestha M, Garcia JE, Chua JHJ, Howard SR, Tscheulin T, Dorin A, Nielsen A, Dyer AG. Fluorescent Pan Traps Affect the Capture Rate of Insect Orders in Different Ways. INSECTS 2019; 10:insects10020040. [PMID: 30717089 PMCID: PMC6410105 DOI: 10.3390/insects10020040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/15/2019] [Accepted: 01/21/2019] [Indexed: 11/16/2022]
Abstract
To monitor and quantify the changes in pollinator communities over time, it is important to have robust survey techniques of insect populations. Pan traps allow for the assessment of the relative insect abundance in an environment and have been promoted by the Food and Agricultural Organization (FAO) as an efficient data collection methodology. It has been proposed that fluorescent pan traps are particularly useful, as it has been suggested that they capture high numbers of insects in an unbiased fashion. We use a simultaneous presentation of fluorescent and non-fluorescent pan trap colours to assess how flower-visiting insects of different orders respond to visual stimuli and reveal a significant interaction between trap fluorescence and captured insect type. In particular, Coleoptera (beetles) and Lepidoptera (butterflies and moths) were captured significantly more frequently by fluorescent traps, whilst Dipterans (flies) were captured significantly less frequently by this type of pan trap. Hymenopterans (bees and wasps) showed no significant difference in their preference for fluorescent or non-fluorescent traps. Our results reveal that the use of fluorescent pan traps may differently bias insect capture rates when compared to the typical experience of colour flower-visiting insects in natural environments. Correction factors may, therefore, be required for interpreting insect pan trap data collected with different methodologies.
Collapse
Affiliation(s)
- Mani Shrestha
- School of Media and Communication, RMIT University, Melbourne, VIC 3001, Australia.
- Faculty of Information Technology, Monash University, Melbourne, VIC 3800, Australia.
| | - Jair E Garcia
- School of Media and Communication, RMIT University, Melbourne, VIC 3001, Australia
| | - Justin H J Chua
- School of Media and Communication, RMIT University, Melbourne, VIC 3001, Australia
| | - Scarlett R Howard
- School of Media and Communication, RMIT University, Melbourne, VIC 3001, Australia
| | - Thomas Tscheulin
- Laboratory of Biogeography and Ecology, Department of Geography, University of the Aegean University Hill, GR-81100 Mytilene, Greece
| | - Alan Dorin
- Faculty of Information Technology, Monash University, Melbourne, VIC 3800, Australia
| | - Anders Nielsen
- Centre for Ecological and Evolutionary Synthesis (CEES), Dept. of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316 Oslo, Norway
| | - Adrian G Dyer
- School of Media and Communication, RMIT University, Melbourne, VIC 3001, Australia
- Department of Physiology, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
28
|
Zhao C, Ding J, Yang M, Shi D, Yin D, Hu F, Sun J, Chi X, Zhang L, Chang Y. Transcriptomes reveal genes involved in covering and sheltering behaviors of the sea urchin Strongylocentrotus intermedius exposed to UV-B radiation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 167:236-241. [PMID: 30342356 DOI: 10.1016/j.ecoenv.2018.10.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/06/2018] [Accepted: 10/10/2018] [Indexed: 06/08/2023]
Abstract
Although the potential link exists between behavioral responses to UV-B radiation and the maximization of fitness, molecular mechanisms of these UV-B induced behaviors remain poorly understood. For the first time, we investigated the transcriptomes of covered (CB), sheltered (SB) and non-protected (NA) sea urchins Strongylocentrotus intermedius exposed to UV-B radiation. A total of 330 differentially expressed genes were revealed by transcriptome comparisons. By comparing with the group NA, we found 79 up-regulated and 118 down-regulated genes in SB group, as well as 26 up-regulated and 67 down-regulated genes in group CB. There were 34 up-regulated genes and 52 down-regulated genes in group SB, compared with group CB. These differentially expressed genes failed to enrich either Gene Ontology (GO) or Kyoto Encyclopedia of Genes and Genomes (KEGG), only except an enrichment in KEGG. We highlighted TRPA1 and Opsin as key neurobiological genes involved in the molecular mechanisms of covering and sheltering behaviors of sea urchins exposed to UV-B radiation. What's more, other identified genes provide valuable resources for future investigations on the molecular basis of covering and sheltering behaviors of sea urchins.
Collapse
Affiliation(s)
- Chong Zhao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Jingyun Ding
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Mingfang Yang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Dongtao Shi
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Donghong Yin
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Fangyuan Hu
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Jiangnan Sun
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Xiaomei Chi
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Lingling Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
29
|
Chang H, Guo JL, Fu XW, Wang ML, Hou YM, Wu KM. Molecular Characterization and Expression Profiles of Cryptochrome Genes in a Long-Distance Migrant, Agrotis segetum (Lepidoptera: Noctuidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2019; 19:5299137. [PMID: 30690535 PMCID: PMC6342827 DOI: 10.1093/jisesa/iey127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Indexed: 06/09/2023]
Abstract
Cryptochromes act as photoreceptors or integral components of the circadian clock that involved in the regulation of circadian clock and regulation of migratory activity in many animals, and they may also act as magnetoreceptors that sensed the direction of the Earth's magnetic field for the purpose of navigation during animals' migration. Light is a major environmental signal for insect circadian rhythms, and it is also necessary for magnetic orientation. We identified the full-length cDNA encoding As-CRY1 and As-CRY2 in Agrotis segetum Denis and Schiffermaller (turnip moth (Lepidoptera: Noctuidae)). The DNA photolyase domain and flavin adenine dinucleotide-binding domain were found in both cry genes, and multiple alignments showed that those domains that are important for the circadian clock and magnetosensing were highly conserved among different animals. Quantitative polymerase chain reaction showed that cry genes were expressed in all examined body parts, with higher expression in adults during the developmental stages of the moths. Under a 14:10 (L:D) h cycle, the expression of cry genes showed a daily biological rhythm, and light can affect the expression levels of As-cry genes. The expression levels of cry genes were higher in the migratory population than in the reared population and higher in the emigration population than in the immigration population. These findings suggest that the two cryptochrome genes characterized in the turnip moth might be associated with the circadian clock and magnetosensing. Their functions deserve further study, especially for potential control of the turnip moth.
Collapse
Affiliation(s)
- Hong Chang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops and Fujian Province Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiang-Long Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Xiao-Wei Fu
- Department of Plant Protection, Henan Institute of Science and Technology, Xinxiang, China
| | - Meng-Lun Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Entomology, China Agricultural University, Beijing, China
| | - You-Ming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops and Fujian Province Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kong-Ming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
30
|
Owens ACS, Lewis SM. The impact of artificial light at night on nocturnal insects: A review and synthesis. Ecol Evol 2018; 8:11337-11358. [PMID: 30519447 PMCID: PMC6262936 DOI: 10.1002/ece3.4557] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 07/14/2018] [Indexed: 02/06/2023] Open
Abstract
In recent decades, advances in lighting technology have precipitated exponential increases in night sky brightness worldwide, raising concerns in the scientific community about the impact of artificial light at night (ALAN) on crepuscular and nocturnal biodiversity. Long-term records show that insect abundance has declined significantly over this time, with worrying implications for terrestrial ecosystems. The majority of investigations into the vulnerability of nocturnal insects to artificial light have focused on the flight-to-light behavior exhibited by select insect families. However, ALAN can affect insects in other ways as well. This review proposes five categories of ALAN impact on nocturnal insects, highlighting past research and identifying key knowledge gaps. We conclude with a summary of relevant literature on bioluminescent fireflies, which emphasizes the unique vulnerability of terrestrial light-based communication systems to artificial illumination. Comprehensive understanding of the ecological impacts of ALAN on diverse nocturnal insect taxa will enable researchers to seek out methods whereby fireflies, moths, and other essential members of the nocturnal ecosystem can coexist with humans on an increasingly urbanized planet.
Collapse
Affiliation(s)
| | - Sara M. Lewis
- Department of BiologyTufts UniversityMedfordMassachusetts
| |
Collapse
|
31
|
Briggs HM, Graham S, Switzer CM, Hopkins R. Variation in context-dependent foraging behavior across pollinators. Ecol Evol 2018; 8:7964-7973. [PMID: 30250676 PMCID: PMC6144987 DOI: 10.1002/ece3.4303] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 11/11/2022] Open
Abstract
Pollinator foraging behavior has direct consequences for plant reproduction and has been implicated in driving floral trait evolution. Exploring the degree to which pollinators exhibit flexibility in foraging behavior will add to a mechanistic understanding of how pollinators can impose selection on plant traits. Although plants have evolved suites of floral traits to attract pollinators, flower color is a particularly important aspect of the floral display. Some pollinators show strong innate color preference, but many pollinators display flexibility in preference due to learning associations between rewards and color, or due to variable perception of color in different environments or plant communities. This study examines the flexibility in flower color preference of two groups of native butterfly pollinators under natural field conditions. We find that pipevine swallowtails (Battus philenor) and skippers (family Hesperiidae), the predominate pollinators of the two native Texas Phlox species, Phlox cuspidata and Phlox drummondii, display distinct patterns of color preferences across different contexts. Pipevine swallowtails exhibit highly flexible color preferences and likely utilize other floral traits to make foraging decisions. In contrast, skippers have consistent color preferences and likely use flower color as a primary cue for foraging. As a result of this variation in color preference flexibility, the two pollinator groups impose concordant selection on flower color in some contexts but discordant selection in other contexts. This variability could have profound implications for how flower traits respond to pollinator-mediated selection. Our findings suggest that studying dynamics of behavior in natural field conditions is important for understanding plant-pollinator interactions.
Collapse
Affiliation(s)
- Heather M. Briggs
- Department of Organismic and Evolutionary BiologyThe Arnold Arboretum of Harvard UniversityBostonMassachusetts
- Present address:
Department of Ecology and EvolutionUniversity of CaliforniaIrvineCalifornia
| | - Stuart Graham
- Department of Organismic and Evolutionary BiologyThe Arnold Arboretum of Harvard UniversityBostonMassachusetts
- Centre d'Ecologie Fonctionnelle et EvolutiveMontpellierFrance
- Present address:
Department of BiologyUniversity of WashingtonSeattleWashington
| | - Callin M. Switzer
- Department of Organismic and Evolutionary BiologyThe Arnold Arboretum of Harvard UniversityBostonMassachusetts
- Present address:
Department of BiologyUniversity of WashingtonSeattleWashington
| | - Robin Hopkins
- Department of Organismic and Evolutionary BiologyThe Arnold Arboretum of Harvard UniversityBostonMassachusetts
| |
Collapse
|
32
|
Henze MJ, Lind O, Mappes J, Rojas B, Kelber A. An aposematic colour‐polymorphic moth seen through the eyes of conspecifics and predators – Sensitivity and colour discrimination in a tiger moth. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13100] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Miriam J. Henze
- Lund Vision GroupDepartment of BiologyLund University Lund Sweden
| | - Olle Lind
- Department of PhilosophyCognitive ScienceLund University Lund Sweden
| | - Johanna Mappes
- Centre of Excellence in Biological InteractionsUniversity of Jyväskylä Jyväskylä Finland
| | - Bibiana Rojas
- Centre of Excellence in Biological InteractionsUniversity of Jyväskylä Jyväskylä Finland
| | - Almut Kelber
- Lund Vision GroupDepartment of BiologyLund University Lund Sweden
| |
Collapse
|
33
|
Collantes-Alegre JM, Mattenberger F, Barberà M, Martínez-Torres D. Characterisation, analysis of expression and localisation of the opsin gene repertoire from the perspective of photoperiodism in the aphid Acyrthosiphon pisum. JOURNAL OF INSECT PHYSIOLOGY 2018; 104:48-59. [PMID: 29203177 DOI: 10.1016/j.jinsphys.2017.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/19/2017] [Accepted: 11/30/2017] [Indexed: 06/07/2023]
Abstract
Organisms exhibit a wide range of seasonal responses as adaptions to predictable annual changes in their environment. These changes are originally caused by the effect of the Earth's cycles around the sun and its axial tilt. Examples of seasonal responses include floration, migration, reproduction and diapause. In temperate climate zones, the most robust variable to predict seasons is the length of the day (i.e. the photoperiod). The first step to trigger photoperiodic driven responses involves measuring the duration of the light-dark phases, but the molecular clockwork performing this task is poorly characterized. Photopigments such as opsins are known to participate in light perception, being part of the machinery in charge of providing information about the luminous state of the surroundings. Aphids (Hemiptera: Aphididae) are paradigmatic photoperiodic insects, exhibiting a strong induction to diapause when the light regime mimics autumn conditions. The availability of the pea aphid (Acyrthosiphon pisum) genome has facilitated molecular approaches to understand the effect of light stimulus in the photoperiodic induction process. We have identified, experimentally validated and characterized the expression of the full opsin gene repertoire in the pea aphid. Among identified opsin genes in A. pisum, arthropsin is absent in most insects sequenced to date (except for dragonflies and two other hemipterans) but also present in a crustacean, an onychophoran and chelicerates. We have quantified the expression of these genes in aphids exposed to different photoperiodic conditions and at different times of the day and localized their transcripts in the aphid brain. Clear differences in expression patterns were found, thus relating opsin expression with the photoperiodic response.
Collapse
Affiliation(s)
- Jorge Mariano Collantes-Alegre
- Institut de Biologia Integrativa de Sistemes, Parc Científic Universitat de València, C/Catedrático José Beltrán n° 2, 46980 Paterna, València, Spain
| | - Florian Mattenberger
- Institut de Biologia Integrativa de Sistemes, Parc Científic Universitat de València, C/Catedrático José Beltrán n° 2, 46980 Paterna, València, Spain; Department of Abiotic Stress, Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia 46022, Spain
| | - Miquel Barberà
- Institut de Biologia Integrativa de Sistemes, Parc Científic Universitat de València, C/Catedrático José Beltrán n° 2, 46980 Paterna, València, Spain
| | - David Martínez-Torres
- Institut de Biologia Integrativa de Sistemes, Parc Científic Universitat de València, C/Catedrático José Beltrán n° 2, 46980 Paterna, València, Spain.
| |
Collapse
|
34
|
Jacobs GH. Photopigments and the dimensionality of animal color vision. Neurosci Biobehav Rev 2017; 86:108-130. [PMID: 29224775 DOI: 10.1016/j.neubiorev.2017.12.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 12/31/2022]
Abstract
Early color-matching studies established that normal human color vision is trichromatic. Subsequent research revealed a causal link between trichromacy and the presence in the retina of three classes of cone photopigments. Over the years, measurements of the photopigment complements of other species have expanded greatly and these are frequently used to predict the dimensionality of an animal's color vision. This review provides an account of how the linkage between the number of active photopigments and the dimensions of human color vision developed, summarizes the various mechanisms that can impact photopigment spectra and number, and provides an across-species survey to examine cases where the photopigment link to the dimensionality of color vision has been claimed. The literature reveals numerous instances where the human model fails to account for the ways in which the visual systems of other animals exploit information obtained from the presence of multiple photopigments in support of their behavior.
Collapse
Affiliation(s)
- Gerald H Jacobs
- Department of Psychological and Brain Science, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
35
|
Lebhardt F, Desplan C. Retinal perception and ecological significance of color vision in insects. CURRENT OPINION IN INSECT SCIENCE 2017; 24:75-83. [PMID: 29208227 PMCID: PMC5726413 DOI: 10.1016/j.cois.2017.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/12/2017] [Indexed: 05/09/2023]
Abstract
Color vision relies on the ability to discriminate different wavelengths and is often improved in insects that inhabit well-lit, spectrally rich environments. Although the Opsin proteins themselves are sensitive to specific wavelength ranges, other factors can alter and further restrict the sensitivity of photoreceptors to allow for finer color discrimination and thereby more informed decisions while interacting with the environment. The ability to discriminate colors differs between insects that exhibit different life styles, between female and male eyes of the same species, and between regions of the same eye, depending on the requirements of intraspecific communication and ecological demands.
Collapse
Affiliation(s)
- Fleur Lebhardt
- Department of Biology, New York University, NY 10003, USA
| | - Claude Desplan
- Department of Biology, New York University, NY 10003, USA.
| |
Collapse
|
36
|
Arikawa K, Iwanaga T, Wakakuwa M, Kinoshita M. Unique Temporal Expression of Triplicated Long-Wavelength Opsins in Developing Butterfly Eyes. Front Neural Circuits 2017; 11:96. [PMID: 29238294 PMCID: PMC5712540 DOI: 10.3389/fncir.2017.00096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 11/15/2017] [Indexed: 11/13/2022] Open
Abstract
Following gene duplication events, the expression patterns of the resulting gene copies can often diverge both spatially and temporally. Here we report on gene duplicates that are expressed in distinct but overlapping patterns, and which exhibit temporally divergent expression. Butterflies have sophisticated color vision and spectrally complex eyes, typically with three types of heterogeneous ommatidia. The eyes of the butterfly Papilio xuthus express two green- and one red-absorbing visual pigment, which came about via gene duplication events, in addition to one ultraviolet (UV)- and one blue-absorbing visual pigment. We localized mRNAs encoding opsins of these visual pigments in developing eye disks throughout the pupal stage. The mRNAs of the UV and blue opsin are expressed early in pupal development (pd), specifying the type of the ommatidium in which they appear. Red sensitive photoreceptors first express a green opsin mRNA, which is replaced later by the red opsin mRNA. Broadband photoreceptors (that coexpress the green and red opsins) first express the green opsin mRNA, later change to red opsin mRNA and finally re-express the green opsin mRNA in addition to the red mRNA. Such a unique temporal and spatial expression pattern of opsin mRNAs may reflect the evolution of visual pigments and provide clues toward understanding how the spectrally complex eyes of butterflies evolved.
Collapse
Affiliation(s)
- Kentaro Arikawa
- Laboratory of Neuroethology, Department of Evolutionary Studies of Biosystems, Graduate University for Advanced Studies (SOKENDAI), Hayama, Japan
| | - Tomoyuki Iwanaga
- Graduate School of Integrated Science, Yokohama City University, Yokohama, Japan
| | - Motohiro Wakakuwa
- Laboratory of Neuroethology, Department of Evolutionary Studies of Biosystems, Graduate University for Advanced Studies (SOKENDAI), Hayama, Japan
| | - Michiyo Kinoshita
- Laboratory of Neuroethology, Department of Evolutionary Studies of Biosystems, Graduate University for Advanced Studies (SOKENDAI), Hayama, Japan
| |
Collapse
|
37
|
Jakobsson J, Henze MJ, Svensson GP, Lind O, Anderbrant O. Visual cues of oviposition sites and spectral sensitivity of Cydia strobilella L. JOURNAL OF INSECT PHYSIOLOGY 2017; 101:161-168. [PMID: 28676323 DOI: 10.1016/j.jinsphys.2017.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/30/2017] [Accepted: 06/08/2017] [Indexed: 06/07/2023]
Abstract
We investigated whether the spruce seed moth (Cydia strobilella L., Tortricidae: Grapholitini), an important pest in seed orchards of Norway spruce (Picea abies (L.) Karst.), can make use of the spectral properties of its host when searching for flowers to oviposit on. Spectral measurements showed that the flowers, and the cones they develop into, differ from a background of P. abies needles by a higher reflectance of long wavelengths. These differences increase as the flowers develop into mature cones. Electroretinograms (ERGs) in combination with spectral adaptation suggest that C. strobilella has at least three spectral types of photoreceptor; an abundant green-sensitive receptor with maximal sensitivity at wavelength λmax=526nm, a blue-sensitive receptor with λmax=436nm, and an ultraviolet-sensitive receptor with λmax=352nm. Based on our spectral measurements and the receptor properties inferred from the ERGs, we calculated that open flowers, which are suitable oviposition sites, provide detectable achromatic, but almost no chromatic contrasts to the background of needles. In field trials using traps of different spectral properties with or without a female sex pheromone lure, only pheromone-baited traps caught moths. Catches in baited traps were not correlated with the visual contrast of the traps against the background. Thus, visual contrast is probably not the primary cue for finding open host flowers, but it could potentially complement olfaction as a secondary cue, since traps with certain spectral properties caught significantly more moths than others.
Collapse
Affiliation(s)
| | - Miriam J Henze
- Department of Biology, Lund University, Sweden; Brain Research Institute, University of Queensland, Australia
| | | | - Olle Lind
- Department of Philosophy, Lund University, Sweden
| | | |
Collapse
|
38
|
Porath-Krause AJ, Pairett AN, Faggionato D, Birla BS, Sankar K, Serb JM. Structural differences and differential expression among rhabdomeric opsins reveal functional change after gene duplication in the bay scallop, Argopecten irradians (Pectinidae). BMC Evol Biol 2016; 16:250. [PMID: 27855630 PMCID: PMC5114761 DOI: 10.1186/s12862-016-0823-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 11/01/2016] [Indexed: 11/10/2022] Open
Abstract
Background Opsins are the only class of proteins used for light perception in image-forming eyes. Gene duplication and subsequent functional divergence of opsins have played an important role in expanding photoreceptive capabilities of organisms by altering what wavelengths of light are absorbed by photoreceptors (spectral tuning). However, new opsin copies may also acquire novel function or subdivide ancestral functions through changes to temporal, spatial or the level of gene expression. Here, we test how opsin gene copies diversify in function and evolutionary fate by characterizing four rhabdomeric (Gq-protein coupled) opsins in the scallop, Argopecten irradians, identified from tissue-specific transcriptomes. Results Under a phylogenetic analysis, we recovered a pattern consistent with two rounds of duplication that generated the genetic diversity of scallop Gq-opsins. We found strong support for differential expression of paralogous Gq-opsins across ocular and extra-ocular photosensitive tissues, suggesting that scallop Gq-opsins are used in different biological contexts due to molecular alternations outside and within the protein-coding regions. Finally, we used available protein models to predict which amino acid residues interact with the light-absorbing chromophore. Variation in these residues suggests that the four Gq-opsin paralogs absorb different wavelengths of light. Conclusions Our results uncover novel genetic and functional diversity in the light-sensing structures of the scallop, demonstrating the complicated nature of Gq-opsin diversification after gene duplication. Our results highlight a change in the nearly ubiquitous shadow response in molluscs to a narrowed functional specificity for visual processes in the eyed scallop. Our findings provide a starting point to study how gene duplication may coincide with eye evolution, and more specifically, different ways neofunctionalization of Gq-opsins may occur. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0823-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anita J Porath-Krause
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, 50011, IA, USA
| | - Autum N Pairett
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, 50011, IA, USA
| | - Davide Faggionato
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, 50011, IA, USA
| | - Bhagyashree S Birla
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, 50011, IA, USA.,Interdepartmental Graduate Program in Bioinformatics and Computational Biology, Iowa State University, Ames, 50011, IA, USA
| | - Kannan Sankar
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, 50011, IA, USA.,Interdepartmental Graduate Program in Bioinformatics and Computational Biology, Iowa State University, Ames, 50011, IA, USA
| | - Jeanne M Serb
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, 50011, IA, USA.
| |
Collapse
|
39
|
Rodríguez-Gironés MA, Ruiz A. toBeeView: a program for simulating the retinal image of visual scenes on nonhuman eyes. Ecol Evol 2016; 6:7892-7900. [PMID: 30128137 PMCID: PMC6093169 DOI: 10.1002/ece3.2442] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 07/25/2016] [Accepted: 08/12/2016] [Indexed: 11/06/2022] Open
Abstract
We present toBeeView, a program that produces from a digital photograph, or a set of photographs, an approximation of the image formed at the sampling station stage in the eye of an animal. toBeeView is freely available from https://github.com/EEZA-CSIC/compound-eye-simulator. toBeeView assumes that sampling stations in the retina are distributed on a hexagonal grid. Each sampling station computes the weighted average of the color of the part of the visual scene projecting on its photoreceptors, and the hexagon of the output image associated with the sampling station is filled in this average color. Users can specify the visual angle subtended by the scene and the basic parameters determining the spatial resolution of the eye: photoreceptor spatial distribution and optic quality of the eye. The photoreceptor distribution is characterized by the vertical and horizontal interommatidial angles-which can vary along the retina. The optic quality depends on the section of the visual scene projecting onto each sampling station, determined by the acceptance angle. The output of toBeeView provides a first approximation to the amount of visual information available at the retina for subsequent processing, summarizing in an intuitive way the interaction between eye optics and receptor density. This tool can be used whenever it is important to determine the visual acuity of a species and will be particularly useful to study processes where object detection and identification is important, such as visual displays, camouflage, and mimicry.
Collapse
Affiliation(s)
| | - Alberto Ruiz
- Estación Experimental de Zonas Áridas CSIC Almería Spain
| |
Collapse
|
40
|
Perry M, Kinoshita M, Saldi G, Huo L, Arikawa K, Desplan C. Molecular logic behind the three-way stochastic choices that expand butterfly colour vision. Nature 2016; 535:280-4. [PMID: 27383790 PMCID: PMC4988338 DOI: 10.1038/nature18616] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 05/31/2016] [Indexed: 01/08/2023]
Abstract
Butterflies rely extensively on colour vision to adapt to the natural world. Most species express a broad range of colour-sensitive Rhodopsin proteins in three types of ommatidia (unit eyes), which are distributed stochastically across the retina. The retinas of Drosophila melanogaster use just two main types, in which fate is controlled by the binary stochastic decision to express the transcription factor Spineless in R7 photoreceptors. We investigated how butterflies instead generate three stochastically distributed ommatidial types, resulting in a more diverse retinal mosaic that provides the basis for additional colour comparisons and an expanded range of colour vision. We show that the Japanese yellow swallowtail (Papilio xuthus, Papilionidae) and the painted lady (Vanessa cardui, Nymphalidae) butterflies have a second R7-like photoreceptor in each ommatidium. Independent stochastic expression of Spineless in each R7-like cell results in expression of a blue-sensitive (Spineless(ON)) or an ultraviolet (UV)-sensitive (Spineless(OFF)) Rhodopsin. In P. xuthus these choices of blue/blue, blue/UV or UV/UV sensitivity in the two R7 cells are coordinated with expression of additional Rhodopsin proteins in the remaining photoreceptors, and together define the three types of ommatidia. Knocking out spineless using CRISPR/Cas9 (refs 5, 6) leads to the loss of the blue-sensitive fate in R7-like cells and transforms retinas into homogeneous fields of UV/UV-type ommatidia, with corresponding changes in other coordinated features of ommatidial type. Hence, the three possible outcomes of Spineless expression define the three ommatidial types in butterflies. This developmental strategy allowed the deployment of an additional red-sensitive Rhodopsin in P. xuthus, allowing for the evolution of expanded colour vision with a greater variety of receptors. This surprisingly simple mechanism that makes use of two binary stochastic decisions coupled with local coordination may prove to be a general means of generating an increased diversity of developmental outcomes.
Collapse
Affiliation(s)
- Michael Perry
- Department of Biology, New York University, New York, New York 10003, USA
| | - Michiyo Kinoshita
- Laboratory of Neuroethology, Department of Evolutionary Studies of Biosystems, SOKENDAI, The Graduate University for Advanced Studies, Hayama, Kanagawa 240-0115, Japan
| | - Giuseppe Saldi
- New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Lucy Huo
- Department of Biology, New York University, New York, New York 10003, USA
| | - Kentaro Arikawa
- Laboratory of Neuroethology, Department of Evolutionary Studies of Biosystems, SOKENDAI, The Graduate University for Advanced Studies, Hayama, Kanagawa 240-0115, Japan
| | - Claude Desplan
- Department of Biology, New York University, New York, New York 10003, USA.,New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| |
Collapse
|
41
|
Chen PJ, Awata H, Matsushita A, Yang EC, Arikawa K. Extreme Spectral Richness in the Eye of the Common Bluebottle Butterfly, Graphium sarpedon. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00018] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
42
|
Feuda R, Marlétaz F, Bentley MA, Holland PWH. Conservation, Duplication, and Divergence of Five Opsin Genes in Insect Evolution. Genome Biol Evol 2016; 8:579-87. [PMID: 26865071 PMCID: PMC4824169 DOI: 10.1093/gbe/evw015] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Opsin proteins covalently bind to small molecular chromophores and each protein-chromophore complex is sensitive to particular wavelengths of light. Multiple opsins with different wavelength absorbance peaks are required for color vision. Comparing opsin responses is challenging at low light levels, explaining why color vision is often lost in nocturnal species. Here, we investigated opsin evolution in 27 phylogenetically diverse insect species including several transitions between photic niches (nocturnal, diurnal, and crepuscular). We find widespread conservation of five distinct opsin genes, more than commonly considered. These comprise one c-opsin plus four r-opsins (long wavelength sensitive or LWS, blue sensitive, ultra violet [UV] sensitive and the often overlooked Rh7 gene). Several recent opsin gene duplications are also detected. The diversity of opsin genes is consistent with color vision in diurnal, crepuscular, and nocturnal insects. Tests for positive selection in relation to photic niche reveal evidence for adaptive evolution in UV-sensitive opsins in day-flying insects in general, and in LWS opsins of day-flying Lepidoptera specifically.
Collapse
Affiliation(s)
- Roberto Feuda
- Department of Zoology, University of Oxford, United Kingdom
| | | | | | | |
Collapse
|
43
|
McCulloch KJ, Osorio D, Briscoe AD. Sexual dimorphism in the compound eye of Heliconius erato: a nymphalid butterfly with at least five spectral classes of photoreceptor. J Exp Biol 2016; 219:2377-87. [DOI: 10.1242/jeb.136523] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 05/23/2016] [Indexed: 11/20/2022]
Abstract
Most butterfly families expand the number of spectrally-distinct photoreceptors in their compound eye by opsin gene duplications together with lateral filter pigments, however most nymphalid genera have limited diversity, with only three or four spectral types of photoreceptor. Here we examine the spatial pattern of opsin expression and photoreceptor spectral sensitivities in Heliconius erato, a nymphalid with duplicate ultraviolet opsin genes, UVRh1 and UVRh2. We find that the H. erato compound eye is sexually dimorphic. Females express the two UV opsin proteins in separate photoreceptors, but males do not express UVRh1. Intracellular recordings confirmed that females have three short wavelength-sensitive photoreceptors (λmax=356 nm, ∼390 nm and 470 nm), while males have two (λmax=390 nm and ∼470 nm). We also found two long wavelength-sensitive photoreceptors (green, λmax ∼555 nm, and red, λmax ∼600 nm), which express the same LW opsin. The red cell's shifted sensitivity is probably due to perirhabdomal filtering pigments. Sexual dimorphism of the UV-absorbing rhodopsins may reflect the females' need to discriminate conspecifics from co-mimics. Red-green color vision may be used to detect differences in red coloration on Heliconius wings, or for host-plant identification. Among nymphalids so far investigated, only H. erato is known to possess five spectral classes of photoreceptor; sexual dimorphism of the eye via suppression of one class of opsin (here UVRh1 in males) has not—to our knowledge—been reported in any animal.
Collapse
Affiliation(s)
- Kyle J. McCulloch
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697, USA
| | - Daniel Osorio
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, United Kingdom
| | - Adriana D. Briscoe
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697, USA
| |
Collapse
|
44
|
Macias-Muñoz A, Smith G, Monteiro A, Briscoe AD. Transcriptome-Wide Differential Gene Expression in Bicyclus anynana Butterflies: Female Vision-Related Genes Are More Plastic. Mol Biol Evol 2015; 33:79-92. [PMID: 26371082 DOI: 10.1093/molbev/msv197] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Vision is energetically costly to maintain. Consequently, over time many cave-adapted species downregulate the expression of vision genes or even lose their eyes and associated eye genes entirely. Alternatively, organisms that live in fluctuating environments, with different requirements for vision at different times, may evolve phenotypic plasticity for expression of vision genes. Here, we use a global transcriptomic and candidate gene approach to compare gene expression in the heads of a polyphenic butterfly. Bicyclus anynana have two seasonal forms that display sexual dimorphism and plasticity in eye morphology, and female-specific plasticity in opsin gene expression. Nonchoosy dry season females downregulate opsin expression, consistent with the high physiological cost of vision. To identify other genes associated with sexually dimorphic and seasonally plastic differences in vision, we analyzed RNA-sequencing data from whole head tissues. We identified two eye development genes (klarsicht and warts homologs) and an eye pigment biosynthesis gene (henna) differentially expressed between seasonal forms. By comparing sex-specific expression across seasonal forms, we found that klarsicht, warts, henna, and another eye development gene (domeless) were plastic in a female-specific manner. In a male-only analysis, white (w) was differentially expressed between seasonal forms. Reverse transcription polymerase chain reaction confirmed that warts and white are expressed in eyes only, whereas klarsicht, henna and domeless are expressed in both eyes and brain. We find that differential expression of eye development and eye pigment genes is associated with divergent eye phenotypes in B. anynana seasonal forms, and that there is a larger effect of season on female vision-related genes.
Collapse
Affiliation(s)
- Aide Macias-Muñoz
- Ecology and Evolutionary Biology, University of California, Irvine BEACON Center for the Study of Evolution in Action
| | - Gilbert Smith
- Ecology and Evolutionary Biology, University of California, Irvine BEACON Center for the Study of Evolution in Action
| | - Antónia Monteiro
- Biological Sciences, National University of Singapore, Singapore Yale-NUS College, Singapore
| | - Adriana D Briscoe
- Ecology and Evolutionary Biology, University of California, Irvine BEACON Center for the Study of Evolution in Action
| |
Collapse
|
45
|
Bleiweiss R. Extrinsic Versus Intrinsic Control of Avian Communication Based on Colorful Plumage Porphyrins. Evol Biol 2015. [DOI: 10.1007/s11692-015-9343-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
46
|
Sander SE, Hall DW. Variation in opsin genes correlates with signalling ecology in North American fireflies. Mol Ecol 2015; 24:4679-96. [PMID: 26289828 PMCID: PMC4599352 DOI: 10.1111/mec.13346] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 07/30/2015] [Accepted: 08/16/2015] [Indexed: 12/27/2022]
Abstract
Genes underlying signal reception should evolve to maximize signal detection in a particular environment. In animals, opsins, the protein component of visual pigments, are predicted to evolve according to this expectation. Fireflies are known for their bioluminescent mating signals. The eyes of nocturnal species are expected to maximize the detection of conspecific signal colours emitted in the typical low-light environment. This is not expected for species that have transitioned to diurnal activity in bright daytime environments. Here, we test the hypothesis that opsin gene sequence plays a role in modifying firefly eye spectral sensitivity. We use genome and transcriptome sequencing in four firefly species, transcriptome sequencing in six additional species and targeted gene sequencing in 28 other species to identify all opsin genes present in North American fireflies and to elucidate amino acid sites under positive selection. We also determine whether amino acid substitutions in opsins are linked to evolutionary changes in signal mode, signal colour and light environment. We find only two opsins, one long wavelength and one ultraviolet, in all firefly species and identify 25 candidate sites that may be involved in determining spectral sensitivity. In addition, we find elevated rates of evolution at transitions to diurnal activity, and changes in selective constraint on long wavelength opsin associated with changes in light environment. Our results suggest that changes in eye spectral sensitivity are at least partially due to opsin sequence. Fireflies continue to be a promising system in which to investigate the evolution of signals, receptors and signalling environments.
Collapse
Affiliation(s)
- S E Sander
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - D W Hall
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
47
|
Henze MJ, Oakley TH. The Dynamic Evolutionary History of Pancrustacean Eyes and Opsins. Integr Comp Biol 2015; 55:830-42. [DOI: 10.1093/icb/icv100] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
48
|
Wernet MF, Perry MW, Desplan C. The evolutionary diversity of insect retinal mosaics: common design principles and emerging molecular logic. Trends Genet 2015; 31:316-28. [PMID: 26025917 PMCID: PMC4458154 DOI: 10.1016/j.tig.2015.04.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 04/13/2015] [Accepted: 04/14/2015] [Indexed: 12/21/2022]
Abstract
Independent evolution has resulted in a vast diversity of eyes. Despite the lack of a common Bauplan or ancestral structure, similar developmental strategies are used. For instance, different classes of photoreceptor cells (PRs) are distributed stochastically and/or localized in different regions of the retina. Here, we focus on recent progress made towards understanding the molecular principles behind patterning retinal mosaics of insects, one of the most diverse groups of animals adapted to life on land, in the air, under water, or on the water surface. Morphological, physiological, and behavioral studies from many species provide detailed descriptions of the vast variation in retinal design and function. By integrating this knowledge with recent progress in the characterization of insect Rhodopsins as well as insight from the model organism Drosophila melanogaster, we seek to identify the molecular logic behind the adaptation of retinal mosaics to the habitat and way of life of an animal.
Collapse
Affiliation(s)
- Mathias F Wernet
- New York University Abu Dhabi, Abu Dhabi, 129188 Saadiyat Island, United Arab Emirates
| | - Michael W Perry
- Department of Biology, New York University, New York, NY 10003, USA
| | - Claude Desplan
- New York University Abu Dhabi, Abu Dhabi, 129188 Saadiyat Island, United Arab Emirates; Department of Biology, New York University, New York, NY 10003, USA.
| |
Collapse
|
49
|
Meyer-Rochow VB. Compound eyes of insects and crustaceans: Some examples that show there is still a lot of work left to be done. INSECT SCIENCE 2015; 22:461-481. [PMID: 24574199 DOI: 10.1111/1744-7917.12117] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/10/2014] [Indexed: 06/03/2023]
Abstract
Similarities and differences between the 2 main kinds of compound eye (apposition and superposition) are briefly explained before several promising topics for research on compound eyes are being introduced. Research on the embryology and molecular control of the development of the insect clear-zone eye with superposition optics is one of the suggestions, because almost all of the developmental work on insect eyes in the past has focused on eyes with apposition optics. Age- and habitat-related ultrastructural studies of the retinal organization are another suggestion and the deer cad Lipoptena cervi, which has an aerial phase during which it is winged followed by a several months long parasitic phase during which it is wingless, is mentioned as a candidate species. Sexual dimorphism expressing itself in many species as a difference in eye structure and function provides another promising field for compound eye researchers and so is a focus on compound eye miniaturization in very small insects, especially those that are aquatic and belong to species, in which clear-zone eyes are diagnostic or are tiny insects that are not aquatic, but belong to taxa like the Diptera for instance, in which open rather than closed rhabdoms are the rule. Structures like interommatidial hairs and glands as well as corneal microridges are yet another field that could yield interesting results and in the past has received insufficient consideration. Finally, the dearth of information on distance vision and depth perception is mentioned and a plea is made to examine the photic environment inside the foam shelters of spittle bugs, chrysales of pupae and other structures shielding insects and crustaceans.
Collapse
|
50
|
Abstract
Dragonflies are colorful and large-eyed animals strongly dependent on color vision. Here we report an extraordinary large number of opsin genes in dragonflies and their characteristic spatiotemporal expression patterns. Exhaustive transcriptomic and genomic surveys of three dragonflies of the family Libellulidae consistently identified 20 opsin genes, consisting of 4 nonvisual opsin genes and 16 visual opsin genes of 1 UV, 5 short-wavelength (SW), and 10 long-wavelength (LW) type. Comprehensive transcriptomic survey of the other dragonflies representing an additional 10 families also identified as many as 15-33 opsin genes. Molecular phylogenetic analysis revealed dynamic multiplications and losses of the opsin genes in the course of evolution. In contrast to many SW and LW genes expressed in adults, only one SW gene and several LW genes were expressed in larvae, reflecting less visual dependence and LW-skewed light conditions for their lifestyle under water. In this context, notably, the sand-burrowing or pit-dwelling species tended to lack SW gene expression in larvae. In adult visual organs: (i) many SW genes and a few LW genes were expressed in the dorsal region of compound eyes, presumably for processing SW-skewed light from the sky; (ii) a few SW genes and many LW genes were expressed in the ventral region of compound eyes, probably for perceiving terrestrial objects; and (iii) expression of a specific LW gene was associated with ocelli. Our findings suggest that the stage- and region-specific expressions of the diverse opsin genes underlie the behavior, ecology, and adaptation of dragonflies.
Collapse
|