1
|
Janis CM, Napoli JG, Warren DE. Palaeophysiology of pH regulation in tetrapods. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190131. [PMID: 31928199 DOI: 10.1098/rstb.2019.0131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The involvement of mineralized tissues in acid-base homeostasis was likely important in the evolution of terrestrial vertebrates. Extant reptiles encounter hypercapnia when submerged in water, but early tetrapods may have experienced hypercapnia on land due to their inefficient mode of lung ventilation (likely buccal pumping, as in extant amphibians). Extant amphibians rely on cutaneous carbon dioxide elimination on land, but early tetrapods were considerably larger forms, with an unfavourable surface area to volume ratio for such activity, and evidence of a thick integument. Consequently, they would have been at risk of acidosis on land, while many of them retained internal gills and would not have had a problem eliminating carbon dioxide in water. In extant tetrapods, dermal bone can function to buffer the blood during acidosis by releasing calcium and magnesium carbonates. This review explores the possible mechanisms of acid-base regulation in tetrapod evolution, focusing on heavily armoured, basal tetrapods of the Permo-Carboniferous, especially the physiological challenges associated with the transition to air-breathing, body size and the adoption of active lifestyles. We also consider the possible functions of dermal armour in later tetrapods, such as Triassic archosaurs, inferring palaeophysiology from both fossil record evidence and phylogenetic patterns, and propose a new hypothesis relating the archosaurian origins of the four-chambered heart and high systemic blood pressures to the perfusion of the osteoderms. This article is part of the theme issue 'Vertebrate palaeophysiology'.
Collapse
Affiliation(s)
- Christine M Janis
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA.,School of Earth Sciences, University of Bristol, Bristol BS8 1RL, UK
| | - James G Napoli
- Richard Gilder Graduate School and Division of Paleontology, American Museum of Natural History, New York, NY 10024-5102, USA
| | - Daniel E Warren
- Department of Biology, Saint Louis University, St Louis, MO 63103, USA
| |
Collapse
|
2
|
Heterogeneous bioapatite carbonation in western painted turtles is unchanged after anoxia. Comp Biochem Physiol A Mol Integr Physiol 2019; 233:74-83. [PMID: 30930203 DOI: 10.1016/j.cbpa.2019.03.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/09/2019] [Accepted: 03/25/2019] [Indexed: 11/23/2022]
Abstract
Adsorbed and structurally incorporated carbonate in bioapatite, the primary mineral phase of bone, is observed across vertebrates, typically at 2-8 wt%, and supports critical physiological and biochemical functions. Several turtle species contain elevated bone-associated carbonate, a property linked to pH buffering and overwintering survival. Prior studies of turtle bone utilized bulk analyses, which do not provide spatial resolution of carbonate. Using Raman spectroscopy, the goals of this study were to: (1) quantify and spatially resolve carbonate heterogeneity within the turtle shell; (2) determine if cortical and trabecular bone contain distinct carbonate concentrations; and (3) assess if simulated overwintering conditions result in decreased bioapatite carbonation. Here, we demonstrate the potential for Raman spectroscopic analysis to spatially resolve bioapatite carbonation, using the western painted turtle as a model species. Carbonate concentration was highly variable within cortical and trabecular bone, based on calibrated Raman spot analyses and mapping, suggesting heterogeneous carbonate distribution among crystallites. Mean carbonate concentration did not significantly differ between cortical and trabecular bone, which indicates random distribution of crystallites with elevated and depleted carbonate. Carbonate concentrations (range: 5-22 wt%) were not significantly different in overwintering and control animals, deviating from previous bulk analyses. In reconciling bulk and Raman analyses, two hypotheses explain how overwintering turtles potentially access carbonate: (1) mobilization of mineral-associated, surface components of bone crystallites; and (2) selective, dispersed crystallite dissolution. Elevated bioapatite carbonate in the western painted turtle, averaging 11.8 wt%, represents the highest carbonation observed in vertebrates, and is one physiological trait that facilitates overwintering survival.
Collapse
|
3
|
Su H, Zhang H, Wei X, Pan D, Jing L, Zhao D, Zhao Y, Qi B. Comparative Proteomic Analysis of Rana chensinensis Oviduct. Molecules 2018; 23:1384. [PMID: 29890619 PMCID: PMC6099995 DOI: 10.3390/molecules23061384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/31/2018] [Accepted: 06/05/2018] [Indexed: 12/31/2022] Open
Abstract
As one of most important traditional Chinese medicine resources, the oviduct of female Rana chensinensis (Chinese brown frog) was widely used in the treatment of asthenia after sickness or delivery, deficiency in vigor, palpitation, and insomnia. Unlike other vertebrates, the oviduct of Rana chensinensis oviduct significantly expands during prehibernation, in contrast to the breeding period. To explain this phenomenon at the molecular level, the protein expression profiles of Rana chensinensis oviduct during the breeding period and prehibernation were observed using isobaric tags for relative and absolute quantitation (iTRAQ) technique. Then, all identified proteins were used to obtain gene ontology (GO) annotation. Ultimately, KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis was performed to predict the pathway on differentially expressed proteins (DEPs). A total of 4479 proteins were identified, and 312 of them presented different expression profiling between prehibernation and breeding period. Compared with prehibernation group, 86 proteins were upregulated, and 226 proteins were downregulated in breeding period. After KEGG enrichment analysis, 163 DEPs were involved in 6 pathways, which were lysosome, RNA transport, glycosaminoglycan degradation, extracellular matrix (ECM)⁻receptor interaction, metabolic pathways and focal adhesion. This is the first report on the protein profiling of Rana chensinensis oviduct during the breeding period and prehibernation. Results show that this distinctive physiological phenomenon of Rana chensinensis oviduct was mainly involved in ECM⁻receptor interaction, metabolic pathways, and focal adhesion.
Collapse
Affiliation(s)
- Hang Su
- Practice Innovations Center, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - He Zhang
- School of Clinical Medicine, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Xinghua Wei
- Jilin Science Service Center, Changchun 130021, China.
| | - Daian Pan
- School of Clinical Medicine, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Li Jing
- Practice Innovations Center, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Yu Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Bin Qi
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
4
|
Odegard DT, Sonnenfelt MA, Bledsoe JG, Keenan SW, Hill CA, Warren DE. Changes in the material properties of the shell during simulated aquatic hibernation in the anoxia-tolerant painted turtle. J Exp Biol 2018; 221:jeb.176990. [DOI: 10.1242/jeb.176990] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/25/2018] [Indexed: 11/20/2022]
Abstract
Western painted turtles (Chrysemys picta bellii) tolerate anoxic submergence longer than any other tetrapod, surviving more than 170 days at 3°C. This ability is due, in part, to the shell and skeleton simultaneously releasing calcium and magnesium carbonates, and sequestering lactate and H+ to prevent lethal decreases in body fluid pH. We evaluated the effects of anoxic submergence at 3°C on various material properties of painted turtle bone after 60, 130, and 167-170 days, and compared them to normoxic turtles held at the same temperature for the same time periods. To assess changes in the mechanical properties, beams (4×25 mm) were milled from the plastron and broken in a three-point flexural test. Bone mineral density, CO2 concentration (a measure of total bone HCO3−/CO32-), and elemental composition were measured using microCT, HCO3−/CO32- titration, and inductively coupled plasma mass spectrometry (ICP-MS), respectively. Tissue mineral density of the sampled bone beams were not significantly altered by 167-170 days of aquatic overwintering in anoxic or normoxic water, but bone CO2 and Mg were depleted in anoxic compared normoxic turtles. At this time point, the plastron beams from anoxic turtles yielded at stresses that were significantly smaller and strains significantly greater than the plastron beams of normoxic turtles. When data from anoxic and normoxic turtles were pooled, plastron beams had a diminished elastic modulus after 167-170 days compared to control turtles sampled on Day 1, indicating an effect of prolonged housing of the turtles in 3°C water without access to basking sites. There were no changes in the mechanical properties of the plastron beams at any of the earlier time points in either group. We conclude that anoxic hibernation can weaken the painted turtle's plastron, but likely only after durations that exceed what it might naturally experience. The duration of aquatic overwintering, regardless of oxygenation state, is likely to be an important factor determining the mechanical properties of the turtle shell during spring emergence.
Collapse
Affiliation(s)
- Dean T. Odegard
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA
| | - Michael A. Sonnenfelt
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO 63103, USA
| | - J. Gary Bledsoe
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO 63103, USA
| | - Sarah W. Keenan
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA
| | - Craig A. Hill
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA
| | - Daniel E. Warren
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA
| |
Collapse
|
5
|
Warren DE, Jackson DC. The metabolic consequences of repeated anoxic stress in the western painted turtle, Chrysemys picta bellii. Comp Biochem Physiol A Mol Integr Physiol 2016; 203:1-8. [PMID: 27474083 DOI: 10.1016/j.cbpa.2016.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 07/20/2016] [Accepted: 07/20/2016] [Indexed: 10/21/2022]
Abstract
The painted turtle is known for its extreme tolerance to anoxia, but it is unknown whether previous experience with anoxic stress might alter physiological performance during or following a test bout of anoxia. Repeatedly subjecting 25°C-acclimated painted turtles to 2h of anoxic stress every other day for 19days (10 submergence bouts total) caused resting levels of liver glycogen to decrease by 17% and liver citrate synthase (CS) and cytochrome oxidase (COX) activities to increase by 33% and 112%, respectively. When the repeatedly submerged turtles were studied during a subsequent anoxic stress test, liver COX and CS activities decreased during anoxia to the same levels of naïve turtles, which were unchanged, and remained there throughout metabolic recovery. There were no effects of the repeated anoxia treatment on any of the other measured variables, which included lactate dehydrogenase and phosphofructokinase activities in liver, skeletal muscle, and ventricle, blood acid-base status, hemoglobin, hematocrit and plasma ion (Na, K, Ca, Mg, Cl) and metabolite concentrations (lactate, glucose, free-fatty acids), before, during, or after the anoxic stress test. We conclude that although painted turtles can show a physiological reaction to repeated anoxic stress, the changes appear to have no measurable effect on anaerobic physiological performance or ability to recover from anoxia.
Collapse
Affiliation(s)
- Daniel E Warren
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI 02912, United States; Department of Biology, Saint Louis University, Saint Louis, MO 63103, United States.
| | - Donald C Jackson
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI 02912, United States
| |
Collapse
|
6
|
Rigon F, Horst A, Kucharski LC, Silva RSM, Faccioni-Heuser MC, Partata WA. Effects of sciatic nerve transection on glucose uptake in the presence and absence of lactate in the frog dorsal root ganglia and spinal cord. BRAZ J BIOL 2014; 74:S191-8. [DOI: 10.1590/1519-6984.26012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 06/13/2013] [Indexed: 01/09/2023] Open
Abstract
Frogs have been used as an alternative model to study pain mechanisms because the simplicity of their nervous tissue and the phylogenetic aspect of this question. One of these models is the sciatic nerve transection (SNT), which mimics the clinical symptoms of “phantom limb”, a condition that arises in humans after amputation or transverse spinal lesions. In mammals, the SNT increases glucose metabolism in the central nervous system, and the lactate generated appears to serve as an energy source for nerve cells. An answerable question is whether there is elevated glucose uptake in the dorsal root ganglia (DRG) after peripheral axotomy. As glucose is the major energy substrate for frog nervous tissue, and these animals accumulate lactic acid under some conditions, bullfrogs Lithobates catesbeianus were used to demonstrate the effect of SNT on DRG and spinal cord 1-[14C] 2-deoxy-D-glucose (14C-2-DG) uptake in the presence and absence of lactate. We also investigated the effect of this condition on the formation of 14CO2 from 14C-glucose and 14C-L-lactate, and plasmatic glucose and lactate levels. The 3-O-[14C] methyl-D-glucose (14C-3-OMG) uptake was used to demonstrate the steady-state tissue/medium glucose distribution ratio under these conditions. Three days after SNT, 14C-2-DG uptake increased, but 14C-3-OMG uptake remained steady. The increase in 14C-2-DG uptake was lower when lactate was added to the incubation medium. No change was found in glucose and lactate oxidation after SNT, but lactate and glucose levels in the blood were reduced. Thus, our results showed that SNT increased the glucose metabolism in the frog DRG and spinal cord. The effect of lactate on this uptake suggests that glucose is used in glycolytic pathways after SNT.
Collapse
Affiliation(s)
| | - A Horst
- Universidade Federal do Rio Grande do Sul – UFRGS, Brazil
| | - LC Kucharski
- Universidade Federal do Rio Grande do Sul – UFRGS, Brazil
| | - RSM Silva
- Universidade Federal do Rio Grande do Sul – UFRGS, Brazil
| | | | - WA Partata
- Universidade Federal do Rio Grande do Sul – UFRGS, Brazil
| |
Collapse
|
7
|
Larsen EH, Deaton LE, Onken H, O'Donnell M, Grosell M, Dantzler WH, Weihrauch D. Osmoregulation and Excretion. Compr Physiol 2014; 4:405-573. [DOI: 10.1002/cphy.c130004] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Janis CM, Devlin K, Warren DE, Witzmann F. Dermal bone in early tetrapods: a palaeophysiological hypothesis of adaptation for terrestrial acidosis. Proc Biol Sci 2012; 279:3035-40. [PMID: 22535781 DOI: 10.1098/rspb.2012.0558] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The dermal bone sculpture of early, basal tetrapods of the Permo-Carboniferous is unlike the bone surface of any living vertebrate, and its function has long been obscure. Drawing from physiological studies of extant tetrapods, where dermal bone or other calcified tissues aid in regulating acid-base balance relating to hypercapnia (excess blood carbon dioxide) and/or lactate acidosis, we propose a similar function for these sculptured dermal bones in early tetrapods. Unlike the condition in modern reptiles, which experience hypercapnia when submerged in water, these animals would have experienced hypercapnia on land, owing to likely inefficient means of eliminating carbon dioxide. The different patterns of dermal bone sculpture in these tetrapods largely correlates with levels of terrestriality: sculpture is reduced or lost in stem amniotes that likely had the more efficient lung ventilation mode of costal aspiration, and in small-sized stem amphibians that would have been able to use the skin for gas exchange.
Collapse
Affiliation(s)
- Christine M Janis
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA.
| | | | | | | |
Collapse
|
9
|
Jackson DC, Ultsch GR. Physiology of hibernation under the ice by turtles and frogs. ACTA ACUST UNITED AC 2010; 313:311-27. [DOI: 10.1002/jez.603] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
10
|
Ehrlich H, Koutsoukos PG, Demadis KD, Pokrovsky OS. Principles of demineralization: Modern strategies for the isolation of organic frameworks. Micron 2008; 39:1062-91. [DOI: 10.1016/j.micron.2008.02.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 02/08/2008] [Accepted: 02/10/2008] [Indexed: 11/16/2022]
|
11
|
Mao C, Yuan X, Zhang H, Lv J, Guan J, Miao L, Chen L, Zhang Y, Zhang L, Xu Z. The effect of prenatal nicotine on mRNA of central cholinergic markers and hematological parameters in rat fetuses. Int J Dev Neurosci 2008; 26:467-75. [PMID: 18407449 DOI: 10.1016/j.ijdevneu.2008.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 02/24/2008] [Accepted: 02/25/2008] [Indexed: 11/28/2022] Open
Abstract
A number of studies have demonstrated the influence of nicotine on fetal development. This study determined the expression of choline acetyltransferase (ChAT), vesicular acetylcholine transporter (VAChT), and high-affinity choline transporter (CHT1) in the forebrain and hindbrain following chronic prenatal nicotine exposure in the rat fetus (maternal rats were subcutaneously injected with nicotine at different gestation periods). We also measured the effect of chronic nicotine exposure on fetal blood pO(2), pCO(2), pH, Na(+) and K(+) concentrations, as well as lactic acid levels. Maternal nicotine exposure during pregnancy was associated with a decrease in fetal pO(2) coupled with a significant increase in pCO(2) and lactic acid as well as restricted fetal growth. Additionally, maternal nicotine administration also reduced ChAT, VAChT, and CHT1 mRNA levels in the fetal brain. Nicotine-induced fetal hypoxic responses and reduced cholinergic marker expression in the brain were more severe when nicotine was started in early gestation. Our results provide new information about the effects of repeated exposure to nicotine in utero on the expression of central ChAT, VAChT, and CHT1 in the rat fetus. These results indicate that repeated hypoxic episodes or/and a direct effect of nicotine on the central cholinergic system during pregnancy may contribute to brain developmental problems in fetal origin.
Collapse
Affiliation(s)
- Caiping Mao
- Perinatal Biology Center, Soochow University School of Medicine, Suzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Lactate metabolism in anoxic turtles: an integrative review. J Comp Physiol B 2007; 178:133-48. [PMID: 17940776 DOI: 10.1007/s00360-007-0212-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 09/11/2007] [Accepted: 09/17/2007] [Indexed: 10/22/2022]
Abstract
Painted turtles can accumulate lactic acid to extremely high concentrations during long-term anoxic submergence, with plasma lactate exceeding 200 mmol l(-1). The aims of this review are twofold: (1) To summarize aspects of lactate metabolism in anoxic turtles that have not been reviewed previously and (2) To identify gaps in our knowledge of turtle lactate metabolism by comparing it with lactate metabolism during and after exercise in other vertebrates. The topics reviewed include analyses of lactate's fate during recovery, the effects of temperature on lactate accumulation and clearance, the interaction of activity and recovery metabolism, fuel utilization during recovery, stress hormone responses during and following anoxia, and cellular lactate transport mechanisms. An analysis of lactate metabolism in anoxic turtles in the context of the 'lactate shuttle' hypothesis is also presented.
Collapse
|
13
|
Duerr JM, Tucker K. Pyruvate transport in isolated cardiac mitochondria from two species of amphibian exhibiting dissimilar aerobic scope: Bufo marinus and Rana catesbeiana. ACTA ACUST UNITED AC 2007; 307:425-38. [PMID: 17583564 DOI: 10.1002/jez.396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cardiac mitochondria were isolated from Bufo marinus and Rana catesbeiana, two species of amphibian whose cardiovascular systems are adapted to either predominantly aerobic or glycolytic modes of locomotion. Mitochondrial oxidative capacity was compared using VO2 max and respiratory control ratios in the presence of a variety of substrates including pyruvate, lactate, oxaloacetate, beta-hydroxybutyrate, and octanoyl-carnitine. B. marinus cardiac mitochondria exhibited VO2 max values twice that of R. catesbeiana cardiac mitochondria when oxidizing carbohydrate substrates. Pyruvate transport was measured via a radiolabeled-tracer assay in isolated B. marinus and R. catesbeiana cardiac mitochondria. Time-course experiments described both alpha-cyano-4-hydroxycinnamate-sensitive (MCT-like) and phenylsuccinate-sensitive pyruvate uptake mechanisms in both species. Pyruvate uptake by the MCT-like transporter was enhanced in the presence of a pH gradient, whereas the phenylsuccinate-sensitive transporter was inhibited. Notably, anuran cardiac mitochondria exhibited activities of lactate dehydrogenase and pyruvate carboxylase. The presence of both transporters on the inner mitochondrial membrane affords the net uptake of monocarboxylates including pyruvate, beta-hydroxybutyrate, and lactate; the latter potentially indicating the presence of a lactate/pyruvate shuttle allowing oxidation of extramitochondrial NADH. Intramitochondrial lactate dehydrogenase and pyruvate carboxylase enables lactate to be oxidized to pyruvate or converted to anaplerotic oxaloacetate. Kinetics of the MCT-like transporter differed significantly between the two species, suggesting differences in aerobic scope may be in part attributable to differences in mitochondrial carbohydrate utilization.
Collapse
Affiliation(s)
- Jeffrey M Duerr
- Department of Biology and Chemistry, George Fox University, Newberg, Oregon 97132, USA.
| | | |
Collapse
|
14
|
Petersen AM, Gleeson TT. Characterization of circannual patterns of metabolic recovery from activity inRana catesbeianaat 15°C. J Exp Biol 2007; 210:1786-97. [PMID: 17488942 DOI: 10.1242/jeb.004499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYWe characterized carbohydrate metabolism following activity in the American bullfrog, Rana catesbeiana, and compared whole body metabolic profiles between two seasons. Forty-eight adult male Rana catesbeianawere chronically cannulated and injected with[U-14C]l-lactic acid sodium salt in either summer (June)or winter (January) after acclimation for 2 weeks at 15°C with a 12 h:12 h L:D photoperiod. Following injection with [14C]lactate, frogs were either allowed to rest for 240 min (REST), hopped for 2 min on a treadmill and immediately sacrificed (PE), or hopped for 2 min on a treadmill and allowed to recover for 240 min (REC 4). Exercise caused a significant increase in blood lactate level from 2.7±0.1 mmol l–1 at rest to 17.0±2.1 mmol l–1 immediately following exercise. This increase persisted throughout the recovery period, with average blood lactate level only reduced to 13.7±1.1 mmol l–1 after 240 min of recovery, despite complete recovery of intramuscular lactate levels. Lactate levels were not significantly different between seasons in any treatment (REST, PE, REC4), in either gastrocnemius muscle or blood. The vast majority of [14C]lactate was recovered in the muscle, in both winter (86.3%) and summer (87.5%). Season had no effect on total amount of 14C label recovered. [14C]Lactate was measured in the forms of lactate, glucose and glycogen, in the liver and the muscle sampled. The most robust difference found in seasonal metabolism was that both the liver and the gastrocnemius contained significantly higher levels of intracellular free glucose under all treatments in winter. These data suggest that, overall, bullfrogs accumulate and slowly clear lactate in a manner quite similar to findings in fish, other amphibians and lizards. Additionally, our findings indicate that lactate metabolism is not highly influenced by season alone, but that intracellular glucose levels may be sensitive to annual patterns.
Collapse
Affiliation(s)
- A M Petersen
- Department of Integrative Physiology University of Colorado, Boulder, CO 80309-0354, USA
| | | |
Collapse
|
15
|
Davis EC, Jackson DC. Lactate uptake by skeletal bone in anoxic turtles, Trachemys scripta. Comp Biochem Physiol A Mol Integr Physiol 2007; 146:299-304. [PMID: 17188012 DOI: 10.1016/j.cbpa.2006.10.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Revised: 10/23/2006] [Accepted: 10/23/2006] [Indexed: 11/21/2022]
Abstract
Previous studies have shown that freshwater turtle shells can accumulate lactate during periods of anoxic submergence. Our objective in this study was to determine lactate uptake in other parts of the turtle's skeleton. We measured lactate concentration of 7 skeletal elements and 4 shell samples of red-eared slider turtles, Trachemys scripta, in control animals (N=12) and in animals following submergence for 4-5 days in N(2)-equilibrated water at 10 degrees C (N=8). We also collected blood samples and measured blood pH, PCO(2), and PO(2), and plasma lactate. Contralateral bone samples from 6 control turtles were analyzed for % water and mineral composition; bone from the other 6 were equilibrated with lactate solution in vitro. Anoxic submergence resulted in a combined respiratory/non-respiratory (lactic) acidosis and plasma lactate of 45.6+/-2.5 mmol l(-1). Shell and skeletal lactates all increased significantly in the anoxic animals (30.1-43.9 mmol kg(-1)) with limb bones having the highest levels and skull the least. Skeletal samples equilibrated in lactate solution in vitro for 2 days accumulated lactate in similar fashion with limb bones, except for fibula, higher, and skull significantly less than other bones. We conclude that the entire skeleton of the red-eared slider, like its shell, sequesters lactate and contributes thereby to lactic acid buffering.
Collapse
Affiliation(s)
- Elizabeth C Davis
- Brown University, Department of Molecular Pharmacology, Physiology, and Biotechnology Providence, RI 02912, USA
| | | |
Collapse
|
16
|
Jackson DC, Taylor SE, Asare VS, Villarnovo D, Gall JM, Reese SA. Comparative shell buffering properties correlate with anoxia tolerance in freshwater turtles. Am J Physiol Regul Integr Comp Physiol 2007; 292:R1008-15. [PMID: 17008457 DOI: 10.1152/ajpregu.00519.2006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Freshwater turtles as a group are more resistant to anoxia than other vertebrates, but some species, such as painted turtles, for reasons not fully understood, can remain anoxic at winter temperatures far longer than others. Because buffering of lactic acid by the shell of the painted turtle is crucial to its long-term anoxic survival, we have tested the hypothesis that previously described differences in anoxia tolerance of five species of North American freshwater turtles may be explained at least in part by differences in their shell composition and buffering capacity. All species tested have large mineralized shells. Shell comparisons included 1) total shell CO2concentration, 2) volume of titrated acid required to hold incubating shell powder at pH 7.0 for 3 h (an indication of buffer release from shell), and 3) lactate concentration of shell samples incubated to equilibrium in a standard lactate solution. For each measurement, the more anoxia-tolerant species (painted turtle, Chrysemys picta; snapping turtle, Chelydra serpentina) had higher values than the less anoxia-tolerant species (musk turtle, Sternotherus odoratus; map turtle, Graptemys geographica; red-eared slider, Trachemys scripta). We suggest that greater concentrations of accessible CO2(as carbonate or bicarbonate) in the more tolerant species enable these species, when acidotic, to release more buffer into the extracellular fluid and to take up more lactic acid into their shells. We conclude that the interspecific differences in shell composition and buffering can contribute to, but cannot explain fully, the variations observed in anoxia tolerance among freshwater turtles.
Collapse
Affiliation(s)
- Donald C Jackson
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Box G, Brown University, Providence, RI 02912, USA.
| | | | | | | | | | | |
Collapse
|