1
|
Hagio H, Nishino H, Miyake K, Sato N, Sawada K, Nakayama T, Yamamoto N. Fish That Fish for Fish-A Peculiar Location of "Fishing Motoneurons" in the Striated Frogfish Antennarius striatus. J Comp Neurol 2024; 532:e25674. [PMID: 39380323 DOI: 10.1002/cne.25674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 08/14/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024]
Abstract
In lophiform teleosts, the first dorsal fin has evolved as a specialized structure called the "illicium" equipped with the esca, which is a modified skin flap used to attract small fish for predation. The motor control system of the illicium, however, remained unknown. The present study investigated the innervation of muscles for the illicium and morphology of motoneurons innervating them in the striated frogfish Antennarius striatus. We found that the dorsal ramus of occipital nerve innervates the muscles. Motoneurons for the illicium are present in the dorsolateral zone of ventral horn at the medullo-spinal boundary level, forming a cluster somewhat distinct from other motoneurons of the ventral horn. Motoneurons for the second to fourth dorsal fins and pectoral fin were located in the ventrolateral and ventromedial zones of ventral horn, respectively, whereas those of the dorsal trunk muscle in the dorsomedial zone of ventral horn. Motoneurons for the first dorsal spine of white-spotted pygmy filefish were also investigated for species comparison and were found to locate in the ventrolateral zone of ventral horn, similarly to the motoneurons for the second to fourth dorsal fins of the frogfish. These results suggest that motoneurons for the illicium have become segregated from other motoneurons to be situated in an unusual dorsal position for a motoneuron pool of a dorsal fin, in concert with the evolution of specialized "fishing behavior" performed by the illicium.
Collapse
Affiliation(s)
- Hanako Hagio
- Laboratory of Fish Biology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | - Hirotaka Nishino
- Laboratory of Fish Biology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Kenta Miyake
- Laboratory of Fish Biology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Nene Sato
- Laboratory of Fish Biology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Kei Sawada
- Laboratory of Fish Biology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Tomoya Nakayama
- Laboratory of Fish Biology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Naoyuki Yamamoto
- Laboratory of Fish Biology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
2
|
Cohen HE, Ray W, Hawkins OH, Kane EA. Potential for Anthropogenic Fin Damage to Affect Individual Responses to Prey in Bluegill Sunfish ( Lepomis macrochirus): A New Hypothesis for Kinematic Studies. INTEGRATIVE ORGANISMAL BIOLOGY (OXFORD, ENGLAND) 2022; 4:obac050. [PMID: 36545048 PMCID: PMC9762888 DOI: 10.1093/iob/obac050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 11/13/2022] [Accepted: 11/30/2022] [Indexed: 12/10/2022]
Abstract
In fishes, damage to important morphological structures such as fins through natural damage and anthropogenic factors can have cascading effects on prey capture performance and individual fitness. Bluegill sunfish (Lepomis macrochirus) are a common freshwater species in North America, are a model organism for performance studies, and often experience natural injuries. We opportunistically sampled two populations of fish in the lab to generate a hypothesis for the effect of sub-lethal fin damage resulting from the capture technique on kinematic performance during prey capture in bluegill. We found no statistical differences in mean prey capture kinematics or predator accuracy, but damaged fish used more variable kinematics and more readily struck at non-prey items. We suggest that a reduction in stability and individual consistency occurs as a result of fin damage. This difference could have consequences for higher-order ecological interactions such as competitive ability, despite a lack of apparent performance cost at the individual level, and deserves consideration in future studies of prey capture performance in fish.
Collapse
Affiliation(s)
| | - W Ray
- Department of Biology, Georgia Southern University, Statesboro, GA 30458, USA
| | - O H Hawkins
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - E A Kane
- Department of Biology, Georgia Southern University, Statesboro, GA 30458, USA,Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| |
Collapse
|
3
|
The Large and Strong Vortex Around the Trunk and Behind the Swimmer is Associated with Great Performance in Underwater Undulatory Swimming. J Hum Kinet 2022; 84:64-73. [DOI: 10.2478/hukin-2022-0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Abstract
Swimmers can produce horizontal body velocity by generating and shedding vortices around their body during underwater undulatory swimming (UUS). It has been hypothesized that the horizontal shedding velocity, area and circulation of the vortex around the swimmer’s body are associated with UUS performance. The purpose of this study was to investigate whether the shedding velocity, area and circulation of vortices around swimmers’ bodies are correlated with the horizontal body velocity during UUS. Computational fluid dynamics (CFD) was conducted to obtain the vortex structure during UUS in nine male swimmers. Morphological and kinematic data of each subject were obtained and used to reconstruct the UUS movement on CFD. The horizontal velocity of the center of vorticity, the area and circulation of vortices around the ventral side of the trunk, dorsal side of shoulder and waist, and behind the swimmer were determined from the simulation results. Positive correlations were found between the vortex area and circulation around the ventral side of the trunk (area r = 0.938, p < 0.05; circulation r = 0.915, p < 0.05) and behind the swimmer (area r = 0.738, p < 0.05; circulation r = -0.680, p < 0.05), and the horizontal body velocity. The horizontal shedding velocity of the center of vorticity of the vortices around the swimmer’s body was not significantly correlated with the horizontal body velocity. These results suggest that the generation of a large and strong vortex around the trunk and behind the swimmer is associated with great UUS performance.
Collapse
|
4
|
Liu R, Zhao H, Wang L, Jin J, Wu Y. Design and development of a novel piezoelectric caudal fin-like underwater thruster with a single vibration mode. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:113545. [PMID: 36461480 DOI: 10.1063/5.0124122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
The flapping-motion of the caudal fin allows the fish to swim with high efficiency and mobility, particularly in terms of persistence, propulsion, and acceleration. This has led to theoretical and practical research on the development of robotic caudal fin thrusters that offer similar properties and performance. However, the current caudal fin thrusters are driven by electromagnetic motors, which require a transmission system that makes them difficult to miniaturize, and need protection against water intrusion. To address these issues, this paper proposes a novel piezoelectric caudal fin thruster with a fully open structure that has no chambers in any of its parts. The converse, piezoelectric effect and direct friction drive principle are used to make a rotation unit for the piezoelectric actuator drive and achieve a reciprocating motion that makes the caudal fin flap. The proposed piezoelectric caudal fin thruster has an open and simple structure. It has a weight of 30 g, a length of 89 mm, and a thrust of 0.07 N. It is easy to miniaturize and is lighter, smaller, and more efficient than previously reported caudal fin thrusters that were based on ionic polymer-metal composites and shape memory alloys. Experimental results verified the effectiveness of the proposed design, which can be easily scaled up or down in size depending on the operating situation.
Collapse
Affiliation(s)
- Rui Liu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Yudao 29, Nanjing 210016, China
| | - Heng Zhao
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Yudao 29, Nanjing 210016, China
| | - Liang Wang
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Yudao 29, Nanjing 210016, China
| | - Jiamei Jin
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Yudao 29, Nanjing 210016, China
| | - Yifeng Wu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Yudao 29, Nanjing 210016, China
| |
Collapse
|
5
|
Zhang JD, Sung HJ, Huang WX. Hydrodynamic interaction of dorsal fin and caudal fin in swimming tuna. BIOINSPIRATION & BIOMIMETICS 2022; 17:066004. [PMID: 35896094 DOI: 10.1088/1748-3190/ac84b8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Tuna, which are known for high-performance swimming, possess a large crescent dorsal fin (DF) and a caudal fin (CF) that differ from those of other fishes. The hydrodynamic interaction between the DF and CF in tuna, which are represented by two tandem 3D flapping plates, is numerically explored in the present study. Hydrodynamic properties and wake structures of the models with and without a DF are compared to investigate the effects of the DF. The thrust on the CF is substantially enhanced by the DF, whereas the force on the DF is not affected by the CF. The constructive interaction between the leading-edge vortex (LEV) on the CF and the vortices shed from the dorsal fin (DFVs) is identified from 3D wake topology and 2D vorticity distributions. The circulation of spanwise vorticity quantitatively reveals that the LEV on the CF is strengthened by the same-signed DFV. The effect of the flapping phase of the CF is examined. The DF-CF interaction is sensitive to the flapping phase at a short spacing, whereas a long spacing between the two fins enables a robust constructive interaction in tuna swimming. A systematic study is carried out to explore the effects of the Strouhal number (St) and the Reynolds number (Re) on the interaction of the fins. The enhancement of thrust due to the DF is diminished at St = 0.63, whereas the Re does not substantially influence the constructive DF-CF interaction.
Collapse
Affiliation(s)
- Jun-Duo Zhang
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, People's Republic of China
| | - Hyung Jin Sung
- Department of Mechanical Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Wei-Xi Huang
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
6
|
Quitzau M, Frelat R, Bonhomme V, Möllmann C, Nagelkerke L, Bejarano S. Traits, landmarks and outlines: Three congruent sides of a tale on coral reef fish morphology. Ecol Evol 2022; 12:e8787. [PMID: 35475185 PMCID: PMC9021933 DOI: 10.1002/ece3.8787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 01/27/2022] [Accepted: 03/15/2022] [Indexed: 11/11/2022] Open
Affiliation(s)
- Marita Quitzau
- Aquaculture and Fisheries Group Wageningen Institute of Animal Sciences Wageningen University and Research Wageningen The Netherlands
| | - Romain Frelat
- Aquaculture and Fisheries Group Wageningen Institute of Animal Sciences Wageningen University and Research Wageningen The Netherlands
| | - Vincent Bonhomme
- UMR 5554 Institut des Sciences de l’Evolution, équipe Dynamique de la biodiversité Anthropo‐écologie Université de Montpellier CNRS IRD Montpellier Cedex 05 France
| | - Christian Möllmann
- Centre for Earth System Research and Sustainability (CEN) Institute of Marine Ecosystem and Fishery Science University of Hamburg Hamburg Germany
| | - Leopold Nagelkerke
- Aquaculture and Fisheries Group Wageningen Institute of Animal Sciences Wageningen University and Research Wageningen The Netherlands
| | - Sonia Bejarano
- Reef Systems Research Group Ecology Department Leibniz Centre for Tropical Marine Research Bremen Germany
| |
Collapse
|
7
|
Lutek K, Donatelli CM, Standen EM. Patterns and processes in amphibious fish: biomechanics and neural control of fish terrestrial locomotion. J Exp Biol 2022; 225:275243. [PMID: 35502693 DOI: 10.1242/jeb.242395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Amphibiousness in fishes spans the actinopterygian tree from the earliest to the most recently derived species. The land environment requires locomotor force production different from that in water, and a diversity of locomotor modes have evolved across the actinopterygian tree. To compare locomotor mode between species, we mapped biomechanical traits on an established amphibious fish phylogeny. Although the diversity of fish that can move over land is large, we noted several patterns, including the rarity of morphological and locomotor specialization, correlations between body shape and locomotor mode, and an overall tendency for amphibious fish to be small. We suggest two idealized empirical metrics to consider when gauging terrestrial 'success' in fishes and discuss patterns of terrestriality in fishes considering biomechanical scaling, physical consequences of shape, and tissue plasticity. Finally, we suggest four ways in which neural control could change in response to a novel environment, highlighting the importance and challenges of deciphering when these control mechanisms are used. We aim to provide an overview of the diversity of successful amphibious locomotion strategies and suggest several frameworks that can guide the study of amphibious fish and their locomotion.
Collapse
Affiliation(s)
- K Lutek
- Department of Biology, University of Ottawa, Ottawa, Canada, K1N 6N5
| | - C M Donatelli
- Department of Biology, University of Ottawa, Ottawa, Canada, K1N 6N5
| | - E M Standen
- Department of Biology, University of Ottawa, Ottawa, Canada, K1N 6N5
| |
Collapse
|
8
|
Huang Z, Ma S, Bagheri H, Ren C, Marvi H. The Impact of Dorsal Fin Design on the Swimming Performance of a Snake-Like Robot. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3153903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Matthews DG, Lauder GV. Fin-fin interactions during locomotion in a simplified biomimetic fish model. BIOINSPIRATION & BIOMIMETICS 2021; 16:046023. [PMID: 34015781 DOI: 10.1088/1748-3190/ac03a8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Fish median fins are extremely diverse, but their function is not yet fully understood. Various biological studies on fish and engineering studies on flapping foils have revealed that there are hydrodynamic interactions between fins arranged in tandem and that these interactions can lead to improved performance by the posterior fin. This performance improvement is often driven by the augmentation of a leading-edge vortex on the trailing fin. Past experimental studies have necessarily simplified fish anatomy to enable more detailed engineering analyses, but such simplifications then do not capture the complexities of an undulating fish-like body with fins attached. We present a flexible fish-like robotic model that better represents the kinematics of swimming fishes while still being simple enough to examine a range of morphologies and motion patterns. We then create statistical models that predict the individual effects of each kinematic and morphological variable. Our results demonstrate that having fins arranged in tandem on an undulating body can lead to more steady production of thrust forces determined by the distance between the fins and their relative motion. We find that these same variables also affect swimming speed. Specifically, when swimming at high frequencies, self-propelled speed decreases by 12%-26% due to out of phase fin motion. Flow visualization reveals that variation within this range is caused in part by fin-fin flow interactions that affect leading edge vortices. Our results indicate that undulatory swimmers should optimize both the positioning and relative motion of their median fins in order to reduce force oscillations and improve overall performance while swimming.
Collapse
Affiliation(s)
- David G Matthews
- The Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, United States of America
- Department of Organismal and Evolutionary Biology, Harvard University, Cambridge, MA 02138, United States of America
| | - George V Lauder
- The Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, United States of America
- Department of Organismal and Evolutionary Biology, Harvard University, Cambridge, MA 02138, United States of America
| |
Collapse
|
10
|
Gerullis P, Reinel CP, Schuster S. Archerfish coordinate fin maneuvers with their shots. J Exp Biol 2021; 224:jeb.233718. [PMID: 33785500 DOI: 10.1242/jeb.233718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 03/15/2021] [Indexed: 11/20/2022]
Abstract
Archerfish down a variety of aerial prey from a range of distances using water jets that they adjust to the size and distance of their prey. We describe here that characteristic rapid fin maneuvers, most notably of the pectoral and pelvic fins, are precisely coordinated with the release of the jet. We discovered these maneuvers in two fish, the jets of which had been characterized in detail, that had been trained to shoot from fixed positions at targets at different heights and that remained stable during their shots. Based on the findings in these individuals, we examined shooting-associated fin movement in 28 further archerfish of two species that could shoot from freely chosen positions at targets at different heights. Slightly before the onset of the water jet, at a time when the shooter remains stable, the pectoral fins of all shooters switched from asynchronous low-amplitude beating to a synchronized rapid forward flap. The onset and duration of the forward and subsequent backward flap were robust across all individuals and shooting angles but depended on target height. The pelvic fins were slowly adducted at the start of the jet and stopped moving after its release. All other fins also showed a characteristic sequence of activation, some starting ∼0.5 s before the shot. Our findings suggest that shooting-related fin maneuvers are needed to stabilize the shooter, and that these maneuvers are an important component in the precise and powerful far-distance shooting in archerfish.
Collapse
Affiliation(s)
- Peggy Gerullis
- Department of Animal Physiology, University of Bayreuth, 95440 Bayreuth, Germany
| | - Caroline P Reinel
- Department of Animal Physiology, University of Bayreuth, 95440 Bayreuth, Germany
| | - Stefan Schuster
- Department of Animal Physiology, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
11
|
Burns MD. Adaptation to herbivory and detritivory drives the convergent evolution of large abdominal cavities in a diverse freshwater fish radiation (Otophysi: Characiformes). Evolution 2021; 75:688-705. [PMID: 33491179 DOI: 10.1111/evo.14178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/29/2022]
Abstract
Convergent evolution is often interpreted as evidence of natural selection favoring an optimal phenotype during adaptation. Morphological convergence is frequently found among lineages that converge on diet, but most studies have focused on morphological traits that relate exclusively to food handling and processing. In vertebrates, there is a strong inverse relationship between intestine length and trophic level. However, little is known about whether adaptation to a low trophic level influences the evolution of abdominal cavities that can accommodate larger intestines. Here, I reconstruct the evolutionary history of trophic ecology and examine abdominal cavity shape across 157 species of the fish order Characiformes to determine whether adaptation to an herbivorous-detritivorous diet drives convergent evolution of large abdominal cavities. Herbivorous-detritivorous species evolved significantly larger abdominal cavities than other trophic groups and repeatedly converged on a similar abdominal cavity morphology. Other trophic groups evolved abdominal cavity morphologies either stochastically or by selective pressures from an untested ecological character. These findings demonstrate that the selective demands of a larger intestinal tract promote the repeated convergence of a large abdominal cavity within herbivorous-detritivorous characiform fishes, while allowing other lineages to evolve randomly or adapt in response to other selection pressures, contributing to the overall body shape diversity of the order.
Collapse
Affiliation(s)
- Michael D Burns
- Cornell Lab of Ornithology, Cornell Museum of Vertebrates, Cornell University, Ithaca, New York, USA
| |
Collapse
|
12
|
Dagenais P, Aegerter CM. Hydrodynamic stress maps on the surface of a flexible fin-like foil. PLoS One 2021; 16:e0244674. [PMID: 33434237 PMCID: PMC7802974 DOI: 10.1371/journal.pone.0244674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 12/14/2020] [Indexed: 11/18/2022] Open
Abstract
We determine the time dependence of pressure and shear stress distributions on the surface of a pitching and deforming hydrofoil from measurements of the three dimensional flow field. Period-averaged stress maps are obtained both in the presence and absence of steady flow around the foil. The velocity vector field is determined via volumetric three-component particle tracking velocimetry and subsequently inserted into the Navier-Stokes equation to calculate the total hydrodynamic stress tensor. In addition, we also present a careful error analysis of such measurements, showing that local evaluations of stress distributions are possible. The consistency of the force time-dependence is verified using a control volume analysis. The flapping foil used in the experiments is designed to allow comparison with a small trapezoidal fish fin, in terms of the scaling laws that govern the oscillatory flow regime. As a complementary approach, unsteady Euler-Bernoulli beam theory is employed to derive instantaneous transversal force distributions on the flexible hydrofoil from its deflection and the results are compared to the spatial distributions of hydrodynamic stresses obtained from the fluid velocity field.
Collapse
Affiliation(s)
- Paule Dagenais
- Physik-Institut, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
13
|
Mendelson L, Techet AH. Jumping archer fish exhibit multiple modes of fin-fin interaction. BIOINSPIRATION & BIOMIMETICS 2020; 16:016006. [PMID: 32916673 DOI: 10.1088/1748-3190/abb78e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
Aquatic organisms jumping for aerial prey require high-performance propulsion, accurate aim, and trajectory control to succeed. Archer fish, capable of jumping up to twice their body length out of the water, address these considerations through multifaceted fin and body kinematics. In this study, we utilized 3D synthetic aperture particle image velocimetry to visualize the wakes of archer fish throughout the jumping process. We found that multiple modes of interaction between the anal and caudal fins occur during jump behaviors. Time-resolved volumetric measurements presented herein illustrate the hydrodynamics of each interaction mode in detail. Additionally, regardless of which fin uses and interactions were exhibited during a jump, we found similar relationships between the cumulative impulse of multiple propulsive vortices in the wake and the instantaneous ballistic momentum of the fish. Our results suggests that fin use may compensate for variations in individual kinematic events and in the aiming posture assumed prior to jumping and highlight how interactions between tailbeats and other fins help the archer fish reach necessary prey heights in a spatially- and visually-constrained environment. In the broader context of bioinspired propulsion, the archer fish exemplifies that multiple beneficial hydrodynamic interactions can be generated in a high-performance scenario using a single set of actuators.
Collapse
Affiliation(s)
- Leah Mendelson
- Experimental Hydrodynamics Laboratory, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
- Department of Engineering, Harvey Mudd College, Claremont, CA 91711, United States of America
| | - Alexandra H Techet
- Experimental Hydrodynamics Laboratory, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| |
Collapse
|
14
|
Orbach DN, Donovan M, Purchase CF. Sexually selected traits are larger and more variable in male than female beach-spawning capelin, Mallotus villosus. JOURNAL OF FISH BIOLOGY 2019; 95:1385-1390. [PMID: 31574561 DOI: 10.1111/jfb.14145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
We evaluated whether morphological traits in capelin, Mallotus villosus, that appear to be sexually selected (pectoral fin, pelvic fin, anal fin, lateral ridge) were larger and more variable in males than females compared with naturally selected morphological traits (eyes, dorsal fin). Photographs were obtained of 136 capelin captured at two spawning sites and standardised measurements were taken of six morphological traits. Males had larger traits than females for a given body size and this was most pronounced in the traits thought to be sexually selected. Body size explained much of the variation in female traits but less variation in male traits, suggesting alternative selection pressures are involved. We suggest that larger male body size aids in endurance rivalry and sexually dimorphic traits help males to remain in physical contact with females while spawning on the beach.
Collapse
Affiliation(s)
- Dara N Orbach
- Department of Biological Sciences, Mount Holyoke College, South Hadley, Massachusetts, USA
| | - Meghan Donovan
- Centre for Sustainable Aquatic Resources, Marine Institute, St. John's, Newfoundland, Canada
| | - Craig F Purchase
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| |
Collapse
|
15
|
McGaugh SE, Weaver S, Gilbertson EN, Garrett B, Rudeen ML, Grieb S, Roberts J, Donny A, Marchetto P, Gluesenkamp AG. Evidence for rapid phenotypic and behavioural shifts in a recently established cavefish population. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Cave colonization offers a natural laboratory to study an extreme environmental shift, and diverse cave species from around the world often have converged on robust morphological, physiological and behavioural traits. The Mexican tetra (Astyanax mexicanus) has repeatedly colonized caves in the Sierra de El Abra and Sierra de Guatemala regions of north-east Mexico ~0.20–1 Mya, indicating an ability to adapt to the cave environment. The time frame for the evolution of these traits in any cave animal, however, is poorly understood. Astyanax mexicanus from the Río Grande in South Texas were brought to Central Texas beginning in the early 1900s and colonized underground environments. Here, we investigate whether phenotypic and behavioural differences have occurred rapidly between a surface population and a geographically proximate cave population, probably of recent origin. Fish from the cave and surface populations differ significantly in morphological traits, including coloration, lateral line expansion and dorsal fin placement. Striking behavioural shifts in aggression, feeding and wall-following have also occurred. Together, our results suggest that morphological and behavioural changes accompanying cave colonization can be established rapidly, and this system offers an exciting and unique opportunity for isolating the genetic and environmental contributions to colonization of extreme environments.
Collapse
Affiliation(s)
- Suzanne E McGaugh
- Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, USA
| | - Sam Weaver
- Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, USA
| | - Erin N Gilbertson
- Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, USA
| | - Brianna Garrett
- Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, USA
| | - Melissa L Rudeen
- Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, USA
| | - Stephanie Grieb
- Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, USA
| | - Jennifer Roberts
- Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, USA
| | - Alexandra Donny
- Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, USA
| | - Peter Marchetto
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN, USA
| | | |
Collapse
|
16
|
Experimental Study of Body-Fin Interaction and Vortex Dynamics Generated by a Two Degree-Of-Freedom Fish Model. Biomimetics (Basel) 2019; 4:biomimetics4040067. [PMID: 31597296 PMCID: PMC6963735 DOI: 10.3390/biomimetics4040067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/28/2019] [Accepted: 09/24/2019] [Indexed: 11/26/2022] Open
Abstract
Oscillatory modes of swimming are used by a majority of aquatic swimmers to generate thrust. This work seeks to understand the phenomenological relationship between the body and caudal fin for fast and efficient thunniform swimming. Phase-averaged velocity data was collected and analyzed in order to understand the effects of body-fin kinematics on the wake behind a two degree-of-freedom fish model. The model is based on the yellowfin tuna (Thunnus albacares) which is known to be both fast and efficient. Velocity data was obtained along the side of the tail and caudal fin region as well as in the wake downstream of the caudal fin. Body-generated vortices were found to be small and have an insignificant effect on the caudal fin wake. The evolution of leading edge vortices formed on the caudal fin varied depending on the body-fin kinematics. The circulation produced at the trailing edge during each half-cycle was found to be relatively insensitive to the freestream velocity, but also varied with body-fin kinematics. Overall, the generation of vorticity in the wake was found to dependent on the trailing edge motion profile and velocity. Even relatively minor deviations from the commonly used model of sinusoidal motion is shown to change the strength and organization of coherent structures in the wake, which have been shown in the literature to be related to performance metrics such as thrust and efficiency.
Collapse
|
17
|
Passing the Wake: Using Multiple Fins to Shape Forces for Swimming. Biomimetics (Basel) 2019; 4:biomimetics4010023. [PMID: 31105208 PMCID: PMC6477606 DOI: 10.3390/biomimetics4010023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/03/2019] [Accepted: 03/04/2019] [Indexed: 11/17/2022] Open
Abstract
Fish use coordinated motions of multiple fins and their body to swim and maneuver underwater with more agility than contemporary unmanned underwater vehicles (UUVs). The location, utilization and kinematics of fins vary for different locomotory tasks and fish species. The relative position and timing (phase) of fins affects how the downstream fins interact with the wake shed by the upstream fins and body, and change the magnitude and temporal profile of the net force vector. A multifin biorobotic experimental platform and a two-dimensional computational fluid dynamic simulation were used to understand how the propulsive forces produced by multiple fins were affected by the phase and geometric relationships between them. This investigation has revealed that forces produced by interacting fins are very different from the vector sum of forces from combinations of noninteracting fins, and that manipulating the phase and location of multiple interacting fins greatly affect the magnitude and shape of the produced propulsive forces. The changes in net forces are due, in large part, to time-varying wakes from dorsal and anal fins altering the flow experienced by the downstream body and caudal fin. These findings represent a potentially powerful means of manipulating the swimming forces produced by multifinned robotic systems.
Collapse
|
18
|
Wen L, Ren Z, Di Santo V, Hu K, Yuan T, Wang T, Lauder GV. Understanding Fish Linear Acceleration Using an Undulatory Biorobotic Model with Soft Fluidic Elastomer Actuated Morphing Median Fins. Soft Robot 2018; 5:375-388. [DOI: 10.1089/soro.2017.0085] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
19
|
Li R, Xiao Q, Liu Y, Hu J, Li L, Li G, Liu H, Hu K, Wen L. A multi-body dynamics based numerical modelling tool for solving aquatic biomimetic problems. BIOINSPIRATION & BIOMIMETICS 2018; 13:056001. [PMID: 29916395 DOI: 10.1088/1748-3190/aacd60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this paper, a versatile multi-body dynamic algorithm is developed to integrate an incompressible fluid flow with a bio-inspired multibody dynamic system. Of particular interest to the biomimetic application, the algorithm is developed via four properly selected benchmark verifications. The present tool has shown its powerful capability for solving a variety of biomechanics fish swimming problems, including self-propelled multiple degrees of freedom with a rigid undulatory body, multiple deformable fins and an integrated system with both undulatory fish body and flexible fins. The established tool has paved the way for future investigation on more complex bio-inspired robots and live fish, for either propulsion or manoeuvring purposes.
Collapse
Affiliation(s)
- Ruoxin Li
- Department of Naval Architecture, Ocean and Marine Engineering, University of Strathclyde, Glasgow, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Fish FE, Lauder GV. Control surfaces of aquatic vertebrates: active and passive design and function. ACTA ACUST UNITED AC 2018; 220:4351-4363. [PMID: 29187618 DOI: 10.1242/jeb.149617] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Aquatic vertebrates display a variety of control surfaces that are used for propulsion, stabilization, trim and maneuvering. Control surfaces include paired and median fins in fishes, and flippers and flukes in secondarily aquatic tetrapods. These structures initially evolved from embryonic fin folds in fishes and have been modified into complex control surfaces in derived aquatic tetrapods. Control surfaces function both actively and passively to produce torque about the center of mass by the generation of either lift or drag, or both, and thus produce vector forces to effect rectilinear locomotion, trim control and maneuvers. In addition to fins and flippers, there are other structures that act as control surfaces and enhance functionality. The entire body can act as a control surface and generate lift for stability in destabilizing flow regimes. Furthermore, control surfaces can undergo active shape change to enhance their performance, and a number of features act as secondary control structures: leading edge tubercles, wing-like canards, multiple fins in series, finlets, keels and trailing edge structures. These modifications to control surface design can alter flow to increase lift, reduce drag and enhance thrust in the case of propulsive fin-based systems in fishes and marine mammals, and are particularly interesting subjects for future research and application to engineered systems. Here, we review how modifications to control surfaces can alter flow and increase hydrodynamic performance.
Collapse
Affiliation(s)
- Frank E Fish
- Department of Biology, West Chester University, West Chester, PA 19383, USA
| | - George V Lauder
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
21
|
Akanyeti O, Putney J, Yanagitsuru YR, Lauder GV, Stewart WJ, Liao JC. Accelerating fishes increase propulsive efficiency by modulating vortex ring geometry. Proc Natl Acad Sci U S A 2017; 114:13828-13833. [PMID: 29229818 PMCID: PMC5748167 DOI: 10.1073/pnas.1705968115] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Swimming animals need to generate propulsive force to overcome drag, regardless of whether they swim steadily or accelerate forward. While locomotion strategies for steady swimming are well characterized, far less is known about acceleration. Animals exhibit many different ways to swim steadily, but we show here that this behavioral diversity collapses into a single swimming pattern during acceleration regardless of the body size, morphology, and ecology of the animal. We draw on the fields of biomechanics, fluid dynamics, and robotics to demonstrate that there is a fundamental difference between steady swimming and forward acceleration. We provide empirical evidence that the tail of accelerating fishes can increase propulsive efficiency by enhancing thrust through the alteration of vortex ring geometry. Our study provides insight into how propulsion can be altered without increasing vortex ring size and represents a fundamental departure from our current understanding of the hydrodynamic mechanisms of acceleration. Our findings reveal a unifying hydrodynamic principle that is likely conserved in all aquatic, undulatory vertebrates.
Collapse
Affiliation(s)
- Otar Akanyeti
- The Whitney Laboratory for Marine Bioscience, Department of Biology, University of Florida, St. Augustine, FL 32080;
- The Department of Computer Science, Aberystwyth University, Ceredigion SY23 3FL, Wales
| | - Joy Putney
- The Whitney Laboratory for Marine Bioscience, Department of Biology, University of Florida, St. Augustine, FL 32080
- The School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
| | - Yuzo R Yanagitsuru
- The Whitney Laboratory for Marine Bioscience, Department of Biology, University of Florida, St. Augustine, FL 32080
| | - George V Lauder
- The Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
| | - William J Stewart
- The Whitney Laboratory for Marine Bioscience, Department of Biology, University of Florida, St. Augustine, FL 32080
- The Department of Science, Eastern Florida State College, Melbourne, FL 32935
| | - James C Liao
- The Whitney Laboratory for Marine Bioscience, Department of Biology, University of Florida, St. Augustine, FL 32080;
| |
Collapse
|
22
|
Maia A, Lauder GV, Wilga CD. Hydrodynamic function of dorsal fins in spiny dogfish and bamboo sharks during steady swimming. ACTA ACUST UNITED AC 2017; 220:3967-3975. [PMID: 28883085 DOI: 10.1242/jeb.152215] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 08/28/2017] [Indexed: 11/20/2022]
Abstract
A key feature of fish functional design is the presence of multiple fins that allow thrust vectoring and redirection of fluid momentum to contribute to both steady swimming and maneuvering. A number of previous studies have analyzed the function of dorsal fins in teleost fishes in this context, but the hydrodynamic function of dorsal fins in freely swimming sharks has not been analyzed, despite the potential for differential functional roles between the anterior and posterior dorsal fins. Previous anatomical research has suggested a primarily stabilizing role for shark dorsal fins. We evaluated the generality of this hypothesis by using time-resolved particle image velocimetry to record water flow patterns in the wake of both the anterior and posterior dorsal fins in two species of freely swimming sharks: bamboo sharks (Chiloscyllium plagiosum) and spiny dogfish (Squalus acanthias). Cross-correlation analysis of consecutive images was used to calculate stroke-averaged mean longitudinal and lateral velocity components, and vorticity. In spiny dogfish, we observed a velocity deficit in the wake of the first dorsal fin and flow acceleration behind the second dorsal fin, indicating that the first dorsal fin experiences net drag while the second dorsal fin can aid in propulsion. In contrast, the wake of both dorsal fins in bamboo sharks displayed increased net flow velocity in the majority of trials, reflecting a thrust contribution to steady swimming. In bamboo sharks, fluid flow in the wake of the second dorsal fin had higher absolute average velocity than that for first dorsal fin, and this may result from a positive vortex interaction between the first and second dorsal fins. These data suggest that the first dorsal fin in spiny dogfish has primarily a stabilizing function, while the second dorsal fin has a propulsive function. In bamboo sharks, both dorsal fins can contribute thrust and should be considered as propulsive adjuncts to the body during steady swimming. The function of shark dorsal fins can thus differ considerably among fins and species, and is not limited to a stabilizing role.
Collapse
Affiliation(s)
- Anabela Maia
- Department of Biological Sciences, College of the Environmental and Life Sciences, University of Rhode Island, 120 Flagg Road, Kingston, RI 02881-0816, USA
| | - George V Lauder
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Cheryl D Wilga
- Department of Biological Sciences, College of the Environmental and Life Sciences, University of Rhode Island, 120 Flagg Road, Kingston, RI 02881-0816, USA
| |
Collapse
|
23
|
Feilich KL. Swimming with multiple propulsors: measurement and comparison of swimming gaits in three species of neotropical cichlids. J Exp Biol 2017; 220:4242-4251. [DOI: 10.1242/jeb.157180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 09/18/2017] [Indexed: 11/20/2022]
Abstract
Comparative studies of fish swimming have been limited by the lack of quantitative definitions of fish gaits. Traditionally, steady swimming gaits have been defined categorically by the fin or region of the body that is used as the main propulsor and named after major fish clades (e.g. carangiform, anguilliform, balistiform, labriform). This method of categorization is limited by lack of explicit measurements, the inability to incorporate contributions of multiple propulsors, and the inability to compare gaits across different categories. I propose an alternative framework for the definition and comparison of fish gaits based on the propulsive contribution of each structure (body and/or fin) being used as a propulsor relative to locomotor output, and demonstrate the effectiveness of this framework by comparing three species of neotropical cichlids with different body shapes. This approach is modular with respect to the number of propulsors considered, flexible with respect to the definition of the propulsive inputs and the locomotor output of interest, and designed explicitly to handle combinations of propulsors. Using this approach, gait can be defined as a trajectory through propulsive space, and gait-transitions can be defined as discontinuities in the gait trajectory. By measuring and defining gait in this way, patterns of clustering corresponding to existing categorical definitions of gait may emerge, and gaits can be rigorously compared across categories.
Collapse
Affiliation(s)
- Kara L. Feilich
- University of Michigan, LSA Museum of Paleontology, 1109 Geddes Avenue, Ann Arbor, MI 48109, USA
| |
Collapse
|
24
|
Abstract
Adipose fins are found on approximately 20% of ray-finned fish species. The apparently rudimentary anatomy of adipose fins inspired a longstanding hypothesis that these fins are vestigial and lack function. However, adipose fins have evolved repeatedly within Teleostei, suggesting adaptive function. Recently, adipose fins were proposed to function as mechanosensors, detecting fluid flow anterior to the caudal fin. Here we test the hypothesis that adipose fins are mechanosensitive in the catfish Corydoras aeneus. Neural activity, recorded from nerves that innervate the fin, was shown to encode information on both movement and position of the fin membrane, including the magnitude of fin membrane displacement. Thus, the adipose fin of C. aeneus is mechanosensitive and has the capacity to function as a 'precaudal flow sensor'. These data force re-evaluation of adipose fin clipping, a common strategy for tagging fishes, and inform hypotheses of how function evolves in novel vertebrate appendages.
Collapse
Affiliation(s)
- Brett R Aiello
- Department of Organismal Biology and Anatomy, The University of Chicago, 1027 E. 57th Street, Chicago, IL 60637, USA
| | - Thomas A Stewart
- Department of Organismal Biology and Anatomy, The University of Chicago, 1027 E. 57th Street, Chicago, IL 60637, USA
| | - Melina E Hale
- Department of Organismal Biology and Anatomy, The University of Chicago, 1027 E. 57th Street, Chicago, IL 60637, USA
| |
Collapse
|
25
|
Décamps T, Herrel A, Ballesta L, Holon F, Rauby T, Gentil Y, Gentil C, Dutel H, Debruyne R, Charrassin J, Eveillard G, Clément G, Herbin M. The third dimension: a novel set‐up for filming coelacanths in their natural environment. Methods Ecol Evol 2016. [DOI: 10.1111/2041-210x.12671] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Thierry Décamps
- UMR7179 MNHN/CNRS Mécanismes Adaptatifs des Organismes aux Communautés Equipe FUNEVOL Muséum National d'Histoire Naturelle CP55 57 Rue Cuvier Paris Cedex 05 75231 France
| | - Anthony Herrel
- UMR7179 MNHN/CNRS Mécanismes Adaptatifs des Organismes aux Communautés Equipe FUNEVOL Muséum National d'Histoire Naturelle CP55 57 Rue Cuvier Paris Cedex 05 75231 France
- Evolutionary Morphology of Vertebrates Ghent University K.L. Ledeganckstraat 35 Gent B‐9000 Belgium
| | - Laurent Ballesta
- Andromède Océanologie Quai des Pêcheurs 7 Place Cassan Carnon plage 34280 France
| | - Florian Holon
- Andromède Océanologie Quai des Pêcheurs 7 Place Cassan Carnon plage 34280 France
| | - Thibault Rauby
- Andromède Océanologie Quai des Pêcheurs 7 Place Cassan Carnon plage 34280 France
| | - Yannick Gentil
- Andromède Océanologie Quai des Pêcheurs 7 Place Cassan Carnon plage 34280 France
| | - Cédric Gentil
- Andromède Océanologie Quai des Pêcheurs 7 Place Cassan Carnon plage 34280 France
| | - Hugo Dutel
- Medical and Biological Engineering Scholl of Engineering University of Hull Hull HU6 7RX UK
| | - Régis Debruyne
- UMS2700 OMSI MNHN/CNRS CP26 57 Rue Cuvier Paris Cedex 05 75231 France
| | - Jean‐Benoit Charrassin
- Sorbonne Universités UPMC Université Paris 06 UMR 7159 CNRS‐IRD‐MNHN LOCEAN‐IPSL Paris 75005 France
| | | | - Gaël Clément
- UMR7207 MNHN Sorbonne Universités/MNHN/CNRS/UPMC Paris 6 Centre de Recherches sur la Paléobiodiversité et les Paléoenvironnements Muséum national d'Histoire naturelle 57 rue Cuvier Paris cedex 05 75231 France
| | - Marc Herbin
- UMR7179 MNHN/CNRS Mécanismes Adaptatifs des Organismes aux Communautés Equipe FUNEVOL Muséum National d'Histoire Naturelle CP55 57 Rue Cuvier Paris Cedex 05 75231 France
| |
Collapse
|
26
|
Park SJ, Gazzola M, Park KS, Park S, Di Santo V, Blevins EL, Lind JU, Campbell PH, Dauth S, Capulli AK, Pasqualini FS, Ahn S, Cho A, Yuan H, Maoz BM, Vijaykumar R, Choi JW, Deisseroth K, Lauder GV, Mahadevan L, Parker KK. Phototactic guidance of a tissue-engineered soft-robotic ray. Science 2016; 353:158-62. [PMID: 27387948 DOI: 10.1126/science.aaf4292] [Citation(s) in RCA: 306] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 05/19/2016] [Indexed: 12/15/2022]
Abstract
Inspired by the relatively simple morphological blueprint provided by batoid fish such as stingrays and skates, we created a biohybrid system that enables an artificial animal--a tissue-engineered ray--to swim and phototactically follow a light cue. By patterning dissociated rat cardiomyocytes on an elastomeric body enclosing a microfabricated gold skeleton, we replicated fish morphology at 1/10 scale and captured basic fin deflection patterns of batoid fish. Optogenetics allows for phototactic guidance, steering, and turning maneuvers. Optical stimulation induced sequential muscle activation via serpentine-patterned muscle circuits, leading to coordinated undulatory swimming. The speed and direction of the ray was controlled by modulating light frequency and by independently eliciting right and left fins, allowing the biohybrid machine to maneuver through an obstacle course.
Collapse
Affiliation(s)
- Sung-Jin Park
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Mattia Gazzola
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Kyung Soo Park
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 121-742, Korea. Sogang-Harvard Research Center for Disease Biophysics, Sogang University, Seoul 121-742, Korea
| | - Shirley Park
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Valentina Di Santo
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Erin L Blevins
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Johan U Lind
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Patrick H Campbell
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Stephanie Dauth
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Andrew K Capulli
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Francesco S Pasqualini
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Seungkuk Ahn
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Alexander Cho
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Hongyan Yuan
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Ben M Maoz
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Ragu Vijaykumar
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 121-742, Korea. Sogang-Harvard Research Center for Disease Biophysics, Sogang University, Seoul 121-742, Korea
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA. Department of Psychiatry and Behavioral Sciences and the Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - George V Lauder
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - L Mahadevan
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA. Department of Organismic and Evolutionary Biology, Department of Physics, Wyss Institute for Biologically Inspired Engineering, Kavli Institute for Nanobio Science and Technology, Harvard University, Cambridge, MA 02138S, USA
| | - Kevin Kit Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA. Sogang-Harvard Research Center for Disease Biophysics, Sogang University, Seoul 121-742, Korea.
| |
Collapse
|
27
|
Aguilar-Medrano R, Frédérich B, Barber PH. Modular diversification of the locomotor system in damselfishes (Pomacentridae). J Morphol 2016; 277:603-14. [DOI: 10.1002/jmor.20523] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/24/2016] [Accepted: 01/28/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Rosalía Aguilar-Medrano
- Department of Ecology and Evolutionary Biology; University of California; 621 Charles E. Young Dr. South Los Angeles California 90095 USA
- Instituto De Ecología Aplicada, Universidad Autónoma De Tamaulipas; 356 División Del Golfo, Col. Libertad Ciudad Victoria Tamaulipas 87029 México
| | - Bruno Frédérich
- Laboratoire De Morphologie Fonctionnelle Et Evolutive, AFFISH Research Center, Université De Liège; Liège Belgium
| | - Paul H. Barber
- Department of Ecology and Evolutionary Biology; University of California; 621 Charles E. Young Dr. South Los Angeles California 90095 USA
| |
Collapse
|
28
|
Ren Z, Hu K, Wang T, Wen L. Investigation of Fish Caudal Fin Locomotion Using a Bio-Inspired Robotic Model. INT J ADV ROBOT SYST 2016. [DOI: 10.5772/63571] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Due to its advantages of realizing repeatable experiments, collecting data and isolating key factors, the bio-robotic model is becoming increasingly important in the study of biomechanics. The caudal fin of fish has long been understood to be central to propulsion performance, yet its contribution to manoeuverability, especially for homocercal caudal fin, has not been studied in depth. In the research outlined in this paper, we designed and fabricated a robotic caudal fin to mimic the morphology and the three-dimensional (3D) locomotion of the tail of the Bluegill Sunfish ( Lepomis macrochirus). We applied heave and pitch motions to the robot to model the movement of the caudal peduncle of its biological counterpart. Force measurements and 2D and 3D digital particle image velocimetry were then conducted under different movement patterns and flow speeds. From the force data, we found the addition of the 3D caudal fin locomotion significantly enhanced the lift force magnitude. The phase difference between the caudal fin ray and peduncle motion was a key factor in simultaneously controlling the thrust and lift. The increased flow speed had a negative impact on the generation of lift force. From the average 2D velocity field, we observed that the vortex wake directed water both axially and vertically, and formed a jet-like structure with notable wake velocity. The 3D instantaneous velocity field at 0.6 T indicated the 3D motion of the caudal fin may result in asymmetry wake flow patterns relative to the mid-sagittal plane and change the heading direction of the shedding vortexes. Based on these results, we hypothesized that live fish may actively tune the movement between the caudal fin rays and the peduncle to change the wake structure behind the tail and hence obtain different thrust and lift forces, which contributes to its high manoeuvrability.
Collapse
Affiliation(s)
- Ziyu Ren
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Kainan Hu
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Tianmiao Wang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Li Wen
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| |
Collapse
|
29
|
Aguilar-Medrano R, Barber PH. Ecomorphological diversification in reef fish of the genus Abudefduf (Percifomes, Pomacentridae). ZOOMORPHOLOGY 2015. [DOI: 10.1007/s00435-015-0291-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Istead A, Yavno S, Fox M. Morphological change and phenotypic plasticity in response to water velocity in three species of Centrarchidae. CAN J ZOOL 2015. [DOI: 10.1139/cjz-2015-0096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Morphological responses to flowing water have been documented in many fishes, but rarely reported in species with gibbose body types, despite their use of riffles in rivers and streams. In this study, we compared morphological responses to water flow in three gibbose centrarchids: bluegill (Lepomis macrochirus Rafinesque, 1819), pumpkinseed (Lepomis gibbosus (L., 1758)), and rock bass (Ambloplites rupestris (Rafinesque, 1817)). Flow-through plexiglass units, set to either a sustained flow or static conditions, were used to rear juveniles from each species for an 80-day period. All three species developed more streamlined body forms, longer and thinner caudal peduncles, and longer pectoral fins when reared in sustained current. Pumpkinseed exhibited the highest level of phenotypic plasticity in response to water flow, followed closely by bluegill; rock bass was the least plastic species. Rock bass developed longer predorsal and prepectoral lengths, which differ from the morphological changes observed in bluegill and pumpkinseed. The findings not only suggest that some gibbose fishes are capable of exhibiting strong phenotypic responses to water flow, but that many morphological changes are species specific, even within the same taxonomic family. Lastly, all three species developed shorter dorsal fin base lengths when reared under flowing condition, which differs from some previously documented work on fusiform fishes. The results of this study provide a better understanding of how morphology in three closely related species varies in response to environmental conditions.
Collapse
Affiliation(s)
- A.E. Istead
- Environmental and Resources Studies Program and Department of Biology, Trent University, Peterborough, ON K9J 7B8, Canada
| | - S. Yavno
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON K9J 7B8, Canada
| | - M.G. Fox
- Environmental and Resources Studies Program and Department of Biology, Trent University, Peterborough, ON K9J 7B8, Canada
| |
Collapse
|
31
|
Affiliation(s)
- A. Maia
- Department of Biological Sciences College of the Environmental and Life Sciences University of Rhode Island Kingston RI USA
| | - C. A. Wilga
- Department of Biological Sciences College of the Environmental and Life Sciences University of Rhode Island Kingston RI USA
| |
Collapse
|
32
|
Morphological correlates of river velocity and reproductive development in an ornamented stream fish. Evol Ecol 2015. [DOI: 10.1007/s10682-015-9790-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Lauder GV, Tangorra JL. Fish Locomotion: Biology and Robotics of Body and Fin-Based Movements. SPRINGER TRACTS IN MECHANICAL ENGINEERING 2015. [DOI: 10.1007/978-3-662-46870-8_2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Abstract
Research on fish locomotion has expanded greatly in recent years as new approaches have been brought to bear on a classical field of study. Detailed analyses of patterns of body and fin motion and the effects of these movements on water flow patterns have helped scientists understand the causes and effects of hydrodynamic patterns produced by swimming fish. Recent developments include the study of the center-of-mass motion of swimming fish and the use of volumetric imaging systems that allow three-dimensional instantaneous snapshots of wake flow patterns. The large numbers of swimming fish in the oceans and the vorticity present in fin and body wakes support the hypothesis that fish contribute significantly to the mixing of ocean waters. New developments in fish robotics have enhanced understanding of the physical principles underlying aquatic propulsion and allowed intriguing biological features, such as the structure of shark skin, to be studied in detail.
Collapse
Affiliation(s)
- George V Lauder
- Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138;
| |
Collapse
|
35
|
Gerry SP, Ellerby DJ. Resolving shifting patterns of muscle energy use in swimming fish. PLoS One 2014; 9:e106030. [PMID: 25165858 PMCID: PMC4148346 DOI: 10.1371/journal.pone.0106030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/29/2014] [Indexed: 11/19/2022] Open
Abstract
Muscle metabolism dominates the energy costs of locomotion. Although in vivo measures of muscle strain, activity and force can indicate mechanical function, similar muscle-level measures of energy use are challenging to obtain. Without this information locomotor systems are essentially a black box in terms of the distribution of metabolic energy. Although in situ measurements of muscle metabolism are not practical in multiple muscles, the rate of blood flow to skeletal muscle tissue can be used as a proxy for aerobic metabolism, allowing the cost of particular muscle functions to be estimated. Axial, undulatory swimming is one of the most common modes of vertebrate locomotion. In fish, segmented myotomal muscles are the primary power source, driving undulations of the body axis that transfer momentum to the water. Multiple fins and the associated fin muscles also contribute to thrust production, and stabilization and control of the swimming trajectory. We have used blood flow tracers in swimming rainbow trout (Oncorhynchus mykiss) to estimate the regional distribution of energy use across the myotomal and fin muscle groups to reveal the functional distribution of metabolic energy use within a swimming animal for the first time. Energy use by the myotomal muscle increased with speed to meet thrust requirements, particularly in posterior myotomes where muscle power outputs are greatest. At low speeds, there was high fin muscle energy use, consistent with active stability control. As speed increased, and fins were adducted, overall fin muscle energy use declined, except in the caudal fin muscles where active fin stiffening is required to maintain power transfer to the wake. The present data were obtained under steady-state conditions which rarely apply in natural, physical environments. This approach also has potential to reveal the mechanical factors that underlie changes in locomotor cost associated with movement through unsteady flow regimes.
Collapse
Affiliation(s)
- Shannon P. Gerry
- Biology Department, Fairfield University, Fairfield, Connecticut, United States of America
| | - David J. Ellerby
- Department of Biological Sciences, Wellesley College, Wellesley, Massachusetts, United States of America
| |
Collapse
|
36
|
Liu N, Peng Y, Lu X. Length effects of a built-in flapping flat plate on the flow over a traveling wavy foil. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:063019. [PMID: 25019891 DOI: 10.1103/physreve.89.063019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Indexed: 06/03/2023]
Abstract
Flow over the traveling wavy foil with a built-in rigid flapping plate at its trailing edge has been numerically studied using the multi-relaxation-time lattice Boltzmann method and immersed boundary method. The effect of the plate length on the propulsive performance such as the thrust force, energy consumption, and propeller efficiency has been investigated. Three modes (body force dominated, body and tail force competing and tail force dominated modes) have been identified that are associated with different hydrodynamics and flow structures. It is revealed that there exists a better performance plate length region and, within this region, a high propeller efficiency (close to its maximum value) is achieved due to a great increase in propulsive force at a cost of a slight increase in energy consumption. Furthermore, a weak stabilizing effect on locomotion movement is indicated by the slight decrease in the root-mean-square (rms) values of drag and lateral forces.
Collapse
Affiliation(s)
- Nansheng Liu
- Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yan Peng
- Department of Mathematics & Statistics and Center for Computational Sciences, Old Dominion University, Norfolk, Virginia 23529, USA
| | - Xiyun Lu
- Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
37
|
Shelton RM, Thornycroft P, Lauder GV. Undulatory locomotion of flexible foils as biomimetic models for understanding fish propulsion. J Exp Biol 2014; 217:2110-20. [DOI: 10.1242/jeb.098046] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
An undulatory pattern of body bending in which waves pass along the body from head to tail is a major means of creating thrust in many fish species during steady locomotion. Analyses of live fish swimming have provided the foundation of our current understanding of undulatory locomotion, but our inability to experimentally manipulate key variables such as body length, flexural stiffness, and tailbeat frequency in freely-swimming fish has limited our ability to investigate a number of important features of undulatory propulsion. In this paper we use a robotic apparatus to create an undulatory wave in swimming passive flexible foils by creating a heave motion at their leading edge, and compare this motion to body bending patterns of bluegill sunfish (Lepomis macrochirus) and clown knifefish (Notopterus chitala). We found similar swimming speeds, Reynolds and Strouhal numbers, and patterns of curvature and shape between these fish and foils suggesting that passive flexible foils provide a useful model for understanding fish undulatory locomotion. We swam foils with different lengths, stiffnesses, and heave frequencies while measuring forces, torques, and hydrodynamics. From measured forces and torques we calculated thrust and power coefficients, work, and cost of transport for each foil. We found that increasing frequency and stiffness produced faster swimming speeds and more thrust. Increasing length had minimal impact on swimming speed, but had a large impact on Strouhal number, cost of transport, and thrust coefficient. Foils that were both stiff and long had the lowest cost of transport (in mJ m-1 g-1) at low cycle frequencies, and the ability to reach the highest speed at high cycle frequencies.
Collapse
|
38
|
Yavno S, Fox MG. Morphological change and phenotypic plasticity in native and non-native pumpkinseed sunfish in response to sustained water velocities. J Evol Biol 2013; 26:2383-95. [PMID: 24070018 DOI: 10.1111/jeb.12230] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/15/2013] [Accepted: 07/23/2013] [Indexed: 11/29/2022]
Abstract
Phenotypic plasticity can contribute to the proliferation and invasion success of nonindigenous species by promoting phenotypic changes that increase fitness, facilitate range expansion and improve survival. In this study, differences in phenotypic plasticity were investigated using young-of-year pumpkinseed sunfish from colonies established with lentic and lotic populations originating in Canada (native) and Spain (non-native). Individuals were subjected to static and flowing water treatments for 80 days. Inter- and intra-population differences were tested using ancova and discriminant function analysis, and differences in phenotypic plasticity were tested through a manova of discriminant function scores. Differences between Iberian and North American populations were observed in dorsal fin length, pectoral fin position and caudal peduncle length. Phenotypic plasticity had less influence on morphology than genetic factors, regardless of population origin. Contrary to predictions, Iberian pumpkinseed exhibited lower levels of phenotypic plasticity than native populations, suggesting that canalization may have occurred in the non-native populations during the processes of introduction and range expansion.
Collapse
Affiliation(s)
- S Yavno
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | | |
Collapse
|
39
|
Maia A, Wilga CD. Anatomy and muscle activity of the dorsal fins in bamboo sharks and spiny dogfish during turning maneuvers. J Morphol 2013; 274:1288-98. [DOI: 10.1002/jmor.20179] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 06/09/2013] [Accepted: 06/18/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Anabela Maia
- Department of Biological Sciences, College of the Environmental and Life Sciences; University of Rhode Island; 120 Flagg Road; Kingston; Rhode Island; 02881-0816
| | - Cheryl D. Wilga
- Department of Biological Sciences, College of the Environmental and Life Sciences; University of Rhode Island; 120 Flagg Road; Kingston; Rhode Island; 02881-0816
| |
Collapse
|
40
|
Function of dorsal fins in bamboo shark during steady swimming. ZOOLOGY 2013; 116:224-31. [DOI: 10.1016/j.zool.2013.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 05/03/2013] [Accepted: 05/09/2013] [Indexed: 11/20/2022]
|
41
|
Welsh DP, Zhou M, Mussmann SM, Fields LG, Thomas CL, Pearish SP, Kilburn SL, Parker JL, Stein LR, Bartlett JA, Bertram CR, Bland TJ, Laskowski KL, Mommer BC, Zhuang X, Fuller RC. The effects of age, sex, and habitat on body size and shape of the blackstripe topminnow,Fundulus notatus(Cyprinodontiformes: Fundulidae) (Rafinesque 1820). Biol J Linn Soc Lond 2013. [DOI: 10.1111/bij.12022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daniel P. Welsh
- School of Integrative Biology; University of Illinois; 505 S. Goodwin Avenue; Urbana; IL; 61801; USA
| | - Muchu Zhou
- School of Integrative Biology; University of Illinois; 505 S. Goodwin Avenue; Urbana; IL; 61801; USA
| | - Steven M. Mussmann
- Department of Biological Sciences; University of Arkansas; Fayetteville; AR; 72701; USA
| | - Lauren G. Fields
- School of Integrative Biology; University of Illinois; 505 S. Goodwin Avenue; Urbana; IL; 61801; USA
| | - Claire L. Thomas
- Illinois Natural History Survey; 1816 S. Oak Street; Champaign; IL; 61820; USA
| | - Simon P. Pearish
- School of Integrative Biology; University of Illinois; 505 S. Goodwin Avenue; Urbana; IL; 61801; USA
| | | | - Jerrod L. Parker
- Illinois Natural History Survey; 1816 S. Oak Street; Champaign; IL; 61820; USA
| | - Laura R. Stein
- School of Integrative Biology; University of Illinois; 505 S. Goodwin Avenue; Urbana; IL; 61801; USA
| | | | - Christopher R. Bertram
- School of Integrative Biology; University of Illinois; 505 S. Goodwin Avenue; Urbana; IL; 61801; USA
| | - Thomas J. Bland
- Illinois Natural History Survey; 1816 S. Oak Street; Champaign; IL; 61820; USA
| | - Kate L. Laskowski
- School of Integrative Biology; University of Illinois; 505 S. Goodwin Avenue; Urbana; IL; 61801; USA
| | - Brett C. Mommer
- School of Integrative Biology; University of Illinois; 505 S. Goodwin Avenue; Urbana; IL; 61801; USA
| | - Xuan Zhuang
- School of Integrative Biology; University of Illinois; 505 S. Goodwin Avenue; Urbana; IL; 61801; USA
| | - Rebecca C. Fuller
- School of Integrative Biology; University of Illinois; 505 S. Goodwin Avenue; Urbana; IL; 61801; USA
| |
Collapse
|
42
|
Chadwell BA, Standen EM, Lauder GV, Ashley-Ross MA. Median fin function during the escape response of bluegill sunfish (Lepomis macrochirus). II: Fin-ray curvature. ACTA ACUST UNITED AC 2012; 215:2881-90. [PMID: 22837462 DOI: 10.1242/jeb.068593] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although kinematic analysis of individual fin rays provides valuable insight into the contribution of median fins to C-start performance, it paints an incomplete picture of the complex movements and deformation of the flexible fin surface. To expand our analysis of median fin function during the escape response of bluegill sunfish (Lepomis macrochirus), patterns of spanwise and chordwise curvature of the soft dorsal and anal fin surfaces were examined from the same video sequences previously used in analysis of fin-ray movement and orientation. We found that both the span and chord undergo undulation, starting in the anterior region of either fin. Initiated early in Stage 1 of the C-start, the undulation travels in a postero-distal direction, reaching the trailing edge of the fins during early Stage 2. Maximum spanwise curvature typically occurred among the more flexible posterior fin rays, though there was no consistent correlation between maximum curvature and fin-ray position. Undulatory patterns suggest different mechanisms of action for the fin regions. In the anterior fin region, where the fin rays are oriented dorsoventrally, undulation is directed primarily chordwise, initiating a transfer of momentum into the water to overcome the inertia of the flow and direct the water posteriorly. Within the posterior region, where the fin rays are oriented caudally, undulation is predominantly directed spanwise; thus, the posterior fin region acts to ultimately accelerate this water towards the tail to increase thrust forces. Treatment of median fins as appendages with uniform properties does not do justice to their complexity and effectiveness as control surfaces.
Collapse
Affiliation(s)
- Brad A Chadwell
- Department of Biology, Box 7325, Wake Forest University, Winston-Salem, NC 27109, USA
| | | | | | | |
Collapse
|
43
|
Stewart TA, Hale ME. First description of a musculoskeletal linkage in an adipose fin: innovations for active control in a primitively passive appendage. Proc Biol Sci 2012; 280:20122159. [PMID: 23135670 PMCID: PMC3574436 DOI: 10.1098/rspb.2012.2159] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adipose fins are enigmatic appendages found between the dorsal and caudal fins of some teleostean fishes. Long thought to be vestigial, degenerate second dorsal fins, remnants of the primitive gnathostome condition, adipose fins have since been recognized as novel morphologies. Unique among the fins of extant fishes, adipose fins have uniformly been described as passive structures, with no associated musculature. Here we provide the first description of a musculoskeletal linkage in an adipose fin, identified in the sun catfish Horabagrus brachysoma. Modified supracarinalis posterior muscles insert from the dorsal midline anterior to the adipose fin by tendons onto the fin base. An additional pair of posterior adipose-fin muscles also inserts upon the fin base and lay posterolateral to the fin, superficial to the axial muscle. This musculoskeletal linkage is an evolutionary innovation, a novel mechanism for controlling adipose-fin movement. These muscles appear to exemplify two approaches by which fins evolve to be actively controlled. We hypothesize that the anterior muscles arose through co-option of an existing fin linkage, while the posterior muscles originated as de novo fin muscles. These findings present adipose fins as a rich system within which to explore the evolution of novel vertebrate appendages.
Collapse
Affiliation(s)
- Thomas A Stewart
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|
44
|
Grünbaum T, Cloutier R, Vincent B. Dynamic skeletogenesis in fishes: Insight of exercise training on developmental plasticity. Dev Dyn 2012; 241:1507-24. [DOI: 10.1002/dvdy.23837] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2012] [Indexed: 11/10/2022] Open
|
45
|
Mejri R, Lo Brutto S, Hassine N, Arculeo M, Ben Hassine OK. Overlapping patterns of morphometric and genetic differentiation in the Mediterranean goby Pomatoschistus tortonesei Miller, 1968 (Perciformes, Gobiidae) in Tunisian lagoons. ZOOLOGY 2012; 115:239-44. [PMID: 22749615 DOI: 10.1016/j.zool.2012.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Revised: 01/15/2012] [Accepted: 02/16/2012] [Indexed: 10/28/2022]
Abstract
The genetic and morphological variations of Pomatoschistus tortonesei Miller, 1968 were studied in samples collected from three Tunisian lagoons. The morphological analysis included 18 morphometric measurements and was based on linear discriminant analysis (LDA), whereas the genetic analysis was based on the 16S-rRNA and COI mitochondrial genes. Both analyses differentiated the populations and demonstrated consistently a well-supported differentiation between the western Mediterranean samples (Bizerta and Tunis South lagoons) and the eastern Mediterranean sample (El Bibane lagoon). The observed differentiation could be explained in terms of the geographic isolation of the various populations and the influence of environmental factors, which differ greatly between the different sites. The molecular results revealed that the populations are characterised by unique haplotypes which are well defined in relation to limited gene flow and restricted dispersal abilities. Additionally, it seems that local selective pressures have modelled biometrical variation. Morphological results can reflect a differential habitat use revealed in the cephalic features and a different response to hydrodynamic constraints developed in dissimilar dorsal and pelvic fin lengths.
Collapse
Affiliation(s)
- Randa Mejri
- Unité de Recherche de Biologie, Ecologie et Parasitologie des Organismes Aquatiques, Département de Biologie, Tunis El Manar 2092, Tunisia
| | | | | | | | | |
Collapse
|
46
|
Danos N, Lauder GV. Challenging zebrafish escape responses by increasing water viscosity. J Exp Biol 2012; 215:1854-62. [DOI: 10.1242/jeb.068957] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Escape responses of fishes have long been studied as a model locomotor behavior in which hypothesized maximal or near-maximal muscle power output is used to generate rapid body bending. In this paper we present the results of experiments that challenged zebrafish (Danio rerio) to perform escape responses in water of altered viscosity, to better understand the effects that the fluid mechanical environment exerts on kinematics. We quantified escape kinematics using 1000 frames s–1 high-speed video, and compared escape response kinematics of fish in three media that differed in viscosity: 1 mPa s (normal water), 10 mPa s and 20 mPa s (20 times normal water viscosity). We hypothesized that because viscosity is increased but not density there will be a different effect on kinematic variables resulting from unsteady (acceleration-dependent) hydrodynamic forces and steady (velocity-dependent) ones. Similarly, we hypothesized that the kinematics of stage 1 will be less affected by viscosity than those of stage 2, as higher angular velocities are reached during stage 1 resulting in higher Reynolds numbers. Our results showed a significant overall effect of viscosity on escape response kinematics but the effect was not in accordance with our predictions. Statistical tests showed that increasing viscosity significantly decreased displacement of the center of mass during stage 1 and after 30 ms, and decreased maximum velocity of the center of mass, maximum angular velocity and acceleration during stage 1, but increased time to maximum angular acceleration and time to maximum linear velocity of the center of mass. Remarkably, increasing water viscosity 20 times did not significantly affect the duration of stage 1 or stage 2.
Collapse
Affiliation(s)
- Nicole Danos
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - George V. Lauder
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| |
Collapse
|
47
|
Noble C, Jones HAC, Damsgård B, Flood MJ, Midling KØ, Roque A, Sæther BS, Cottee SY. Injuries and deformities in fish: their potential impacts upon aquacultural production and welfare. FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:61-83. [PMID: 21918861 DOI: 10.1007/s10695-011-9557-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 09/04/2011] [Indexed: 05/31/2023]
Abstract
Fish can be the recipients of numerous injuries that are potentially deleterious to aquacultural production performance and welfare. This review will employ a systematic approach that classifies injuries in relation to specific anatomical areas of the fish and will evaluate the effects of injury upon production and welfare. The selected areas include the (1) mouth, (2) eye, (3) epidermis and (4) fins. These areas cover a large number of external anatomical features that can be injured during aquacultural procedures and husbandry practices. In particular, these injuries can be diagnosed on live fish, in a farm environment. For each anatomical feature, this review addresses (a) its structure and function and (b) defines key injuries that can affect the fish from a production and a welfare perspective. Particular attention is then given to (c) defining known and potential aquacultural risk factors before (d) identifying and outlining potential short- and long-term farming practices and mitigation strategies to reduce the incidence and prevalence of these injuries. The review then concludes with an analysis of potential synergies between risk factors the type of injury, in addition to identifying potential synergies in mitigation strategies. The paper covers both aquaculture and capture-based aquaculture.
Collapse
Affiliation(s)
- Chris Noble
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Tromsø, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Esposito CJ, Tangorra JL, Flammang BE, Lauder GV. A robotic fish caudal fin: effects of stiffness and motor program on locomotor performance. J Exp Biol 2012; 215:56-67. [DOI: 10.1242/jeb.062711] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SUMMARY
We designed a robotic fish caudal fin with six individually moveable fin rays based on the tail of the bluegill sunfish, Lepomis macrochirus. Previous fish robotic tail designs have loosely resembled the caudal fin of fishes, but have not incorporated key biomechanical components such as fin rays that can be controlled to generate complex tail conformations and motion programs similar to those seen in the locomotor repertoire of live fishes. We used this robotic caudal fin to test for the effects of fin ray stiffness, frequency and motion program on the generation of thrust and lift forces. Five different sets of fin rays were constructed to be from 150 to 2000 times the stiffness of biological fin rays, appropriately scaled for the robotic caudal fin, which had linear dimensions approximately four times larger than those of adult bluegill sunfish. Five caudal fin motion programs were identified as kinematic features of swimming behaviors in live bluegill sunfish, and were used to program the kinematic repertoire: flat movement of the entire fin, cupping of the fin, W-shaped fin motion, fin undulation and rolling movements. The robotic fin was flapped at frequencies ranging from 0.5 to 2.4 Hz. All fin motions produced force in the thrust direction, and the cupping motion produced the most thrust in almost all cases. Only the undulatory motion produced lift force of similar magnitude to the thrust force. More compliant fin rays produced lower peak magnitude forces than the stiffer fin rays at the same frequency. Thrust and lift forces increased with increasing flapping frequency; thrust was maximized by the 500× stiffness fin rays and lift was maximized by the 1000× stiffness fin rays.
Collapse
Affiliation(s)
| | - James L. Tangorra
- Department of Mechanical Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Brooke E. Flammang
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - George V. Lauder
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
49
|
Chadwell BA, Ashley-Ross MA. Musculoskeletal morphology and regionalization within the dorsal and anal fins of bluegill sunfish (Lepomis macrochirus). J Morphol 2011; 273:405-22. [DOI: 10.1002/jmor.11031] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 08/02/2011] [Accepted: 09/11/2011] [Indexed: 11/11/2022]
|
50
|
Abstract
SUMMARYA biomimetic underwater vehicle, which is propelled by two undulating long-fins, is introduced in this paper. The undulating or oscillating movements of symmetrical long-fins cause the complex locomotion of biomimetic underwater vehicle. For convenience, three motion modes are proposed and considered firstly. Then an inertial unit is installed for collection of accelerations and angular velocity. The underwater vehicle's MIMO model is reduced into a SISO model by some simplifications. A sine wave function deduced from the long-fin's time-varying membrane is proposed and used as the input of the biomimetic underwater vehicle ARMA model, and velocity or angular velocity is considered as the model output. The algorithms based on recursive weighted least squares are applied for model parameter identification. Experiments carried out with a long-fin propelled underwater vehicle. The experimental results show that the proposed methods can build valid locomotion models for three motion modes efficiently.
Collapse
|