1
|
Yantén AV, Cruz-Roa A, Sánchez FA. Traffic noise affects foraging behavior and echolocation in the Lesser Bulldog Bat, Noctilio albiventris (Chiroptera: Noctilionidae). Behav Processes 2022; 203:104775. [DOI: 10.1016/j.beproc.2022.104775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/02/2022]
|
2
|
Finger NM, Holderied M, Jacobs DS. Detection distances in desert dwelling, high duty cycle echolocators: A test of the foraging habitat hypothesis. PLoS One 2022; 17:e0268138. [PMID: 35588425 PMCID: PMC9119505 DOI: 10.1371/journal.pone.0268138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 04/24/2022] [Indexed: 11/18/2022] Open
Abstract
High Duty Cycle (HDC) echolocating bats use high frequency echolocation pulses that are clutter resistant, but their high frequencies give them limited range. Despite their unique ability to reject background clutter while simultaneously detecting fluttering prey, the frequency of their echolocation pulses has a strong correlation with level of environmental clutter, lower frequency pulses of HDC bats being associated with more open environments. The Foraging Habitat Hypothesis (FHH) proposes that the ecological significance of these lower frequency pulses in HDC bats in open environments is that they allow longer prey detection distances. To test the FHH, we compared the frequencies, Source Levels (SLs) and detection distances of Rhinolophus capensis, a HDC bat that has been shown to vary its call frequency in relation to habitat structure. As a further test of the FHH we investigated the SLs and detection distances of Rhinolophus damarensis (a heterospecific species that occurs in the same open desert environment as R. capensis but echolocates at a higher dominant pulse frequency). In the open desert, R. capensis emitted both lower frequency and higher SL pulses giving them longer detection distances than R. capensis in the cluttered fynbos. SL contributed more to differences in detection distances in both R. capensis and R. damarensis than frequency. In a few instances, R. damarensis achieved similar detection distances to desert–inhabiting R. capensis by emitting much higher SLs despite their average SLs being lower. These results suggest that lower frequency echolocation pulses are not a prerequisite for open desert living but may increase detection distance while avoiding energetic costs required for high SLs.
Collapse
Affiliation(s)
- Nikita M. Finger
- Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
| | - Marc Holderied
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - David S. Jacobs
- Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
- * E-mail:
| |
Collapse
|
3
|
Teshima Y, Hasegawa Y, Tsuchiya T, Moriyama R, Genda S, Kawamura T, Hiryu S. Reconstruction of echoes reaching bats in flight from arbitrary targets by acoustic simulation. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 151:2127. [PMID: 35364898 DOI: 10.1121/10.0009916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Echolocating bats perceive their environment by emitting ultrasonic pulses and listening to echoes that are reflected back from their surroundings. Behavioral decisions of bats are mainly dependent on echo information, and acoustical analysis of echoes is useful for understanding their behavioral decisions. To date, echoes have been measured using a telemetry microphone mounted on the bat's head; however, due to technical difficulties, it was not enough to measure all the echoes reaching the bats in flight. In this paper, we propose an approach to reconstruct the echoes of bats in flight using finite-difference time-domain (FDTD) method simulations based on the measured flight path, speed, and sound information from behavioral experiments. As a result, echoes from any target in flight can be correctly reconstructed, including the Doppler effect. We also analyzed the spatiotemporal transition among attended walls for Doppler shift compensation (DSC) during circling flight in the context of DSC behavior and found that the bats switch their attention to different walls and focus on the wall ahead of them in the direction of flight.
Collapse
Affiliation(s)
- Yu Teshima
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, 610-0394, Japan
| | - Yuta Hasegawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, 610-0394, Japan
| | - Takao Tsuchiya
- Faculty of Sciences and Engineering, Doshisha University, Kyotanabe, 610-0394, Japan
| | - Ryota Moriyama
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, 610-0394, Japan
| | - Shoko Genda
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, 610-0394, Japan
| | - Taku Kawamura
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, 610-0394, Japan
| | - Shizuko Hiryu
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, 610-0394, Japan
| |
Collapse
|
4
|
Roemer C, Julien J, Bas Y. An automatic classifier of bat sonotypes around the world. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Charlotte Roemer
- Centre d’Ecologie et des Sciences de la Conservation (Muséum national d’Histoire naturelle, CNRS, Sorbonne Université) Paris France
- CEFEUniversité de MontpellierCNRSEPHEIRDUniversité Paul Valéry Montpellier 3 Montpellier France
| | - Jean‐François Julien
- Centre d’Ecologie et des Sciences de la Conservation (Muséum national d’Histoire naturelle, CNRS, Sorbonne Université) Paris France
| | - Yves Bas
- Centre d’Ecologie et des Sciences de la Conservation (Muséum national d’Histoire naturelle, CNRS, Sorbonne Université) Paris France
- CEFEUniversité de MontpellierCNRSEPHEIRDUniversité Paul Valéry Montpellier 3 Montpellier France
| |
Collapse
|
5
|
Different as night and day: wild bats modify echolocation in complex environments when visual cues are present. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.07.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Rhinehart TA, Chronister LM, Devlin T, Kitzes J. Acoustic localization of terrestrial wildlife: Current practices and future opportunities. Ecol Evol 2020; 10:6794-6818. [PMID: 32724552 PMCID: PMC7381569 DOI: 10.1002/ece3.6216] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 01/17/2023] Open
Abstract
Autonomous acoustic recorders are an increasingly popular method for low-disturbance, large-scale monitoring of sound-producing animals, such as birds, anurans, bats, and other mammals. A specialized use of autonomous recording units (ARUs) is acoustic localization, in which a vocalizing animal is located spatially, usually by quantifying the time delay of arrival of its sound at an array of time-synchronized microphones. To describe trends in the literature, identify considerations for field biologists who wish to use these systems, and suggest advancements that will improve the field of acoustic localization, we comprehensively review published applications of wildlife localization in terrestrial environments. We describe the wide variety of methods used to complete the five steps of acoustic localization: (1) define the research question, (2) obtain or build a time-synchronizing microphone array, (3) deploy the array to record sounds in the field, (4) process recordings captured in the field, and (5) determine animal location using position estimation algorithms. We find eight general purposes in ecology and animal behavior for localization systems: assessing individual animals' positions or movements, localizing multiple individuals simultaneously to study their interactions, determining animals' individual identities, quantifying sound amplitude or directionality, selecting subsets of sounds for further acoustic analysis, calculating species abundance, inferring territory boundaries or habitat use, and separating animal sounds from background noise to improve species classification. We find that the labor-intensive steps of processing recordings and estimating animal positions have not yet been automated. In the near future, we expect that increased availability of recording hardware, development of automated and open-source localization software, and improvement of automated sound classification algorithms will broaden the use of acoustic localization. With these three advances, ecologists will be better able to embrace acoustic localization, enabling low-disturbance, large-scale collection of animal position data.
Collapse
Affiliation(s)
- Tessa A. Rhinehart
- Department of Biological SciencesUniversity of PittsburghPittsburghPAUSA
| | | | - Trieste Devlin
- Department of Biological SciencesUniversity of PittsburghPittsburghPAUSA
| | - Justin Kitzes
- Department of Biological SciencesUniversity of PittsburghPittsburghPAUSA
| |
Collapse
|
7
|
Pudlo A, Kloepper LN. Echolocation adaptations during high-speed roost re-entry for Brazilian free-tailed bats (Tadarida brasiliensis). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 145:EL1. [PMID: 30710921 DOI: 10.1121/1.5085308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/07/2018] [Indexed: 06/09/2023]
Abstract
Some bats re-enter their cave while using echolocation at very high speeds, but this behavior is poorly studied. Thermal imaging and an array of ultrasonic microphones were used to investigate the acoustic adaptations made during high-speed re-entry for single bats entering a cave. There was a significant overall effect between bat, distance to the ground, and its flight speed on pulse duration and interpulse interval (IPI). The data imply that overall bats reduce pulse duration, IPI, and bandwidth as they approach the cave and slow down, but the behavior changes among individuals.
Collapse
Affiliation(s)
- Allison Pudlo
- Department of Biology, Saint Mary's College, 262 Science Hall, Notre Dame, Indiana 46556, ,
| | - Laura N Kloepper
- Department of Biology, Saint Mary's College, 262 Science Hall, Notre Dame, Indiana 46556, ,
| |
Collapse
|
8
|
Kugler K, Luksch H, Peremans H, Vanderelst D, Wiegrebe L, Firzlaff U. Echo-acoustic and optic flow interact in bats. J Exp Biol 2019; 222:jeb.195404. [DOI: 10.1242/jeb.195404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/31/2019] [Indexed: 12/23/2022]
Abstract
Echolocating bats are known to fly and forage in complete darkness using the echoes of their actively emitted calls to navigate and to detect prey. However, under dim light conditions many bats can also rely on vision. Many flying animals have been shown to navigate by optic flow information, and recently, bats were shown to exploit echo-acoustic flow to navigate through dark habitats. Here we show for the bat Phyllostomus discolor that in lighted habitats where self-motion induced optic flow is strong, optic and echo-acoustic flow interact in their efficiency to guide navigation. Echo-acoustic flow showed a surprisingly strong effect compared to optic flow. We thus demonstrate multimodal interaction between two far-ranging spatial senses, vision and echolocation, available in this combination almost exclusively for bats and toothed whales. Our results highlight the importance of merging information from different sensory systems in a sensory-specialist animal to successfully navigate and hunt under difficult conditions.
Collapse
Affiliation(s)
- Kathrin Kugler
- Division of Neurobiology, Department Biology II, LMU Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
- German Center for Vertigo and Balance Disorders (IFB), Grosshadern Medical Centre, University of Munich, Munich, Germany
| | - Harald Luksch
- Chair of Zoology, Department of Animal Sciences, TU Munich, Liesel-Beckmann-Str. 4, 85354 Freising, Germany
| | - Herbert Peremans
- Department of Engineering Management, University of Antwerp, Antwerp, Belgium
| | - Dieter Vanderelst
- College of Engineering and Applied Science, University of Cincinnati, Cincinnati OH, USA
| | - Lutz Wiegrebe
- Division of Neurobiology, Department Biology II, LMU Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Uwe Firzlaff
- Chair of Zoology, Department of Animal Sciences, TU Munich, Liesel-Beckmann-Str. 4, 85354 Freising, Germany
| |
Collapse
|
9
|
Abstract
Some parameters of echolocation signals can be studied using a single receiver. However, studying parameters such as source level, echolocation beam shape, and direction of signal emission require the use of multireceiver arrays. Acoustic localization allows for determination of the position of bats at the time of signal emission. When multiple animals are present, calls can be assigned to individuals based on their location. This combination makes large multireceiver arrays a powerful tool in bioacoustics research. Here, an overview of different array configurations used to record bats in the field is presented. In some studies, the absolute position of bats and not only relative to the array is crucial. Combining acoustic localizations from a source with geo-referenced receivers allows for determining geo-referenced movements of bats. Current applications of arrays aim to improve acoustic monitoring of bats and study anthropogenic impact.
Collapse
Affiliation(s)
- Jens C. Koblitz
- BioAcoustics Network, Neuss, Germany; Department of Collective Behaviour, Max Planck Institute for Ornithology, Radolfzell, Germany; Department of Biology, University of Constance, Konstanz, Germany
- BioAcoustics Network, Neuss, Germany; Department of Collective Behaviour, Max Planck Institute for Ornithology, Radolfzell, Germany; Department of Biology, University of Constance, Konstanz, Germany
| |
Collapse
|
10
|
Jones TK, Wohlgemuth MJ, Conner WE. Active acoustic interference elicits echolocation changes in heterospecific bats. ACTA ACUST UNITED AC 2018; 221:jeb.176511. [PMID: 29950451 DOI: 10.1242/jeb.176511] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 06/14/2018] [Indexed: 11/20/2022]
Abstract
Echolocating bats often forage in the presence of both conspecific and heterospecific individuals, which have the potential to produce acoustic interference. Recent studies have shown that at least one bat species, the Brazilian free-tailed bat (Tadarida brasiliensis), produces specialized social signals that disrupt the sonar of conspecific competitors. We herein discuss the differences between passive and active jamming signals and test whether heterospecific jamming occurs in species overlapping spatiotemporally, as well as whether such interference elicits a jamming avoidance response. We compare the capture rates of tethered moths and the echolocation parameters of big brown bats (Eptesicus fuscus) challenged with the playback of the jamming signal normally produced by Brazilian free-tailed bats and playback of deconstructed versions of this signal. There were no differences in the capture rates of targets with and without the jamming signal, although significant changes in both spectral and temporal features of the bats' echolocation were observed. These changes are consistent with improvements of the signal-to-noise ratio in the presence of acoustic interference. Accordingly, we propose to expand the traditional definition of the jamming avoidance response, stating that echolocation changes in response to interference should decrease similarity between the two signals, to include any change that increases the ability to separate returning echoes from active jamming stimuli originating from conspecific and heterospecific organisms. Flexibility in echolocation is an important characteristic for overcoming various forms of acoustic interference and may serve a purpose in interspecific interactions as well as intraspecific ones.
Collapse
Affiliation(s)
- Te K Jones
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Melville J Wohlgemuth
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - William E Conner
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA
| |
Collapse
|
11
|
Vanderelst D, Peremans H. Modeling bat prey capture in echolocating bats: The feasibility of reactive pursuit. J Theor Biol 2018; 456:305-314. [PMID: 30102889 DOI: 10.1016/j.jtbi.2018.07.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/07/2018] [Accepted: 07/22/2018] [Indexed: 10/28/2022]
Abstract
Echolocating bats are the only mammals engaging in airborne pursuit. In this paper, we implement a reactive model of sonar based prey pursuit in bats. Our simulations include a realistic prey localization mechanism as well as a model of the bat's motor behavior. In contrast to previous work, our model incorporates bats' ability to execute rapid saccadic scanning motions keeping the prey within its field of view. Decoupling the flight direction from the gaze direction allows our model to capture erratically moving prey using reactive control. We conclude that the rapid shifts in gaze direction allow bats to deal with the narrow field of view provided by their sonar system.
Collapse
|
12
|
Recording animal vocalizations from a UAV: bat echolocation during roost re-entry. Sci Rep 2018; 8:7779. [PMID: 29773821 PMCID: PMC5958051 DOI: 10.1038/s41598-018-26122-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/04/2018] [Indexed: 11/19/2022] Open
Abstract
Unmanned aerial vehicles (UAVs) are rising in popularity for wildlife monitoring, but direct recordings of animal vocalizations have not yet been accomplished, likely due to the noise generated by the UAV. Echolocating bats, especially Tadarida brasiliensis, are good candidates for UAV recording due to their high-speed, high-altitude flight. Here, we use a UAV to record the signals of bats during morning roost re-entry. We designed a UAV to block the noise of the propellers from the receiving microphone, and report on the characteristics of bioacoustic recordings from a UAV. We report the first published characteristics of echolocation signals from bats during group flight and cave re-entry. We found changes in inter-individual time-frequency shape, suggesting that bats may use differences in call design when sensing in complex groups. Furthermore, our first documented successful recordings of animals in their natural habitat demonstrate that UAVs can be important tools for bioacoustic monitoring, and we discuss the ethical considerations for such monitoring.
Collapse
|
13
|
Fu Y, Kloepper LN. A systematic method for isolating, tracking and discriminating time-frequency components of bat echolocation calls. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 143:716. [PMID: 29495687 DOI: 10.1121/1.5023205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Echolocating bats can rapidly modify frequency modulation (FM) curvatures of their calls when facing challenging echolocation tasks. Frequency parameters, such as start/end/peak frequency, have often been extracted from the time-frequency domain to study the call variation. Even though this kind of signal investigation method reveals important findings, these approaches to analyze bat echolocation calls use bulk parameters, which hide subtleties in the call structure that may be important to the bat. In some cases, calls can have the same start and end frequencies but have different FM curvatures, and subsequently may influence the sensory task performance. In the present study, the authors demonstrate an algorithm using a combination of digital filters, power limited time-frequency information, derivative dynamic time warping, and agglomerative hierarchical clustering to extract and categorize the time-frequency components (TFCs) of 21 calls from Brazilian free-tailed bat (Tadarida brasiliensis) to quantitatively compare FM curvatures. The detailed curvature analysis shows an alternative perspective to look into the TFCs and hence serves as the preliminary step to understand the adaptive call design of bats.
Collapse
Affiliation(s)
- Yanqing Fu
- Department of Biology, Saint Mary's College, 149 Le Mans Hall, Notre Dame, Indiana 46556, USA
| | - Laura N Kloepper
- Department of Biology, Saint Mary's College, 149 Le Mans Hall, Notre Dame, Indiana 46556, USA
| |
Collapse
|
14
|
|
15
|
Vanderelst D, Steckel J, Boen A, Peremans H, Holderied MW. Place recognition using batlike sonar. eLife 2016; 5:e14188. [PMID: 27481189 PMCID: PMC4970868 DOI: 10.7554/elife.14188] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 06/20/2016] [Indexed: 11/28/2022] Open
Abstract
Echolocating bats have excellent spatial memory and are able to navigate to salient locations using bio-sonar. Navigating and route-following require animals to recognize places. Currently, it is mostly unknown how bats recognize places using echolocation. In this paper, we propose template based place recognition might underlie sonar-based navigation in bats. Under this hypothesis, bats recognize places by remembering their echo signature - rather than their 3D layout. Using a large body of ensonification data collected in three different habitats, we test the viability of this hypothesis assessing two critical properties of the proposed echo signatures: (1) they can be uniquely classified and (2) they vary continuously across space. Based on the results presented, we conclude that the proposed echo signatures satisfy both criteria. We discuss how these two properties of the echo signatures can support navigation and building a cognitive map.
Collapse
Affiliation(s)
- Dieter Vanderelst
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
- Active Perception Lab, University of Antwerp, Antwerp, Belgium
| | - Jan Steckel
- Active Perception Lab, University of Antwerp, Antwerp, Belgium
- Constrained Systems Lab, Faculty of Applied Engineering, University of Antwerp, Antwerp, Belgium
| | - Andre Boen
- Active Perception Lab, University of Antwerp, Antwerp, Belgium
| | | | - Marc W Holderied
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
16
|
Kugler K, Greiter W, Luksch H, Firzlaff U, Wiegrebe L. Echo-acoustic flow affects flight in bats. ACTA ACUST UNITED AC 2016; 219:1793-7. [PMID: 27045094 DOI: 10.1242/jeb.139345] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 03/21/2016] [Indexed: 11/20/2022]
Abstract
Flying animals need to react fast to rapid changes in their environment. Visually guided animals use optic flow, generated by their movement through structured environments. Nocturnal bats cannot make use of optic flow, but rely mostly on echolocation. Here, we show that bats exploit echo-acoustic flow to negotiate flight through narrow passages. Specifically, bats' flight between lateral structures is significantly affected by the echo-acoustic salience of those structures, independent of their physical distance. This is true even though echolocation, unlike vision, provides explicit distance cues. Moreover, the bats reduced the echolocation sound levels in stronger flow, probably to compensate for the increased summary target strength of the lateral reflectors. However, bats did not reduce flight velocity under stronger echo-acoustic flow. Our results demonstrate that sensory flow is a ubiquitous principle for flight guidance, independent of the fundamentally different peripheral representation of flow across the senses of vision and echolocation.
Collapse
Affiliation(s)
- Kathrin Kugler
- Division of Neurobiology, Department Biology II, LMU Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Wolfgang Greiter
- Lehrstuhl für Zoologie, Technische Universität München, Liesel-Beckmann-Str. 4, 85354 Freising, Germany
| | - Harald Luksch
- Lehrstuhl für Zoologie, Technische Universität München, Liesel-Beckmann-Str. 4, 85354 Freising, Germany
| | - Uwe Firzlaff
- Lehrstuhl für Zoologie, Technische Universität München, Liesel-Beckmann-Str. 4, 85354 Freising, Germany
| | - Lutz Wiegrebe
- Division of Neurobiology, Department Biology II, LMU Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
17
|
Vanderelst D, Holderied MW, Peremans H. Sensorimotor Model of Obstacle Avoidance in Echolocating Bats. PLoS Comput Biol 2015; 11:e1004484. [PMID: 26502063 PMCID: PMC4621039 DOI: 10.1371/journal.pcbi.1004484] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 07/31/2015] [Indexed: 11/18/2022] Open
Abstract
Bat echolocation is an ability consisting of many subtasks such as navigation, prey detection and object recognition. Understanding the echolocation capabilities of bats comes down to isolating the minimal set of acoustic cues needed to complete each task. For some tasks, the minimal cues have already been identified. However, while a number of possible cues have been suggested, little is known about the minimal cues supporting obstacle avoidance in echolocating bats. In this paper, we propose that the Interaural Intensity Difference (IID) and travel time of the first millisecond of the echo train are sufficient cues for obstacle avoidance. We describe a simple control algorithm based on the use of these cues in combination with alternating ear positions modeled after the constant frequency bat Rhinolophus rouxii. Using spatial simulations (2D and 3D), we show that simple phonotaxis can steer a bat clear from obstacles without performing a reconstruction of the 3D layout of the scene. As such, this paper presents the first computationally explicit explanation for obstacle avoidance validated in complex simulated environments. Based on additional simulations modelling the FM bat Phyllostomus discolor, we conjecture that the proposed cues can be exploited by constant frequency (CF) bats and frequency modulated (FM) bats alike. We hypothesize that using a low level yet robust cue for obstacle avoidance allows bats to comply with the hard real-time constraints of this basic behaviour. Echolocating bats can fly through complex environments in complete darkness. Swift and apparently effortless obstacle avoidance is the most fundamental function supported by biosonar. Despite this, we still do not know which acoustic cues, from among the many possible cues, bats actually exploit while avoiding obstacles. In this paper, we show using spatial simulations (2D and 3D) that the Interaural Intensity Difference (IID) and travel time of the first millisecond of the echo train in combination with alternating ear positions provide robust and reliable cues for obstacle avoidance. Simulating the echoes received by a flying bat, we show that simple phonotaxis can steer a bat clear from obstacles without performing 3D reconstruction of the layout of the scene. As such, this paper presents the first computationally explicit explanation for obstacle avoidance in realistic and complex 3D environments. We hypothesize that using low level yet robust cues for obstacle avoidance allows bats to comply with the hard real-time constraints of this basic behaviour.
Collapse
Affiliation(s)
- Dieter Vanderelst
- Active Perception Lab, University of Antwerp, Antwerp, Belgium
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
- * E-mail:
| | - Marc W. Holderied
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | | |
Collapse
|
18
|
Cvikel N, Levin E, Hurme E, Borissov I, Boonman A, Amichai E, Yovel Y. On-board recordings reveal no jamming avoidance in wild bats. Proc Biol Sci 2015; 282:20142274. [PMID: 25429017 DOI: 10.1098/rspb.2014.2274] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Animals often deal with situations in which vast sensory input is received simultaneously. They therefore must possess sophisticated mechanisms to select important input and ignore the rest. In bat echolocation, this problem is at its extreme. Echolocating bats emit sound signals and analyse the returning echoes to sense their environment. Bats from the same species use signals with similar frequencies. Nearby bats therefore face the difficulty of distinguishing their own echoes from the signals of other bats, a problem often referred to as jamming. Because bats commonly fly in large groups, jamming might simultaneously occur from numerous directions and at many frequencies. Jamming is a special case of the general phenomenon of sensory segregation. Another well-known example is the human problem of following conversation within a crowd. In both situations, a flood of auditory incoming signals must be parsed into important versus irrelevant information. Here, we present a novel method, fitting wild bats with a miniature microphone, which allows studying jamming from the bat's 'point of view'. Previous studies suggested that bats deal with jamming by shifting their echolocation frequency. On-board recordings suggest otherwise. Bats shifted their frequencies, but they did so because they were responding to the conspecifics as though they were nearby objects rather than avoiding being jammed by them. We show how bats could use alternative measures to deal with jamming instead of shifting their frequency. Despite its intuitive appeal, a spectral jamming avoidance response might not be the prime mechanism to avoid sensory interference from conspecifics.
Collapse
Affiliation(s)
- Noam Cvikel
- Department of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Eran Levin
- Department of Entomology, University of Arizona, Tuscon, AZ 85721, USA
| | - Edward Hurme
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Ivailo Borissov
- Department of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Arjan Boonman
- Department of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Eran Amichai
- Department of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yossi Yovel
- Department of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
19
|
Geva-Sagiv M, Las L, Yovel Y, Ulanovsky N. Spatial cognition in bats and rats: from sensory acquisition to multiscale maps and navigation. Nat Rev Neurosci 2015; 16:94-108. [PMID: 25601780 DOI: 10.1038/nrn3888] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Spatial orientation and navigation rely on the acquisition of several types of sensory information. This information is then transformed into a neural code for space in the hippocampal formation through the activity of place cells, grid cells and head-direction cells. These spatial representations, in turn, are thought to guide long-range navigation. But how the representations encoded by these different cell types are integrated in the brain to form a neural 'map and compass' is largely unknown. Here, we discuss this problem in the context of spatial navigation by bats and rats. We review the experimental findings and theoretical models that provide insight into the mechanisms that link sensory systems to spatial representations and to large-scale natural navigation.
Collapse
Affiliation(s)
- Maya Geva-Sagiv
- 1] Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel. [2] Edmond and Lily Safra Center for Brain Research, Hebrew University, Jerusalem 91904, Israel
| | - Liora Las
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yossi Yovel
- Department of Zoology and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nachum Ulanovsky
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
20
|
Genzel D, Hoffmann S, Prosch S, Firzlaff U, Wiegrebe L. Biosonar navigation above water II: exploiting mirror images. J Neurophysiol 2015; 113:1146-55. [DOI: 10.1152/jn.00264.2014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
As in vision, acoustic signals can be reflected by a smooth surface creating an acoustic mirror image. Water bodies represent the only naturally occurring horizontal and acoustically smooth surfaces. Echolocating bats flying over smooth water bodies encounter echo-acoustic mirror images of objects above the surface. Here, we combined an electrophysiological approach with a behavioral experimental paradigm to investigate whether bats can exploit echo-acoustic mirror images for navigation and how these mirrorlike echo-acoustic cues are encoded in their auditory cortex. In an obstacle-avoidance task where the obstacles could only be detected via their echo-acoustic mirror images, most bats spontaneously exploited these cues for navigation. Sonar ensonifications along the bats' flight path revealed conspicuous changes of the reflection patterns with slightly increased target strengths at relatively long echo delays corresponding to the longer acoustic paths from the mirrored obstacles. Recordings of cortical spatiotemporal response maps (STRMs) describe the tuning of a unit across the dimensions of elevation and time. The majority of cortical single and multiunits showed a special spatiotemporal pattern of excitatory areas in their STRM indicating a preference for echoes with (relative to the setup dimensions) long delays and, interestingly, from low elevations. This neural preference could effectively encode a reflection pattern as it would be perceived by an echolocating bat detecting an object mirrored from below. The current study provides both behavioral and neurophysiological evidence that echo-acoustic mirror images can be exploited by bats for obstacle avoidance. This capability effectively supports echo-acoustic navigation in highly cluttered natural habitats.
Collapse
Affiliation(s)
- Daria Genzel
- Department Biology II, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany; and
| | - Susanne Hoffmann
- Department Biology II, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany; and
- Chair of Zoology, Technische Universität München, Freising-Weihenstephan, Germany
| | - Selina Prosch
- Department Biology II, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany; and
| | - Uwe Firzlaff
- Chair of Zoology, Technische Universität München, Freising-Weihenstephan, Germany
| | - Lutz Wiegrebe
- Department Biology II, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany; and
| |
Collapse
|
21
|
Echo-acoustic flow dynamically modifies the cortical map of target range in bats. Nat Commun 2014; 5:4668. [PMID: 25131175 DOI: 10.1038/ncomms5668] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 07/11/2014] [Indexed: 11/08/2022] Open
Abstract
Echolocating bats use the delay between their sonar emissions and the reflected echoes to measure target range, a crucial parameter for avoiding collisions or capturing prey. In many bat species, target range is represented as an orderly organized map of echo delay in the auditory cortex. Here we show that the map of target range in bats is dynamically modified by the continuously changing flow of acoustic information perceived during flight ('echo-acoustic flow'). Combining dynamic acoustic stimulation in virtual space with extracellular recordings, we found that neurons in the auditory cortex of the bat Phyllostomus discolor encode echo-acoustic flow information on the geometric relation between targets and the bat's flight trajectory, rather than echo delay per se. Specifically, the cortical representation of close-range targets is enlarged when the lateral passing distance of the target decreases. This flow-dependent enlargement of target representation may trigger adaptive behaviours such as vocal control or flight manoeuvres.
Collapse
|
22
|
Haarsma AJ, Siepel H. Group size and dispersal ploys: an analysis of commuting behaviour of the pond bat ( Myotis dasycneme). CAN J ZOOL 2014. [DOI: 10.1139/cjz-2013-0052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Like most bat species, the pond bat (Myotis dasycneme (Boie, 1825)) lives in roosts more or less in the centre of their foraging habitat and are considered central-place foragers. Commuting routes, or flyways, between roosts and hunting areas have an essential ecological function for bats. We summarize the results of research performed on the commuting routes of pond bats between 2002 and 2009. We give, among others, a description on how bats disperse, how to recognize a commuting route, and details about the effort needed to make a complete survey of one commuting route. Furthermore, we make a relation between number of animals on the route and size of their respective roost. The results suggest pond bats are not completely reliant on waterways for reaching their foraging habitat; they use directional dispersal, following commuting routes over waterways in combination with shortcuts over land. These results provide information that can be used to better understand how bats use their commuting routes. Also, the knowledge can be applied to survey work.
Collapse
Affiliation(s)
- A.-J. Haarsma
- Centre for Ecosystem Studies, Alterra, Wageningen University and Research Centre, P.O. Box 47, NL-6700 AA Wageningen, the Netherlands
| | - H. Siepel
- Centre for Ecosystem Studies, Alterra, Wageningen University and Research Centre, P.O. Box 47, NL-6700 AA Wageningen, the Netherlands
- Animal Ecology and Ecophysiology Group, Institute for Water and Wetland Research, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, the Netherlands
| |
Collapse
|
23
|
Geipel I, Jung K, Kalko EKV. Perception of silent and motionless prey on vegetation by echolocation in the gleaning bat Micronycteris microtis. Proc Biol Sci 2013; 280:20122830. [PMID: 23325775 PMCID: PMC3574334 DOI: 10.1098/rspb.2012.2830] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Gleaning insectivorous bats that forage by using echolocation within dense forest vegetation face the sensorial challenge of acoustic masking effects. Active perception of silent and motionless prey in acoustically cluttered environments by echolocation alone has thus been regarded impossible. The gleaning insectivorous bat Micronycteris microtis however, forages in dense understory vegetation and preys on insects, including dragonflies, which rest silent and motionless on vegetation. From behavioural experiments, we show that M. microtis uses echolocation as the sole sensorial modality for successful prey perception within a complex acoustic environment. All individuals performed a stereotypical three-dimensional hovering flight in front of prey items, while continuously emitting short, multi-harmonic, broadband echolocation calls. We observed a high precision in target localization which suggests that M. microtis perceives a detailed acoustic image of the prey based on shape, surface structure and material. Our experiments provide, to our knowledge, the first evidence that a gleaning bat uses echolocation alone for successful detection, classification and precise localization of silent and motionless prey in acoustic clutter. Overall, we conclude that the three-dimensional hovering flight of M. microtis in combination with a frequent emission of short, high-frequency echolocation calls is the key for active prey perception in acoustically highly cluttered environments.
Collapse
Affiliation(s)
- Inga Geipel
- Institute of Experimental Ecology, University of Ulm, Albert-Einstein-Allee 11, 89069 Ulm, Germany.
| | | | | |
Collapse
|
24
|
Stilz WP, Schnitzler HU. Estimation of the acoustic range of bat echolocation for extended targets. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2012; 132:1765-1775. [PMID: 22978903 DOI: 10.1121/1.4733537] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Extended natural structures of the bat environment such as trees, meadows, and water surfaces were ensonified in distances from 1 to 20 m and the echoes recorded using a mobile ultrasonic sonar system. By compensating the atmospheric attenuation, the attenuation of the reflected echo caused by diffraction, energy absorption of the target, and two-way-geometric spreading was calculated for each distance. For each target type the attenuation of the compensated echo sound pressure level was fitted over distance using a linear function which yields simple laws of reflection loss and geometric spreading. By adding to this function again variable atmospheric attenuation, the overall attenuation of a signal reflected from these targets can be estimated for various conditions. Given the dynamic range of a sonar system, the acoustic maximum detection distance can thus be estimated. The results show that the maximum range is dominantly limited by atmospheric attenuation. Energy loss in the reflecting surface is more variable than geometric spreading loss and accounts for most of the differences between the ensonified targets. Depending on atmospheric conditions, echolocation frequency, and the dynamic range of the sonar system, the maximum range for extended backgrounds such as a forest edge can be as short as 2.4 m.
Collapse
Affiliation(s)
- Wolfram-Peter Stilz
- Animal Physiology, Institute for Neurobiology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| | | |
Collapse
|
25
|
Berthinussen A, Altringham J. Do bat gantries and underpasses help bats cross roads safely? PLoS One 2012; 7:e38775. [PMID: 22719941 PMCID: PMC3374807 DOI: 10.1371/journal.pone.0038775] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 05/13/2012] [Indexed: 11/19/2022] Open
Abstract
Major roads can reduce bat abundance and diversity over considerable distances. To mitigate against these effects and comply with environmental law, many European countries install bridges, gantries or underpasses to make roads permeable and safer to cross. However, through lack of appropriate monitoring, there is little evidence to support their effectiveness. Three underpasses and four bat gantries were investigated in northern England. Echolocation call recordings and observations were used to determine the number of bats using underpasses in preference to crossing the road above, and the height at which bats crossed. At gantries, proximity to the gantry and height of crossing bats were measured. Data were compared to those from adjacent, severed commuting routes that had no crossing structure. At one underpass 96% of bats flew through it in preference to crossing the road. This underpass was located on a pre-construction commuting route that allowed bats to pass without changing flight height or direction. At two underpasses attempts to divert bats from their original commuting routes were unsuccessful and bats crossed the road at the height of passing vehicles. Underpasses have the potential to allow bats to cross roads safely if built on pre-construction commuting routes. Bat gantries were ineffective and used by a very small proportion of bats, even up to nine years after construction. Most bats near gantries crossed roads along severed, pre-construction commuting routes at heights that put them in the path of vehicles. Crossing height was strongly correlated with verge height, suggesting that elevated verges may have some value in mitigation, but increased flight height may be at the cost of reduced permeability. Green bridges should be explored as an alternative form of mitigation. Robust monitoring is essential to assess objectively the case for mitigation and to ensure effective mitigation.
Collapse
Affiliation(s)
- Anna Berthinussen
- Institute of Integrative and Comparative Biology, University of Leeds, Leeds, United Kingdom
| | - John Altringham
- Institute of Integrative and Comparative Biology, University of Leeds, Leeds, United Kingdom
- * E-mail:
| |
Collapse
|
26
|
Voigt CC, Holderied MW. High manoeuvring costs force narrow-winged molossid bats to forage in open space. J Comp Physiol B 2012; 182:415-24. [PMID: 22048527 DOI: 10.1007/s00360-011-0627-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 10/13/2011] [Accepted: 10/18/2011] [Indexed: 10/16/2022]
Abstract
Molossid bats are specialised aerial-hawkers that, like their diurnal ecological counterparts, swallows and swifts, hunt for insects in open spaces. The long and narrow wings of molossids are considered energetically adapted to fast flight between resource patches, but less suited for manoeuvring in more confined spaces, such as between tree-tops or in forest gaps. To understand whether a potential increase in metabolic costs of manoeuvring excludes molossids from foraging in more confined spaces, we measured energy costs and speed of manoeuvring flight in two tropical molossids, 18 g Molossus currentium and 23 g Molossus sinaloae, when flying in a ~500 m(3) hexagonal enclosure (~120 m(2) area), which is of similar dimensions as typical forest gaps. Flight metabolism averaged 10.21 ± 3.00 and 11.32 ± 3.54 ml CO(2) min(-1), and flight speeds 5.65 ± 0.47 and 6.27 ± 0.68 m s(-1) for M. currentium and M. sinaloae respectively. Metabolic rate during flight was higher for the M. currentium than for the similar-sized, but broader-winged frugivore Carollia sowelli, corroborating that broad-winged bats are better adapted to flying in confined spaces. These higher metabolic costs of manoeuvring flight may be caused by having to fly slower than the optimal foraging speed, and by the additional metabolic costs for centripetal acceleration in curves. This may preclude molossids from foraging efficiently between canopy trees or in forest gaps. The surprisingly brief burst of foraging activity at dusk of many molossids might be related to the cooling of the air column after sunset, which drives airborne insects to lower strata. Accordingly, foraging activity of molossids may quickly turn unprofitable when the abundance of insects decreases above the canopy.
Collapse
Affiliation(s)
- Christian C Voigt
- Evolutionary Ecology Research Group, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315, Berlin, Germany.
| | | |
Collapse
|
27
|
Abbott IM, Harrison S, Butler F. Clutter‐adaptation of bat species predicts their use of under‐motorway passageways of contrasting sizes – a natural experiment. J Zool (1987) 2012. [DOI: 10.1111/j.1469-7998.2011.00894.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- I. M. Abbott
- Department of Biological Earth and Environmental Sciences University College Cork Cork Ireland
| | - S. Harrison
- Department of Biological Earth and Environmental Sciences University College Cork Cork Ireland
| | - F. Butler
- Department of Biological Earth and Environmental Sciences University College Cork Cork Ireland
| |
Collapse
|
28
|
Lazure L, Fenton MB. High duty cycle echolocation and prey detection by bats. ACTA ACUST UNITED AC 2011; 214:1131-7. [PMID: 21389198 DOI: 10.1242/jeb.048967] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
There are two very different approaches to laryngeal echolocation in bats. Although most bats separate pulse and echo in time by signalling at low duty cycles (LDCs), almost 20% of species produce calls at high duty cycles (HDCs) and separate pulse and echo in frequency. HDC echolocators are sensitive to Doppler shifts. HDC echolocation is well suited to detecting fluttering targets such as flying insects against a cluttered background. We used two complementary experiments to evaluate the relative effectiveness of LDC and HDC echolocation for detecting fluttering prey. We measured echoes from fluttering targets by broadcasting artificial bat calls, and found that echo amplitude was greatest for sounds similar to those used in HDC echolocation. We also collected field recordings of syntopic LDC and HDC bats approaching an insect-like fluttering target and found that HDC bats approached the target more often (18.6% of passes) than LDC bats (1.2% of passes). Our results suggest that some echolocation call characteristics, particularly duty cycle and pulse duration, translate into improved ability to detect fluttering targets in clutter, and that HDC echolocation confers a superior ability to detect fluttering prey in the forest understory compared with LDC echolocation. The prevalence of moths in the diets of HDC bats, which is often used as support for the allotonic frequency hypothesis, can therefore be partly explained by the better flutter detection ability of HDC bats.
Collapse
Affiliation(s)
- Louis Lazure
- Department of Biology, University of Western Ontario, London, ON, Canada, N6A 5B7.
| | | |
Collapse
|
29
|
Blumstein DT, Mennill DJ, Clemins P, Girod L, Yao K, Patricelli G, Deppe JL, Krakauer AH, Clark C, Cortopassi KA, Hanser SF, McCowan B, Ali AM, Kirschel ANG. Acoustic monitoring in terrestrial environments using microphone arrays: applications, technological considerations and prospectus. J Appl Ecol 2011. [DOI: 10.1111/j.1365-2664.2011.01993.x] [Citation(s) in RCA: 384] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Yovel Y, Franz MO, Stilz P, Schnitzler HU. Complex echo classification by echo-locating bats: a review. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2010; 197:475-90. [PMID: 20848111 DOI: 10.1007/s00359-010-0584-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 08/11/2010] [Accepted: 08/28/2010] [Indexed: 11/29/2022]
Abstract
Echo-locating bats constantly emit ultrasonic pulses and analyze the returning echoes to detect, localize, and classify objects in their surroundings. Echo classification is essential for bats' everyday life; for instance, it enables bats to use acoustical landmarks for navigation and to recognize food sources from other objects. Most of the research of echo based object classification in echo-locating bats was done in the context of simple artificial objects. These objects might represent prey, flower, or fruit and are characterized by simple echoes with a single up to several reflectors. Bats, however, must also be able to use echoes that return from complex structures such as plants or other types of background. Such echoes are characterized by superpositions of many reflections that can only be described using a stochastic statistical approach. Scientists have only lately started to address the issue of complex echo classification by echo-locating bats. Some behavioral evidence showing that bats can classify complex echoes has been accumulated and several hypotheses have been suggested as to how they do so. Here, we present a first review of this data. We raise some hypotheses regarding possible interpretations of the data and point out necessary future directions that should be pursued.
Collapse
Affiliation(s)
- Yossi Yovel
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel.
| | | | | | | |
Collapse
|
31
|
Gillam EH, Hristov NI, Kunz TH, McCracken GF. Echolocation behavior of Brazilian free-tailed bats during dense emergence flights. J Mammal 2010. [DOI: 10.1644/09-mamm-a-302.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
32
|
Echolocation behaviour of Megaderma lyra during typical orientation situations and while hunting aerial prey: a field study. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2010; 197:403-12. [DOI: 10.1007/s00359-010-0552-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 06/14/2010] [Indexed: 10/19/2022]
|
33
|
Obituary. ACTA CHIROPTEROLOGICA 2009. [DOI: 10.3161/001.011.0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
|
35
|
Grodzinski U, Spiegel O, Korine C, Holderied MW. Context-dependent flight speed: evidence for energetically optimal flight speed in the bat Pipistrellus kuhlii? J Anim Ecol 2009; 78:540-8. [PMID: 19243467 DOI: 10.1111/j.1365-2656.2009.01526.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
1. Understanding the causes and consequences of animal flight speed has long been a challenge in biology. Aerodynamic theory is used to predict the most economical flight speeds, minimizing energy expenditure either per distance (maximal range speed, Vmr) or per time (minimal power speed, Vmp). When foraging in flight, flight speed also affects prey encounter and energy intake rates. According to optimal flight speed theory, such effects may shift the energetically optimal foraging speed to above Vmp. 2. Therefore, we predicted that if energetic considerations indeed have a substantial effect on flight speed of aerial-hawking bats, they will use high speed (close to Vmr) to commute from their daily roost to the foraging sites, while a slower speed (but still above Vmp) will be preferred during foraging. To test these predictions, echolocation calls of commuting and foraging Pipistrellus kuhlii were recorded and their flight tracks were reconstructed using an acoustic flight path tracking system. 3. Confirming our qualitative prediction, commuting flight was found to be significantly faster than foraging flight (9.3 vs. 6.7 m s(-1)), even when controlling for its lower tortuosity. 4. In order to examine our quantitative prediction, we compared observed flight speeds with Vmp and Vmr values generated for the study population using two alternative aerodynamic models, based on mass and wing morphology variables measured from bats we captured while commuting. The Vmp and Vmr values generated by one of the models were much lower than our measured flight speed. According to the other model used, however, measured foraging flight was faster than Vmp and commuting flight slightly slower than Vmr, which is in agreement with the predictions of optimal flight speed theory. 5. Thus, the second aerodynamic model we used seems to be a reasonable predictor of the different flight speeds used by the bats while foraging and while commuting. This supports the hypothesis that bats fly at a context-dependent, energetically optimal flight speed.
Collapse
Affiliation(s)
- Uri Grodzinski
- Department of Zoology, Tel-Aviv University, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
36
|
Ulanovsky N, Moss CF. What the bat's voice tells the bat's brain. Proc Natl Acad Sci U S A 2008; 105:8491-8. [PMID: 18562301 PMCID: PMC2438418 DOI: 10.1073/pnas.0703550105] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Indexed: 11/18/2022] Open
Abstract
For over half a century, the echolocating bat has served as a valuable model in neuroscience to elucidate mechanisms of auditory processing and adaptive behavior in biological sonar. Our article emphasizes the importance of the bat's vocal-motor system to spatial orientation by sonar, and we present this view in the context of three problems that the echolocating bat must solve: (i) auditory scene analysis, (ii) sensorimotor transformations, and (iii) spatial memory and navigation. We summarize our research findings from behavioral studies of echolocating bats engaged in natural tasks and from neurophysiological studies of the bat superior colliculus and hippocampus, brain structures implicated in sensorimotor integration, orientation, and spatial memory. Our perspective is that studies of neural activity in freely vocalizing bats engaged in natural behaviors will prove essential to advancing a deeper understanding of the mechanisms underlying perception and memory in mammals.
Collapse
Affiliation(s)
- Nachum Ulanovsky
- *Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel; and
| | - Cynthia F. Moss
- Department of Psychology and Institute for Systems Research, Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD 20742
| |
Collapse
|
37
|
Bayefsky-Anand S, Skowronski MD, Fenton MB, Korine C, Holderied MW. Variations in the echolocation calls of the European free-tailed bat. J Zool (1987) 2008. [DOI: 10.1111/j.1469-7998.2008.00418.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Holderied MW, Baker CJ, Vespe M, Jones G. Understanding signal design during the pursuit of aerial insects by echolocating bats: tools and applications. Integr Comp Biol 2008; 48:74-84. [PMID: 21669774 DOI: 10.1093/icb/icn035] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bats are among the few predators that can exploit the large quantities of aerial insects active at night. They do this by using echolocation to detect, localize, and classify targets in the dark. Echolocation calls are shaped by natural selection to match ecological challenges. For example, bats flying in open habitats typically emit calls of long duration, with long pulse intervals, shallow frequency modulation, and containing low frequencies-all these are adaptations for long-range detection. As obstacles or prey are approached, call structure changes in predictable ways for several reasons: calls become shorter, thereby reducing overlap between pulse and echo, and calls change in shape in ways that minimize localization errors. At the same time, such changes are believed to support recognition of objects. Echolocation and flight are closely synchronized: we have monitored both features simultaneously by using stereo photogrammetry and videogrammetry, and by acoustic tracking of flight paths. These methods have allowed us to quantify the intensity of signals used by free-living bats, and illustrate systematic changes in signal design in relation to obstacle proximity. We show how signals emitted by aerial feeding bats can be among the most intense airborne sounds in nature. Wideband ambiguity functions developed in the processing of signals produce two-dimensional functions showing trade-offs between resolution of time and velocity, and illustrate costs and benefits associated with Doppler sensitivity and range resolution in echolocation. Remarkably, bats that emit broadband calls can adjust signal design so that Doppler-related overestimation of range compensates for underestimation of range caused by the bat's movement in flight. We show the potential of our methods for understanding interactions between echolocating bats and those prey that have evolved ears that detect bat calls.
Collapse
Affiliation(s)
- Marc W Holderied
- *School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG; Department of Electronic and Electrical Engineering, University College London, London WC1E 7JE, UK
| | | | | | | |
Collapse
|
39
|
Boonman A, Ostwald J. A modeling approach to explain pulse design in bats. BIOLOGICAL CYBERNETICS 2007; 97:159-72. [PMID: 17610077 DOI: 10.1007/s00422-007-0164-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Accepted: 05/08/2007] [Indexed: 05/16/2023]
Abstract
In this modeling study we wanted to find out why bats of the family Vespertilionidae (and probably also members of other families of bats) use pulses with a certain bandwidth and duration. Previous studies have only speculated on the function of bandwidth and pulse duration in bat echolocation or addressed this problem by assuming that bats optimize echolocation parameters to achieve very fine acuities in receiving single echoes. Here, we take a different approach by assuming that bats in nature rarely receive single echoes from each pulse emission, but rather many highly overlapping echoes. Some echolocation tasks require individual echoes to be separated to reconstruct reflection points in space. We used an established hearing model to investigate how the parameters bandwidth and pulse duration influence the separation of overlapping echoes. Our findings corroborate the following previously unknown or unsubstantiated facts: 1. Broadening the bandwidth improves the bat's lower resolution limit. 2. Increasing the sweep rate (defined by bandwidth and pulse duration) improves acuity of each extracted echo. 3. Decreasing the sweep rate improves the probability of frequency channels being activated. Since facts 2 and 3 affect sweep rate in an opposing fashion, an optimum sweep rate will exist, depending on the quality of the returning echoes and the requirements of the bat to improve acuity. The existence of an optimal sweep rate explains why bats are likely to use certain combinations of bandwidth and pulse duration to obtain such sweep rates.
Collapse
Affiliation(s)
- Arjan Boonman
- INCM - CNRS UMR6193, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
| | | |
Collapse
|
40
|
Abstract
Bat echolocation calls provide remarkable examples of 'good design' through evolution by natural selection. Theory developed from acoustics and sonar engineering permits a strong predictive basis for understanding echolocation performance. Call features, such as frequency, bandwidth, duration and pulse interval are all related to ecological niche. Recent technological breakthroughs have aided our understanding of adaptive aspects of call design in free-living bats. Stereo videogrammetry, laser scanning of habitat features and acoustic flight path tracking permit reconstruction of the flight paths of echolocating bats relative to obstacles and prey in nature. These methods show that echolocation calls are among the most intense airborne vocalizations produced by animals. Acoustic tracking has clarified how and why bats vary call structure in relation to flight speed. Bats using broadband echolocation calls adjust call design in a range-dependent manner so that nearby obstacles are localized accurately. Recent phylogenetic analyses based on gene sequences show that particular types of echolocation signals have evolved independently in several lineages of bats. Call design is often influenced more by perceptual challenges imposed by the environment than by phylogeny, and provides excellent examples of convergent evolution. Now that whole genome sequences of bats are imminent, understanding the functional genomics of echolocation will become a major challenge.
Collapse
Affiliation(s)
- Gareth Jones
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK.
| | | |
Collapse
|
41
|
Saillant PA, Simmons JA, Bouffard FH, Lee DN, Dear SP. Biosonar signals impinging on the target during interception by big brown bats, Eptesicus fuscus. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2007; 121:3001-10. [PMID: 17550198 DOI: 10.1121/1.2714920] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Big brown bats (Eptesicus fuscus) were videotaped in the dark with a night-vision lens and infrared illumination while flying repeatedly along the same straight course to seize a tethered mealworm or a small electret microphone used to record biosonar signals impinging on the target. Bats emitted frequency-modulated sounds with first to third harmonics covering frequencies from 23 to 105 kHz. As the bats neared the target, the first harmonic shifted lower in frequency while the third harmonic strengthened and the fourth harmonic, and sometimes the fifth harmonic, appeared. Incident-sound bandwidth remained broad throughout the maneuver, a feature not seen in field recordings of rapidly moving bats due to propagation losses and uncontrolled directional effects. Sound pressures at the microphone increased by about 20 dB during approach from 2.5 m down to 50 cm and then leveled off, indicating that emitted amplitudes were approximately constant until the terminal stage, when they progressively decreased for the remainder of the maneuver. Interpulse intervals decreased from 80-100 ms down to about 6-7 ms and then stabilized throughout the terminal stage, while durations decreased smoothly from 3-4 ms (limited by adjacent wall) down to 0.5 ms during the terminal stage, which ended with capture.
Collapse
Affiliation(s)
- Prestor A Saillant
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912, USA
| | | | | | | | | |
Collapse
|
42
|
Phillips K. BATS MODULATE CALLS FOR INCREASED ACCURACY. J Exp Biol 2006. [DOI: 10.1242/jeb.02262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|