1
|
Guagnoni IN, Last KB, Rindom E, Wang T. The pancreas does not contribute to the non-adrenergic-non-cholinergic stimulation of heart rate in digesting pythons. Comp Biochem Physiol A Mol Integr Physiol 2024; 291:111608. [PMID: 38373589 DOI: 10.1016/j.cbpa.2024.111608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Vertebrates elevate heart rate when metabolism increases during digestion. Part of this tachycardia is due to a non-adrenergic-non-cholinergic (NANC) stimulation of the cardiac pacemaker, and it has been suggested these NANC factors are circulating hormones that are released from either gastrointestinal or endocrine glands. The NANC stimulation is particularly pronounced in species with large metabolic responses to digestion, such as reptiles. To investigate the possibility that the pancreas may release hormones that exert positive chronotropic effects on the digesting Burmese python heart, a species with very large postprandial changes in heart rate and oxygen uptake, we evaluate how pancreatectomy affects postprandial heart rate before and after autonomic blockade of the muscarinic and the beta-adrenergic receptors. We also measured the rates of oxygen consumption and evaluated the short-term control of the heart using the spectral analysis of heart rate variability and the baroreflex sequence method. Digestion caused the ubiquitous tachycardia, but the intrinsic heart rate (revealed after the combination of atropine and propranolol) was not affected by pancreatectomy and therefore hormones, such as glucagon and insulin, do not appear to contribute to the regulation of heart rate during digestion in Burmese pythons.
Collapse
Affiliation(s)
- Igor Noll Guagnoni
- Section for Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark; Department of Biological Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP 15054-000, Brazil.
| | - Katja Bundgaard Last
- Section for Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Emil Rindom
- Section for Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Tobias Wang
- Section for Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Guagnoni IN, Armelin VA, da Silva Braga VH, Monteiro DA, Florindo LH. Cardiovascular responses and the role of the neurohumoral cardiac regulation during digestion in the herbivorous lizard Iguana iguana. J Exp Biol 2024; 227:jeb247105. [PMID: 38186316 DOI: 10.1242/jeb.247105] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/27/2023] [Indexed: 01/09/2024]
Abstract
Carnivorous reptiles exhibit an intense metabolic increment during digestion, which is accompanied by several cardiovascular adjustments responsible for meeting the physiological demands of the gastrointestinal system. Postprandial tachycardia, a well-documented phenomenon in these animals, is mediated by the withdrawal of vagal tone associated with the chronotropic effects of non-adrenergic and non-cholinergic (NANC) factors. However, herbivorous reptiles exhibit a modest metabolic increment during digestion and there is no information about postprandial cardiovascular adjustments. Considering the significant impact of feeding characteristics on physiological responses, we investigated cardiovascular and metabolic responses, as well as the neurohumoral mechanisms of cardiac control, in the herbivorous lizard Iguana iguana during digestion. We measured oxygen consumption rate (O2), heart rate (fH), mean arterial blood pressure (MAP), myocardial activity, cardiac autonomic tone, fH/MAP variability and baroreflex efficiency in both fasting and digesting animals before and after parasympathetic blockade with atropine followed by double autonomic blockade with atropine and propranolol. Our results revealed that the peak of O2 in iguanas was reached 24 h after feeding, accompanied by an increase in myocardial activity and a subtle tachycardia mediated exclusively by a reduction in cardiac parasympathetic activity. This represents the first reported case of postprandial tachycardia in digesting reptiles without the involvement of NANC factors. Furthermore, this withdrawal of vagal stimulation during digestion may reduce the regulatory range for short-term fH adjustments, subsequently intensifying the blood pressure variability as a consequence of limiting baroreflex efficiency.
Collapse
Affiliation(s)
- Igor Noll Guagnoni
- Department of Biological Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP 15054-000, Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT - FAPESP/CNPq), São Paulo, SP 13506-900, Brazil
| | - Vinicius Araújo Armelin
- Department of Biological Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP 15054-000, Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT - FAPESP/CNPq), São Paulo, SP 13506-900, Brazil
- Department of Physiology, Institute of Biosciences (IB), University of São Paulo (USP), São Paulo, SP 05508-090, Brazil
| | - Victor Hugo da Silva Braga
- Department of Biological Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP 15054-000, Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT - FAPESP/CNPq), São Paulo, SP 13506-900, Brazil
| | - Diana Amaral Monteiro
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), Rodovia Washington Luiz, km 235, São Carlos, SP 13565-905, Brazil
| | - Luiz Henrique Florindo
- Department of Biological Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP 15054-000, Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT - FAPESP/CNPq), São Paulo, SP 13506-900, Brazil
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), Rodovia Washington Luiz, km 235, São Carlos, SP 13565-905, Brazil
| |
Collapse
|
3
|
Manzotti A, Panisi C, Pivotto M, Vinciguerra F, Benedet M, Brazzoli F, Zanni S, Comassi A, Caputo S, Cerritelli F, Chiera M. An in-depth analysis of the polyvagal theory in light of current findings in neuroscience and clinical research. Dev Psychobiol 2024; 66:e22450. [PMID: 38388187 DOI: 10.1002/dev.22450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 09/04/2023] [Accepted: 12/01/2023] [Indexed: 02/24/2024]
Abstract
The polyvagal theory has led to the understanding of the functions of the autonomic nervous system in biological development in humans, since the vagal system, a key structure within the polyvagal theory, plays a significant role in addressing challenges of the mother-child dyad. This article aims to summarize the neurobiological aspects of the polyvagal theory, highlighting some of its strengths and limitations through the lens of new evidence emerging in several research fields-including comparative anatomy, embryology, epigenetics, psychology, and neuroscience-in the 25 years since the theory's inception. Rereading and incorporating the polyvagal idea in light of modern scientific findings helps to interpret the role of the vagus nerve through the temporal dimension (beginning with intrauterine life) and spatial dimension (due to the numerous connections of the vagus with various structures and systems) in the achievement and maintenance of biopsychosocial well-being, from the uterus to adulthood.
Collapse
Affiliation(s)
- Andrea Manzotti
- Division of Neonatology, "V. Buzzi" Children's Hospital, ASST-FBF-Sacco, Milan, Italy
- RAISE Lab, Clinical-Based Human Research Department, Foundation COME Collaboration, Pescara, Italy
- Research Department, SOMA Istituto Osteopatia Milano, Milan, Italy
| | - Cristina Panisi
- Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Micol Pivotto
- Research Department, SOMA Istituto Osteopatia Milano, Milan, Italy
| | | | - Matteo Benedet
- Research Department, SOMA Istituto Osteopatia Milano, Milan, Italy
| | | | - Silvia Zanni
- Research Department, SOMA Istituto Osteopatia Milano, Milan, Italy
| | - Alberto Comassi
- Research Department, SOMA Istituto Osteopatia Milano, Milan, Italy
| | - Sara Caputo
- Research Department, SOMA Istituto Osteopatia Milano, Milan, Italy
| | - Francesco Cerritelli
- RAISE Lab, Clinical-Based Human Research Department, Foundation COME Collaboration, Pescara, Italy
| | - Marco Chiera
- RAISE Lab, Clinical-Based Human Research Department, Foundation COME Collaboration, Pescara, Italy
| |
Collapse
|
4
|
Porges SW. The vagal paradox: A polyvagal solution. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2023; 16:100200. [PMID: 38108034 PMCID: PMC10724739 DOI: 10.1016/j.cpnec.2023.100200] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 12/19/2023] Open
Abstract
Although there is a consistent literature documenting that vagal cardioinhibitory pathways support homeostatic functions, another less frequently cited literature implicates vagal cardioinhibitory pathways in compromises to survival in humans and other mammals. The latter is usually associated with threat reactions, chronic stress, and potentially lethal clinical conditions such as hypoxia. Solving this 'vagal paradox' in studies conducted in the neonatal intensive care unit served as the motivator for the Polyvagal Theory (PVT). The paradox is resolved when the different functions of vagal cardioinhibitory fibers originating in two anatomically distinguishable brainstem areas are recognized. One pathway originates in a dorsal area known as the dorsal motor nucleus of the vagus and the other in a ventral area of the brainstem known as nucleus ambiguus. Unlike mammals, in all ancestral vertebrates from which mammals evolved, cardioinhibitory vagal fibers primarily originate in the dorsal motor nucleus of the vagus. Thus, in mammals the vagus nerve is 'poly' vagal because it contains two distinct efferent pathways. Developmental and evolutionary biology identify a ventral migration of vagal cardioinhibitory fibers that culminate in an integrated circuit that has been labeled the ventral vagal complex. This complex consists of the interneuronal communication of the ventral vagus with the source nuclei involved in regulating the striated muscles of the head and face via special visceral efferent pathways. This integrated system enables the coordination of vagal regulation of the heart with sucking, swallowing, breathing, and vocalizing and forms the basis of a social engagement system that allows sociality to be a potent neuromodulator resulting in calm states that promote homeostatic function. These biobehavioral features, dependent on the maturation of the ventral vagal complex, can be compromised in preterm infants. Developmental biology informs us that in the immature mammal (e.g., fetus, preterm infant) the ventral vagus is not fully functional and myelinization is not complete; this neuroanatomical profile may potentiate the impact of vagal cardioinhibitory pathways originating in the dorsal motor nucleus of the vagus. This vulnerability is confirmed clinically in the life-threatening reactions of apnea and bradycardia in human preterm newborns, which are hypothetically mediated through chronotropic dorsal vagal pathways. Neuroanatomical research documents that the distribution of cardioinhibitory neurons representing these two distinct vagal source nuclei varies among mammals and changes during early development. By explaining the solution of the 'vagal paradox' in the preterm human, the paper highlights the functional cardioinhibitory functions of the two vagal source nuclei and provides the scientific foundation for the testing of hypotheses generated by PVT.
Collapse
Affiliation(s)
- Stephen W. Porges
- Traumatic Stress Research Consortium, Kinsey Institute, Indiana University, Bloomington, IN, USA
- University of North Carolina at Chapel Hill, Chapel Hill, USA
| |
Collapse
|
5
|
An overview of the phylogeny of cardiorespiratory control in vertebrates with some reflections on the 'Polyvagal Theory'. Biol Psychol 2022; 172:108382. [PMID: 35777519 DOI: 10.1016/j.biopsycho.2022.108382] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/05/2022] [Accepted: 06/15/2022] [Indexed: 02/05/2023]
Abstract
Mammals show clear changes in heart rate linked to lung ventilation, characterized as respiratory sinus arrhythmia (RSA). These changes are controlled in part by variations in the level of inhibitory control exerted on the heart by the parasympathetic arm of the autonomic nervous system (PNS). This originates from preganglionic neurons in the nucleus ambiguous that supply phasic, respiration-related activity to the cardiac branch of the vagus nerve, via myelinated, efferent fibres with rapid conduction velocities. An elaboration of these central mechanisms, under the control of a 'vagal system' has been endowed by psychologists with multiple functions concerned with 'social engagement' in mammals and, in particular, humans. Long-term study of cardiorespiratory interactions (CRI) in other major groups of vertebrates has established that they all show both tonic and phasic control of heart rate, imposed by the PNS. This derives centrally from neurones located in variously distributed nuclei, supplying the heart via fast-conducting, myelinated, efferent fibres. Water-breathing vertebrates, which include fishes and larval amphibians, typically show direct, 1:1 CRI between heart beats and gill ventilation, controlled from the dorsal vagal motor nucleus. In air-breathing, ectothermic vertebrates, including reptiles, amphibians and lungfish, CRI mirroring RSA have been shown to improve oxygen uptake during phasic ventilation by changes in perfusion of their respiratory organs, due to shunting of blood over across their undivided hearts. This system may constitute the evolutionary basis of that generating RSA in mammals, which now lacks a major physiological role in respiratory gas exchange, due to their completely divided systemic and pulmonary circulations.
Collapse
|
6
|
Rocha GC, Castro SA, Taylor EW, Tavares D, Leite CAC. A Decerebrate Preparation of the Rattlesnake, Crotalus durissus, Provides an Experimental Model for Study of Autonomic Modulation of the Cardiovascular System in Reptiles. Physiol Biochem Zool 2021; 94:269-285. [PMID: 34142933 DOI: 10.1086/714973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractThe South American rattlesnake, Crotalus durissus, has been successfully used as an experimental model to study control of the cardiovascular system in squamate reptiles. Recent technical advances, including equipment miniaturization, have lessened the impact of instrumentation on in vivo recordings, and an increased range of anesthetic drugs has improved recording conditions for in situ preparations. Nevertheless, any animal-based experimental approach has to manage limitations regarding the avoidance of pain and stress the stability of the preparation and duration of experiments and the potentially overriding effects of anesthesia. To address such aspects, we tested a new experimental preparation, the decerebrate rattlesnake, in a study of the autonomic control of cardiovascular responses following the removal of general anesthesia. The preparation exhibited complex cardiovascular adjustments to deal with acute increases in venous return (caused by tail lifting), to compensate for blood flow reduction in the cephalic region (caused by head lifting), for body temperature control (triggered by an external heating source), and in response to stimulation of chemoreceptors (triggered by intravenous injection of NaCN). The decerebrate preparation retained extensive functional integrity of autonomic centers, and it was suitable for monitoring diverse cardiac and vascular variables. Furthermore, reanesthetizing the preparation markedly blunted cardiovascular performance. Isoflurane limited the maintenance of recovered cardiovascular variables in the prepared animal and reduced or abolished the observed cardiovascular reflexes. This preparation enables the recording of multiple concomitant cardiovascular variables for the study of mechanistic questions regarding the central integration of autonomic reflex responses in the absence of anesthesia.
Collapse
|
7
|
Guagnoni IN, Armelin VA, da Silva Braga VH, Rantin FT, Florindo LH. Postprandial cardiorespiratory responses and the regulation of digestion-associated tachycardia in Nile tilapia (Oreochromis niloticus). J Comp Physiol B 2020; 191:55-67. [PMID: 33005989 DOI: 10.1007/s00360-020-01317-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 08/29/2020] [Accepted: 09/20/2020] [Indexed: 11/25/2022]
Abstract
Cardiorespiratory adjustments that occur after feeding are essential to supply the demands of digestion in vertebrates. The well-documented postprandial tachycardia is triggered by an increase in adrenergic activity and by non-adrenergic non-cholinergic (NANC) factors in mammals and crocodilians, while it is linked to a withdrawal of vagal drive and NANC factors in non-crocodilian ectotherms-except for fish, in which the sole investigation available indicated no participation of NANC factors. On the other hand, postprandial ventilatory adjustments vary widely among air-breathing vertebrates, with different species exhibiting hyperventilation, hypoventilation, or even no changes at all. Regarding fish, which live in an environment with low oxygen capacitance that requires great ventilatory effort for oxygen uptake, data on the ventilatory consequences of feeding are also scarce. Thus, the present study sought to investigate the postprandial cardiorespiratory adjustments and the mediation of digestion-associated tachycardia in the unimodal water-breathing teleost Oreochromis niloticus. Heart rate (fH), cardiac autonomic tones, ventilation rate (fV), ventilation amplitude, total ventilation and fH/fV variability were assessed both in fasting and digesting animals under untreated condition, as well as after muscarinic cholinergic blockade with atropine and double autonomic blockade with atropine and propranolol. The results revealed that digestion was associated with marked tachycardia in O. niloticus, determined by a reduction in cardiac parasympathetic activity and by circulating NANC factors-the first time such positive chronotropes were detected in digesting fish. Unexpectedly, postprandial ventilatory alterations were not observed, although digestion triggered mechanisms that were presumed to increase oxygen uptake, such as cardiorespiratory synchrony.
Collapse
Affiliation(s)
- Igor Noll Guagnoni
- Department of Zoology and Botany, Institute of Biosciences, Languages and Exact Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP, 15054-000, Brazil.,National Institute of Science and Technology in Comparative Physiology (INCT, FAPESP/CNPq), São Paulo, Brazil
| | - Vinicius Araújo Armelin
- Department of Zoology and Botany, Institute of Biosciences, Languages and Exact Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP, 15054-000, Brazil.,Department of Physiology, Institute of Biosciences, University of São Paulo (USP), Rua do Matão, Travessa 14, 321, São Paulo, SP, 05508-090, Brazil.,National Institute of Science and Technology in Comparative Physiology (INCT, FAPESP/CNPq), São Paulo, Brazil
| | - Victor Hugo da Silva Braga
- Department of Zoology and Botany, Institute of Biosciences, Languages and Exact Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP, 15054-000, Brazil.,National Institute of Science and Technology in Comparative Physiology (INCT, FAPESP/CNPq), São Paulo, Brazil
| | - Francisco Tadeu Rantin
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), Rodovia Washington Luiz, km 235, São Carlos, SP, 13565‑905, Brazil.,National Institute of Science and Technology in Comparative Physiology (INCT, FAPESP/CNPq), São Paulo, Brazil
| | - Luiz Henrique Florindo
- Department of Zoology and Botany, Institute of Biosciences, Languages and Exact Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP, 15054-000, Brazil. .,Aquaculture Center (CAUNESP), São Paulo State University (UNESP), Rodovia Prof. Paulo Donato Castellane, n/n, Jaboticabal, SP, 14884-900, Brazil. .,National Institute of Science and Technology in Comparative Physiology (INCT, FAPESP/CNPq), São Paulo, Brazil.
| |
Collapse
|
8
|
Filogonio R, Sartori MR, Morgensen S, Tavares D, Campos R, Abe AS, Taylor EW, Rodrigues GJ, De Nucci G, Simonsen U, Leite CAC, Wang T. Cholinergic regulation along the pulmonary arterial tree of the South American rattlesnake: vascular reactivity, muscarinic receptors, and vagal innervation. Am J Physiol Regul Integr Comp Physiol 2020; 319:R156-R170. [DOI: 10.1152/ajpregu.00310.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Vascular tone in the reptilian pulmonary vasculature is primarily under cholinergic, muscarinic control exerted via the vagus nerve. This control has been ascribed to a sphincter located at the arterial outflow, but we speculated whether the vascular control in the pulmonary artery is more widespread, such that responses to acetylcholine and electrical stimulation, as well as the expression of muscarinic receptors, are prevalent along its length. Working on the South American rattlesnake ( Crotalus durissus), we studied four different portions of the pulmonary artery (truncus, proximal, distal, and branches). Acetylcholine elicited robust vasoconstriction in the proximal, distal, and branch portions, but the truncus vasodilated. Electrical field stimulation (EFS) caused contractions in all segments, an effect partially blocked by atropine. We identified all five subtypes of muscarinic receptors (M1–M5). The expression of the M1 receptor was largest in the distal end and branches of the pulmonary artery, whereas expression of the muscarinic M3 receptor was markedly larger in the truncus of the pulmonary artery. Application of the neural tracer 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindo-carbocyanine perchlorate (DiI) revealed widespread innervation along the whole pulmonary artery, and retrograde transport of the same tracer indicated two separate locations in the brainstem providing vagal innervation of the pulmonary artery, the medial dorsal motor nucleus of the vagus and a ventro-lateral location, possibly constituting a nucleus ambiguus. These results revealed parasympathetic innervation of a large portion of the pulmonary artery, which is responsible for regulation of vascular conductance in C. durissus, and implied its integration with cardiorespiratory control.
Collapse
Affiliation(s)
- Renato Filogonio
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, Brazil
| | - Marina R. Sartori
- Department of Zoology, State University of São Paulo, Rio Claro, São Paulo, Brazil
| | - Susie Morgensen
- Department of Biomedicine, Pulmonary, and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark
| | - Driele Tavares
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, Brazil
| | - Rafael Campos
- Superior Institute of Biomedical Sciences, Ceará State University, Fortaleza, Brazil
| | - Augusto S. Abe
- Department of Zoology, State University of São Paulo, Rio Claro, São Paulo, Brazil
| | - Edwin W. Taylor
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, Brazil
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Gerson J. Rodrigues
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, Brazil
| | - Gilberto De Nucci
- Faculty of Medical Sciences, Department of Pharmacology, University of Campinas, Campinas, Brazil
| | - Ulf Simonsen
- Department of Biomedicine, Pulmonary, and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark
| | - Cléo A. C. Leite
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, Brazil
| | - Tobias Wang
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|
9
|
Duran LM, Taylor EW, Sanches PVW, Cruz AL, Tavares D, Sartori MR, Abe AS, Leite CAC. Heart rate variability in the tegu lizard, Salvator merianae, its neuroanatomical basis and role in the assessment of recovery from experimental manipulation. Comp Biochem Physiol A Mol Integr Physiol 2019; 240:110607. [PMID: 31707060 DOI: 10.1016/j.cbpa.2019.110607] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 10/25/2022]
Abstract
Using long-term, remote recordings of heart rate (fH) on fully recovered, undisturbed lizards, we identified several components of heart rate variability (HRV) associated with respiratory sinus arrhythmia (RSA): 1.) A peak in the spectral representation of HRV at the frequency range of ventilation. 2.) These cardiorespiratory interactions were shown to be dependent on the parasympathetic arm of the autonomic nervous system. 3.) Vagal preganglionic neurons are located in discrete groups located in the dorsal motor nucleus of the vagus and also, in a ventro-lateral group, homologous to the nucleus ambiguus of mammals. 4.) Myelinated nerve fibers in the cardiac vagus enabling rapid communication between the central nervous system and the heart. Furthermore, the study of the progressive recovery of fH in tegu following anesthesia and instrumentation revealed that 'resting' levels of mean fH and reestablishment of HRV occurred over different time courses. Accordingly, we suggest that, when an experiment is designed to study a physiological variable reliant on autonomic modulation at its normal, resting level, then postsurgical reestablishment of HRV should be considered as the index of full recovery, rather than mean fH.
Collapse
Affiliation(s)
- Livia M Duran
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos 13.565-905, SP, Brazil; National Institute of Science and Technology in Comparative Physiology, INCT, FISC, FAPESP/CNPq, Rio Claro 13.506-900, SP, Brazil
| | - Edwin W Taylor
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos 13.565-905, SP, Brazil
| | - Pollyana V W Sanches
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos 13.565-905, SP, Brazil; National Institute of Science and Technology in Comparative Physiology, INCT, FISC, FAPESP/CNPq, Rio Claro 13.506-900, SP, Brazil
| | - André L Cruz
- Institute of Biology, Federal University of Bahia (UFBA), Salvador 40.140-310, BA, Brazil; National Institute of Science and Technology in Comparative Physiology, INCT, FISC, FAPESP/CNPq, Rio Claro 13.506-900, SP, Brazil
| | - Driele Tavares
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos 13.565-905, SP, Brazil; National Institute of Science and Technology in Comparative Physiology, INCT, FISC, FAPESP/CNPq, Rio Claro 13.506-900, SP, Brazil
| | - Marina R Sartori
- Department of Zoology, São Paulo State University (UNESP), Rio Claro 13.506-900, SP, Brazil; National Institute of Science and Technology in Comparative Physiology, INCT, FISC, FAPESP/CNPq, Rio Claro 13.506-900, SP, Brazil
| | - Augusto S Abe
- Department of Zoology, São Paulo State University (UNESP), Rio Claro 13.506-900, SP, Brazil; National Institute of Science and Technology in Comparative Physiology, INCT, FISC, FAPESP/CNPq, Rio Claro 13.506-900, SP, Brazil
| | - Cleo A C Leite
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos 13.565-905, SP, Brazil; National Institute of Science and Technology in Comparative Physiology, INCT, FISC, FAPESP/CNPq, Rio Claro 13.506-900, SP, Brazil.
| |
Collapse
|
10
|
Sanches PVW, Taylor EW, Duran LM, Cruz AL, Dias DPM, Leite CAC. Respiratory sinus arrhythmia is a major component of heart rate variability in undisturbed, remotely monitored rattlesnakes, Crotalus durissus. ACTA ACUST UNITED AC 2019; 222:jeb.197954. [PMID: 30967516 DOI: 10.1242/jeb.197954] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/05/2019] [Indexed: 11/20/2022]
Abstract
ECG recordings were obtained using an implanted telemetry device from the South American rattlesnake, Crotalus durissus, held under stable conditions without restraining cables or interaction with researchers. Mean heart rate (f H) recovered rapidly (<24 h) from anaesthesia and operative procedures. This preceded a more gradual development of heart rate variability (HRV), with instantaneous f H increasing during each lung ventilation cycle. Atropine injection increased mean f H and abolished HRV. Complete autonomic blockade revealed a cholinergic tonus on the heart of 55% and an adrenergic tonus of 37%. Power spectral analysis of HRV identified a peak at the same frequency as ventilation. This correlation was sustained after temperature changes and it was more evident, marked by a more prominent power spectrum peak, when ventilation is less episodic. This HRV component is homologous to that observed in mammals, termed respiratory sinus arrhythmia (RSA). Evidence for instantaneous control of f H indicated rapid conduction of activity in the cardiac efferent nervous supply, as supported by the description of myelinated fibres in the cardiac vagus. Establishment of HRV 10 days after surgical intervention seems a reliable indicator of the re-establishment of control of integrative functions by the autonomic nervous system. We suggest that this criterion could be applied to other animals exposed to natural or imposed trauma, thus improving protocols involving animal handling, including veterinarian procedures.
Collapse
Affiliation(s)
- Pollyana V W Sanches
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, 13565-905 São Paulo, Brazil.,National Institute of Science and Technology in Comparative Physiology (INCT - FISC - FAPESP/CNPq), Rio Claro, SP 13506-900, Brazil
| | - Edwin W Taylor
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, 13565-905 São Paulo, Brazil.,School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Livia M Duran
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, 13565-905 São Paulo, Brazil.,National Institute of Science and Technology in Comparative Physiology (INCT - FISC - FAPESP/CNPq), Rio Claro, SP 13506-900, Brazil
| | - André L Cruz
- National Institute of Science and Technology in Comparative Physiology (INCT - FISC - FAPESP/CNPq), Rio Claro, SP 13506-900, Brazil.,Institute of Biology, Federal University of Bahia (UFBA), Salvador, 40140-310 Bahia, Brazil
| | - Daniel P M Dias
- Barão de Mauá University Center, Ribeirão Preto, 14090-180 São Paulo, Brazil
| | - Cleo A C Leite
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, 13565-905 São Paulo, Brazil .,National Institute of Science and Technology in Comparative Physiology (INCT - FISC - FAPESP/CNPq), Rio Claro, SP 13506-900, Brazil
| |
Collapse
|
11
|
Troiano NM, Armelin VA, Braga VHDS, Abe AS, Rantin FT, Florindo LH. The autonomic control of upright posture tachycardia in the arboreal lizard Iguana iguana. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2018; 329:130-139. [PMID: 29992754 DOI: 10.1002/jez.2213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 11/11/2022]
Abstract
In terrestrial environments, upright spatial orientation can dramatically influence animals' hemodynamics. Generally, large and elongated species are particularly sensitive to such influence due to the greater extent of their vascular beds being verticalized, favoring the establishment of blood columns in their bodies along with caudal blood pooling, and thus jeopardizing blood circulation through a cascade effect of reductions in venous return, cardiac filling, stroke volume, cardiac output, and arterial blood pressure. This hypotension triggers an orthostatic-(baroreflex)-tachycardia to normalize arterial pressure, and despite the extensive observation of this heart rate (fH ) adjustment in experiments on orthostasis, little is known about its mediation and importance in ectothermic vertebrates. In addition, most of the knowledge on this subject comes from studies on snakes. Thus, our objective was to expand the knowledge on this issue by investigating it in an arboreal lizard (Iguana iguana). To do so, we analyzed fH , cardiac autonomic tones, and fH variability in horizontalized and tilted iguanas (0°, 30°. and 60°) before and after muscarinic blockade with atropine and double autonomic blockade with atropine and propranolol. The results revealed that I. Iguana exhibits significant orthostatic-tachycardia only at 60o inclinations-a condition that is primarily elicited by a withdrawal of vagal drive. Also, as in humans, increases in low-frequency fH oscillations and decreases in high-frequency fH oscillations were observed along with orthostatic-tachycardia, suggesting that the mediation of this fH adjustment may be evolutionarily conserved in vertebrates.
Collapse
Affiliation(s)
- Natalia Miriã Troiano
- Department of Zoology and Botany, São Paulo State University (UNESP), São José do Rio Preto, Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT-FAPESP/CNPq), Rio Claro, Brazil
| | - Vinicius Araújo Armelin
- Department of Zoology and Botany, São Paulo State University (UNESP), São José do Rio Preto, Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT-FAPESP/CNPq), Rio Claro, Brazil
| | - Victor Hugo da Silva Braga
- Department of Zoology and Botany, São Paulo State University (UNESP), São José do Rio Preto, Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT-FAPESP/CNPq), Rio Claro, Brazil
| | - Augusto Shinya Abe
- National Institute of Science and Technology in Comparative Physiology (INCT-FAPESP/CNPq), Rio Claro, Brazil
- Department of Zoology, São Paulo State University (UNESP), Rio Claro, Brazil
- Aquaculture Center (CAUNESP), São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Francisco Tadeu Rantin
- National Institute of Science and Technology in Comparative Physiology (INCT-FAPESP/CNPq), Rio Claro, Brazil
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Luiz Henrique Florindo
- Department of Zoology and Botany, São Paulo State University (UNESP), São José do Rio Preto, Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT-FAPESP/CNPq), Rio Claro, Brazil
- Aquaculture Center (CAUNESP), São Paulo State University (UNESP), Jaboticabal, Brazil
| |
Collapse
|
12
|
Elstad M, O’Callaghan EL, Smith AJ, Ben-Tal A, Ramchandra R. Cardiorespiratory interactions in humans and animals: rhythms for life. Am J Physiol Heart Circ Physiol 2018. [DOI: 10.1152/ajpheart.00701.2017] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The cardiorespiratory system exhibits oscillations from a range of sources. One of the most studied oscillations is heart rate variability, which is thought to be beneficial and can serve as an index of a healthy cardiovascular system. Heart rate variability is dampened in many diseases including depression, autoimmune diseases, hypertension, and heart failure. Thus, understanding the interactions that lead to heart rate variability, and its physiological role, could help with prevention, diagnosis, and treatment of cardiovascular diseases. In this review, we consider three types of cardiorespiratory interactions: respiratory sinus arrhythmia (variability in heart rate at the frequency of breathing), cardioventilatory coupling (synchronization between the heart beat and the onset of inspiration), and respiratory stroke volume synchronization (the constant phase difference between the right and the left stroke volumes over one respiratory cycle). While the exact physiological role of these oscillations continues to be debated, the redundancies in the mechanisms responsible for its generation and its strong evolutionary conservation point to the importance of cardiorespiratory interactions. The putative mechanisms driving cardiorespiratory oscillations as well as the physiological significance of these oscillations will be reviewed. We suggest that cardiorespiratory interactions have the capacity to both dampen the variability in systemic blood flow as well as improve the efficiency of work done by the heart while maintaining physiological levels of arterial CO2. Given that reduction in variability is a prognostic indicator of disease, we argue that restoration of this variability via pharmaceutical or device-based approaches may be beneficial in prolonging life.
Collapse
Affiliation(s)
- Maja Elstad
- Division of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Erin L. O’Callaghan
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Alex J. Smith
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Alona Ben-Tal
- Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand
| | - Rohit Ramchandra
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
13
|
Monteiro DA, Taylor EW, Sartori MR, Cruz AL, Rantin FT, Leite CAC. Cardiorespiratory interactions previously identified as mammalian are present in the primitive lungfish. SCIENCE ADVANCES 2018; 4:eaaq0800. [PMID: 29507882 PMCID: PMC5833999 DOI: 10.1126/sciadv.aaq0800] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/19/2018] [Indexed: 05/31/2023]
Abstract
The present study has revealed that the lungfish has both structural and functional features of its system for physiological control of heart rate, previously considered solely mammalian, that together generate variability (HRV). Ultrastructural and electrophysiological investigation revealed that the nerves connecting the brain to the heart are myelinated, conferring rapid conduction velocities, comparable to mammalian fibers that generate instantaneous changes in heart rate at the onset of each air breath. These respiration-related changes in beat-to-beat cardiac intervals were detected by complex analysis of HRV and shown to maximize oxygen uptake per breath, a causal relationship never conclusively demonstrated in mammals. Cardiac vagal preganglionic neurons, responsible for controlling heart rate via the parasympathetic vagus nerve, were shown to have multiple locations, chiefly within the dorsal vagal motor nucleus that may enable interactive control of the circulatory and respiratory systems, similar to that described for tetrapods. The present illustration of an apparently highly evolved control system for HRV in a fish with a proven ancient lineage, based on paleontological, morphological, and recent genetic evidence, questions much of the anthropocentric thinking implied by some mammalian physiologists and encouraged by many psychobiologists. It is possible that some characteristics of mammalian respiratory sinus arrhythmia, for which functional roles have been sought, are evolutionary relics that had their physiological role defined in ancient representatives of the vertebrates with undivided circulatory systems.
Collapse
Affiliation(s)
- Diana A. Monteiro
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, 13565-905 São Paulo, Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT FisComp), São Carlos, São Paulo, Brazil
| | - Edwin W. Taylor
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, 13565-905 São Paulo, Brazil
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Marina R. Sartori
- Department of Zoology, São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
| | - André L. Cruz
- National Institute of Science and Technology in Comparative Physiology (INCT FisComp), São Carlos, São Paulo, Brazil
- Institute of Biology, Federal University of Bahia (UFBA), Salvador, Bahia, Brazil
| | - Francisco T. Rantin
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, 13565-905 São Paulo, Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT FisComp), São Carlos, São Paulo, Brazil
| | - Cleo A. C. Leite
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, 13565-905 São Paulo, Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT FisComp), São Carlos, São Paulo, Brazil
| |
Collapse
|
14
|
Zena LA, Leite CAC, Longhini LS, Dias DPM, da Silva GSF, Hartzler LK, Gargaglioni LH, Bícego KC. Analysis of the respiratory component of heart rate variability in the Cururu toad Rhinella schneideri. Sci Rep 2017; 7:16119. [PMID: 29170531 PMCID: PMC5701079 DOI: 10.1038/s41598-017-16350-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 11/10/2017] [Indexed: 11/09/2022] Open
Abstract
Beat-to-beat variation in heart rate (f H ) has been used as a tool for elucidating the balance between sympathetic and parasympathetic modulation of the heart. A portion of the temporal changes in f H is evidenced by a respiratory influence (cardiorespiratory interaction) on heart rate variability (HRV) with heartbeats increasing and decreasing within a respiratory cycle. Nevertheless, little is known about respiratory effects on HRV in lower vertebrates. By using frequency domain analysis, we provide the first evidence of a ventilatory component in HRV similar to mammalian respiratory sinus arrhythmia in an amphibian, the toad Rhinella schneideri. Increases in the heartbeats arose synchronously with each lung inflation cycle, an intermittent breathing pattern comprised of a series of successive lung inflations. A well-marked peak in the HRV signal matching lung inflation cycle was verified in toads whenever lung inflation cycles exhibit a regular rhythm. The cardiac beat-to-beat variation evoked at the moment of lung inflation accounts for both vagal and sympathetic influences. This cardiorespiratory interaction may arise from interactions between central and peripheral feedback mechanisms governing cardiorespiratory control and may underlie important cardiorespiratory adjustments for gas exchange improvement especially under extreme conditions like low oxygen availability.
Collapse
Affiliation(s)
- Lucas A Zena
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinary Sciences, São Paulo State University, 14884-900, Jaboticabal, SP, Brazil.
- National Institute of Science and Technology in Comparative Physiology (INCT Fisiologia Comparada), Jaboticabal, SP, Brazil.
| | - Cléo A C Leite
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, SP, Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT Fisiologia Comparada), Jaboticabal, SP, Brazil
| | - Leonardo S Longhini
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinary Sciences, São Paulo State University, 14884-900, Jaboticabal, SP, Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT Fisiologia Comparada), Jaboticabal, SP, Brazil
| | - Daniel P M Dias
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Glauber S F da Silva
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinary Sciences, São Paulo State University, 14884-900, Jaboticabal, SP, Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT Fisiologia Comparada), Jaboticabal, SP, Brazil
| | - Lynn K Hartzler
- Department of Biological Sciences, Wright State University, Dayton, OH, USA
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinary Sciences, São Paulo State University, 14884-900, Jaboticabal, SP, Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT Fisiologia Comparada), Jaboticabal, SP, Brazil
| | - Kênia C Bícego
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinary Sciences, São Paulo State University, 14884-900, Jaboticabal, SP, Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT Fisiologia Comparada), Jaboticabal, SP, Brazil
| |
Collapse
|
15
|
The influence of midazolam on heart rate arises from cardiac autonomic tones alterations in Burmese pythons, Python molurus. Auton Neurosci 2017; 208:103-112. [PMID: 29104018 DOI: 10.1016/j.autneu.2017.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 10/25/2017] [Accepted: 10/25/2017] [Indexed: 11/22/2022]
Abstract
The GABAA receptor agonist midazolam is a compound widely used as a tranquilizer and sedative in mammals and reptiles. It is already known that this benzodiazepine produces small to intermediate heart rate (HR) alterations in mammals, however, its influence on reptiles' HR remains unexplored. Thus, the present study sought to verify the effects of midazolam on HR and cardiac modulation in the snake Python molurus. To do so, the snakes' HR, cardiac autonomic tones, and HR variability were evaluated during four different experimental stages. The first stage consisted on the data acquisition of animals under untreated conditions, in which were then administered atropine (2.5mgkg-1; intraperitoneal), followed later by propranolol (3.5mgkg-1; intraperitoneal) (cardiac double autonomic blockade). The second stage focused on the data acquisition of animals under midazolam effect (1.0mgkg-1; intramuscular), which passed through the same autonomic blockade protocol of the first stage. The third and fourth stages consisted of the same protocol of stages one and two, respectively, with the exception that atropine and propranolol injections were reversed. By comparing the HR of animals that received midazolam (second and fourth stages) with those that did not (first and third stages), it could be observed that this benzodiazepine reduced the snakes' HR by ~60%. The calculated autonomic tones showed that such cardiac depression was elicited by an ~80% decrease in cardiac adrenergic tone and an ~620% increase in cardiac cholinergic tone - a finding that was further supported by the results of HR variability analysis.
Collapse
|
16
|
Longhini LS, Zena LA, da Silva GSF, Bícego KC, Gargaglioni LH. Temperature effects on the cardiorespiratory control of American bullfrog tadpoles based on a non-invasive methodology. ACTA ACUST UNITED AC 2017; 220:3763-3770. [PMID: 28819055 DOI: 10.1242/jeb.160911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 08/14/2017] [Indexed: 11/20/2022]
Abstract
Temperature effects on cardiac autonomic tonus in amphibian larval stages have never been investigated. Therefore, we evaluated the effect of different temperatures (15, 25 and 30°C) on the cardiorespiratory rates and cardiac autonomic tonus of premetamorphic tadpoles of the bullfrog, Lithobates catesbeianus To this end, a non-invasive method was developed to permit measurements of electrocardiogram (ECG) and buccal movements (fB; surface electromyography of the buccal floor). For evaluation of autonomic regulation, intraperitoneal injections of Ringer solution (control), atropine (cholinergic muscarinic antagonist) and sotalol (β-adrenergic antagonist) were performed. Ringer solution injections did not affect heart rate (fH) or fB across temperatures. Cardiorespiratory parameters were significantly augmented by temperature (fH: 24.5±1.0, 54.5±2.0 and 75.8±2.8 beats min-1 at 15, 25 and 30°C, respectively; fB: 30.3±1.1, 73.1±4.0 and 100.6±3.7 movements min-1 at 15, 25 and 30°C, respectively). A predominant vagal tone was observed at 15°C (32.0±3.2%) and 25°C (27.2±6.7%) relative to the adrenergic tone. At 30°C, the adrenergic tone increased relative to the lower temperature. In conclusion, the cholinergic and adrenergic tones seem to be independent of temperature for colder thermal intervals (15-25°C), while exposure to a hotter ambient temperature (30°C) seems to be followed by a significant increase in adrenergic tone and may reflect cardiovascular adjustments made to match oxygen delivery to demand. Furthermore, while excluding the use of implantable electrodes or cannulae, this study provides a suitable non-invasive method for investigating cardiorespiratory function (cardiac and respiratory rates) in water-breathing animals such as the tadpole.
Collapse
Affiliation(s)
- Leonardo S Longhini
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinary Sciences, São Paulo State University, 14884-900, Jaboticabal, São Paulo, Brazil
| | - Lucas A Zena
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinary Sciences, São Paulo State University, 14884-900, Jaboticabal, São Paulo, Brazil .,National Institute of Science and Technology in Comparative Physiology (INCT Fisiologia Comparada), Brazil
| | - Glauber S F da Silva
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinary Sciences, São Paulo State University, 14884-900, Jaboticabal, São Paulo, Brazil.,National Institute of Science and Technology in Comparative Physiology (INCT Fisiologia Comparada), Brazil
| | - Kênia C Bícego
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinary Sciences, São Paulo State University, 14884-900, Jaboticabal, São Paulo, Brazil.,National Institute of Science and Technology in Comparative Physiology (INCT Fisiologia Comparada), Brazil
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinary Sciences, São Paulo State University, 14884-900, Jaboticabal, São Paulo, Brazil .,National Institute of Science and Technology in Comparative Physiology (INCT Fisiologia Comparada), Brazil
| |
Collapse
|
17
|
Braga VHDS, Armelin VA, Teixeira MT, Abe AS, Rantin FT, Florindo LH. The Effects of Feeding on Cardiac Control of the Broad-Nosed Caiman (Caiman latirostris): The Role of the Autonomic Nervous System and NANC Factors. ACTA ACUST UNITED AC 2016; 325:524-531. [DOI: 10.1002/jez.2036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/06/2016] [Accepted: 08/05/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Victor Hugo Da Silva Braga
- Department of Zoology and Botany; São Paulo State University (UNESP); São José do Rio Preto São Paulo Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT-FAPESP/CNPq); São Paulo Brazil
| | - Vinicius Araújo Armelin
- Department of Zoology and Botany; São Paulo State University (UNESP); São José do Rio Preto São Paulo Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT-FAPESP/CNPq); São Paulo Brazil
| | - Mariana Teodoro Teixeira
- Department of Zoology and Botany; São Paulo State University (UNESP); São José do Rio Preto São Paulo Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT-FAPESP/CNPq); São Paulo Brazil
| | - Augusto Shinya Abe
- National Institute of Science and Technology in Comparative Physiology (INCT-FAPESP/CNPq); São Paulo Brazil
- Department of Zoology; São Paulo State University (UNESP); Rio Claro São Paulo Brazil
- Aquaculture Center (CAUNESP); São Paulo State University (UNESP); Jaboticabal São Paulo Brazil
| | - Francisco Tadeu Rantin
- National Institute of Science and Technology in Comparative Physiology (INCT-FAPESP/CNPq); São Paulo Brazil
- Department of Physiological Sciences; Federal University of São Carlos (UFSCar); São Carlos, São Paulo Brazil
| | - Luiz Henrique Florindo
- Department of Zoology and Botany; São Paulo State University (UNESP); São José do Rio Preto São Paulo Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT-FAPESP/CNPq); São Paulo Brazil
- Aquaculture Center (CAUNESP); São Paulo State University (UNESP); Jaboticabal São Paulo Brazil
| |
Collapse
|
18
|
Vornanen M. The temperature dependence of electrical excitability in fish hearts. J Exp Biol 2016; 219:1941-52. [DOI: 10.1242/jeb.128439] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 05/17/2016] [Indexed: 01/08/2023]
Abstract
ABSTRACT
Environmental temperature has pervasive effects on the rate of life processes in ectothermic animals. Animal performance is affected by temperature, but there are finite thermal limits for vital body functions, including contraction of the heart. This Review discusses the electrical excitation that initiates and controls the rate and rhythm of fish cardiac contraction and is therefore a central factor in the temperature-dependent modulation of fish cardiac function. The control of cardiac electrical excitability should be sensitive enough to respond to temperature changes but simultaneously robust enough to protect against cardiac arrhythmia; therefore, the thermal resilience and plasticity of electrical excitation are physiological qualities that may affect the ability of fishes to adjust to climate change. Acute changes in temperature alter the frequency of the heartbeat and the duration of atrial and ventricular action potentials (APs). Prolonged exposure to new thermal conditions induces compensatory changes in ion channel expression and function, which usually partially alleviate the direct effects of temperature on cardiac APs and heart rate. The most heat-sensitive molecular components contributing to the electrical excitation of the fish heart seem to be Na+ channels, which may set the upper thermal limit for the cardiac excitability by compromising the initiation of the cardiac AP at high temperatures. In cardiac and other excitable cells, the different temperature dependencies of the outward K+ current and inward Na+ current may compromise electrical excitability at temperature extremes, a hypothesis termed the temperature-dependent depression of electrical excitation.
Collapse
Affiliation(s)
- Matti Vornanen
- University of Eastern Finland, Department of Environmental and Biological Sciences, PO Box 111, Joensuu 80101, Finland
| |
Collapse
|
19
|
Carravieri A, Müller MS, Yoda K, Hayama SI, Yamamoto M. Dominant Parasympathetic Modulation of Heart Rate and Heart Rate Variability in a Wild-Caught Seabird. Physiol Biochem Zool 2016; 89:263-76. [PMID: 27327178 DOI: 10.1086/686894] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Heart rate (HR) and heart rate variability (HRV) provide noninvasive measures of the relative activity of the parasympathetic nervous system (PNS), which promotes self-maintenance and restoration, and the sympathetic nervous system (SNS), which prepares an animal for danger. The PNS decreases HR, whereas the SNS increases HR. The PNS and SNS also contribute to oscillations in heartbeat intervals at different frequencies, producing HRV. HRV promotes resilience and adjustment capacity in the organism to intrinsic and extrinsic changes. Measuring HRV can reveal the condition and emotional state of animals, including aspects of their stress physiology. Until now, the functioning of the PNS and SNS and their relationship with other physiological systems have been studied almost exclusively in humans. In this study, we tested their influence on HR and HRV for the first time in a wild-caught seabird, the streaked shearwater (Calonectris leucomelas). We analyzed electrocardiograms collected from birds carrying externally attached HR loggers and that received injections that pharmacologically blocked the PNS, the SNS, or both, as well as those that received a saline (sham) injection or no injection (control). The PNS strongly dominated modulation of HR and also HRV across all frequencies, whereas the SNS contributed only slightly to low-frequency oscillations. The saline injection itself acted as a stressor, causing a dramatic drop in PNS activity in HRV and an increase in HR, though PNS activity continued to dominate even during acute stress. Dominant PNS activity is expected for long-lived species, which should employ physiological strategies that minimize somatic deterioration coming from stress.
Collapse
|
20
|
Zena LA, Dantonio V, Gargaglioni LH, Andrade DV, Abe AS, Bícego KC. Winter metabolic depression does not change arterial baroreflex control of heart rate in the tegu lizard (Salvator merianae). J Exp Biol 2016; 219:725-33. [DOI: 10.1242/jeb.129130] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 12/17/2015] [Indexed: 11/20/2022]
Abstract
Baroreflex regulation of blood pressure (BP) is important for maintaining appropriate tissue perfusion. Although temperature affects heart rate (fH) reflex regulation in some reptiles and toads, no data are available on the influence of temperature-independent metabolic states on baroreflex. The South American tegu lizard Salvator merianae exhibits a clear seasonal cycle of activity decreasing fH along with winter metabolic downregulation, independent of body temperature. Through pharmacological interventions (phenylephrine and sodium nitroprusside), the baroreflex control of fH was studied at ∼25°C in spring-summer and winter-acclimated tegus.
In winter lizards, resting and minimum fH were lower than in spring-summer animals (respectively, 13.3±0.82 vs 10.3±0.81 and 11.2±0.65 vs 7.97±0.88 beats.min−1), while no acclimation differences occurred in resting BP (5.14±0.38 vs 5.06±0.56 kPa), baroreflex gain (94.3±10.7 vs 138.7±30.3 %.kPa−1) and rate-pressure product (an index of myocardial activity). Vagal tone exceeded the sympathetic tone of fH especially in the winter group. Therefore, despite the lower fH, winter acclimation does not diminish the fH baroreflex responses nor rate-pressure product possibly because of increased stroke volume that may arise due to heart hypertrophy. Independent of acclimation, fH responded more to hypotension than to hypertension. This should imply that tegus, which have no pressure separation within the single heart ventricle, must have other protection mechanisms against pulmonary hypertension or oedema, presumably through lymphatic drainage and/or vagal vasoconstriction of pulmonary artery. Such a predominant fH reflex response to hypothension, previously observed in anurans, crocodilians and mammals, may be a common feature of tetrapods.
Collapse
Affiliation(s)
- Lucas A. Zena
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, Jaboticabal, São Paulo, 14884-900, Brazil
- National Institute of Science and Technology – Comparative Physiology (INCT- Fisiologia Comparada), Brazil
| | - Valter Dantonio
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, Jaboticabal, São Paulo, 14884-900, Brazil
- National Institute of Science and Technology – Comparative Physiology (INCT- Fisiologia Comparada), Brazil
| | - Luciane H. Gargaglioni
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, Jaboticabal, São Paulo, 14884-900, Brazil
- National Institute of Science and Technology – Comparative Physiology (INCT- Fisiologia Comparada), Brazil
| | - Denis V. Andrade
- Department of Zoology, Institute of Bioscience, São Paulo State University, Rio Claro, São Paulo, 13506-900, Brazil
- National Institute of Science and Technology – Comparative Physiology (INCT- Fisiologia Comparada), Brazil
| | - Augusto S. Abe
- Department of Zoology, Institute of Bioscience, São Paulo State University, Rio Claro, São Paulo, 13506-900, Brazil
- National Institute of Science and Technology – Comparative Physiology (INCT- Fisiologia Comparada), Brazil
| | - Kênia C. Bícego
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, Jaboticabal, São Paulo, 14884-900, Brazil
- National Institute of Science and Technology – Comparative Physiology (INCT- Fisiologia Comparada), Brazil
| |
Collapse
|
21
|
Filogonio R, Taylor EW, Carreira LB, Leite GS, Abe AS, Leite CA. Systemic Blood Flow Relations in Conscious South American Rattlesnakes. SOUTH AMERICAN JOURNAL OF HERPETOLOGY 2014. [DOI: 10.2994/sajh-d-14-00012.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
22
|
Taylor EW, Leite CAC, Sartori MR, Wang T, Abe AS, Crossley DA. The phylogeny and ontogeny of autonomic control of the heart and cardiorespiratory interactions in vertebrates. ACTA ACUST UNITED AC 2014; 217:690-703. [PMID: 24574385 DOI: 10.1242/jeb.086199] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Heart rate in vertebrates is controlled by activity in the autonomic nervous system. In spontaneously active or experimentally prepared animals, inhibitory parasympathetic control is predominant and is responsible for instantaneous changes in heart rate, such as occur at the first air breath following a period of apnoea in discontinuous breathers like inactive reptiles or species that surface to air breathe after a period of submersion. Parasympathetic control, exerted via fast-conducting, myelinated efferent fibres in the vagus nerve, is also responsible for beat-to-beat changes in heart rate such as the high frequency components observed in spectral analysis of heart rate variability. These include respiratory modulation of the heartbeat that can generate cardiorespiratory synchrony in fish and respiratory sinus arrhythmia in mammals. Both may increase the effectiveness of respiratory gas exchange. Although the central interactions generating respiratory modulation of the heartbeat seem to be highly conserved through vertebrate phylogeny, they are different in kind and location, and in most species are as yet little understood. The heart in vertebrate embryos possesses both muscarinic cholinergic and β-adrenergic receptors very early in development. Adrenergic control by circulating catecholamines seems important throughout development. However, innervation of the cardiac receptors is delayed and first evidence of a functional cholinergic tonus on the heart, exerted via the vagus nerve, is often seen shortly before or immediately after hatching or birth, suggesting that it may be coordinated with the onset of central respiratory rhythmicity and subsequent breathing.
Collapse
Affiliation(s)
- Edwin W Taylor
- Departamento de Zoologia, Instituto de Biociências, Universidade Estadual Paulista, Campus Rio Claro, São Paulo 13506-900, Brazil
| | | | | | | | | | | |
Collapse
|
23
|
Leite CAC, Taylor EW, Wang T, Abe AS, de Andrade DOV. Ablation of the ability to control the right-to-left cardiac shunt does not affect oxygen consumption, specific dynamic action or growth in rattlesnakes, Crotalus durissus. J Exp Biol 2013; 216:1881-9. [DOI: 10.1242/jeb.083840] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
The morphologically undivided ventricle of the heart in non-crocodilian reptiles permits the mixing of oxygen-rich blood returning from the lungs and oxygen-poor blood from the systemic circulation. A possible functional significance for this intra-cardiac shunt has been debated for almost a century. Unilateral left vagotomy rendered the single effective pulmonary artery of the South American rattlesnake, Crotalus durissus, unable to adjust the magnitude of blood flow to the lung. The higher constant perfusion of the lung circulation and the incapability of adjusting R-L shunt in left-denervated snakes persisted over time, providing a unique model for investigation of the long-term consequences of cardiac shunting in a squamate. Oxygen uptake recorded at rest, during spontaneous and forced activity, was not affected by removing control of the cardiac shunt. Furthermore, metabolic rate and energetic balance during the post-prandial metabolic increment, plus the food conversion efficiency and growth rate were all similarly unaffected. These results show that control of cardiac shunting is not associated with a clear functional advantage in adjusting metabolic rate, effectiveness of digestion or growth rates.
Collapse
|
24
|
De Vera L, Rial RV, Pereda E, González JJ. Autonomic mediation of the interdependence between variability signals of heart rate and blood pressure in the lizard Gallotia galloti. CAN J ZOOL 2012. [DOI: 10.1139/z2012-052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Autonomic nervous system (ANS) involvement in the mediation of the synchronization between beat-to-beat RR interval variability (RRIV) and systolic blood pressure variability (SBPV) signals of the lizard Gallotia galloti (Oudart, 1839) was investigated through linear and nonlinear time series analysis methods in a pharmacological blockade context. The ANS blockers used were atropine, prazosin, and propranolol. The interdependence between the signals was quantified by means of the magnitude-squared coherence (MSC), which measures amplitude and phase linear synchronization; the phase lag index (PLI), which evaluates the phase synchronization; and the index L, which quantifies the generalized linear and nonlinear synchronization. Atropine decreased the PLI in the low-frequency (LF: 0.01–0.05 Hz) range; prazosin decreased the MSC in the medium-frequency (MF: 0.06–0.15 Hz) range; and propranolol did not alter any of the interdependence measures. It is suggested that (i) the cholinoceptor activity mediates the phase cardiovascular synchronization in the LF range; (ii) the α1-adrenoceptor activity mediates the amplitude and phase linear cardiovascular synchronization in the MF range; and (iii) the β-adrenoceptor activity plays no role in mediating any dynamics of cardiovascular synchronization in the studied frequency range. When comparing these results with those in mammals, a lesser overall autonomic involvement in the mediation of the studied cardiovascular interdependences is seen in reptiles.
Collapse
Affiliation(s)
- Luis De Vera
- Laboratory of Biophysics, Department of Physiology, University of La Laguna, 38071-La Laguna, Tenerife, Canary Islands, Spain
| | - Rubén V. Rial
- Institut Universitari de Ciencies de la Salut, Universitat de les Illes Balears, 07071-Palma de Mallorca, Mallorca, Illes Balears, Spain
| | - Ernesto Pereda
- Electrical Engineering and Bioengineering Group, Department of Basic Physics, University of La Laguna, 38206-La Laguna, Tenerife, Canary Islands, Spain
| | - Julián J. González
- Laboratory of Biophysics, Department of Physiology, University of La Laguna, 38071-La Laguna, Tenerife, Canary Islands, Spain
| |
Collapse
|
25
|
Taylor EW, Skovgaard N, Leite CA, Sartori M, de Paula GS, Abe AS. Autonomic control of heart rate is virtually independent of temperature but seems related to the neuroanatomy of the efferent vagal supply to the heart in the bullfrog, Lithobathes catesbeianus. J Therm Biol 2012. [DOI: 10.1016/j.jtherbio.2012.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Taylor E, Leite C, Skovgaard N. Autonomic control of cardiorespiratory interactions in fish, amphibians and reptiles. Braz J Med Biol Res 2010; 43:600-10. [DOI: 10.1590/s0100-879x2010007500044] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 04/27/2010] [Indexed: 11/22/2022] Open
Affiliation(s)
- E.W. Taylor
- University of Birmingham, UK; Universidade Estadual Paulista, Brasil; Instituto Nacional de Ciência e Tecnologia em Fisiologia Comparada, Brasil
| | - C.A.C. Leite
- Universidade Estadual Paulista, Brasil; Instituto Nacional de Ciência e Tecnologia em Fisiologia Comparada, Brasil
| | | |
Collapse
|
27
|
Leite CAC, Taylor EW, Guerra CDR, Florindo LH, Belão T, Rantin FT. The role of the vagus nerve in the generation of cardiorespiratory interactions in a neotropical fish, the pacu, Piaractus mesopotamicus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2009; 195:721-31. [DOI: 10.1007/s00359-009-0447-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 04/16/2009] [Accepted: 04/19/2009] [Indexed: 11/28/2022]
|
28
|
Taylor EW, Leite CA, Levings JJ. Central control of cardiorespiratory interactions in fish. Acta Histochem 2009; 111:257-67. [PMID: 19193400 DOI: 10.1016/j.acthis.2008.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Fish control the relative flow rates of water and blood over the gills in order to optimise respiratory gas exchange. As both flows are markedly pulsatile, close beat-to-beat relationships can be predicted. Cardiorespiratory interactions in fish are controlled primarily by activity in the parasympathetic nervous system that has its origin in cardiac vagal preganglionic neurons. Recordings of efferent activity in the cardiac vagus include units firing in respiration-related bursts. Bursts of electrical stimuli delivered peripherally to the cardiac vagus or centrally to respiratory branches of cranial nerves can recruit the heart over a range of frequencies. So, phasic, efferent activity in cardiac vagi, that in the intact fish are respiration-related, can cause heart rate to be modulated by the respiratory rhythm. In elasmobranch fishes this phasic activity seems to arise primarily from central feed-forward interactions with respiratory motor neurones that have overlapping distributions with cardiac neurons in the brainstem. In teleost fish, they arise from increased levels of efferent vagal activity arising from reflex stimulation of chemoreceptors and mechanoreceptors in the orobranchial cavity. However, these differences are largely a matter of emphasis as both groups show elements of feed-forward and feed-back control of cardiorespiratory interactions.
Collapse
|
29
|
Taylor EW, Leite CAC, Florindo LH, Beläo T, Rantin FT. The basis of vagal efferent control of heart rate in a neotropical fish,the pacu,Piaractus mesopotamicus. J Exp Biol 2009; 212:906-13. [DOI: 10.1242/jeb.020529] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYThe role of the parasympathetic nervous system, operating via the vagus nerve, in determining heart rate (fH) and cardiorespiratory interactions was investigated in the neotropical fish Piaractus mesopotamicus. Motor nuclei of branches of cranial nerves VII, IX and X, supplying respiratory muscles and the heart, have an overlapping distribution in the brainstem, while the Vth motor nucleus is more rostrally located. Respiration-related efferent activity in the cardiac vagus appeared to entrain the heart to ventilation. Peripheral stimulation of the cardiac vagus with short bursts of electrical stimuli entrained the heart at a ratio of 1:1 over a range of frequencies, both below and sometimes above the intrinsic heart rate. Alternatively, at higher bursting frequencies the induced fH was slower than the applied stimulus, being recruited by a whole number fraction (1:2 to 1:6) of the stimulus frequency. These effects indicate that respiration-related changes in fH in pacu are under direct, beat-to-beat vagal control. Central burst stimulation of respiratory branches of cranial nerves VII, IX and X also entrained the heart, which implies that cardiorespiratory interactions can be generated reflexly. Central stimulation of the Vth cranial nerve was without effect on heart rate, possibly because its central projections do not overlap with cardiac vagal preganglionic neurons in the brainstem. However, bursts of activity recorded from the cardiac vagus were concurrent with bursts in this nerve, suggesting that cardiorespiratory interactions can arise within the CNS, possibly by irradiation from a central respiratory pattern generator, when respiratory drive is high.
Collapse
Affiliation(s)
- E. W. Taylor
- Department of Physiological Sciences, Federal University of São Carlos(UFSCar), São Carlos, SP, Brazil
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - C. A. C. Leite
- Department of Physiological Sciences, Federal University of São Carlos(UFSCar), São Carlos, SP, Brazil
| | - L. H. Florindo
- Department of Physiological Sciences, Federal University of São Carlos(UFSCar), São Carlos, SP, Brazil
| | - T. Beläo
- Department of Physiological Sciences, Federal University of São Carlos(UFSCar), São Carlos, SP, Brazil
| | - F. T. Rantin
- Department of Physiological Sciences, Federal University of São Carlos(UFSCar), São Carlos, SP, Brazil
| |
Collapse
|
30
|
Taylor EW, Andrade DV, Abe AS, Leite CAC, Wang T. The unequal influences of the left and right vagi on the control of the heart and pulmonary artery in the rattlesnake,Crotalus durissus. J Exp Biol 2009; 212:145-51. [DOI: 10.1242/jeb.024042] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYAutonomic control of the cardiovascular system in reptiles includes sympathetic components but heart rate (fH), pulmonary blood flow (Q̇pul) and cardiac shunt patterns are primarily controlled by the parasympathetic nervous system. The vagus innervates both the heart and a sphincter on the pulmonary artery. The present study reveals that whereas both the left and right vagi influence fH, it is only the left vagus that influences pulmonary vascular resistance. This is associated with the fact that rattlesnakes, in common with some other species of snakes, have a single functional lung, as the other lung regresses during development. Stimulation of the left cervical vagus in anaesthetised snakes slowed the heart and markedly reduced blood flow in the pulmonary artery whereas stimulation of the right cervical vagus slowed the heart and caused a small increase in stroke volume (VS) in both the systemic and pulmonary circulations. Central stimulation of either vagus caused small (5–10%)reductions in systemic blood pressure but did not affect blood flows or fH. A bilateral differentiation between the vagi was confirmed by progressive vagotomy in recovered snakes. Transection of the left vagus caused a slight increase in fH (10%) but a 70%increase in Q̇pul, largely due to an increase in pulmonary stroke volume (VS,pul). Subsequent complete vagotomy caused a 60% increase in fHaccompanied by a slight rise in Q̇pul, with no further change in VS,pul. By contrast, transection of the right vagus elicited a slight tachycardia but no change in VS,pul. Subsequent complete vagotomy was accompanied by marked increases in fH, Q̇puland VS,pul. These data show that although the heart receives bilateral vagal innervation, the sphincter on the pulmonary artery is innervated solely by the left vagus. This paves the way for an investigation of the role of the cardiac shunt in regulating metabolic rate, as chronic left vagotomy will cause a pronounced left–right shunt in recovered animals,whilst leaving intact control of the heart, via the right vagus.
Collapse
Affiliation(s)
- E. W. Taylor
- Departmento de Zoologia, Universidade Estadual Paulista, Rio Claro, SP,Brazil
- School of Biosciences, The University of Birmingham, Edgbaston B15 2TT,UK
| | - Denis V. Andrade
- Departmento de Zoologia, Universidade Estadual Paulista, Rio Claro, SP,Brazil
| | - Augusto S. Abe
- Departmento de Zoologia, Universidade Estadual Paulista, Rio Claro, SP,Brazil
| | - Cleo A. C. Leite
- Departmento de Zoologia, Universidade Estadual Paulista, Rio Claro, SP,Brazil
| | - Tobias Wang
- Departmento de Zoologia, Universidade Estadual Paulista, Rio Claro, SP,Brazil
- Institute of Biology, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
31
|
Hagensen MK, Abe AS, Falk E, Wang T. Physiological importance of the coronary arterial blood supply to the rattlesnake heart. J Exp Biol 2008; 211:3588-93. [DOI: 10.1242/jeb.024489] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYThe reptilian heart consists of a thick inner spongy myocardium that derives its oxygen and nutrient supply directly from the blood within the ventricular cavity, which is surrounded by a thin outer compact layer supplied by coronary arteries. The functional importance of these coronary arteries remains unknown. In the present study we investigate the effects of permanent coronary artery occlusion in the South American rattlesnake (Crotalus durissus) on the ability to maintain heart rate and blood pressure at rest and during short term activity. We used colored silicone rubber(Microfil) to identify the coronary artery distribution and interarterial anastomoses. The coronary circulation was occluded and the snakes were then kept for 4 days at 30°C. Microfil injections verified that virtually all coronary arteries had successfully been occluded, but also made visible an extensive coronary supply to the outer compact layer in untreated snakes. Electrocardiogram (ECG), blood pressure (Psys) and heart rate (fH) were measured at rest and during enforced activity at day 1 and 4. Four days after occlusion of the coronary circulation, the snakes could still maintain a Psys and fH of 5.2±0.2 kPa and 58.2±2.2 beats min–1, respectively, during activity and the ECG was not affected. This was not different from sham-operated snakes. Thus, while the outer compact layer of the rattlesnake heart clearly has an extensive coronary supply, rattlesnakes sustain a high blood pressure and heart rate during activity without coronary artery blood supply.
Collapse
Affiliation(s)
- Mette K. Hagensen
- Department of Zoophysiology, Institute of Biological Sciences, University of Aarhus, Denmark
- Department of Cardiology, Research Unit, Aarhus University Hospital (Skejby),Denmark
| | - Augusto S. Abe
- Departamento de Zoologia, Centro de Aquicultura, UNESP, Rio Claro, São Paulo, Brazil
| | - Erling Falk
- Department of Cardiology, Research Unit, Aarhus University Hospital (Skejby),Denmark
| | - Tobias Wang
- Department of Zoophysiology, Institute of Biological Sciences, University of Aarhus, Denmark
| |
Collapse
|
32
|
De Vera L, Santana A, Gonzalez JJ. Nonlinearity and fractality in the variability of cardiac period in the lizard, Gallotia galloti: effects of autonomic blockade. Am J Physiol Regul Integr Comp Physiol 2008; 295:R1282-9. [DOI: 10.1152/ajpregu.90391.2008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Both nonlinear and fractal properties of beat-to-beat R-R interval variability signal (RRV) of freely moving lizards ( Gallotia galloti) were studied in baseline and under autonomic nervous system blockade. Nonlinear techniques allowed us to study the complexity, chaotic behavior, nonlinearity, stationarity, and regularity over time of RRV. Scaling behavior of RRV was studied by means of fractal techniques. The autonomic nervous system blockers used were atropine, propranolol, prazosin, and yohimbine. The nature of RRV was linear in baseline and under β-, α1- and α2-adrenoceptor blockades. Atropine changed the linear nature of RRV to nonlinear and increased its stationarity, regularity and fractality. Propranolol increased the complexity and chaotic behavior, and decreased the stationarity, regularity, and fractality of RRV. Both prazosin and yohimbine did not change any of the nonlinear and fractal properties of RRV. It is suggested that 1) the use of both nonlinear and fractal analysis is an appropriate approach for studying cardiac period variability in reptiles; 2) the cholinergic activity, which seems to make the α1-, α2- and β-adrenergic activity interaction unnecessary, determines the linear behavior in basal RRV; 3) fractality, as well as both RRV regularity and stationarity over time, may result from the balance between cholinergic and β-adrenergic activities opposing actions; 4) β-adrenergic activity may buffer both the complexity and chaotic behavior of RRV, and 5) neither the α1- nor the α2-adrenergic activity seem to be involved in the mediation of either nonlinear or fractal components of RRV.
Collapse
|
33
|
De Vera L, Santana A, Pereda E, Gonzalez JJ. Autonomic mediation in the interdependences between cardiocortical activity time variations and between cardiorespiratory activity time variations in the lizard, Gallotia galloti. Comp Biochem Physiol A Mol Integr Physiol 2008; 149:11-9. [DOI: 10.1016/j.cbpa.2007.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 09/21/2007] [Accepted: 09/21/2007] [Indexed: 10/22/2022]
|
34
|
Halsey L, Butler P, Fahlman A, Woakes A, Handrich Y. Behavioral and Physiological Significance of Minimum Resting Metabolic Rate in King Penguins. Physiol Biochem Zool 2008; 81:74-86. [DOI: 10.1086/523318] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2007] [Indexed: 11/03/2022]
|
35
|
McKenzie DJ, Campbell HA, Taylor EW, Micheli M, Rantin FT, Abe AS. The autonomic control and functional significance of the changes in heart rate associated with air breathing in the jeju,Hoplerythrinus unitaeniatus. J Exp Biol 2007; 210:4224-32. [DOI: 10.1242/jeb.009266] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYThe jeju is a teleost fish with bimodal respiration that utilizes a modified swim bladder as an air-breathing organ (ABO). Like all air-breathing fish studied to date, jeju exhibit pronounced changes in heart rate(fH) during air-breathing events, and it is believed that these may facilitate oxygen uptake (MO2) from the ABO. The current study employed power spectral analysis (PSA) of fH patterns, coupled with instantaneous respirometry, to investigate the autonomic control of these phenomena and their functional significance for the efficacy of air breathing. The jeju obtained less than 5%of total MO2(MtO2) from air breathing in normoxia at 26°C, and PSA of beat-to-beat variability in fHrevealed a pattern similar to that of unimodal water-breathing fish. In deep aquatic hypoxia (water PO2=1 kPa) the jeju increased the frequency of air breathing (fAB) tenfold and maintained MtO2 unchanged from normoxia. This was associated with a significant increase in heart rate variability (HRV),each air breath (AB) being preceded by a brief bradycardia and then followed by a brief tachycardia. These fH changes are qualitatively similar to those associated with breathing in unimodal air-breathing vertebrates. Within 20 heartbeats after the AB, however, a beat-to-beat variability in fH typical of water-breathing fish was re-established. Pharmacological blockade revealed that both adrenergic and cholinergic tone increased simultaneously prior to each AB, and then decreased after it. However, modulation of inhibitory cholinergic tone was responsible for the major proportion of HRV, including the precise beat-to-beat modulation of fH around each AB. Pharmacological blockade of all variations in fH associated with air breathing in deep hypoxia did not, however, have a significant effect upon fAB or the regulation of MtO2. Thus, the functional significance of the profound HRV during air breathing remains a mystery.
Collapse
Affiliation(s)
- D. J. McKenzie
- Institut des Sciences de l'Evolution de Montpellier, UMR 5554 CNRS-Université Montpellier II, Station Méditerranéenne de l'Environnement Littoral, 1 quai de la Daurade, 34200 Sète,France
| | - H. A. Campbell
- School of Integrative Biology, University of Queensland, Brisbane, QL 4072, Australia
| | - E. W. Taylor
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT,UK
| | - M. Micheli
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, Brazil
| | - F. T. Rantin
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, Brazil
| | - A. S. Abe
- Departamento de Zoologia, Centro de Aquicultura, UNESP, Rio Claro,São Paulo, Brazil
| |
Collapse
|
36
|
Grossman P, Taylor EW. Toward understanding respiratory sinus arrhythmia: relations to cardiac vagal tone, evolution and biobehavioral functions. Biol Psychol 2006; 74:263-85. [PMID: 17081672 DOI: 10.1016/j.biopsycho.2005.11.014] [Citation(s) in RCA: 690] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2005] [Indexed: 11/16/2022]
Abstract
Respiratory sinus arrhythmia (RSA, or high-frequency heart-rate variability) is frequently employed as an index of cardiac vagal tone or even believed to be a direct measure of vagal tone. However, there are many significant caveats regarding vagal tone interpretation: 1. Respiratory parameters can confound relations between RSA and cardiac vagal tone.2. Although intraindividual relations between RSA and cardiac vagal control are often strong, interindividual associations may be modest.3. RSA measurement is profoundly influenced by concurrent levels of momentary physical activity, which can bias estimation of individual differences in vagal tone.4. RSA magnitude is affected by beta-adrenergic tone.5. RSA and cardiac vagal tone can dissociate under certain circumstances.6. The polyvagal theory contains evolution-based speculations that relate RSA, vagal tone and behavioral phenomena. We present evidence that the polyvagal theory does not accurately depict evolution of vagal control of heart-rate variability, and that it ignores the phenomenon of cardiac aliasing and disregards the evolution of a functional role for vagal control of the heart, from cardiorespiratory synchrony in fish to RSA in mammals. Unawareness of these issues can lead to misinterpretation of cardiovascular autonomic mechanisms. On the other hand, RSA has been shown to often provide a reasonable reflection of cardiac vagal tone when the above-mentioned complexities are considered. Finally, a recent hypothesis is expanded upon, in which RSA plays a primary role in regulation of energy exchange by means of synchronizing respiratory and cardiovascular processes during metabolic and behavioral change.
Collapse
Affiliation(s)
- Paul Grossman
- Department of Psychosomatic and Internal Medicine, Psychophysiology Research Laboratory, University of Basel Hospital, Hebelstrasse 2, CH-4031 Basel, Switzerland.
| | | |
Collapse
|