1
|
Nikolaidou A, Mougkogiannis P, Adamatzky A. Electroactive composite biofilms integrating Kombucha, Chlorella and synthetic proteinoid Proto-Brains. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240238. [PMID: 39076784 PMCID: PMC11285679 DOI: 10.1098/rsos.240238] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
In this study, we present electroactive biofilms made from a combination of Kombucha zoogleal mats and thermal proteinoids. These biofilms have potential applications in unconventional computing and robotic skin. Proteinoids are synthesized by thermally polymerizing amino acids, resulting in the formation of synthetic protocells that display electrical signalling similar to neurons. By incorporating proteinoids into Kombucha zoogleal cellulose mats, hydrogel biofilms can be created that have the ability to efficiently transfer charges, perform sensory transduction and undergo processing. We conducted a study on the memfractance and memristance behaviours of composite biofilms, showcasing their capacity to carry out unconventional computing operations. The porous nanostructure and electroactivity of the biofilm create a biocompatible interface that can be used to record and stimulate neuronal networks. In addition to in vitro neuronal interfaces, these soft electroactive biofilms show potential as components for bioinspired robotics, smart wearables, unconventional computing devices and adaptive biorobotic systems. Kombucha-proteinoids composite films are a highly customizable material that can be synthesized to suit specific needs. These films belong to a unique category of 'living' materials, as they have the ability to support cellular systems and improve bioelectronic functionality. This makes them an exciting prospect in various applications. Ongoing efforts are currently being directed towards enhancing the compositional tuning of conductivity, signal processing and integration within hybrid bioelectronic circuits.
Collapse
Affiliation(s)
- Anna Nikolaidou
- Unconventional Computing Laboratory, University of the West of England, Bristol, UK
- School of Architecture and Environment, University of the West of England, Bristol, UK
| | | | - Andrew Adamatzky
- Unconventional Computing Laboratory, University of the West of England, Bristol, UK
| |
Collapse
|
2
|
Thompson AC, Aizenman CD. Characterization of Na + currents regulating intrinsic excitability of optic tectal neurons. Life Sci Alliance 2024; 7:e202302232. [PMID: 37918964 PMCID: PMC10622587 DOI: 10.26508/lsa.202302232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023] Open
Abstract
Developing neurons adapt their intrinsic excitability to maintain stable output despite changing synaptic input. The mechanisms behind this process remain unclear. In this study, we examined Xenopus optic tectal neurons and found that the expressions of Nav1.1 and Nav1.6 voltage-gated Na+ channels are regulated during changes in intrinsic excitability, both during development and becsuse of changes in visual experience. Using whole-cell electrophysiology, we demonstrate the existence of distinct, fast, persistent, and resurgent Na+ currents in the tectum, and show that these Na+ currents are co-regulated with changes in Nav channel expression. Using antisense RNA to suppress the expression of specific Nav subunits, we found that up-regulation of Nav1.6 expression, but not Nav1.1, was necessary for experience-dependent increases in Na+ currents and intrinsic excitability. Furthermore, this regulation was also necessary for normal development of sensory guided behaviors. These data suggest that the regulation of Na+ currents through the modulation of Nav1.6 expression, and to a lesser extent Nav1.1, plays a crucial role in controlling the intrinsic excitability of tectal neurons and guiding normal development of the tectal circuitry.
Collapse
|
3
|
Changes in the Electrical Characteristics of Premotor Interneurons and Serotonin-Containing Modulator Snail Neurons upon Developing a Contextual Conditioned Reflex and Its Reconsolidation. BIONANOSCIENCE 2023. [DOI: 10.1007/s12668-023-01062-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
4
|
Huang PH, Yang TY, Yeh CW, Huang SM, Chang HC, Hung YF, Chu WC, Cho KH, Lu TP, Kuo PH, Lee LJ, Kuo LW, Lien CC, Cheng HJ. Involvement of a BH3-only apoptosis sensitizer gene Blm-s in hippocampus-mediated mood control. Transl Psychiatry 2022; 12:411. [PMID: 36163151 PMCID: PMC9512807 DOI: 10.1038/s41398-022-02184-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022] Open
Abstract
Mood disorders are an important public health issue and recent advances in genomic studies have indicated that molecules involved in neurodevelopment are causally related to mood disorders. BLM-s (BCL-2-like molecule, small transcript isoform), a BH3-only proapoptotic BCL-2 family member, mediates apoptosis of postmitotic immature neurons during embryonic cortical development, but its role in the adult brain is unknown. To better understand the physiological role of Blm-s gene in vivo, we generated a Blm-s-knockout (Blm-s-/-) mouse. The Blm-s-/- mice breed normally and exhibit grossly normal development. However, global depletion of Blm-s is highly associated with depression- and anxiety-related behaviors in adult mutant mice with intact learning and memory capacity. Functional magnetic resonance imaging of adult Blm-s-/- mice reveals reduced connectivity mainly in the ventral dentate gyrus (vDG) of the hippocampus with no alteration in the dorsal DG connectivity and in total hippocampal volume. At the cellular level, BLM-s is expressed in DG granule cells (GCs), and Blm-s-/- mice show reduced dendritic complexity and decreased spine density in mature GCs. Electrophysiology study uncovers that mature vGCs in adult Blm-s-/- DG are intrinsically more excitable. Interestingly, certain genetic variants of the human Blm homologue gene (VPS50) are significantly associated with depression traits from publicly resourced UK Biobank data. Taken together, BLM-s is required for the hippocampal mood control function. Loss of BLM-s causes abnormality in the electrophysiology and morphology of GCs and a disrupted vDG neural network, which could underlie Blm-s-null-associated anxiety and depression.
Collapse
Affiliation(s)
- Pei-Hsin Huang
- Graduate Institute of Pathology, College of Medicine, National Taiwan University, 100, Taipei, Taiwan. .,Department of Pathology, National Taiwan University Hospital, 100, Taipei, Taiwan.
| | - Tsung-Ying Yang
- Graduate Institute of Pathology, College of Medicine, National Taiwan University, 100, Taipei, Taiwan
| | - Chia-Wei Yeh
- Institute of Neuroscience, College of Life Sciences, National Yang Ming Chiao Tung University, 112, Taipei, Taiwan
| | - Sheng-Min Huang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 350, Miaoli, Taiwan
| | - Ho-Ching Chang
- Institute of Molecular Biology, Academia Sinica, 115, Taipei, Taiwan
| | - Yun-Fen Hung
- Institute of Molecular Biology, Academia Sinica, 115, Taipei, Taiwan
| | - Wen-Chia Chu
- Graduate Institute of Pathology, College of Medicine, National Taiwan University, 100, Taipei, Taiwan
| | - Kuan-Hung Cho
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 350, Miaoli, Taiwan
| | - Tzu-Pin Lu
- Department of Public Health & Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, 100, Taipei, Taiwan
| | - Po-Hsiu Kuo
- Department of Public Health & Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, 100, Taipei, Taiwan.,Department of Psychiatry, National Taiwan University Hospital, 100, Taipei, Taiwan
| | - Li-Jen Lee
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, 100, Taipei, Taiwan.,Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, 100, Taipei, Taiwan
| | - Li-Wei Kuo
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 350, Miaoli, Taiwan.,Institute of Medical Device and Imaging, College of Medicine, National Taiwan University, 100, Taipei, Taiwan
| | - Cheng-Chang Lien
- Institute of Neuroscience, College of Life Sciences, National Yang Ming Chiao Tung University, 112, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, 112, Taipei, Taiwan
| | - Hwai-Jong Cheng
- Institute of Molecular Biology, Academia Sinica, 115, Taipei, Taiwan
| |
Collapse
|
5
|
Krentzel AA, Proaño SB, Dorris DM, Setzer B, Meitzen J. The estrous cycle and 17β-estradiol modulate the electrophysiological properties of rat nucleus accumbens core medium spiny neurons. J Neuroendocrinol 2022; 34:e13122. [PMID: 35365910 PMCID: PMC9250601 DOI: 10.1111/jne.13122] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/02/2022] [Accepted: 02/22/2022] [Indexed: 12/03/2022]
Abstract
The nucleus accumbens core is a key nexus within the mammalian brain for integrating the premotor and limbic systems and regulating important cognitive functions such as motivated behaviors. Nucleus accumbens core functions show sex differences and are sensitive to the presence of hormones such as 17β-estradiol (estradiol) in normal and pathological contexts. The primary neuron type of the nucleus accumbens core, the medium spiny neuron (MSN), exhibits sex differences in both intrinsic excitability and glutamatergic excitatory synapse electrophysiological properties. Here, we provide a review of recent literature showing how estradiol modulates rat nucleus accumbens core MSN electrophysiology within the context of the estrous cycle. We review the changes in MSN electrophysiological properties across the estrous cycle and how these changes can be mimicked in response to exogenous estradiol exposure. We discuss in detail recent findings regarding how acute estradiol exposure rapidly modulates excitatory synapse properties in nucleus accumbens core but not caudate-putamen MSNs, which mirror the natural changes seen across estrous cycle phases. These recent insights demonstrate the strong impact of sex-specific estradiol action upon nucleus accumbens core neuron electrophysiology.
Collapse
Affiliation(s)
- Amanda A. Krentzel
- Department of Biological SciencesNorth Carolina State UniversityRaleighNCUSA
| | - Stephanie B. Proaño
- Neurobiology LaboratoryNational Institute of Environmental Health Sciences, NIHResearch Triangle ParkNCUSA
| | - David M. Dorris
- Department of Biological SciencesNorth Carolina State UniversityRaleighNCUSA
| | - Beverly Setzer
- Graduate Program for Neuroscience and Department of Biomedical EngineeringBoston UniversityBostonMAUSA
| | - John Meitzen
- Department of Biological SciencesNorth Carolina State UniversityRaleighNCUSA
- Comparative Medicine InstituteNorth Carolina State UniversityRaleighNCUSA
- Center for Human Health and the EnvironmentNorth Carolina State UniversityRaleighNCUSA
| |
Collapse
|
6
|
Bhandari A, Ward TW, Smith J, Van Hook MJ. Structural and functional plasticity in the dorsolateral geniculate nucleus of mice following bilateral enucleation. Neuroscience 2022; 488:44-59. [PMID: 35131394 PMCID: PMC8960354 DOI: 10.1016/j.neuroscience.2022.01.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/31/2022] [Indexed: 02/08/2023]
Abstract
Within the nervous system, plasticity mechanisms attempt to stabilize network activity following disruption by injury, disease, or degeneration. Optic nerve injury and age-related diseases can induce homeostatic-like responses in adulthood. We tested this possibility in the thalamocortical (TC) neurons in the dorsolateral geniculate nucleus (dLGN) using patch-clamp electrophysiology, optogenetics, immunostaining, and single-cell dendritic analysis following loss of visual input via bilateral enucleation. We observed progressive loss of vGlut2-positive retinal terminals in the dLGN indicating degeneration post-enucleation that was coincident with changes in microglial morphology indicative of microglial activation. Consistent with the decline of vGlut2 puncta, we also observed loss of retinogeniculate (RG) synaptic function assessed using optogenetic activation of RG axons while performing whole-cell voltage clamp recordings from TC neurons in brain slices. Surprisingly, we did not detect any significant changes in the frequency of miniature post-synaptic currents (mEPSCs) or corticothalamic feedback synapses. Analysis of TC neuron dendritic structure from single-cell dye fills revealed a gradual loss of dendrites proximal to the soma, where TC neurons receive the bulk of RG inputs. Finally, analysis of action potential firing demonstrated that TC neurons have increased excitability following enucleation, firing more action potentials in response to depolarizing current injections. Our findings show that degeneration of the retinal axons/optic nerve and loss of RG synaptic inputs induces structural and functional changes in TC neurons, consistent with neuronal attempts at compensatory plasticity in the dLGN.
Collapse
|
7
|
Late-Onset Behavioral and Synaptic Consequences of L-Type Ca 2+ Channel Activation in the Basolateral Amygdala of Developing Rats. eNeuro 2022; 9:ENEURO.0282-21.2022. [PMID: 35064022 PMCID: PMC8868026 DOI: 10.1523/eneuro.0282-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 11/23/2022] Open
Abstract
Postnatal CNS development is fine-tuned to drive the functional needs of succeeding life stages; accordingly, the emergence of sensory and motor functions, behavioral patterns and cognitive abilities relies on a complex interplay of signaling pathways. Strictly regulated Ca2+ signaling mediated by L-type channels (LTCCs) is crucial in neural circuit development and aberrant increases in neuronal LTCC activity are linked to neurodevelopmental and psychiatric disorders. In the amygdala, a brain region that integrates signals associated with aversive and rewarding stimuli, LTCCs contribute to NMDA-independent long-term potentiation (LTP) and are required for the consolidation and extinction of fear memory. In vitro studies have elucidated distinct electrophysiological and synaptic properties characterizing the transition from immature to functionally mature basolateral subdivision of the amygdala (BLA) principal neurons. Further, acute increase of LTCC activity selectively regulates excitability and spontaneous synaptic activity in immature BLA neurons, suggesting an age-dependent regulation of BLA circuitry by LTCCs. This study aimed to elucidate whether early life alterations in LTCC activity subsequently affect synaptic strength and amygdala-dependent behaviors in early adulthood. In vivo intra-amygdala injection of an LTCC agonist at a critical period of postnatal neurodevelopment in male rat pups was used to examine synaptic plasticity of BLA excitatory inputs, expression of immediate early genes (IEGs) and glutamate receptors, as well as anxiety and social affiliation behaviors at a juvenile age. Results indicate that enhanced LTCC activity in immature BLA principal neurons trigger persistent changes in the developmental trajectory to modify membrane properties and synaptic LTP at later stages, concomitant with alterations in amygdala-related behavioral patterns.
Collapse
|
8
|
Bell HC, Hsiung K, Pasberg P, Broccard FD, Nieh JC. Responsiveness to inhibitory signals changes as a function of colony size in honeybees ( Apis mellifera). J R Soc Interface 2021; 18:20210570. [PMID: 34753311 PMCID: PMC8580440 DOI: 10.1098/rsif.2021.0570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Biological collectives, like honeybee colonies, can make intelligent decisions and robustly adapt to changing conditions via intricate systems of excitatory and inhibitory signals. In this study, we explore the role of behavioural plasticity and its relationship to network size by manipulating honeybee colony exposure to an artificial inhibitory signal. As predicted, inhibition was strongest in large colonies and weakest in small colonies. This is ecologically relevant for honeybees, for which reduced inhibitory effects may increase robustness in small colonies that must maintain a minimum level of foraging and food stores. We discuss evidence for size-dependent plasticity in other types of biological networks.
Collapse
Affiliation(s)
- Heather C Bell
- Division of Biological Sciences, Section of Ecology, Behavior, and Evolution and, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Kevin Hsiung
- Division of Biological Sciences, Section of Ecology, Behavior, and Evolution and, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Patrick Pasberg
- Division of Biological Sciences, Section of Ecology, Behavior, and Evolution and, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.,Department of Mechanical Engineering, Section of Biomimetics, Westphalian University of Applied Sciences, Münsterstrasse 265, 46397 Bocholt, Germany
| | - Frédéric D Broccard
- Institute for Neural Computation, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - James C Nieh
- Division of Biological Sciences, Section of Ecology, Behavior, and Evolution and, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
9
|
Zhang Q, Zhao L, Shen W, Yang S. Subjective tinnitus: lesion-induced pathological central homeostasis remodeling. J Otol 2021; 16:266-272. [PMID: 34548874 PMCID: PMC8438635 DOI: 10.1016/j.joto.2021.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 11/25/2022] Open
Abstract
Subjective tinnitus is the most common type of tinnitus, which is the manifestation of pathological activities in the brain. It happens in a substantial portion of the general population and brings significant burden to the society. Severe subjective tinnitus can lead to depression and insomnia and severely affects patients' quality of life. However, due to poor understanding of its etiology and pathogenesis, treatment of subjective tinnitus remains challenging. In recent decades, a growing number of studies have shown that subjective tinnitus is related to lesion-induced neural plasticity of auditory and non-auditory central systems. This article reviews cellular mechanisms of neural plasticity in subjective tinnitus to provide further understanding of its pathogenesis.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Fuxing Street NO.28, Haidian District, Beijing, 100039, China
| | - Lidong Zhao
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Fuxing Street NO.28, Haidian District, Beijing, 100039, China
| | - Weidong Shen
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Fuxing Street NO.28, Haidian District, Beijing, 100039, China
| | - Shiming Yang
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Fuxing Street NO.28, Haidian District, Beijing, 100039, China
| |
Collapse
|
10
|
Santos-Mayo A, Moratti S, de Echegaray J, Susi G. A Model of the Early Visual System Based on Parallel Spike-Sequence Detection, Showing Orientation Selectivity. BIOLOGY 2021; 10:biology10080801. [PMID: 34440033 PMCID: PMC8389551 DOI: 10.3390/biology10080801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/22/2022]
Abstract
Simple Summary A computational model of primates’ early visual processing, showing orientation selectivity, is presented. The system importantly integrates two key elements: (1) a neuromorphic spike-decoding structure that considerably resembles the circuitry between layers IV and II/III of the primary visual cortex, both in topology and operation; (2) the plasticity of intrinsic excitability, to embed recent findings about the operation of the same area. The model is proposed as a tool for the analysis and reproduction of the orientation selectivity phenomenon, whose underlying neuronal-level computational mechanisms are today the subject of intense scrutiny. In response to rotated Gabor patches the model is able to exhibit realistic orientation tuning curves and to reproduce responses similar to those found in neurophysiological recordings from the primary visual cortex obtained under the same task, considering different stages of the network. This demonstrates its aptness to capture the mechanisms underlying the evoked response in the primary visual cortex. Our tool is available online, and can be expanded to other experiments using a dedicated software library developed by the authors, to elucidate the computational mechanisms underlying orientation selectivity. Abstract Since the first half of the twentieth century, numerous studies have been conducted on how the visual cortex encodes basic image features. One of the hallmarks of basic feature extraction is the phenomenon of orientation selectivity, of which the underlying neuronal-level computational mechanisms remain partially unclear despite being intensively investigated. In this work we present a reduced visual system model (RVSM) of the first level of scene analysis, involving the retina, the lateral geniculate nucleus and the primary visual cortex (V1), showing orientation selectivity. The detection core of the RVSM is the neuromorphic spike-decoding structure MNSD, which is able to learn and recognize parallel spike sequences and considerably resembles the neuronal microcircuits of V1 in both topology and operation. This structure is equipped with plasticity of intrinsic excitability to embed recent findings about V1 operation. The RVSM, which embeds 81 groups of MNSD arranged in 4 oriented columns, is tested using sets of rotated Gabor patches as input. Finally, synthetic visual evoked activity generated by the RVSM is compared with real neurophysiological signal from V1 area: (1) postsynaptic activity of human subjects obtained by magnetoencephalography and (2) spiking activity of macaques obtained by multi-tetrode arrays. The system is implemented using the NEST simulator. The results attest to a good level of resemblance between the model response and real neurophysiological recordings. As the RVSM is available online, and the model parameters can be customized by the user, we propose it as a tool to elucidate the computational mechanisms underlying orientation selectivity.
Collapse
Affiliation(s)
- Alejandro Santos-Mayo
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Technical University of Madrid, 28040 Madrid, Spain; (A.S.-M.); (S.M.); (J.d.E.)
- Department of Experimental Psychology, Faculty of Psychology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Stephan Moratti
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Technical University of Madrid, 28040 Madrid, Spain; (A.S.-M.); (S.M.); (J.d.E.)
- Department of Experimental Psychology, Faculty of Psychology, Complutense University of Madrid, 28040 Madrid, Spain
- Laboratory of Clinical Neuroscience, Center for Biomedical Technology, Technical University of Madrid, 28040 Madrid, Spain
| | - Javier de Echegaray
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Technical University of Madrid, 28040 Madrid, Spain; (A.S.-M.); (S.M.); (J.d.E.)
- Department of Experimental Psychology, Faculty of Psychology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Gianluca Susi
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Technical University of Madrid, 28040 Madrid, Spain; (A.S.-M.); (S.M.); (J.d.E.)
- Department of Experimental Psychology, Faculty of Psychology, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Civil Engineering and Computer Science, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Correspondence: ; Tel.: +34-(61)-86893399-79317
| |
Collapse
|
11
|
Zubov T, Silika S, Dukkipati SS, Hartzler LK, Santin JM. Characterization of laryngeal motor neuron properties in the American bullfrog, Lithobates catesbieanus. Respir Physiol Neurobiol 2021; 294:103745. [PMID: 34298168 DOI: 10.1016/j.resp.2021.103745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/01/2021] [Accepted: 07/18/2021] [Indexed: 11/29/2022]
Abstract
Motor neurons represent the final output from the central respiratory network. American bullfrogs, Lithobates catesbieanus, have provided insight into development and plasticity of the breathing control system, yet cellular aspects of bullfrog motor neurons are not well-described. In this study, we characterized properties of laryngeal motor neurons that produce motor outflow to the glottal dilator, a muscle that gates airflow to the lungs of anurans. To this end, we measured several intrinsic membrane properties of labeled laryngeal motor neurons in brain slices. Using unsupervised clustering analyses, we identified two broad classes of motor neurons: those with high firing rates and strong adaptation (∼70 %), and those with lower firing rates and less adaptation (∼30 %). These results suggest that two neuronal cell types innervate the glottal dilator, roughly aligning with the composition of fast and slower twitch fibers of this muscle. In sum, these data reinforce the need to consider cell-type when assessing motor neuron function in the respiratory network.
Collapse
Affiliation(s)
- Tanya Zubov
- The University of North Carolina at Greensboro, Department of Biology, United States
| | - Sara Silika
- The University of North Carolina at Greensboro, Department of Biology, United States
| | | | - Lynn K Hartzler
- Wright State University of Department of Biological Sciences, United States
| | - Joseph M Santin
- The University of North Carolina at Greensboro, Department of Biology, United States.
| |
Collapse
|
12
|
Virtual Reality for Neurorehabilitation and Cognitive Enhancement. Brain Sci 2021; 11:brainsci11020221. [PMID: 33670277 PMCID: PMC7918687 DOI: 10.3390/brainsci11020221] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/23/2021] [Accepted: 02/06/2021] [Indexed: 02/06/2023] Open
Abstract
Our access to computer-generated worlds changes the way we feel, how we think, and how we solve problems. In this review, we explore the utility of different types of virtual reality, immersive or non-immersive, for providing controllable, safe environments that enable individual training, neurorehabilitation, or even replacement of lost functions. The neurobiological effects of virtual reality on neuronal plasticity have been shown to result in increased cortical gray matter volumes, higher concentration of electroencephalographic beta-waves, and enhanced cognitive performance. Clinical application of virtual reality is aided by innovative brain–computer interfaces, which allow direct tapping into the electric activity generated by different brain cortical areas for precise voluntary control of connected robotic devices. Virtual reality is also valuable to healthy individuals as a narrative medium for redesigning their individual stories in an integrative process of self-improvement and personal development. Future upgrades of virtual reality-based technologies promise to help humans transcend the limitations of their biological bodies and augment their capacity to mold physical reality to better meet the needs of a globalized world.
Collapse
|
13
|
Matovic S, Ichiyama A, Igarashi H, Salter EW, Sunstrum JK, Wang XF, Henry M, Kuebler ES, Vernoux N, Martinez-Trujillo J, Tremblay ME, Inoue W. Neuronal hypertrophy dampens neuronal intrinsic excitability and stress responsiveness during chronic stress. J Physiol 2020; 598:2757-2773. [PMID: 32347541 DOI: 10.1113/jp279666] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/17/2020] [Indexed: 01/16/2023] Open
Abstract
KEY POINTS The hypothalamic-pituitary-adrenal (HPA) axis habituates to repeated stress exposure. We studied hypothalamic corticotropin-releasing hormone (CRH) neurons that form the apex of the HPA axis in a mouse model of stress habituation using repeated restraint. The intrinsic excitability of CRH neurons decreased after repeated stress in a time course that coincided with the development of HPA axis habituation. This intrinsic excitability plasticity co-developed with an expansion of surface membrane area, which increased a passive electric load and dampened membrane depolarization in response to the influx of positive charge. We report a novel structure-function relationship for intrinsic excitability plasticity as a neural correlate for HPA axis habituation. ABSTRACT Encountering a stressor immediately activates the hypothalamic-pituitary-adrenal (HPA) axis, but this stereotypic stress response also undergoes experience-dependent adaptation. Despite the biological and clinical importance, how the brain adjusts stress responsiveness in the long term remains poorly understood. We studied hypothalamic corticotropin-releasing hormone neurons that form the apex of the HPA axis in a mouse model of stress habituation using repeated restraint. Using patch-clamp electrophysiology in acute slices, we found that the intrinsic excitability of these neurons substantially decreased after daily repeated stress in a time course that coincided with their loss of stress responsiveness in vivo. This intrinsic excitability plasticity co-developed with an expansion of surface membrane area, which increased a passive electric load, and dampened membrane depolarization in response to the influx of positive charge. Multiphoton imaging and electron microscopy revealed that repeated stress augmented ruffling of the plasma membrane, suggesting an ultrastructural plasticity that may efficiently accommodate the membrane area expansion. Overall, we report a novel structure-function relationship for intrinsic excitability plasticity as a neural correlate for adaptation of the neuroendocrine stress response.
Collapse
Affiliation(s)
- Sara Matovic
- Robarts Research Institute, University of Western Ontario.,Neuroscience Program, University of Western Ontario
| | - Aoi Ichiyama
- Neuroscience Program, University of Western Ontario
| | | | - Eric W Salter
- Robarts Research Institute, University of Western Ontario.,Current address: University of Toronto
| | | | - Xue Fan Wang
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario
| | - Mathilde Henry
- Axe Neurosciences, CRCHU de Quebec-Université Laval.,Current address: INRAE, Univ. Bordeaux, Bordeaux INP, Nutrineuro, UMR 1286, Bordeaux, F-33000, France
| | - Eric S Kuebler
- Robarts Research Institute, University of Western Ontario
| | | | - Julio Martinez-Trujillo
- Robarts Research Institute, University of Western Ontario.,Neuroscience Program, University of Western Ontario.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario
| | - Marie-Eve Tremblay
- Axe Neurosciences, CRCHU de Quebec-Université Laval.,Département de médecine moléculaire, Université Laval.,Division of Medical Sciences, University of Victoria
| | - Wataru Inoue
- Robarts Research Institute, University of Western Ontario.,Neuroscience Program, University of Western Ontario.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario
| |
Collapse
|
14
|
Muranova LN, Andrianov VV, Bogodvid TK, Deryabina IB, Lazutin SA, Gainutdinov KL. Changes in Membrane and Threshold Potentials of Command Neurons in Terrestrial Snail during Development of a Conditioned Situational Defensive Reflex. Bull Exp Biol Med 2020; 168:709-712. [PMID: 32328938 DOI: 10.1007/s10517-020-04785-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Indexed: 10/24/2022]
Abstract
Changes of the electrical characteristics of command neurons of defensive behavior caused by the development of a conditioned situational defensive reflex were studied experimentally under in vitro conditions on preparations of the nervous system of snails. After learning, the membrane and threshold potentials of command neurons LPa3 and RPa3 significantly decreased and excitability of the studied neurons increased.
Collapse
Affiliation(s)
- L N Muranova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Republic of Tatarstan, Russia
| | - V V Andrianov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Republic of Tatarstan, Russia
| | - T Kh Bogodvid
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Republic of Tatarstan, Russia.,Volga Region State Academy of Physical Culture, Sport and Tourism, Kazan, Republic of Tatarstan, Russia
| | - I B Deryabina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Republic of Tatarstan, Russia
| | - S A Lazutin
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Republic of Tatarstan, Russia
| | - Kh L Gainutdinov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Republic of Tatarstan, Russia.
| |
Collapse
|
15
|
van Veen JE, Kammel LG, Bunda PC, Shum M, Reid MS, Massa MG, Arneson D, Park JW, Zhang Z, Joseph AM, Hrncir H, Liesa M, Arnold AP, Yang X, Correa SM. Hypothalamic estrogen receptor alpha establishes a sexually dimorphic regulatory node of energy expenditure. Nat Metab 2020; 2:351-363. [PMID: 32377634 PMCID: PMC7202561 DOI: 10.1038/s42255-020-0189-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/12/2020] [Indexed: 12/26/2022]
Abstract
Estrogen receptor a (ERa) signaling in the ventromedial hypothalamus (VMH) contributes to energy homeostasis by modulating physical activity and thermogenesis. However, the precise neuronal populations involved remain undefined. Here, we describe six neuronal populations in the mouse VMH by using single-cell RNA transcriptomics and in situ hybridization. ERa is enriched in populations showing sex biased expression of reprimo (Rprm), tachykinin 1 (Tac1), and prodynorphin (Pdyn). Female biased expression of Tac1 and Rprm is patterned by ERa-dependent repression during male development, whereas male biased expression of Pdyn is maintained by circulating testicular hormone in adulthood. Chemogenetic activation of ERa positive VMH neurons stimulates heat generation and movement in both sexes. However, silencing Rprm gene function increases core temperature selectively in females and ectopic Rprm expression in males is associated with reduced core temperature. Together these findings reveal a role for Rprm in temperature regulation and ERa in the masculinization of neuron populations that underlie energy expenditure.
Collapse
Affiliation(s)
- J Edward van Veen
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
- Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, CA, USA
- authors contributed equally
| | - Laura G Kammel
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
- Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, CA, USA
- Molecular, Cellular, and Integrative Physiology Graduate Program, University of California, Los Angeles, CA, USA
- authors contributed equally
| | - Patricia C Bunda
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Michael Shum
- Division of Endocrinology, Department of Medicine, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Michelle S Reid
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Megan G Massa
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
- Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, CA, USA
- Neuroscience Interdepartmental Doctoral Program, University of California, Los Angeles, CA, USA
| | - Douglas Arneson
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Jae W Park
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Zhi Zhang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
- Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, CA, USA
| | - Alexia M Joseph
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Haley Hrncir
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Marc Liesa
- Division of Endocrinology, Department of Medicine, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Arthur P Arnold
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
- Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, CA, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Stephanie M Correa
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
- Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
16
|
Abstract
Neurons generate consistent patterns of activity combining a large set of ionic currents and variable conductance levels. How they regulate this variability so that it does not run out of control seems to depend most prominently on neuronal activity itself.
Collapse
Affiliation(s)
- Jorge Golowasch
- Federated Department of Biological Sciences, New Jersey Institute of Technology & Rutgers University-Newark, Institute for Brain and Neuroscience Research, Newark, NJ 07102, USA.
| |
Collapse
|
17
|
Santin JM. Motor inactivity in hibernating frogs: Linking plasticity that stabilizes neuronal function to behavior in the natural environment. Dev Neurobiol 2019; 79:880-891. [DOI: 10.1002/dneu.22721] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/07/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Joseph M. Santin
- Department of BiologyUniversity of North Carolina at Greensboro Greensboro North Carolina
| |
Collapse
|
18
|
Hansson JHS. A hypothesis regarding how sleep can calibrate neuronal excitability in the central nervous system and thereby offer stability, sensitivity and the best possible cognitive function. Med Hypotheses 2019; 131:109307. [PMID: 31443755 DOI: 10.1016/j.mehy.2019.109307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/20/2019] [Accepted: 07/08/2019] [Indexed: 11/17/2022]
Abstract
The function of sleep in mammal and other vertebrates is one of the great mysteries of biology. Many hypotheses have been proposed, but few of these have made even the slightest attempt to explain the essence of sleep - the uncompromising need for reversible unconsciousness. During sleep, epiphenomena - often of a somatic character - occur, but these cannot explain the core function of sleep. One answer could be hidden in the observations made for long periods of time of the function of the central nervous system (CNS). The CNS is faced with conflicting requirements on stability and excitability. A high level of excitability is desirable, and is also a prerequisite for sensitivity and quick reaction times; however, it can also lead to instability and the risk of feedback, with life-threatening epileptic seizures. Activity-dependent negative feedback in neuronal excitability improves stability in the short term, but not to the degree that is required. A hypothesis is presented here demonstrating how calibration of individual neurons - an activity which occurs only during sleep - can establish the balanced and highest possible excitability while also preserving stability in the CNS. One example of a possible mechanism is the observation of slow oscillations in EEGs made on birds and mammals during slow wave sleep. Calibration to a genetically determined level of excitability could take place in individual neurons during the slow oscillation. This is only possible offline, which explains the need for sleep. The hypothesis can explain phenomena such as the need for unconsciousness during sleep, with the disconnection of sensory stimuli, slow EEG oscillations, the relationship of sleep and epilepsy, age, the effects of sleep on neuronal firing rate and the effects of sleep deprivation and sleep homeostasis. This is with regard primarily to mammals, including humans, but also all other vertebrates.
Collapse
|
19
|
Zhang W, Yang B, Weng H, Liu T, Shi L, Yu P, So KF, Qu Y, Zhou L. Wheel Running Improves Motor Function and Spinal Cord Plasticity in Mice With Genetic Absence of the Corticospinal Tract. Front Cell Neurosci 2019; 13:106. [PMID: 30941019 PMCID: PMC6433830 DOI: 10.3389/fncel.2019.00106] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/04/2019] [Indexed: 12/13/2022] Open
Abstract
Our previous studies showed that mutant mice with congenital absence of the corticospinal tract (CST) undergo spontaneous remodeling of motor networks to partially compensate for absent CST function. Here, we asked whether voluntary wheel running could further improve locomotor plasticity in CST-deficient mice. Adult mutant mice were randomly allocated to a “runners” group with free access to a wheel, or a “non-runners” group with no access to a wheel. In comparison with non-runners, there was a significant motor improvement including fine movement, grip strength, decreased footslip errors in runners after 8-week training, which was supported by the elevated amplitude of electromyography recording and increased neuromuscular junctions in the biceps. In runners, terminal ramifications of monoaminergic and rubrospinal descending axons were significantly increased in spinal segments after 12 weeks of exercise compared to non-runners. 5-ethynyl-2′-deoxyuridine (EDU) labeling showed that proliferating cells, 90% of which were Olig2-positive oligodendrocyte progenitors, were 4.8-fold more abundant in runners than in non-runners. In 8-week runners, RNAseq analysis of spinal samples identified 404 genes up-regulated and 398 genes down-regulated, and 69 differently expressed genes involved in signal transduction, among which the NF-κB, PI3K-Akt and cyclic AMP (cAMP) signaling were three top pathways. Twelve-week training induced a significant elevation of postsynaptic density protein 95 (PSD95), synaptophysin 38 and myelin basic protein (MBP), but not of brain derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF) and insulin like growth factor-1 (IGF-1). Thus, locomotor training activates multiple signaling pathways, contributes to neural plasticity and functional improvement, and might palliate locomotor deficits in patients.
Collapse
Affiliation(s)
- Wei Zhang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Bin Yang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Huandi Weng
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Tao Liu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Lingling Shi
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Panpan Yu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Kwok-Fai So
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Yibo Qu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Libing Zhou
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China.,Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu, China.,Key Laboratory of Neuroscience, School of Basic Medical Sciences, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
20
|
Haque MN, Moon IS. Stigmasterol upregulates immediate early genes and promotes neuronal cytoarchitecture in primary hippocampal neurons as revealed by transcriptome analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 46:164-175. [PMID: 30097115 DOI: 10.1016/j.phymed.2018.04.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 02/21/2018] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The hippocampus is a vulnerable brain region that is implicated in learning and memory impairment by two pathophysiological features, that is, neurite regression and synaptic dysfunction, and stigmasterol (ST), a cholesterol-equivalent phytosterol, is known to facilitate neuromodulatory effects. PURPOSE To investigate the neuromodulatory effects of ST on the development of central nervous system neurons and the molecular bases of these effects in primary hippocampal neurons. METHODS Rat embryonic (E18-19) brain neurons were cultured in the absence or presence of ST (75 µM). Neuritogenic activities of ST were evident by increases in various morphometric parameters. To identify underlying affected genes, total RNA was isolated on day in vitro 12 (DIV 12) and mRNA high throughput sequencing (mRNA-Seq) was performed. Affected key genes for neuronal development were identified using bioinformatics tools and their upregulations were confirmed by immunocytochemistry. RESULTS Among the differentially expressed 17,337 RefSeq genes, 445 genes (up/down 293/157) passed the p-value < 0.05 criterion, 52 genes (up/down; 37/13) had a p-value < 0.05 and a false discovery rate (FDR) q-value of < 0.2, and 24 genes (up/down; 20/4) passed the more stringent criterion of both p < 0.05 and q < 0.05. After applying a stringent FDR q-value cutoff of < 0.2, it was found ST induced many immediate early genes (IEGs), and that a major proportion of upregulated genes were related to central nervous system (CNS) development (neurite outgrowth or synaptic transmission). In a Venn diagram for CNS development Gene Ontologies (GOs) (i.e., axon development, dendrite development, modulation of synaptic transmission), Reln emerged as a central player in these processes, and highly interconnected 'hub' genes, including Dcx, Egr1, Ntrk2, and Slc24a2, were revealed by gene co-expression networks. Finally, transcriptomic data was confirmed by immunocytochemistry of primary hippocampal neurons. CONCLUSION The study indicates that ST upregulates genes for neuritogenesis and synaptogenesis, and suggests ST be viewed as a potential resource for improving brain functions.
Collapse
Affiliation(s)
- Md Nazmul Haque
- Department of Anatomy, Dongguk University Graduate School of Medicine, Gyeongju 38066, Republic of Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk University Graduate School of Medicine, Gyeongju 38066, Republic of Korea.
| |
Collapse
|
21
|
Tien NW, Kerschensteiner D. Homeostatic plasticity in neural development. Neural Dev 2018; 13:9. [PMID: 29855353 PMCID: PMC5984303 DOI: 10.1186/s13064-018-0105-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/24/2018] [Indexed: 02/06/2023] Open
Abstract
Throughout life, neural circuits change their connectivity, especially during development, when neurons frequently extend and retract dendrites and axons, and form and eliminate synapses. In spite of their changing connectivity, neural circuits maintain relatively constant activity levels. Neural circuits achieve functional stability by homeostatic plasticity, which equipoises intrinsic excitability and synaptic strength, balances network excitation and inhibition, and coordinates changes in circuit connectivity. Here, we review how diverse mechanisms of homeostatic plasticity stabilize activity in developing neural circuits.
Collapse
Affiliation(s)
- Nai-Wen Tien
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, USA. .,Graduate Program in Neuroscience, Washington University School of Medicine, Saint Louis, USA.
| | - Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, USA. .,Department of Neuroscience, Washington University School of Medicine, Saint Louis, USA. .,Department of Biomedical Engineering, Washington University School of Medicine, Saint Louis, USA. .,Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
| |
Collapse
|
22
|
Abeysuriya RG, Hadida J, Sotiropoulos SN, Jbabdi S, Becker R, Hunt BAE, Brookes MJ, Woolrich MW. A biophysical model of dynamic balancing of excitation and inhibition in fast oscillatory large-scale networks. PLoS Comput Biol 2018; 14:e1006007. [PMID: 29474352 PMCID: PMC5841816 DOI: 10.1371/journal.pcbi.1006007] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 03/07/2018] [Accepted: 01/28/2018] [Indexed: 01/03/2023] Open
Abstract
Over long timescales, neuronal dynamics can be robust to quite large perturbations, such as changes in white matter connectivity and grey matter structure through processes including learning, aging, development and certain disease processes. One possible explanation is that robust dynamics are facilitated by homeostatic mechanisms that can dynamically rebalance brain networks. In this study, we simulate a cortical brain network using the Wilson-Cowan neural mass model with conduction delays and noise, and use inhibitory synaptic plasticity (ISP) to dynamically achieve a spatially local balance between excitation and inhibition. Using MEG data from 55 subjects we find that ISP enables us to simultaneously achieve high correlation with multiple measures of functional connectivity, including amplitude envelope correlation and phase locking. Further, we find that ISP successfully achieves local E/I balance, and can consistently predict the functional connectivity computed from real MEG data, for a much wider range of model parameters than is possible with a model without ISP.
Collapse
Affiliation(s)
- Romesh G. Abeysuriya
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, United Kingdom
| | - Jonathan Hadida
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, United Kingdom
- Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, Wellcome Centre for Integrative Neuroimaging, University of Oxford, United Kingdom
| | - Stamatios N. Sotiropoulos
- Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, Wellcome Centre for Integrative Neuroimaging, University of Oxford, United Kingdom
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, United Kingdom
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Queens Medical Centre, Nottingham
| | - Saad Jbabdi
- Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, Wellcome Centre for Integrative Neuroimaging, University of Oxford, United Kingdom
| | - Robert Becker
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, United Kingdom
| | - Benjamin A. E. Hunt
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, United Kingdom
- Department of Diagnostic Imaging, Neurosciences & Mental Health, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Matthew J. Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, United Kingdom
| | - Mark W. Woolrich
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, United Kingdom
- Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, Wellcome Centre for Integrative Neuroimaging, University of Oxford, United Kingdom
| |
Collapse
|
23
|
Cao J, Willett JA, Dorris DM, Meitzen J. Sex Differences in Medium Spiny Neuron Excitability and Glutamatergic Synaptic Input: Heterogeneity Across Striatal Regions and Evidence for Estradiol-Dependent Sexual Differentiation. Front Endocrinol (Lausanne) 2018; 9:173. [PMID: 29720962 PMCID: PMC5915472 DOI: 10.3389/fendo.2018.00173] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/03/2018] [Indexed: 12/21/2022] Open
Abstract
Steroid sex hormones and biological sex influence how the brain regulates motivated behavior, reward, and sensorimotor function in both normal and pathological contexts. Investigations into the underlying neural mechanisms have targeted the striatal brain regions, including the caudate-putamen, nucleus accumbens core (AcbC), and shell. These brain regions are of particular interest to neuroendocrinologists given that they express membrane-associated but not nuclear estrogen receptors, and also the well-established role of the sex steroid hormone 17β-estradiol (estradiol) in modulating striatal dopamine systems. Indeed, output neurons of the striatum, the medium spiny neurons (MSNs), exhibit estradiol sensitivity and sex differences in electrophysiological properties. Here, we review sex differences in rat MSN glutamatergic synaptic input and intrinsic excitability across striatal regions, including evidence for estradiol-mediated sexual differentiation in the nucleus AcbC. In prepubertal animals, female MSNs in the caudate-putamen exhibit a greater intrinsic excitability relative to male MSNs, but no sex differences are detected in excitatory synaptic input. Alternatively, female MSNs in the nucleus AcbC exhibit increased excitatory synaptic input relative to male MSNs, but no sex differences in intrinsic excitability were detected. Increased excitatory synaptic input onto female MSNs in the nucleus AcbC is abolished after masculinizing estradiol or testosterone exposure during the neonatal critical period. No sex differences are detected in MSNs in prepubertal nucleus accumbens shell. Thus, despite possessing the same neuron type, striatal regions exhibit heterogeneity in sex differences in MSN electrophysiological properties, which likely contribute to the sex differences observed in striatal function.
Collapse
Affiliation(s)
- Jinyan Cao
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
- W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, United States
| | - Jaime A. Willett
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
- W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, United States
- Graduate Program in Physiology, North Carolina State University, Raleigh, NC, United States
| | - David M. Dorris
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - John Meitzen
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
- W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, United States
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
- *Correspondence: John Meitzen,
| |
Collapse
|
24
|
Strub C, Schöner G, Wörgötter F, Sandamirskaya Y. Dynamic Neural Fields with Intrinsic Plasticity. Front Comput Neurosci 2017; 11:74. [PMID: 28912706 PMCID: PMC5583149 DOI: 10.3389/fncom.2017.00074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/26/2017] [Indexed: 01/08/2023] Open
Abstract
Dynamic neural fields (DNFs) are dynamical systems models that approximate the activity of large, homogeneous, and recurrently connected neural networks based on a mean field approach. Within dynamic field theory, the DNFs have been used as building blocks in architectures to model sensorimotor embedding of cognitive processes. Typically, the parameters of a DNF in an architecture are manually tuned in order to achieve a specific dynamic behavior (e.g., decision making, selection, or working memory) for a given input pattern. This manual parameters search requires expert knowledge and time to find and verify a suited set of parameters. The DNF parametrization may be particular challenging if the input distribution is not known in advance, e.g., when processing sensory information. In this paper, we propose the autonomous adaptation of the DNF resting level and gain by a learning mechanism of intrinsic plasticity (IP). To enable this adaptation, an input and output measure for the DNF are introduced, together with a hyper parameter to define the desired output distribution. The online adaptation by IP gives the possibility to pre-define the DNF output statistics without knowledge of the input distribution and thus, also to compensate for changes in it. The capabilities and limitations of this approach are evaluated in a number of experiments.
Collapse
Affiliation(s)
- Claudius Strub
- Autonomous Robotics Lab, Institut für Neuroinformatik, Ruhr-UniversitätBochum, Germany.,Department of Computational Neuroscience, III Physics Institute, Georg-August-UniversitätGöttingen, Germany
| | - Gregor Schöner
- Autonomous Robotics Lab, Institut für Neuroinformatik, Ruhr-UniversitätBochum, Germany
| | - Florentin Wörgötter
- Department of Computational Neuroscience, III Physics Institute, Georg-August-UniversitätGöttingen, Germany
| | - Yulia Sandamirskaya
- Institute of Neuroinformatics, University of Zurich and ETH ZurichZurich, Switzerland
| |
Collapse
|
25
|
Zhang D, Wang X, Wang B, Garza JC, Fang X, Wang J, Scherer PE, Brenner R, Zhang W, Lu XY. Adiponectin regulates contextual fear extinction and intrinsic excitability of dentate gyrus granule neurons through AdipoR2 receptors. Mol Psychiatry 2017; 22:1044-1055. [PMID: 27137743 PMCID: PMC5491689 DOI: 10.1038/mp.2016.58] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 02/16/2016] [Accepted: 02/18/2016] [Indexed: 01/10/2023]
Abstract
Post-traumatic stress disorder (PTSD) is characterized by exaggerated fear expression and impaired fear extinction. The underlying molecular and cellular mechanisms of PTSD are largely unknown. The current pharmacological and non-pharmacological treatments for PTSD are either ineffective or temporary with high relapse rates. Here we report that adiponectin-deficient mice exhibited normal contextual fear conditioning but displayed slower extinction learning. Infusions of adiponectin into the dentate gyrus (DG) of the hippocampus in fear-conditioned mice facilitated extinction of contextual fear. Whole-cell patch-clamp recordings in brain slices revealed that intrinsic excitability of DG granule neurons was enhanced by adiponectin deficiency and suppressed after treatment with the adiponectin mimetic AdipoRon, which were associated with increased input resistance and hyperpolarized resting membrane potential, respectively. Moreover, deletion of AdipoR2, but not AdipoR1 in the DG, resulted in augmented fear expression and reduced extinction, accompanied by intrinsic hyperexcitability of DG granule neurons. Adiponectin and AdipoRon failed to induce facilitation of fear extinction and elicit inhibition of intrinsic excitability of DG neurons in AdipoR2 knockout mice. These results indicated that adiponectin action via AdipoR2 was both necessary and sufficient for extinction of contextual fear and intrinsic excitability of DG granule neurons, implying that enhancing or dampening DG neuronal excitability may cause resistance to or facilitation of extinction. Therefore, our findings provide a functional link between adiponectin/AdipoR2 activation, DG neuronal excitability and contextual fear extinction, and suggest that targeting adiponectin/AdipoR2 may be used to strengthen extinction-based exposure therapies for PTSD.
Collapse
Affiliation(s)
- D Zhang
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - X Wang
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University, Binzhou, China
| | - B Wang
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - J C Garza
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - X Fang
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - J Wang
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - P E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - R Brenner
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - W Zhang
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - X-Y Lu
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University, Binzhou, China
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
26
|
Lett KM, Garcia VJ, Temporal S, Bucher D, Schulz DJ. Removal of endogenous neuromodulators in a small motor network enhances responsiveness to neuromodulation. J Neurophysiol 2017; 118:1749-1761. [PMID: 28659465 DOI: 10.1152/jn.00383.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/22/2017] [Accepted: 06/22/2017] [Indexed: 02/08/2023] Open
Abstract
We studied the changes in sensitivity to a peptide modulator, crustacean cardioactive peptide (CCAP), as a response to loss of endogenous modulation in the stomatogastric ganglion (STG) of the crab Cancer borealis Our data demonstrate that removal of endogenous modulation for 24 h increases the response of the lateral pyloric (LP) neuron of the STG to exogenously applied CCAP. Increased responsiveness is accompanied by increases in CCAP receptor (CCAPr) mRNA levels in LP neurons, requires de novo protein synthesis, and can be prevented by coincubation for the 24-h period with exogenous CCAP. These results suggest that there is a direct feedback from loss of CCAP signaling to the production of CCAPr that increases subsequent response to the ligand. However, we also demonstrate that the modulator-evoked membrane current (IMI) activated by CCAP is greater in magnitude after combined loss of endogenous modulation and activity compared with removal of just hormonal modulation. These results suggest that both receptor expression and an increase in the target conductance of the CCAP G protein-coupled receptor are involved in the increased response to exogenous hormone exposure following experimental loss of modulation in the STG.NEW & NOTEWORTHY The nervous system shows a tremendous amount of plasticity. More recently there has been an appreciation for compensatory actions that stabilize output in the face of perturbations to normal activity. In this study we demonstrate that neurons of the crustacean stomatogastric ganglion generate apparent compensatory responses to loss of peptide neuromodulation, adding to the repertoire of mechanisms by which the stomatogastric nervous system can regulate and stabilize its own output.
Collapse
Affiliation(s)
- Kawasi M Lett
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri
| | - Veronica J Garcia
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida; and
| | - Simone Temporal
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri
| | - Dirk Bucher
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida; and.,Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, Newark, New Jersey
| | - David J Schulz
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri;
| |
Collapse
|
27
|
Bogodvid TK, Andrianov VV, Muranova LN, Gainutdinov KL. Influence of a Nitric Oxide Donor on Electrical Characteristics of the Premotor Interneurons of Terrestrial Snails. BIONANOSCIENCE 2016. [DOI: 10.1007/s12668-016-0221-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Massaly N, Morón JA, Al-Hasani R. A Trigger for Opioid Misuse: Chronic Pain and Stress Dysregulate the Mesolimbic Pathway and Kappa Opioid System. Front Neurosci 2016; 10:480. [PMID: 27872581 PMCID: PMC5097922 DOI: 10.3389/fnins.2016.00480] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/06/2016] [Indexed: 12/17/2022] Open
Abstract
Pain and stress are protective mechanisms essential in avoiding harmful or threatening stimuli and ensuring survival. Despite these beneficial roles, chronic exposure to either pain or stress can lead to maladaptive hormonal and neuronal modulations that can result in chronic pain and a wide spectrum of stress-related disorders including anxiety and depression. By inducing allostatic changes in the mesolimbic dopaminergic pathway, both chronic pain and stress disorders affect the rewarding values of both natural reinforcers, such as food or social interaction, and drugs of abuse. Despite opioids representing the best therapeutic strategy in pain conditions, they are often misused as a result of these allostatic changes induced by chronic pain and stress. The kappa opioid receptor (KOR) system is critically involved in these neuronal adaptations in part through its control of dopamine release in the nucleus accumbens. Therefore, it is likely that changes in the kappa opioid system following chronic exposure to pain and stress play a key role in increasing the misuse liability observed in pain patients treated with opioids. In this review, we will discuss how chronic pain and stress-induced pathologies can affect mesolimbic dopaminergic transmission, leading to increased abuse liability. We will also assess how the kappa opioid system may underlie these pathological changes.
Collapse
Affiliation(s)
- Nicolas Massaly
- Basic Research Division, Department of Anesthesiology, Washington University School of MedicineSt. Louis, MO, USA; Washington University Pain Center, Department of Anesthesiology, Washington University School of MedicineSt. Louis, MO, USA
| | - Jose A Morón
- Basic Research Division, Department of Anesthesiology, Washington University School of MedicineSt. Louis, MO, USA; Washington University Pain Center, Department of Anesthesiology, Washington University School of MedicineSt. Louis, MO, USA
| | - Ream Al-Hasani
- Basic Research Division, Department of Anesthesiology, Washington University School of Medicine St. Louis, MO, USA
| |
Collapse
|
29
|
Fischer EK, Ghalambor CK, Hoke KL. Can a Network Approach Resolve How Adaptive vs Nonadaptive Plasticity Impacts Evolutionary Trajectories? Integr Comp Biol 2016; 56:877-888. [DOI: 10.1093/icb/icw087] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
30
|
Zhang L, Liang Z, Zhu P, Li M, Yi YH, Liao WP, Su T. Altered intrinsic properties and bursting activities of neurons in layer IV of somatosensory cortex from Fmr-1 knockout mice. Exp Neurol 2016; 280:60-9. [PMID: 27048919 DOI: 10.1016/j.expneurol.2016.03.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/04/2016] [Accepted: 03/29/2016] [Indexed: 10/22/2022]
Abstract
Neuroadaptations and alterations in neuronal excitability are critical in brain maturation and many neurological diseases. Fragile X syndrome (FXS) is a pervasive neurodevelopmental disorder characterized by extensive synaptic and circuit dysfunction. It is still unclear about the alterations in intrinsic excitability of individual neurons and their link to hyperexcitable circuitry. In this study, whole cell patch-clamp recordings were employed to characterize the membrane and firing properties of layer IV cells in slices of the somatosensory cortex of Fmr-1 knockout (KO) mice. These cells generally exhibited a regular spiking (RS) pattern, while there were significant increases in the number of cells that adopted intrinsic bursting (IB) compared with age-matched wild type (WT) cells. The cells subgrouped according to their firing patterns and maturation differed significantly in membrane and discharge properties between KO and WT. The changes in the intrinsic properties were consistent with highly facilitated discharges in KO cells induced by current injection. Spontaneous activities of RS neurons driven by local network were also increased in the KO cells, especially in neonate groups. Under an epileptiform condition mimicked by omission of Mg(2+) in extracellular solution, these RS neurons from KO mice were more likely to switch to burst discharges. Analysis on bursts revealed that the KO cells tended to form burst discharges and even severe events manifested as seizure-like ictal discharges. These results suggest that alterations in intrinsic properties in individual neurons are involved in the abnormal excitability of cortical circuitry and possibly account for the pathogenesis of epilepsy in FXS.
Collapse
Affiliation(s)
- Linming Zhang
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China; Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhanrong Liang
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Pingping Zhu
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Meng Li
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Yong-Hong Yi
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Wei-Ping Liao
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Tao Su
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China.
| |
Collapse
|
31
|
King AE, Woodhouse A, Kirkcaldie MT, Vickers JC. Excitotoxicity in ALS: Overstimulation, or overreaction? Exp Neurol 2016; 275 Pt 1:162-71. [DOI: 10.1016/j.expneurol.2015.09.019] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/30/2015] [Accepted: 09/28/2015] [Indexed: 12/14/2022]
|
32
|
Neuner SM, Wilmott LA, Hope KA, Hoffmann B, Chong JA, Abramowitz J, Birnbaumer L, O'Connell KM, Tryba AK, Greene AS, Savio Chan C, Kaczorowski CC. TRPC3 channels critically regulate hippocampal excitability and contextual fear memory. Behav Brain Res 2015; 281:69-77. [PMID: 25513972 PMCID: PMC4677051 DOI: 10.1016/j.bbr.2014.12.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 12/08/2014] [Indexed: 01/02/2023]
Abstract
Memory formation requires de novo protein synthesis, and memory disorders may result from misregulated synthesis of critical proteins that remain largely unidentified. Plasma membrane ion channels and receptors are likely candidates given their role in regulating neuron excitability, a candidate memory mechanism. Here we conduct targeted molecular monitoring and quantitation of hippocampal plasma membrane proteins from mice with intact or impaired contextual fear memory to identify putative candidates. Here we report contextual fear memory deficits correspond to increased Trpc3 gene and protein expression, and demonstrate TRPC3 regulates hippocampal neuron excitability associated with memory function. These data provide a mechanistic explanation for enhanced contextual fear memory reported herein following knockdown of TRPC3 in hippocampus. Collectively, TRPC3 modulates memory and may be a feasible target to enhance memory and treat memory disorders.
Collapse
Affiliation(s)
- Sarah M Neuner
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Lynda A Wilmott
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Kevin A Hope
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Brian Hoffmann
- Department of Biotechnology and Bioengineering, Medical College of Wisconsin, Milwaukee, WI, United States
| | | | - Joel Abramowitz
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Lutz Birnbaumer
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Kristen M O'Connell
- Department of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Andrew K Tryba
- Department of Pediatrics, The University of Chicago, Chicago, IL, United States
| | - Andrew S Greene
- Department of Biotechnology and Bioengineering, Medical College of Wisconsin, Milwaukee, WI, United States; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - C Savio Chan
- Department of Physiology, Northwestern Fienberg School of Medicine, Chicago, IL, United States
| | - Catherine C Kaczorowski
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, United States.
| |
Collapse
|
33
|
Szücs A, Huerta R. Differential effects of static and dynamic inputs on neuronal excitability. J Neurophysiol 2015; 113:232-43. [PMID: 25274346 DOI: 10.1152/jn.00226.2014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The intrinsic excitability of neurons is known to be dynamically regulated by activity-dependent plasticity and homeostatic mechanisms. Such processes are commonly analyzed in the context of input-output functions that describe how neurons fire in response to constant levels of current. However, it is not well understood how changes of excitability as observed under static inputs translate to the function of the same neurons in their natural synaptic environment. Here we performed a computational study and hybrid experiments on rat bed nucleus of stria terminalis neurons to compare the two scenarios. The inward rectifying Kir current (IKir) and the hyperpolarization-activated cation current (Ih) were found to be considerably more effective in regulating the firing under synaptic inputs than under static stimuli. This prediction was experimentally confirmed by dynamic-clamp insertion of a synthetic inwardly rectifying Kir current into the biological neurons. At the same time, ionic currents that activate with depolarization were more effective regulating the firing under static inputs. When two intrinsic currents are concurrently altered such as those under homeostatic regulation, the effects in firing responses under static vs. dynamic inputs can be even more contrasting. Our results show that plastic or homeostatic changes of intrinsic membrane currents can shape the current step responses of neurons and their firing under synaptic inputs in a differential manner.
Collapse
Affiliation(s)
- Attila Szücs
- BioCircuits Institute, University of California, San Diego, La Jolla, California; and Balaton Limnological Institute, Center of Ecology of the Hungarian Academy of Sciences, Tihany, Hungary
| | - Ramon Huerta
- BioCircuits Institute, University of California, San Diego, La Jolla, California; and
| |
Collapse
|
34
|
Dorris DM, Cao J, Willett JA, Hauser CA, Meitzen J. Intrinsic excitability varies by sex in prepubertal striatal medium spiny neurons. J Neurophysiol 2014; 113:720-9. [PMID: 25376786 DOI: 10.1152/jn.00687.2014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Sex differences in neuron electrophysiological properties were traditionally associated with brain regions directly involved in reproduction in adult, postpubertal animals. There is growing acknowledgement that sex differences can exist in other developmental periods and brain regions as well. This includes the dorsal striatum (caudate/putamen), which shows robust sex differences in gene expression, neuromodulator action (including dopamine and 17β-estradiol), and relevant sensorimotor behaviors and pathologies such as the responsiveness to drugs of abuse. Here we examine whether these sex differences extend to striatal neuron electrophysiology. We test the hypothesis that passive and active medium spiny neuron (MSN) electrophysiological properties in prepubertal rat dorsal striatum differ by sex. We made whole cell recordings from male and females MSNs from acute brain slices. The slope of the evoked firing rate to current injection curve was increased in MSNs recorded from females compared with males. The initial action potential firing rate was increased in MSNs recorded from females compared with males. Action potential after-hyperpolarization peak was decreased, and threshold was hyperpolarized in MSNs recorded from females compared with males. No sex differences in passive electrophysiological properties or miniature excitatory synaptic currents were detected. These findings indicate that MSN excitability is increased in prepubertal females compared with males, providing a new mechanism that potentially contributes to generating sex differences in striatal-mediated processes. Broadly, these findings demonstrate that sex differences in neuron electrophysiological properties can exist prepuberty in brain regions not directly related to reproduction.
Collapse
Affiliation(s)
- David M Dorris
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina
| | - Jinyan Cao
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina; W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina
| | - Jaime A Willett
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina; W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina; Graduate Program in Physiology, North Carolina State University, Raleigh, North Carolina
| | - Caitlin A Hauser
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina
| | - John Meitzen
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina; W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina; Center for Human Health and the Environment, Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina; and Grass Laboratory, Marine Biological Laboratory, Woods Hole, Massachusetts
| |
Collapse
|
35
|
González-Forero D, Moreno-López B. Retrograde response in axotomized motoneurons: nitric oxide as a key player in triggering reversion toward a dedifferentiated phenotype. Neuroscience 2014; 283:138-65. [PMID: 25168733 DOI: 10.1016/j.neuroscience.2014.08.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 08/03/2014] [Accepted: 08/14/2014] [Indexed: 12/11/2022]
Abstract
The adult brain retains a considerable capacity to functionally reorganize its circuits, which mainly relies on the prevalence of three basic processes that confer plastic potential: synaptic plasticity, plastic changes in intrinsic excitability and, in certain central nervous system (CNS) regions, also neurogenesis. Experimental models of peripheral nerve injury have provided a useful paradigm for studying injury-induced mechanisms of central plasticity. In particular, axotomy of somatic motoneurons triggers a robust retrograde reaction in the CNS, characterized by the expression of plastic changes affecting motoneurons, their synaptic inputs and surrounding glia. Axotomized motoneurons undergo a reprograming of their gene expression and biosynthetic machineries which produce cell components required for axonal regrowth and lead them to resume a functionally dedifferentiated phenotype characterized by the removal of afferent synaptic contacts, atrophy of dendritic arbors and an enhanced somato-dendritic excitability. Although experimental research has provided valuable clues to unravel many basic aspects of this central response, we are still lacking detailed information on the cellular/molecular mechanisms underlying its expression. It becomes clear, however, that the state-switch must be orchestrated by motoneuron-derived signals produced under the direction of the re-activated growth program. Our group has identified the highly reactive gas nitric oxide (NO) as one of these signals, by providing robust evidence for its key role to induce synapse elimination and increases in intrinsic excitability following motor axon damage. We have elucidated operational principles of the NO-triggered downstream transduction pathways mediating each of these changes. Our findings further demonstrate that de novo NO synthesis is not only "necessary" but also "sufficient" to promote the expression of at least some of the features that reflect reversion toward a dedifferentiated state in axotomized adult motoneurons.
Collapse
Affiliation(s)
- D González-Forero
- Grupo de Neurodegeneración y Neuroreparación (GRUNEDERE), Área de Fisiología, Instituto de Biomoléculas (INBIO), Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.
| | - B Moreno-López
- Grupo de Neurodegeneración y Neuroreparación (GRUNEDERE), Área de Fisiología, Instituto de Biomoléculas (INBIO), Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.
| |
Collapse
|
36
|
Temporal S, Lett KM, Schulz DJ. Activity-dependent feedback regulates correlated ion channel mRNA levels in single identified motor neurons. Curr Biol 2014; 24:1899-904. [PMID: 25088555 DOI: 10.1016/j.cub.2014.06.067] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 06/24/2014] [Accepted: 06/26/2014] [Indexed: 11/19/2022]
Abstract
Neurons generate cell-specific outputs via interactions of conductances carried by ion channel proteins that are homeostatically regulated to maintain key quantitative relationships among subsets of conductances. Given the challenges of both normal channel protein turnover and short-term plasticity, how is the balance of membrane conductances maintained over long-term timescales to ensure stable electrophysiological phenotype? One possible mechanism is to dynamically regulate production of channel protein via feedback that constrains relationships at the channel mRNA level. Recent modeling work has postulated that such mRNA relationships could emerge as a result of activity-dependent homeostatic tuning rules that ensure an appropriate ratio of mRNA for key ion channels is maintained to preserve robust cellular output. Yet, this has never been demonstrated in biological neurons. In this study, we quantified multiple ion channel mRNAs from single identified motor neurons of the stomatogastric ganglion to determine whether correlations among channel mRNAs are actively maintained, and, if so, by what form of feedback. In these neurons, we identified correlations among mRNAs for voltage-gated calcium and potassium channels. By performing experiments that decoupled activity, synaptic connectivity, and neuromodulatory state, we determined that correlated channel mRNAs are maintained by an activity-dependent process. This is the first study to demonstrate that distinct relationships across channel mRNAs are dynamically maintained in an activity-dependent manner. This feedback from cellular activity to coordinated transcriptome-level interactions represents a novel aspect of regulation of neuronal output with implications for long-term stability of neuron function.
Collapse
Affiliation(s)
- Simone Temporal
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Kawasi M Lett
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - David J Schulz
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO 65211, USA.
| |
Collapse
|
37
|
Local plasticity of dendritic excitability can be autonomous of synaptic plasticity and regulated by activity-based phosphorylation of Kv4.2. PLoS One 2014; 9:e84086. [PMID: 24404150 PMCID: PMC3880279 DOI: 10.1371/journal.pone.0084086] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 11/12/2013] [Indexed: 01/26/2023] Open
Abstract
While plasticity is typically associated with persistent modifications of synaptic strengths, recent studies indicated that modulations of dendritic excitability may form the other part of the engram and dynamically affect computational processing and output of neuronal circuits. However it remains unknown whether modulation of dendritic excitability is controlled by synaptic changes or whether it can be distinct from them. Here we report the first observation of the induction of a persistent plastic decrease in dendritic excitability decoupled from synaptic stimulation, which is localized and purely activity-based. In rats this local plasticity decrease is conferred by CamKII mediated phosphorylation of A-type potassium channels upon interaction of a back propagating action potential (bAP) with dendritic depolarization.
Collapse
|
38
|
Effects of cellular homeostatic intrinsic plasticity on dynamical and computational properties of biological recurrent neural networks. J Neurosci 2013; 33:15032-43. [PMID: 24048833 DOI: 10.1523/jneurosci.0870-13.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Homeostatic intrinsic plasticity (HIP) is a ubiquitous cellular mechanism regulating neuronal activity, cardinal for the proper functioning of nervous systems. In invertebrates, HIP is critical for orchestrating stereotyped activity patterns. The functional impact of HIP remains more obscure in vertebrate networks, where higher order cognitive processes rely on complex neural dynamics. The hypothesis has emerged that HIP might control the complexity of activity dynamics in recurrent networks, with important computational consequences. However, conflicting results about the causal relationships between cellular HIP, network dynamics, and computational performance have arisen from machine-learning studies. Here, we assess how cellular HIP effects translate into collective dynamics and computational properties in biological recurrent networks. We develop a realistic multiscale model including a generic HIP rule regulating the neuronal threshold with actual molecular signaling pathways kinetics, Dale's principle, sparse connectivity, synaptic balance, and Hebbian synaptic plasticity (SP). Dynamic mean-field analysis and simulations unravel that HIP sets a working point at which inputs are transduced by large derivative ranges of the transfer function. This cellular mechanism ensures increased network dynamics complexity, robust balance with SP at the edge of chaos, and improved input separability. Although critically dependent upon balanced excitatory and inhibitory drives, these effects display striking robustness to changes in network architecture, learning rates, and input features. Thus, the mechanism we unveil might represent a ubiquitous cellular basis for complex dynamics in neural networks. Understanding this robustness is an important challenge to unraveling principles underlying self-organization around criticality in biological recurrent neural networks.
Collapse
|
39
|
Mechanisms for stable, robust, and adaptive development of orientation maps in the primary visual cortex. J Neurosci 2013; 33:15747-66. [PMID: 24089483 DOI: 10.1523/jneurosci.1037-13.2013] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Development of orientation maps in ferret and cat primary visual cortex (V1) has been shown to be stable, in that the earliest measurable maps are similar in form to the eventual adult map, robust, in that similar maps develop in both dark rearing and in a variety of normal visual environments, and yet adaptive, in that the final map pattern reflects the statistics of the specific visual environment. How can these three properties be reconciled? Using mechanistic models of the development of neural connectivity in V1, we show for the first time that realistic stable, robust, and adaptive map development can be achieved by including two low-level mechanisms originally motivated from single-neuron results. Specifically, contrast-gain control in the retinal ganglion cells and the lateral geniculate nucleus reduces variation in the presynaptic drive due to differences in input patterns, while homeostatic plasticity of V1 neuron excitability reduces the postsynaptic variability in firing rates. Together these two mechanisms, thought to be applicable across sensory systems in general, lead to biological maps that develop stably and robustly, yet adapt to the visual environment. The modeling results suggest that topographic map stability is a natural outcome of low-level processes of adaptation and normalization. The resulting model is more realistic, simpler, and far more robust, and is thus a good starting point for future studies of cortical map development.
Collapse
|
40
|
Liu Q, Lee E, Davis RL. Heterogeneous intrinsic excitability of murine spiral ganglion neurons is determined by Kv1 and HCN channels. Neuroscience 2013; 257:96-110. [PMID: 24200924 DOI: 10.1016/j.neuroscience.2013.10.065] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 10/02/2013] [Accepted: 10/26/2013] [Indexed: 02/03/2023]
Abstract
The spiral ganglion conveys afferent auditory information predominantly through a single class of type I neurons that receive signals from inner hair cell sensory receptors. These auditory primary afferents, like in other systems (Puopolo and Belluzzi, 1998; Gascon and Moqrich, 2010; Leao et al., 2012) possess a marked diversity in their electrophysiological features (Taberner and Liberman, 2005). Consistent with these observations, when the auditory primary afferents were assessed in neuronal explants separated from their peripheral and central targets it was found that individual neurons were markedly heterogeneous in their endogenous electrophysiological features. One aspect of this heterogeneity, obvious throughout the ganglion, was their wide range of excitability as assessed by voltage threshold measurements (Liu and Davis, 2007). Thus, while neurons in the base differed significantly from apical and middle neurons in their voltage thresholds, each region showed distinctly wide ranges of values. To determine whether the resting membrane potentials (RMPs) of these neurons correlate with the threshold distribution and to identify the ion channel regulatory elements underlying heterogeneous neuronal excitability in the ganglion, patch-clamp recordings were made from postnatal day (P5-8) murine spiral ganglion neurons in vitro. We found that RMP mirrored the tonotopic threshold distribution, and contributed an additional level of heterogeneity in each cochlear location. Pharmacological experiments further indicated that threshold and RMP was coupled through the Kv1 current, which had a dual impact on both electrophysiological parameters. Whereas, hyperpolarization-activated cationic channels decoupled these two processes by primarily affecting RMP without altering threshold level. Thus, beyond mechanical and synaptic specializations, ion channel regulation of intrinsic membrane properties imbues spiral ganglion neurons with different excitability levels, a feature that contributes to primary auditory afferent diversity.
Collapse
Affiliation(s)
- Q Liu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - E Lee
- Rutgers University, New Jersey Medical School, Newark, NJ 07746, USA
| | - R L Davis
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
41
|
Bonin RP, Zurek AA, Yu J, Bayliss DA, Orser BA. Hyperpolarization-activated current (In) is reduced in hippocampal neurons from Gabra5-/- mice. PLoS One 2013; 8:e58679. [PMID: 23516534 PMCID: PMC3597723 DOI: 10.1371/journal.pone.0058679] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 02/05/2013] [Indexed: 01/06/2023] Open
Abstract
Changes in the expression of γ-aminobutyric acid type A (GABAA) receptors can either drive or mediate homeostatic alterations in neuronal excitability. A homeostatic relationship between α5 subunit-containing GABAA (α5GABAA) receptors that generate a tonic inhibitory conductance, and HCN channels that generate a hyperpolarization-activated cation current (Ih) was recently described for cortical neurons, where a reduction in Ih was accompanied by a reciprocal increase in the expression of α5GABAA receptors resulting in the preservation of dendritosomatic synaptic function. Here, we report that in mice that lack the α5 subunit gene (Gabra5−/−), cultured embryonic hippocampal pyramidal neurons and ex vivo CA1 hippocampal neurons unexpectedly exhibited a decrease in Ih current density (by 40% and 28%, respectively), compared with neurons from wild-type (WT) mice. The resting membrane potential and membrane hyperpolarization induced by blockade of Ih with ZD-7288 were similar in cultured WT and Gabra5−/− neurons. In contrast, membrane hyperpolarization measured after a train of action potentials was lower in Gabra5−/− neurons than in WT neurons. Also, membrane impedance measured in response to low frequency stimulation was greater in cultured Gabra5−/− neurons. Finally, the expression of HCN1 protein that generates Ih was reduced by 41% in the hippocampus of Gabra5−/− mice. These data indicate that loss of a tonic GABAergic inhibitory conductance was followed by a compensatory reduction in Ih. The results further suggest that the maintenance of resting membrane potential is preferentially maintained in mature and immature hippocampal neurons through the homeostatic co-regulation of structurally and biophysically distinct cation and anion channels.
Collapse
Affiliation(s)
- Robert P. Bonin
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Agnieszka A. Zurek
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Jieying Yu
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Douglas A. Bayliss
- Department of Pharmacology, University of Virginia Health System, Charlottesville, Virginia, United States of America
| | - Beverley A. Orser
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Anesthesia, University of Toronto, Toronto, Ontario, Canada
- Department of Anesthesia, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
42
|
Neuronal Nogo-A negatively regulates dendritic morphology and synaptic transmission in the cerebellum. Proc Natl Acad Sci U S A 2012; 110:1083-8. [PMID: 23277570 DOI: 10.1073/pnas.1214255110] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neuronal signal integration as well as synaptic transmission and plasticity highly depend on the morphology of dendrites and their spines. Nogo-A is a membrane protein enriched in the adult central nervous system (CNS) myelin, where it restricts the capacity of axons to grow and regenerate after injury. Nogo-A is also expressed by certain neurons, in particular during development, but its physiological function in this cell type is less well understood. We addressed this question in the cerebellum, where Nogo-A is transitorily highly expressed in the Purkinje cells (PCs) during early postnatal development. We used general genetic ablation (KO) as well as selective overexpression of Nogo-A in PCs to analyze its effect on dendritogenesis and on the formation of their main input synapses from parallel (PFs) and climbing fibers (CFs). PC dendritic trees were larger and more complex in Nogo-A KO mice and smaller than in wild-type in Nogo-A overexpressing PCs. Nogo-A KO resulted in premature soma-to-dendrite translocation of CFs and an enlargement of the CF territory in the molecular layer during development. Although spine density was not influenced by Nogo-A, the size of postsynaptic densities of PF-PC synapses was negatively correlated with the Nogo-A expression level. Electrophysiological studies revealed that Nogo-A negatively regulates the strength of synaptic transmission at the PF-PC synapse. Thus, Nogo-A appears as a negative regulator of PC input synapses, which orchestrates cerebellar connectivity through regulation of synapse morphology and the size of the PC dendritic tree.
Collapse
|
43
|
Abstract
We studied the effects of increased sodium conductance on firing rate and gain in two populations of conductance-based, single-compartment model neurons. The first population consisted of 1000 model neurons with differing values of seven voltage-dependent conductances. In many of these models, increasing the sodium conductance threefold unexpectedly reduced the firing rate and divisively scaled the gain at high input current. In the second population, consisting of 1000 simplified model neurons, we found that enhanced sodium conductance changed the frequency-current (FI) curve in two computationally distinct ways, depending on the firing rate. In these models, increased sodium conductance produced a subtractive shift in the FI curve at low firing rates because the additional sodium conductance allowed the neuron to respond more strongly to equivalent input current. In contrast, at high input current, the increase in sodium conductance resulted in a divisive change in the gain because the increased conductance produced a proportionally larger activation of the delayed rectifier potassium conductance. The control and sodium-enhanced FI curves intersect at a point that delimits two regions in which the same biophysical manipulation produces two fundamentally different changes to the model neuron's computational properties. This suggests a potentially difficult problem for homeostatic regulation of intrinsic excitability.
Collapse
|
44
|
Rossi A, Rossi S, Ginanneschi F. Activity-dependent changes in intrinsic excitability of human spinal motoneurones produced by natural activity. J Neurophysiol 2012; 108:2473-80. [PMID: 22933724 DOI: 10.1152/jn.00477.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The current study was designed to evaluate activity-dependent changes intrinsic to the spinal motoneurones (MNs) associated with sustained contractions. The excitability of spinal MNs (reflected by the antidromically evoked F-wave) innervating the abductor digiti minimi muscle (ADM) was measured in 12 healthy subjects following maximum voluntary contractions (MVCs) of ADM lasting 5 s, 15 s, 30 s, and 60 s. Upon cessation of the contractions, F-waves showed a depression, which increased in depth and duration with increasing duration of contraction. Following a 5-s contraction, there was a 20% decrease, which waned in 2 min, whereas a 60-s contraction produced a 40% decrease and waned in over 15 min. The changes in excitability of peripheral motor axons produced by the MVCs were measured by recording an ADM compound muscle action potential (CMAP) of ~50% of maximum to a constant ulnar nerve electrical stimulation. On cessation of the contractions, there was a prominent decrease in size of the CMAP: following a 5-s MVC, it produced a 10% decrease in the size of the test CMAP, which recovered in 2 min, whereas following a 60-s MVC, it produced a 30% decrease, which recovered in over 15 min. Statistical analysis (correntropy) showed a high-order mutual dependence between F-wave and CMAP, and both were significantly dependent on MVC duration. Because of the parallel excitability changes in peripheral axons and spinal MNs, our interpretation is that intrinsic excitability of the axon initial segment (i.e., where the action potential is generated) and peripheral axon segments changed in a similar, activity-dependent manner.
Collapse
Affiliation(s)
- Alessandro Rossi
- Department of Neurological, Neurosurgical and Behavioral Sciences, University of Siena, Siena, Italy.
| | | | | |
Collapse
|
45
|
Khakhalin AS, Aizenman CD. GABAergic transmission and chloride equilibrium potential are not modulated by pyruvate in the developing optic tectum of Xenopus laevis tadpoles. PLoS One 2012; 7:e34446. [PMID: 22496804 PMCID: PMC3319581 DOI: 10.1371/journal.pone.0034446] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 03/05/2012] [Indexed: 11/19/2022] Open
Abstract
In the developing mammalian brain, gamma-aminobutyric acid (GABA) is thought to play an excitatory rather than an inhibitory role due to high levels of intracellular Cl(-) in immature neurons. This idea, however, has been questioned by recent studies which suggest that glucose-based artificial cerebrospinal fluid (ACSF) may be inadequate for experiments on immature and developing brains. These studies suggest that immature neurons may require alternative energy sources, such as lactate or pyruvate. Lack of these other energy sources is thought to result in artificially high intracellular Cl(-) concentrations, and therefore a more depolarized GABA receptor (GABAR) reversal potential. Since glucose metabolism can vary widely among different species, it is important to test the effects of these alternative energy sources on different experimental preparations. We tested whether pyruvate affects GABAergic transmission in isolated brains of developing wild type Xenopus tadpoles in vitro by recording the responsiveness of tectal neurons to optic nerve stimulation, and by measuring currents evoked by local GABA application in a gramicidin perforated patch configuration. We found that, in contrast with previously reported results, the reversal potential for GABAR-mediated currents does not change significantly between developmental stages 45 and 49. Partial substitution of glucose by pyruvate had only minor effects on both the GABA reversal potential, and the responsiveness of tectal neurons at stages 45 and 49. Total depletion of energy sources from the ACSF did not affect neural responsiveness. We also report a strong spatial gradient in GABA reversal potential, with immature cells adjacent to the lateral and caudal proliferative zones having more positive reversal potentials. We conclude that in this experimental preparation standard glucose-based ACSF is an appropriate extracellular media for in vitro experiments.
Collapse
Affiliation(s)
| | - Carlos D. Aizenman
- Department of Neuroscience, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
46
|
Naudé J, Paz JT, Berry H, Delord B. A theory of rate coding control by intrinsic plasticity effects. PLoS Comput Biol 2012; 8:e1002349. [PMID: 22275858 PMCID: PMC3261921 DOI: 10.1371/journal.pcbi.1002349] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 11/27/2011] [Indexed: 11/18/2022] Open
Abstract
Intrinsic plasticity (IP) is a ubiquitous activity-dependent process regulating neuronal excitability and a cellular correlate of behavioral learning and neuronal homeostasis. Because IP is induced rapidly and maintained long-term, it likely represents a major determinant of adaptive collective neuronal dynamics. However, assessing the exact impact of IP has remained elusive. Indeed, it is extremely difficult disentangling the complex non-linear interaction between IP effects, by which conductance changes alter neuronal activity, and IP rules, whereby activity modifies conductance via signaling pathways. Moreover, the two major IP effects on firing rate, threshold and gain modulation, remain unknown in their very mechanisms. Here, using extensive simulations and sensitivity analysis of Hodgkin-Huxley models, we show that threshold and gain modulation are accounted for by maximal conductance plasticity of conductance that situate in two separate domains of the parameter space corresponding to sub- and supra-threshold conductance (i.e. activating below or above the spike onset threshold potential). Analyzing equivalent integrate-and-fire models, we provide formal expressions of sensitivities relating to conductance parameters, unraveling unprecedented mechanisms governing IP effects. Our results generalize to the IP of other conductance parameters and allow strong inference for calcium-gated conductance, yielding a general picture that accounts for a large repertoire of experimental observations. The expressions we provide can be combined with IP rules in rate or spiking models, offering a general framework to systematically assess the computational consequences of IP of pharmacologically identified conductance with both fine grain description and mathematical tractability. We provide an example of such IP loop model addressing the important issue of the homeostatic regulation of spontaneous discharge. Because we do not formulate any assumptions on modification rules, the present theory is also relevant to other neural processes involving excitability changes, such as neuromodulation, development, aging and neural disorders. Over the past decades, experimental and theoretical studies of the cellular basis of learning and memory have mainly focused on synaptic plasticity, the experience-dependent modification of synapses. However, behavioral learning has also been correlated with experience-dependent changes of non-synaptic voltage-dependent ion channels. This intrinsic plasticity changes the neuron's propensity to fire action potentials in response to synaptic inputs. Thus a fundamental problem is to relate changes of the neuron input-output function with voltage-gated conductance modifications. Using a sensitivity analysis in biophysically realistic models, we depict a generic dichotomy between two classes of voltage-dependent ion channels. These two classes modify the threshold and the slope of the neuron input-output relation, allowing neurons to regulate the range of inputs they respond to and the gain of that response, respectively. We further provide analytical descriptions that enlighten the dynamical mechanisms underlying these effects and propose a concise and realistic framework for assessing the computational impact of intrinsic plasticity in neuron network models. Our results account for a large repertoire of empirical observations and may enlighten functional changes that characterize development, aging and several neural diseases, which also involve changes in voltage-dependent ion channels.
Collapse
Affiliation(s)
- J. Naudé
- Institut des Systèmes Intelligents et de Robotique, CNRS – UMR 7222, Université Pierre et Marie Curie (UPMC), Paris, France
| | - J. T. Paz
- Department of Neurology & Neurological Sciences, Stanford University Medical Center, Stanford, California, United States of America
| | - H. Berry
- Project-Team BEAGLE, INRIA Rhone-Alpes, LIRIS UMR5205, Université de Lyon, Lyon, France
| | - B. Delord
- Institut des Systèmes Intelligents et de Robotique, CNRS – UMR 7222, Université Pierre et Marie Curie (UPMC), Paris, France
- * E-mail:
| |
Collapse
|
47
|
Visual experience-dependent maturation of correlated neuronal activity patterns in a developing visual system. J Neurosci 2011; 31:8025-36. [PMID: 21632924 DOI: 10.1523/jneurosci.5802-10.2011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The functional properties of neural circuits become increasingly robust over development. This allows circuits to optimize their output in response to a variety of input. However, it is not clear whether this optimization is a function of hardwired circuit elements, or whether it requires neural experience to develop. We performed rapid in vivo imaging of calcium signals from bulk-labeled neurons in the Xenopus laevis optic tectum to resolve the rapid spatiotemporal response properties of populations of developing tectal neurons in response to visual stimuli. We found that during a critical time in tectal development, network activity becomes increasingly robust, more correlated, and more synchronous. These developmental changes require normal visual input during development and are disrupted by NMDAR blockade. Our data show that visual activity and NMDAR activation are critical for the maturation of tectal network dynamics during visual system development.
Collapse
|
48
|
Koch H, Garcia AJ, Ramirez JM. Network reconfiguration and neuronal plasticity in rhythm-generating networks. Integr Comp Biol 2011; 51:856-68. [PMID: 21856733 DOI: 10.1093/icb/icr099] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neuronal networks are highly plastic and reconfigure in a state-dependent manner. The plasticity at the network level emerges through multiple intrinsic and synaptic membrane properties that imbue neurons and their interactions with numerous nonlinear properties. These properties are continuously regulated by neuromodulators and homeostatic mechanisms that are critical to maintain not only network stability and also adapt networks in a short- and long-term manner to changes in behavioral, developmental, metabolic, and environmental conditions. This review provides concrete examples from neuronal networks in invertebrates and vertebrates, and illustrates that the concepts and rules that govern neuronal networks and behaviors are universal.
Collapse
Affiliation(s)
- Henner Koch
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Street, Seattle, WA 98101, USA
| | | | | |
Collapse
|
49
|
Yan J, Li JC, Xie ML, Zhang D, Qi AP, Hu B, Huang W, Xia JX, Hu ZA. Short-term sleep deprivation increases intrinsic excitability of prefrontal cortical neurons. Brain Res 2011; 1401:52-8. [PMID: 21663896 DOI: 10.1016/j.brainres.2011.05.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 05/07/2011] [Accepted: 05/16/2011] [Indexed: 11/28/2022]
Abstract
Short-term sleep deprivation (SD) has been shown to enhance cortical activity. However, alterations in the cellular excitability of cortical neurons following SD are not yet fully understood. The present study investigated the effects of 4-hour SD on pyramidal neurons in the prefrontal cortex (PFC) of rats using whole-cell patch-clamp recording. SD led to an increase in the initial slope of firing frequency-current curve and a decrease in frequency adaptation, which were reversed by recovery sleep (RS). Correspondingly, the total afterhyperpolarization (AHP) was reduced in the SD group and returned in the RS group. Furthermore, the component of AHP changed after SD seemed to be sensitive to Ca(2+). These observations indicate an enhancement in intrinsic excitability due to short-term SD, and suggest a role for Ca(2+)-dependent AHP in this change. The findings of the present study may provide a possible explanation for the SD-induced increase in cortical activity.
Collapse
Affiliation(s)
- Jie Yan
- Department of Physiology, Third Military Medical University, Chongqing 400038, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
van Welie I, du Lac S. Bidirectional control of BK channel open probability by CAMKII and PKC in medial vestibular nucleus neurons. J Neurophysiol 2011; 105:1651-9. [PMID: 21307321 DOI: 10.1152/jn.00058.2011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Large conductance K(+) (BK) channels are a key determinant of neuronal excitability. Medial vestibular nucleus (MVN) neurons regulate eye movements to ensure image stabilization during head movement, and changes in their intrinsic excitability may play a critical role in plasticity of the vestibulo-ocular reflex. Plasticity of intrinsic excitability in MVN neurons is mediated by kinases, and BK channels influence excitability, but whether endogenous BK channels are directly modulated by kinases is unknown. Double somatic patch-clamp recordings from MVN neurons revealed large conductance potassium channel openings during spontaneous action potential firing. These channels displayed Ca(2+) and voltage dependence in excised patches, identifying them as BK channels. Recording isolated single channel currents at physiological temperature revealed a novel kinase-mediated bidirectional control in the range of voltages over which BK channels are activated. Application of activated Ca(2+)/calmodulin-dependent kinase II (CAMKII) increased BK channel open probability by shifting the voltage activation range towards more hyperpolarized potentials. An opposite shift in BK channel open probability was revealed by inhibition of phosphatases and was occluded by blockade of protein kinase C (PKC), suggesting that active PKC associated with BK channel complexes in patches was responsible for this effect. Accordingly, direct activation of endogenous PKC by PMA induced a decrease in BK open probability. BK channel activity affects excitability in MVN neurons and bidirectional control of BK channels by CAMKII, and PKC suggests that cellular signaling cascades engaged during plasticity may dynamically control excitability by regulating BK channel open probability.
Collapse
Affiliation(s)
- Ingrid van Welie
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, San Diego, CA 92037, USA
| | | |
Collapse
|