1
|
Turina P. Modulation of the H +/ATP coupling ratio by ADP and ATP as a possible regulatory feature in the F-type ATP synthases. Front Mol Biosci 2022; 9:1023031. [PMID: 36275634 PMCID: PMC9583940 DOI: 10.3389/fmolb.2022.1023031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
F-type ATP synthases are transmembrane enzymes, which play a central role in the metabolism of all aerobic and photosynthetic cells and organisms, being the major source of their ATP synthesis. Catalysis occurs via a rotary mechanism, in which the free energy of a transmembrane electrochemical ion gradient is converted into the free energy of ATP phosphorylation from ADP and Pi, and vice versa. An ADP, tightly bound to one of the three catalytic sites on the stator head, is associated with catalysis inhibition, which is relieved by the transmembrane proton gradient and by ATP. By preventing wasteful ATP hydrolysis in times of low osmotic energy and low ATP/ADP ratio, such inhibition constitutes a classical regulatory feedback effect, likely to be an integral component of in vivo regulation. The present miniview focuses on an additional putative regulatory phenomenon, which has drawn so far little attention, consisting in a substrate-induced tuning of the H+/ATP coupling ratio during catalysis, which might represent an additional key to energy homeostasis in the cell. Experimental pieces of evidence in support of such a phenomenon are reviewed.
Collapse
Affiliation(s)
- Paola Turina
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
2
|
Davis LA, Fogarty MJ, Brown A, Sieck GC. Structure and Function of the Mammalian Neuromuscular Junction. Compr Physiol 2022; 12:3731-3766. [PMID: 35950651 PMCID: PMC10461538 DOI: 10.1002/cphy.c210022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The mammalian neuromuscular junction (NMJ) comprises a presynaptic terminal, a postsynaptic receptor region on the muscle fiber (endplate), and the perisynaptic (terminal) Schwann cell. As with any synapse, the purpose of the NMJ is to transmit signals from the nervous system to muscle fibers. This neural control of muscle fibers is organized as motor units, which display distinct structural and functional phenotypes including differences in pre- and postsynaptic elements of NMJs. Motor units vary considerably in the frequency of their activation (both motor neuron discharge rate and duration/duty cycle), force generation, and susceptibility to fatigue. For earlier and more frequently recruited motor units, the structure and function of the activated NMJs must have high fidelity to ensure consistent activation and continued contractile response to sustain vital motor behaviors (e.g., breathing and postural balance). Similarly, for higher force less frequent behaviors (e.g., coughing and jumping), the structure and function of recruited NMJs must ensure short-term reliable activation but not activation sustained for a prolonged period in which fatigue may occur. The NMJ is highly plastic, changing structurally and functionally throughout the life span from embryonic development to old age. The NMJ also changes under pathological conditions including acute and chronic disease. Such neuroplasticity often varies across motor unit types. © 2022 American Physiological Society. Compr Physiol 12:1-36, 2022.
Collapse
Affiliation(s)
- Leah A. Davis
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew J. Fogarty
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Alyssa Brown
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Gary C. Sieck
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
3
|
Krzewska M, Dubas E, Gołębiowska G, Nowicka A, Janas A, Zieliński K, Surówka E, Kopeć P, Mielczarek P, Żur I. Comparative proteomic analysis provides new insights into regulation of microspore embryogenesis induction in winter triticale (× Triticosecale Wittm.) after 5-azacytidine treatment. Sci Rep 2021; 11:22215. [PMID: 34782682 PMCID: PMC8593058 DOI: 10.1038/s41598-021-01671-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/02/2021] [Indexed: 11/09/2022] Open
Abstract
Effective microspore embryogenesis (ME) requires substantial modifications in gene expression pattern, followed by changes in the cell proteome and its metabolism. Recent studies have awakened also interest in the role of epigenetic factors in microspore de-differentiation and reprogramming. Therefore, demethylating agent (2.5-10 μM 5-azacytidine, AC) together with low temperature (3 weeks at 4 °C) were used as ME-inducing tiller treatment in two doubled haploid (DH) lines of triticale and its effect was analyzed in respect of anther protein profiles, expression of selected genes (TAPETUM DETERMINANT1 (TaTPD1-like), SOMATIC EMBRYOGENESIS RECEPTOR KINASE 2 (SERK2) and GLUTATHIONE S-TRANSFERASE (GSTF2)) and ME efficiency. Tiller treatment with 5.0 µM AC was the most effective in ME induction; it was associated with (1) suppression of intensive anabolic processes-mainly photosynthesis and light-dependent reactions, (2) transition to effective catabolism and mobilization of carbohydrate reserve to meet the high energy demand of cells during microspore reprograming and (3) effective defense against stress-inducing treatment, i.e. protection of proper folding during protein biosynthesis and effective degradation of dysfunctional or damaged proteins. Additionally, 5.0 µM AC enhanced the expression of all genes previously identified as being associated with embryogenic potential of microspores (TaTPD1-like, SERK and GSTF2).
Collapse
Affiliation(s)
- Monika Krzewska
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland.
| | - Ewa Dubas
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Gabriela Gołębiowska
- Chair of Genetics, Institute of Biology, Pedagogical University of Krakow, Podchorążych 2, 31-084, Kraków, Poland
| | - Anna Nowicka
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 779 00, Olomouc, Czech Republic
| | - Agnieszka Janas
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Kamil Zieliński
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Ewa Surówka
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Przemysław Kopeć
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Przemysław Mielczarek
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30 ave., 30-059, Kraków, Poland
| | - Iwona Żur
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland.
| |
Collapse
|
4
|
A Novel Neuron-Specific Regulator of the V-ATPase in Drosophila. eNeuro 2021; 8:ENEURO.0193-21.2021. [PMID: 34620624 PMCID: PMC8541823 DOI: 10.1523/eneuro.0193-21.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/24/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022] Open
Abstract
The V-ATPase is a highly conserved enzymatic complex that ensures appropriate levels of organelle acidification in virtually all eukaryotic cells. While the general mechanisms of this proton pump have been well studied, little is known about the specific regulations of neuronal V-ATPase. Here, we studied CG31030, a previously uncharacterized Drosophila protein predicted from its sequence homology to be part of the V-ATPase family. In contrast to its ortholog ATP6AP1/VhaAC45 which is ubiquitous, we observed that CG31030 expression is apparently restricted to all neurons, and using CRISPR/Cas9-mediated gene tagging, that it is mainly addressed to synaptic terminals. In addition, we observed that CG31030 is essential for fly survival and that this protein co-immunoprecipitates with identified V-ATPase subunits, and in particular ATP6AP2. Using a genetically-encoded pH probe (VMAT-pHluorin) and electrophysiological recordings at the larval neuromuscular junction, we show that CG31030 knock-down induces a major defect in synaptic vesicle acidification and a decrease in quantal size, which is the amplitude of the postsynaptic response to the release of a single synaptic vesicle. These defects were associated with severe locomotor impairments. Overall, our data indicate that CG31030, which we renamed VhaAC45-related protein (VhaAC45RP), is a specific regulator of neuronal V-ATPase in Drosophila that is required for proper synaptic vesicle acidification and neurotransmitter release.
Collapse
|
5
|
Zhou H, Huang W, Luo S, Hu H, Zhang Y, Zhang L, Li P. Genome-Wide Identification of the Vacuolar H +-ATPase Gene Family in Five Rosaceae Species and Expression Analysis in Pear ( Pyrus bretschneideri). PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9121661. [PMID: 33261053 PMCID: PMC7761284 DOI: 10.3390/plants9121661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Vacuolar H+-ATPases (V-ATPase) are multi-subunit complexes that function as ATP hydrolysis-driven proton pumps. They play pivotal roles in physiological processes, such as development, metabolism, stress, and growth. However, there have been very few studies on the characterisation of V-ATPase (VHA) genes in Rosaceae species. Therefore, in the present study, we performed a genome-wide analysis and identified VHA gene family members in five Rosaceae species (Pyrus bretschneideri, Malus domestica, Prunus persica, Fragaria vesca, and Prunus mume). A total of 159 VHA genes were identified, and were classified into 13 subfamilies according to the phylogenetic analysis. The structure of VHA proteins revealed high similarity among different VHA genes within the same subgroup. Gene duplication event analysis revealed that whole-genome duplications represented the major pathway for expansion of the Pyrus bretschneideri VHA genes (PbrVHA genes). The tissue-specific expression analysis of the pear showed that 36 PbrVHA genes were expressed in major tissues. Seven PbrVHA genes were significantly downregulated when the pollen tube growth stopped. Moreover, many PbrVHA genes were differentially expressed during fruit development and storage, suggesting that VHA genes play specific roles in development and senescence. The present study provides fundamental information for further elucidating the potential roles of VHA genes during development and senescence.
Collapse
Affiliation(s)
- Hongsheng Zhou
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.Z.); (S.L.); (H.H.); (Y.Z.)
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Wen Huang
- Nanjing Institute of Vegetable Science, Nanjing 210042, China;
| | - Shufen Luo
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.Z.); (S.L.); (H.H.); (Y.Z.)
| | - Huali Hu
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.Z.); (S.L.); (H.H.); (Y.Z.)
| | - Yingtong Zhang
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.Z.); (S.L.); (H.H.); (Y.Z.)
| | - Leigang Zhang
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.Z.); (S.L.); (H.H.); (Y.Z.)
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Pengxia Li
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.Z.); (S.L.); (H.H.); (Y.Z.)
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
6
|
Interaction between PHB2 and Enterovirus A71 VP1 Induces Autophagy and Affects EV-A71 Infection. Viruses 2020; 12:v12040414. [PMID: 32276428 PMCID: PMC7232526 DOI: 10.3390/v12040414] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 12/14/2022] Open
Abstract
Enterovirus A71 (EV-A71) is a major pathogen that causes severe and fatal cases of hand-foot-and-mouth disease (HFMD). HFMD caused by EV-A71 seriously endangers children’s health. Although autophagy is an important antiviral defense mechanism, some viruses have evolved strategies to utilize autophagy to promote self-replication. EV-A71 can utilize autophagy vesicles as replication scaffolds, indicating that EV-A71 infection is closely related to its autophagy induction mechanism. VP1, a structural protein of EV-A71, has been reported to induce autophagy, but the underlying mechanism is still unclear. In this study, we found that the C-terminus (aa 251–297) of VP1 induces autophagy. Mass spectrometry analysis suggested that prohibitin 2 (PHB2) interacts with the C-terminus of the EV-A71 VP1 protein, and this was further verified by coimmunoprecipitation assays. After PHB2 knockdown, EV-A71 replication, viral particle release, and viral protein synthesis were reduced, and autophagy was inhibited. The results suggest that PHB2 interaction with VP1 is essential for induction of autophagy and the infectivity of EV-A71. Furthermore, we confirmed that EV-A71 induced complete autophagy that required autolysosomal acidification, thus affecting EV-A71 infection. In summary, this study revealed that the host protein PHB2 is involved in an autophagy mechanism during EV-A71 infection.
Collapse
|
7
|
Colacurcio DJ, Nixon RA. Disorders of lysosomal acidification-The emerging role of v-ATPase in aging and neurodegenerative disease. Ageing Res Rev 2016; 32:75-88. [PMID: 27197071 DOI: 10.1016/j.arr.2016.05.004] [Citation(s) in RCA: 322] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/02/2016] [Accepted: 05/13/2016] [Indexed: 12/21/2022]
Abstract
Autophagy and endocytosis deliver unneeded cellular materials to lysosomes for degradation. Beyond processing cellular waste, lysosomes release metabolites and ions that serve signaling and nutrient sensing roles, linking the functions of the lysosome to various pathways for intracellular metabolism and nutrient homeostasis. Each of these lysosomal behaviors is influenced by the intraluminal pH of the lysosome, which is maintained in the low acidic range by a proton pump, the vacuolar ATPase (v-ATPase). New reports implicate altered v-ATPase activity and lysosomal pH dysregulation in cellular aging, longevity, and adult-onset neurodegenerative diseases, including forms of Parkinson disease and Alzheimer disease. Genetic defects of subunits composing the v-ATPase or v-ATPase-related proteins occur in an increasingly recognized group of familial neurodegenerative diseases. Here, we review the expanding roles of the v-ATPase complex as a platform regulating lysosomal hydrolysis and cellular homeostasis. We discuss the unique vulnerability of neurons to persistent low level lysosomal dysfunction and review recent clinical and experimental studies that link dysfunction of the v-ATPase complex to neurodegenerative diseases across the age spectrum.
Collapse
|
8
|
V-type ATPase proton pump expression during enamel formation. Matrix Biol 2015; 52-54:234-245. [PMID: 26586472 DOI: 10.1016/j.matbio.2015.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 10/29/2015] [Accepted: 11/09/2015] [Indexed: 01/12/2023]
Abstract
Several diseases such as proximal and distal renal tubular acidosis and osteoporosis are related to intracellular pH dysregulation resulting from mutations in genes coding for ion channels, including proteins comprising the proton-pumping V-type ATPase. V-type ATPase is a multi-subunit protein complex expressed in enamel forming cells. V-type ATPase plays a key role in enamel development, specifically lysosomal acidification, yet our understanding of the relationship between the endocytotic activities and dental health and disease is limited. The objective of this study is to better understand the ameloblast-associated pH regulatory networks essential for amelogenesis. Quantitative RT-PCR was performed on tissues from secretory-stage and maturation-stage enamel organs to determine which of the V-type ATPase subunits are most highly upregulated during maturation-stage amelogenesis: a time when ameloblast endocytotic activity is highest. Western blot analyses, using specific antibodies to four of the V-type ATPase subunits (Atp6v0d2, Atp6v1b2, Atp6v1c1 and Atp6v1e1), were then applied to validate much of the qPCR data. Immunohistochemistry using these same four antibodies was also performed to identify the spatiotemporal expression profiles of individual V-type ATPase subunits. Our data show that cytoplasmic V-type ATPase is significantly upregulated in enamel organ cells during maturation-stage when compared to secretory-stage. These data likely relate to the higher endocytotic activities, and the greater need for lysosomal acidification, during maturation-stage amelogenesis. It is also apparent from our immunolocalization data, using antibodies against two of the V-type ATPase subunits (Atp6v1c1 and Atp6v1e1), that significant expression is seen at the apical membrane of maturation-stage ameloblasts. Others have also identified this V-type ATPase expression profile at the apical membrane of maturation ameloblasts. Collectively, these data better define the expression and role of the V-type ATPase proton pump in the enamel organ during amelogenesis.
Collapse
|
9
|
Lucena MN, Pinto MR, Garçon DP, McNamara JC, Leone FA. A kinetic characterization of the gill V(H+)-ATPase in juvenile and adult Macrobrachium amazonicum, a diadromous palaemonid shrimp. Comp Biochem Physiol B Biochem Mol Biol 2015; 181:15-25. [DOI: 10.1016/j.cbpb.2014.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/05/2014] [Accepted: 11/07/2014] [Indexed: 10/24/2022]
|
10
|
Renal acid-base regulation: new insights from animal models. Pflugers Arch 2014; 467:1623-41. [PMID: 25515081 DOI: 10.1007/s00424-014-1669-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 12/16/2022]
Abstract
Because majority of biological processes are dependent on pH, maintaining systemic acid-base balance is critical. The kidney contributes to systemic acid-base regulation, by reabsorbing HCO3 (-) (both filtered by glomeruli and generated within a nephron) and acidifying urine. Abnormalities in those processes will eventually lead to a disruption in systemic acid-base balance and provoke metabolic acid-base disorders. Research over the past 30 years advanced our understanding on cellular and molecular mechanisms responsible for those processes. In particular, a variety of transgenic animal models, where target genes are deleted either globally or conditionally, provided significant insights into how specific transporters are contributing to the renal acid-base regulation. Here, we broadly overview the mechanisms of renal ion transport participating to acid-base regulation, with emphasis on data obtained from transgenic mice models.
Collapse
|
11
|
Kartner N, Manolson MF. Novel techniques in the development of osteoporosis drug therapy: the osteoclast ruffled-border vacuolar H(+)-ATPase as an emerging target. Expert Opin Drug Discov 2014; 9:505-22. [PMID: 24749538 DOI: 10.1517/17460441.2014.902155] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Bone loss occurs in many diseases, including osteoporosis, rheumatoid arthritis and periodontal disease. For osteoporosis alone, it is estimated that 75 million people are afflicted worldwide, with high risks of fractures and increased morbidity and mortality. The demand for treatment consumes an ever-increasing share of healthcare resources. Successive generations of antiresorptive bisphosphonate drugs have reduced side effects, minimized frequency of dosing, and increased efficacy in halting osteoporotic bone loss, but their shortcomings have remained significant to the extent that a monoclonal antibody antiresorptive has recently taken a significant market share. Yet this latter, paradigm-shifting approach has its own drawbacks. AREAS COVERED This review summarizes recent literature on bone-remodeling cell and molecular biology and the background for existing approaches and emerging therapeutics and targets for treating osteoporosis. The authors discuss vacuolar H(+)-ATPase (V-ATPase) molecular biology and the recent advances in targeting the osteoclast ruffled-border V-ATPase (ORV) for the development of novel antiresorptive drugs. They also cover examples from the V-ATPase-targeted drug discovery literature, including conventional molecular biology methods, in silico drug discovery, and gene therapy in more detail as proofs of concept. EXPERT OPINION Existing therapeutic options for osteoporosis have limitations and inherent drawbacks. Thus, the search for novel approaches to osteoporosis drug discovery remains relevant. Targeting the ORV may be one of the more selective means of regulating bone resorption. Furthermore, this approach may be effective without removing active osteoclasts from the finely balanced osteoclast-osteoblast coupling required for normal bone remodeling.
Collapse
Affiliation(s)
- Norbert Kartner
- University of Toronto , 124 Edward Street, Toronto, Ontario M5G 1G6 , Canada
| | | |
Collapse
|
12
|
Martínez JP, Pérez-Vilaró G, Muthukumar Y, Scheller N, Hirsch T, Diestel R, Steinmetz H, Jansen R, Frank R, Sasse F, Meyerhans A, Díez J. Screening of small molecules affecting mammalian P-body assembly uncovers links with diverse intracellular processes and organelle physiology. RNA Biol 2014; 10:1661-9. [PMID: 24418890 DOI: 10.4161/rna.26851] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Processing bodies (P-bodies) are cytoplasmatic mRNP granules containing non-translating mRNAs and proteins from the mRNA decay and silencing machineries. The mechanism of P-body assembly has been typically addressed by depleting P-body components. Here we apply a complementary approach and establish an automated cell-based assay platform to screen for molecules affecting P-body assembly. From a unique library of compounds derived from myxobacteria, 30 specifically inhibited P-body assembly. Gephyronic acid A (GA), a eukaryotic protein synthesis inhibitor, showed the strongest effect. GA also inhibited, under stress conditions, phosphorylation of eIF2α and stress granule formation. Other hits uncovered interesting novel links between P-body assembly, lipid metabolism, and internal organelle physiology. The obtained results provide a chemical toolbox to manipulate P-body assembly and function.
Collapse
Affiliation(s)
- Javier P Martínez
- Infection Biology Group; Department of Experimental and Health Sciences; Universitat Pompeu Fabra; Barcelona, Spain
| | - Gemma Pérez-Vilaró
- Molecular Virology Group; Department of Experimental and Health Sciences; Universitat Pompeu Fabra; Barcelona, Spain
| | - Yazh Muthukumar
- Department of Chemical Biology; Helmholtz Centre for Infection Research; Braunschweig, Germany
| | - Nicoletta Scheller
- Molecular Virology Group; Department of Experimental and Health Sciences; Universitat Pompeu Fabra; Barcelona, Spain
| | - Tatjana Hirsch
- Department of Chemical Biology; Helmholtz Centre for Infection Research; Braunschweig, Germany
| | - Randi Diestel
- Department of Chemical Biology; Helmholtz Centre for Infection Research; Braunschweig, Germany
| | - Heinrich Steinmetz
- Department of Microbial Drugs; Helmholtz Centre for Infection Research; Braunschweig, Germany
| | - Rolf Jansen
- Department of Microbial Drugs; Helmholtz Centre for Infection Research; Braunschweig, Germany
| | - Ronald Frank
- Department of Chemical Biology; Helmholtz Centre for Infection Research; Braunschweig, Germany
| | - Florenz Sasse
- Department of Chemical Biology; Helmholtz Centre for Infection Research; Braunschweig, Germany
| | - Andreas Meyerhans
- Infection Biology Group; Department of Experimental and Health Sciences; Universitat Pompeu Fabra; Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA); Barcelona, Spain
| | - Juana Díez
- Molecular Virology Group; Department of Experimental and Health Sciences; Universitat Pompeu Fabra; Barcelona, Spain
| |
Collapse
|
13
|
Abstract
Synaptic vesicle recycling is one of the best-studied cellular pathways. Many of the proteins involved are known, and their interactions are becoming increasingly clear. However, as for many other pathways, it is still difficult to understand synaptic vesicle recycling as a whole. While it is generally possible to point out how synaptic reactions take place, it is not always easy to understand what triggers or controls them. Also, it is often difficult to understand how the availability of the reaction partners is controlled: how the reaction partners manage to find each other in the right place, at the right time. I present here an overview of synaptic vesicle recycling, discussing the mechanisms that trigger different reactions, and those that ensure the availability of reaction partners. A central argument is that synaptic vesicles bind soluble cofactor proteins, with low affinity, and thus control their availability in the synapse, forming a buffer for cofactor proteins. The availability of cofactor proteins, in turn, regulates the different synaptic reactions. Similar mechanisms, in which one of the reaction partners buffers another, may apply to many other processes, from the biogenesis to the degradation of the synaptic vesicle.
Collapse
Affiliation(s)
- Silvio O Rizzoli
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen European Neuroscience Institute, Göttingen, Germany
| |
Collapse
|
14
|
Abstract
Specialized cells in the body express high levels of V-ATPase in their plasma membrane and respond to hormonal and nonhormonal cues to regulate extracellular acidification. Mutations in or loss of some V-ATPase subunits cause several disorders, including renal distal tubular acidosis and male infertility. This review focuses on the regulation of V-ATPase-dependent luminal acidification in renal intercalated cells and epididymal clear cells, which are key players in these physiological processes.
Collapse
Affiliation(s)
- Sylvie Breton
- Program in Membrane Biology, Center for Systems Biology, Nephrology Division, Massachusetts General Hospital, Boston, MA, USA
| | | |
Collapse
|
15
|
Zhang L, Li X, Zheng W, Fu Z, Li W, Ma L, Li K, Sun L, Tian J. Proteomics analysis of UV-irradiated Lonicera japonica Thunb. with bioactive metabolites enhancement. Proteomics 2013; 13:3508-22. [PMID: 24167072 DOI: 10.1002/pmic.201300212] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 09/29/2013] [Accepted: 10/11/2013] [Indexed: 11/08/2022]
Abstract
A previous study showed that the contents of caffeoylquinic acids and iridoids, the major bioactive components in the postharvest Lonicera japonica Thunb., were induced by enhanced ultraviolet (UV)-A or UV-B irradiation. To clarify the UV-responsive key enzymes in the bioactive metabolites biosynthetic pathway and the related plant defense mechanism in L. japonica, 2DE in combination with MALDI-TOF/TOF MS was employed. Seventy-five out of 196 differential proteins were positively identified. Based on the functions, these proteins were grouped into nine categories, covering a wide range of molecular processes including the secondary metabolites (caffeoylquinic acids and iridoids) biosynthetic-related proteins, photosynthesis, carbohydrate and energy metabolism, stress, DNA, transport-related proteins, lipid metabolism, amino acid metabolism, cell wall. Of note is the increasing expression of 1-deoxy-d-xylulose 5-phosphate reductoisomerase and 5-enol-pyruvylshikimate-phosphate synthase, which was crucial to supply more precursor for the secondary metabolites including caffeoylquinic acids and iridoids. Thus, this study provides both the clues at the protein level for the increase of the two bioactive components upon UV irradiation and the profile of UV-responsive proteins in L. japonica.
Collapse
Affiliation(s)
- Lin Zhang
- Key Laboratory for Biomedical Engineering, Zhejiang University, Ministry of Education, Hangzhou, Zhejiang, P. R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Saier MH. Microcompartments and protein machines in prokaryotes. J Mol Microbiol Biotechnol 2013; 23:243-69. [PMID: 23920489 DOI: 10.1159/000351625] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The prokaryotic cell was once thought of as a 'bag of enzymes' with little or no intracellular compartmentalization. In this view, most reactions essential for life occurred as a consequence of random molecular collisions involving substrates, cofactors and cytoplasmic enzymes. Our current conception of a prokaryote is far from this view. We now consider a bacterium or an archaeon as a highly structured, nonrandom collection of functional membrane-embedded and proteinaceous molecular machines, each of which serves a specialized function. In this article we shall present an overview of such microcompartments including (1) the bacterial cytoskeleton and the apparati allowing DNA segregation during cell division; (2) energy transduction apparati involving light-driven proton pumping and ion gradient-driven ATP synthesis; (3) prokaryotic motility and taxis machines that mediate cell movements in response to gradients of chemicals and physical forces; (4) machines of protein folding, secretion and degradation; (5) metabolosomes carrying out specific chemical reactions; (6) 24-hour clocks allowing bacteria to coordinate their metabolic activities with the daily solar cycle, and (7) proteinaceous membrane compartmentalized structures such as sulfur granules and gas vacuoles. Membrane-bound prokaryotic organelles were considered in a recent Journal of Molecular Microbiology and Biotechnology written symposium concerned with membranous compartmentalization in bacteria [J Mol Microbiol Biotechnol 2013;23:1-192]. By contrast, in this symposium, we focus on proteinaceous microcompartments. These two symposia, taken together, provide the interested reader with an objective view of the remarkable complexity of what was once thought of as a simple noncompartmentalized cell.
Collapse
Affiliation(s)
- Milton H Saier
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, Calif. 92093-0116, USA.
| |
Collapse
|
17
|
Slc26a11 is prominently expressed in the brain and functions as a chloride channel: expression in Purkinje cells and stimulation of V H⁺-ATPase. Pflugers Arch 2013; 465:1583-97. [PMID: 23733100 DOI: 10.1007/s00424-013-1300-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/13/2013] [Accepted: 05/14/2013] [Indexed: 02/07/2023]
Abstract
SLC26A11 (human)/Slc26a11 (mouse), also known as kidney brain anion transporter (KBAT), is a member of the SLC26 anion transporter family and shows abundant mRNA expression in the brain. However, its exact cellular distribution and subcellular localization in the brain and its functional identity and possible physiological roles remain unknown. Expression and immunostaining studies demonstrated that Slc26a11 is abundantly expressed in the cerebellum, with a predominant expression in Purkinje cells. Lower expression levels were detected in hippocampus, olfactory bulb, cerebral cortex, and subcortical structures. Patch clamp studies in HEK293 cells transfected with mouse cDNA demonstrated that Slc26a11 can function as a chloride channel that is active under basal conditions and is not regulated by calcium, forskolin, or co-expression with cystic fibrosis transmembrane regulator. Single and double immunofluorescent labeling studies demonstrated the localization of vacuolar (V) H⁺-ATPase and Slc26a11 (KBAT) in the plasma membrane in Purkinje cells. Functional studies in HEK293 cells indicated that transfection with Slc26a11 stimulated acid transport via endogenous V H⁺-ATPase. We conclude that Slc26a11 (KBAT) is prominently distributed in output neurons of various subcortical and cortical structures in the central nervous system, with specific expression in Purkinje cells and that it may operate as a chloride channel regulating acid translocation by H⁺-ATPase across the plasma membrane and in intracellular compartments.
Collapse
|
18
|
Wolfe DM, Lee JH, Kumar A, Lee S, Orenstein SJ, Nixon RA. Autophagy failure in Alzheimer's disease and the role of defective lysosomal acidification. Eur J Neurosci 2013; 37:1949-61. [PMID: 23773064 PMCID: PMC3694736 DOI: 10.1111/ejn.12169] [Citation(s) in RCA: 261] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 01/22/2013] [Accepted: 01/28/2013] [Indexed: 12/12/2022]
Abstract
Autophagy is a lysosomal degradative process which recycles cellular waste and eliminates potentially toxic damaged organelles and protein aggregates. The important cytoprotective functions of autophagy are demonstrated by the diverse pathogenic consequences that may stem from autophagy dysregulation in a growing number of neurodegenerative disorders. In many of the diseases associated with autophagy anomalies, it is the final stage of autophagy-lysosomal degradation that is disrupted. In several disorders, including Alzheimer's disease (AD), defective lysosomal acidification contributes to this proteolytic failure. The complex regulation of lysosomal pH makes this process vulnerable to disruption by many factors, and reliable lysosomal pH measurements have become increasingly important in investigations of disease mechanisms. Although various reagents for pH quantification have been developed over several decades, they are not all equally well suited for measuring the pH of lysosomes. Here, we evaluate the most commonly used pH probes for sensitivity and localisation, and identify LysoSensor yellow/blue-dextran, among currently used probes, as having the optimal profile of properties for measuring lysosomal pH. In addition, we review evidence that lysosomal acidification is defective in AD and extend our original findings, of elevated lysosomal pH in presenilin 1 (PS1)-deficient blastocysts and neurons, to additional cell models of PS1 and PS1/2 deficiency, to fibroblasts from AD patients with PS1 mutations, and to neurons in the PS/APP mouse model of AD.
Collapse
Affiliation(s)
- Devin M. Wolfe
- Center for Dementia Research, Nathan S. Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY, USA, 10962
| | - Ju-hyun Lee
- Center for Dementia Research, Nathan S. Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY, USA, 10962
- Department of Psychiatry, New York University, 550 First Ave, New York, NY, USA 10016
| | - Asok Kumar
- Center for Dementia Research, Nathan S. Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY, USA, 10962
- Department of Pathology, New York University, 550 First Ave, New York, NY, USA 10016
| | - Sooyeon Lee
- Center for Dementia Research, Nathan S. Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY, USA, 10962
| | - Samantha J. Orenstein
- Department of Developmental and Molecular Biology, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY, USA 10461
| | - Ralph A. Nixon
- Center for Dementia Research, Nathan S. Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY, USA, 10962
- Department of Psychiatry, New York University, 550 First Ave, New York, NY, USA 10016
- Department of Cell Biology, New York University, 550 First Ave, New York, NY, USA 10016
| |
Collapse
|
19
|
Parsons LS, Wilkens S. Probing subunit-subunit interactions in the yeast vacuolar ATPase by peptide arrays. PLoS One 2012; 7:e46960. [PMID: 23071676 PMCID: PMC3470569 DOI: 10.1371/journal.pone.0046960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 09/07/2012] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Vacuolar (H(+))-ATPase (V-ATPase; V(1)V(o)-ATPase) is a large multisubunit enzyme complex found in the endomembrane system of all eukaryotic cells where its proton pumping action serves to acidify subcellular organelles. In the plasma membrane of certain specialized tissues, V-ATPase functions to pump protons from the cytoplasm into the extracellular space. The activity of the V-ATPase is regulated by a reversible dissociation mechanism that involves breaking and re-forming of protein-protein interactions in the V(1)-ATPase - V(o)-proton channel interface. The mechanism responsible for regulated V-ATPase dissociation is poorly understood, largely due to a lack of detailed knowledge of the molecular interactions that are responsible for the structural and functional link between the soluble ATPase and membrane bound proton channel domains. METHODOLOGY/PRINCIPAL FINDINGS To gain insight into where some of the stator subunits of the V-ATPase associate with each other, we have developed peptide arrays from the primary sequences of V-ATPase subunits. By probing the peptide arrays with individually expressed V-ATPase subunits, we have identified several key interactions involving stator subunits E, G, C, H and the N-terminal domain of the membrane bound a subunit. CONCLUSIONS The subunit-peptide interactions identified from the peptide arrays complement low resolution structural models of the eukaryotic vacuolar ATPase obtained from transmission electron microscopy. The subunit-subunit interaction data are discussed in context of our current model of reversible enzyme dissociation.
Collapse
Affiliation(s)
- Lee S. Parsons
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, United States of America
| | - Stephan Wilkens
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, United States of America
| |
Collapse
|
20
|
Wiedmann RM, von Schwarzenberg K, Palamidessi A, Schreiner L, Kubisch R, Liebl J, Schempp C, Trauner D, Vereb G, Zahler S, Wagner E, Müller R, Scita G, Vollmar AM. The V-ATPase-inhibitor archazolid abrogates tumor metastasis via inhibition of endocytic activation of the Rho-GTPase Rac1. Cancer Res 2012; 72:5976-87. [PMID: 22986742 DOI: 10.1158/0008-5472.can-12-1772] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The abundance of the multimeric vacuolar ATP-dependent proton pump, V-ATPase, on the plasma membrane of tumor cells correlates with the invasiveness of the tumor cell, suggesting the involvement of V-ATPase in tumor metastasis. V-ATPase is hypothesized to create a proton efflux leading to an acidic pericellular microenvironment that promotes the activity of proinvasive proteases. An alternative, not yet explored possibility is that V-ATPase regulates the signaling machinery responsible for tumor cell migration. Here, we show that pharmacologic or genetic reduction of V-ATPase activity significantly reduces migration of invasive tumor cells in vitro. Importantly, the V-ATPase inhibitor archazolid abrogates tumor dissemination in a syngeneic mouse 4T1 breast tumor metastasis model. Pretreatment of cancer cells with archazolid impairs directional motility by preventing spatially restricted, leading edge localization of epidermal growth factor receptor (EGFR) as well as of phosphorylated Akt. Archazolid treatment or silencing of V-ATPase inhibited Rac1 activation, as well as Rac1-dependent dorsal and peripheral ruffles by inhibiting Rab5-mediated endocytotic/exocytotic trafficking of Rac1. The results indicate that archazolid effectively decreases metastatic dissemination of breast tumors by impairing the trafficking and spatially restricted activation of EGFR and Rho-GTPase Rac1, which are pivotal for directed movement of cells. Thus, our data reveals a novel mechanism underlying the role of V-ATPase in tumor dissemination.
Collapse
Affiliation(s)
- Romina M Wiedmann
- Department of Pharmacy, Pharmaceutical Biology, University of Munich, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Bhargava A, Voronov I, Wang Y, Glogauer M, Kartner N, Manolson MF. Osteopetrosis mutation R444L causes endoplasmic reticulum retention and misprocessing of vacuolar H+-ATPase a3 subunit. J Biol Chem 2012; 287:26829-39. [PMID: 22685294 DOI: 10.1074/jbc.m112.345702] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Osteopetrosis is a genetic bone disease characterized by increased bone density and fragility. The R444L missense mutation in the human V-ATPase a3 subunit (TCIRG1) is one of several known mutations in a3 and other proteins that can cause this disease. The autosomal recessive R444L mutation results in a particularly malignant form of infantile osteopetrosis that is lethal in infancy, or early childhood. We have studied this mutation using the pMSCV retroviral vector system to integrate the cDNA construct for green fluorescent protein (GFP)-fused a3(R445L) mutant protein into the RAW 264.7 mouse osteoclast differentiation model. In comparison with wild-type a3, the mutant glycoprotein localized to the ER instead of lysosomes and its oligosaccharide moiety was misprocessed, suggesting inability of the core-glycosylated glycoprotein to traffic to the Golgi. Reduced steady-state expression of the mutant protein, in comparison with wild type, suggested that the former was being degraded, likely through the endoplasmic reticulum-associated degradation pathway. In differentiated osteoclasts, a3(R445L) was found to degrade at an increased rate over the course of osteoclastogenesis. Limited proteolysis studies suggested that the R445L mutation alters mouse a3 protein conformation. Together, these data suggest that Arg-445 plays a role in protein folding, or stability, and that infantile malignant osteopetrosis caused by the R444L mutation in the human V-ATPase a3 subunit is another member of the growing class of protein folding diseases. This may have implications for early-intervention treatment, using protein rescue strategies.
Collapse
Affiliation(s)
- Ajay Bhargava
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
The central goal of this overview article is to summarize recent findings in renal epithelial transport,focusing chiefly on the connecting tubule (CNT) and the cortical collecting duct (CCD).Mammalian CCD and CNT are involved in fine-tuning of electrolyte and fluid balance through reabsorption and secretion. Specific transporters and channels mediate vectorial movements of water and solutes in these segments. Although only a small percent of the glomerular filtrate reaches the CNT and CCD, these segments are critical for water and electrolyte homeostasis since several hormones, for example, aldosterone and arginine vasopressin, exert their main effects in these nephron sites. Importantly, hormones regulate the function of the entire nephron and kidney by affecting channels and transporters in the CNT and CCD. Knowledge about the physiological and pathophysiological regulation of transport in the CNT and CCD and particular roles of specific channels/transporters has increased tremendously over the last two decades.Recent studies shed new light on several key questions concerning the regulation of renal transport.Precise distribution patterns of transport proteins in the CCD and CNT will be reviewed, and their physiological roles and mechanisms mediating ion transport in these segments will also be covered. Special emphasis will be given to pathophysiological conditions appearing as a result of abnormalities in renal transport in the CNT and CCD.
Collapse
Affiliation(s)
- Alexander Staruschenko
- Department of Physiology and Kidney Disease Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
23
|
Pedaci F, Huang Z, van Oene M, Dekker NH. Calibration of the optical torque wrench. OPTICS EXPRESS 2012; 20:3787-802. [PMID: 22418136 DOI: 10.1364/oe.20.003787] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The optical torque wrench is a laser trapping technique that expands the capability of standard optical tweezers to torque manipulation and measurement, using the laser linear polarization to orient tailored microscopic birefringent particles. The ability to measure torque of the order of kBT (∼4 pN nm) is especially important in the study of biophysical systems at the molecular and cellular level. Quantitative torque measurements rely on an accurate calibration of the instrument. Here we describe and implement a set of calibration approaches for the optical torque wrench, including methods that have direct analogs in linear optical tweezers as well as introducing others that are specifically developed for the angular variables. We compare the different methods, analyze their differences, and make recommendations regarding their implementations.
Collapse
Affiliation(s)
- Francesco Pedaci
- Department of Bionanoscience, Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | | | | | | |
Collapse
|
24
|
Du YJ, Hou YL, Hou WR. Cloning and overexpression of an important functional gene ATP6V1F encoding a component of vacuolar ATPase from the Giant Panda (Ailuropoda melanoleuca). Mol Biol Rep 2012; 39:5761-6. [PMID: 22212708 DOI: 10.1007/s11033-011-1386-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 12/16/2011] [Indexed: 11/28/2022]
Abstract
ATP6V1F encodes a component of vacuolar ATPase mediating acidification. The cDNA and the genomic sequences of ATP6V1F were cloned successfully for the first time from the Giant Panda (Ailuropoda melanoleuca) using reverse transcription polymerase chain reaction and touchdown-polymerase chain reaction, respectively. The cDNA fragment cloned is 364 bp in size, containing an open reading frame of 360 bp encoding 119 amino acids. Alignment analysis indicated that both ORF and the deduced amino acid sequence are highly conserved. The length of the genomic sequence of the Giant Panda is 2225 bp, including two exons and one intron. Topology prediction showed that there is one protein kinase C phosphorylation site, two Casein kinase II phosphorylation sites, and one N-myristoylation site in the ATP6V1F protein. The ATP6V1F gene was overexpressed in Escherichia coli indicating that ATP6V1F fusion with the N-terminally His-tagged form gave rise to the accumulation of an expected 17 kDa polypeptide, which was according with the predicted protein and also could be used to purify the protein and study its function.
Collapse
Affiliation(s)
- Yu-Jie Du
- Biochemical Department, Basic Education College of Zhanjiang Normal University, 8# Cunjinsiheng Road, Zhanjiang, 524037, People's Republic of China.
| | | | | |
Collapse
|
25
|
Borges R, Domínguez N, Estévez-Herrera J, Pereda D, Machado JD. Vesicular Ca(2+) mediates granule motion and exocytosis. Cell Calcium 2012; 51:338-41. [PMID: 22222091 DOI: 10.1016/j.ceca.2011.12.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 12/05/2011] [Accepted: 12/08/2011] [Indexed: 10/14/2022]
Abstract
Secretory vesicles of chromaffin cells are acidic organelles that maintain an increasing pH gradient towards the cytosol (5.5 vs. 7.3) that is mediated by V-ATPase activity. This gradient is primarily responsible for the accumulation of large concentrations of amines and Ca(2+), although the mechanisms mediating Ca(2+) uptake and release from granules, and the physiological relevance of these processes, remain unclear. The presence of a vesicular matrix appears to create a bi-compartmentalised medium in which the major fractions of solutes, including catecholamines, nucleotides and Ca(2+), are strongly associated with vesicle proteins, particularly chromogranins. This association appears to be favoured at acidic pH values. It has been demonstrated that disrupting the pH gradient of secretory vesicles reduces their rate of exocytosis and promotes the leakage of vesicular amines and Ca(2+), dramatically increasing the movement of secretory vesicles and triggering exocytosis. In this short review, we will discuss the data available that highlights the importance of pH in regulating the association between chromogranins, vesicular amines and Ca(2+). We will also address the potential role of vesicular Ca(2+) in two major processes in secretory cells, vesicle movement and exocytosis.
Collapse
Affiliation(s)
- Ricardo Borges
- Unidad de Farmacología, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain.
| | | | | | | | | |
Collapse
|
26
|
Nakashima AS, Hussain Butt R, Dyck RH. Alterations in protein and gene expression within the barrel cortices of ZnT3 knockout mice: Experience-independent and dependent changes. Neurochem Int 2011; 59:860-70. [DOI: 10.1016/j.neuint.2011.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/27/2011] [Accepted: 08/08/2011] [Indexed: 12/12/2022]
|
27
|
Firmino KCS, Faleiros RO, Masui DC, McNamara JC, Furriel RPM. Short- and long-term, salinity-induced modulation of V-ATPase activity in the posterior gills of the true freshwater crab, Dilocarcinus pagei (Brachyura, Trichodactylidae). Comp Biochem Physiol B Biochem Mol Biol 2011; 160:24-31. [DOI: 10.1016/j.cbpb.2011.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 05/11/2011] [Accepted: 05/11/2011] [Indexed: 10/18/2022]
|
28
|
Horstmann N, Essig S, Bockelmann S, Wieczorek H, Huss M, Sasse F, Menche D. Archazolid A-15-O-β-D-glucopyranoside and iso-archazolid B: potent V-ATPase inhibitory polyketides from the myxobacteria Cystobacter violaceus and Archangium gephyra. JOURNAL OF NATURAL PRODUCTS 2011; 74:1100-1105. [PMID: 21513292 DOI: 10.1021/np200036v] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Two structurally novel analogues of the macrolides archazolids A and B, archazolid A-15-O-β-D-glucopyranoside (archazolid E, 5) and iso-archazolid B (archazolid F, 6), were isolated from the myxobacterium Cystobacter violaceus and Archangium gephyra, respectively. Macrolactone 5 represents the first 15-O-glycoside of the archazolids. iso-Archazolid B (6) incorporates a C-3 alkene and presents the first constitutional isomer reported for this natural product class. The structures of these polyketides were determined by spectroscopic analysis, in particular by HMBC, HMQC, and ROESY NMR investigations and by chemical degradation. iso-Archazolid B (6) demonstrated extremely high antiproliferative and V-ATPase inhibitory effects, with IC(50) values in the picomolar range, while only moderate activity was observed for glycoside 5. iso-Archazolid B presents the most potent archazolid known.
Collapse
Affiliation(s)
- Nicole Horstmann
- Institut für Organische Chemie, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
29
|
Conserved Arabidopsis ECHIDNA protein mediates trans-Golgi-network trafficking and cell elongation. Proc Natl Acad Sci U S A 2011; 108:8048-53. [PMID: 21512130 DOI: 10.1073/pnas.1018371108] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Multiple steps of plant growth and development rely on rapid cell elongation during which secretory and endocytic trafficking via the trans-Golgi network (TGN) plays a central role. Here, we identify the ECHIDNA (ECH) protein from Arabidopsis thaliana as a TGN-localized component crucial for TGN function. ECH partially complements loss of budding yeast TVP23 function and a Populus ECH complements the Arabidopsis ech mutant, suggesting functional conservation of the genes. Compared with wild-type, the Arabidopsis ech mutant exhibits severely perturbed cell elongation as well as defects in TGN structure and function, manifested by the reduced association between Golgi bodies and TGN as well as mislocalization of several TGN-localized proteins including vacuolar H(+)-ATPase subunit a1 (VHA-a1). Strikingly, ech is defective in secretory trafficking, whereas endocytosis appears unaffected in the mutant. Some aspects of the ech mutant phenotype can be phenocopied by treatment with a specific inhibitor of vacuolar H(+)-ATPases, concanamycin A, indicating that mislocalization of VHA-a1 may account for part of the defects in ech. Hence, ECH is an evolutionarily conserved component of the TGN with a central role in TGN structure and function.
Collapse
|
30
|
Ma B, Xiang Y, An L. Structural bases of physiological functions and roles of the vacuolar H(+)-ATPase. Cell Signal 2011; 23:1244-56. [PMID: 21397012 DOI: 10.1016/j.cellsig.2011.03.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 03/03/2011] [Indexed: 12/09/2022]
Abstract
Vacuolar-type H(+)-ATPases (V-ATPases) is a large multi-protein complex containing at least 14 different subunits, in which subunits A, B, C, D, E, F, G, and H compose the peripheral 500-kDa V(1) responsible for ATP hydrolysis, and subunits a, c, c', c″, and d assembly the 250-kDa membrane-integral V(0) harboring the rotary mechanism to transport protons across the membrane. The assembly of V-ATPases requires the presence of all V(1) and V(0) subunits, in which the V(1) must be completely assembled prior to association with the V(0), accordingly the V(0) failing to assemble cannot provide a membrane anchor for the V(1), thereby prohibiting membrane association of the V-ATPase subunits. The V-ATPase mediates acidification of intracellular compartments and regulates diverse critical physiological processes of cell for functions of its numerous functional subunits. The core catalytic mechanism of the V-ATPase is a rotational catalytic mechanism. The V-ATPase holoenzyme activity is regulated by the reversible assembly/disassembly of the V(1) and V(0), the targeting and recycling of V-ATPase-containing vesicles to and from the plasma membrane, the coupling ratio between ATP hydrolysis and proton pumping, ATP, Ca(2+), and its inhibitors and activators.
Collapse
Affiliation(s)
- Binyun Ma
- Key Laboratory of Arid and Grassland Agroecology of Ministry of Education, School of Life Sciences, Lanzhou University, 730000, Lanzhou, China
| | | | | |
Collapse
|
31
|
Schumacher K, Krebs M. The V-ATPase: small cargo, large effects. CURRENT OPINION IN PLANT BIOLOGY 2010; 13:724-30. [PMID: 20801076 DOI: 10.1016/j.pbi.2010.07.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 07/20/2010] [Accepted: 07/30/2010] [Indexed: 05/18/2023]
Abstract
About 30 years ago seminal reports of anion-sensitive proton-pumping activity associated with microsomal membranes initiated research on the plant vacuolar-type H(+)-ATPase (V-ATPase, VHA). Since, it has been firmly established that these complex molecular machines are essential for what can be defined as cellular logistics. In a eukaryotic cell, the flow of goods between compartments is achieved either by protein-mediated membrane transport or via vesicular trafficking. Over the past years, it has become increasingly clear that V-ATPases do not only energize secondary active transport but are also important regulators of membrane trafficking.
Collapse
Affiliation(s)
- Karin Schumacher
- Heidelberg Institute for Plant Sciences (HIP), Universität Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany.
| | | |
Collapse
|
32
|
Hirata Y, Shimokawa N, Oh-hashi K, Yu ZX, Kiuchi K. Acidification of the Golgi apparatus is indispensable for maturation but not for cell surface delivery of Ret. J Neurochem 2010; 115:606-13. [PMID: 20796177 DOI: 10.1111/j.1471-4159.2010.06966.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We examined the effect of concanamycin A and bafilomycin A1, inhibitors of the vacuolar proton-ATPase, on maturation and expression of Ret, a tyrosine kinase receptor for glial cell line-derived neurotrophic factor. Ret appeared as 150- and 170-kDa bands on sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels and both forms were sensitive to peptide-N-glycosidase F. Western and immunocytochemical analyses revealed that the 150-kDa immature form of Ret accumulated in the Golgi apparatus upon treatment with vacuolar proton-ATPase inhibitors, whereas, the 170-kDa mature form of Ret was dramatically decreased. The result suggests that glycosylation of Ret during the conversion from immature forms to mature forms is pH sensitive, and is likely initiated in the acidic trans-Golgi apparatus. In contrast, glycosylation of nascent receptors to become immature receptors appeared to be pH insensitive, and are likely to take place in the endoplasmic reticulum. The immature form of Ret was present in the plasma membrane when the cells were treated with the vacuolar proton-ATPase inhibitors. In conclusion, the acidification of the Golgi apparatus is crucial for maturation of Ret but not indispensable for trafficking of receptors to the membrane.
Collapse
Affiliation(s)
- Yoko Hirata
- Department of Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu, Japan.
| | | | | | | | | |
Collapse
|
33
|
Kartner N, Yao Y, Li K, Crasto GJ, Datti A, Manolson MF. Inhibition of osteoclast bone resorption by disrupting vacuolar H+-ATPase a3-B2 subunit interaction. J Biol Chem 2010; 285:37476-90. [PMID: 20837476 DOI: 10.1074/jbc.m110.123281] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vacuolar H(+)-ATPases (V-ATPases) are highly expressed in ruffled borders of bone-resorbing osteoclasts, where they play a crucial role in skeletal remodeling. To discover protein-protein interactions with the a subunit in mammalian V-ATPases, a GAL4 activation domain fusion library was constructed from an in vitro osteoclast model, receptor activator of NF-κB ligand-differentiated RAW 264.7 cells. This library was screened with a bait construct consisting of a GAL4 binding domain fused to the N-terminal domain of V-ATPase a3 subunit (NTa3), the a subunit isoform that is highly expressed in osteoclasts (a1 and a2 are also expressed, to a lesser degree, whereas a4 is kidney-specific). One of the prey proteins identified was the V-ATPase B2 subunit, which is also highly expressed in osteoclasts (B1 is not expressed). Further characterization, using pulldown and solid-phase binding assays, revealed an interaction between NTa3 and the C-terminal domains of both B1 and B2 subunits. Dual B binding domains of equal affinity were observed in NTa, suggesting a possible model for interaction between these subunits in the V-ATPase complex. Furthermore, the a3-B2 interaction appeared to be moderately favored over a1, a2, and a4 interactions with B2, suggesting a mechanism for the specific subunit assembly of plasma membrane V-ATPase in osteoclasts. Solid-phase binding assays were subsequently used to screen a chemical library for inhibitors of the a3-B2 interaction. A small molecule benzohydrazide derivative was found to inhibit osteoclast resorption with an IC(50) of ∼1.2 μm on both synthetic hydroxyapatite surfaces and dentin slices, without significantly affecting RAW 264.7 cell viability or receptor activator of NF-κB ligand-mediated osteoclast differentiation. Further understanding of these interactions and inhibitors may contribute to the design of novel therapeutics for bone loss disorders, such as osteoporosis and rheumatoid arthritis.
Collapse
Affiliation(s)
- Norbert Kartner
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6 Canada
| | | | | | | | | | | |
Collapse
|
34
|
Oot RA, Wilkens S. Domain characterization and interaction of the yeast vacuolar ATPase subunit C with the peripheral stator stalk subunits E and G. J Biol Chem 2010; 285:24654-64. [PMID: 20529855 DOI: 10.1074/jbc.m110.136960] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The proton pumping activity of the eukaryotic vacuolar ATPase (V-ATPase) is regulated by a unique mechanism that involves reversible enzyme dissociation. In yeast, under conditions of nutrient depletion, the soluble catalytic V(1) sector disengages from the membrane integral V(o), and at the same time, both functional units are silenced. Notably, during enzyme dissociation, a single V(1) subunit, C, is released into the cytosol. The affinities of the other V(1) and V(o) subunits for subunit C are therefore of particular interest. The C subunit crystal structure shows that the subunit is elongated and dumbbell-shaped with two globular domains (C(head) and C(foot)) separated by a flexible helical neck region (Drory, O., Frolow, F., and Nelson, N. (2004) EMBO Rep. 5, 1148-1152). We have recently shown that subunit C is bound in the V(1)-V(o) interface where the subunit is in contact with two of the three peripheral stators (subunit EG heterodimers): one via C(head) and one via C(foot) (Zhang, Z., Zheng, Y., Mazon, H., Milgrom, E., Kitagawa, N., Kish-Trier, E., Heck, A. J., Kane, P. M., and Wilkens, S. (2008) J. Biol. Chem. 283, 35983-35995). In vitro, however, subunit C binds only one EG heterodimer (Féthière, J., Venzke, D., Madden, D. R., and Böttcher, B. (2005) Biochemistry 44, 15906-15914), implying that EG has different affinities for the two domains of the C subunit. To determine which subunit C domain binds EG with high affinity, we have generated C(head) and C(foot) and characterized their interaction with subunit EG heterodimer. Our findings indicate that the high affinity site for EGC interaction is C(head). In addition, we provide evidence that the EGC(head) interaction greatly stabilizes EG heterodimer.
Collapse
Affiliation(s)
- Rebecca A Oot
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210, USA
| | | |
Collapse
|
35
|
Hu M, He L, Campbell BE, Zhong W, Sternberg PW, Gasser RB. A vacuolar-type proton (H+) translocating ATPase alpha subunit encoded by the Hc-vha-6 gene of Haemonchus contortus. Mol Cell Probes 2010; 24:196-203. [PMID: 20362051 DOI: 10.1016/j.mcp.2010.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2010] [Revised: 03/12/2010] [Accepted: 03/22/2010] [Indexed: 12/23/2022]
Abstract
In the present study, a full-length cDNA (designated Hc-vha-6) inferred to encode an alpha subunit of a vacuolar-type proton translocating adenosine triphosphatase (V-ATPase) was isolated from the parasitic nematode Haemonchus contortus, and characterized. The transcript for Hc-vha-6 was detected in all developmental stages and both sexes of H. contortus. Elements, including two TATA box (TATAA), two inverted CAAT box (ATTGG), five E box (CANNTG) and six GATA as well as five inverse GATA (TTATC) transcription factor motifs, were identified in the non-coding region upstream of Hc-vha-6. The open reading frame (ORF) of 2601 nucleotides encoded a protein (Hc-VHA-6) of 866 amino acids and a molecular weight of approximately 98.7 kDa. Comparison with a published protein sequence for a homologue (VPH1P) from yeast showed that Hc-VHA-6 had nine transmembrane domains and the 14 essential amino acid residues associated with enzyme activity, assembly, intracellular and/or membrane targeting. Phylogenetic analyses of selected amino acid sequence data revealed Hc-VHA-6 to be most closely related to VHA-6 of Caenorhabditis elegans. A predictive network analysis inferred that vha-6 interacts with at least seven other genes encoding V-ATPase subunits and a small Rab GTPase. This study provides the first insight into a V-ATPase of parasitic nematodes and a sound basis for future functional genomic work.
Collapse
Affiliation(s)
- Min Hu
- Department of Veterinary Science, The University of Melbourne, Werribee, Victoria, Australia; School of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | | | | | | | | | | |
Collapse
|
36
|
Boesen T, Nissen P. V for victory--a V1-ATPase structure revealed. EMBO Rep 2009; 10:1211-2. [PMID: 19834508 DOI: 10.1038/embor.2009.231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 09/24/2009] [Indexed: 11/09/2022] Open
Affiliation(s)
- Thomas Boesen
- Department of Molecular Biology, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
| | | |
Collapse
|
37
|
Shum WWC, Da Silva N, Brown D, Breton S. Regulation of luminal acidification in the male reproductive tract via cell-cell crosstalk. ACTA ACUST UNITED AC 2009; 212:1753-61. [PMID: 19448084 DOI: 10.1242/jeb.027284] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the epididymis, spermatozoa acquire their ability to become motile and to fertilize an egg. A luminal acidic pH and a low bicarbonate concentration help keep spermatozoa in a quiescent state during their maturation and storage in this organ. Net proton secretion is crucial to maintain the acidity of the luminal fluid in the epididymis. A sub-population of epithelial cells, the clear cells, express high levels of the proton-pumping V-ATPase in their apical membrane and are important contributors to luminal acidification. This review describes selected aspects of V-ATPase regulation in clear cells. The assembly of a particular set of V-ATPase subunit isoforms governs the targeting of the pump to the apical plasma membrane. Regulation of V-ATPase-dependent proton secretion occurs via recycling mechanisms. The bicarbonate-activated adenylyl cyclase is involved in the non-hormonal regulation of V-ATPase recycling, following activation of bicarbonate secretion by principal cells. The V-ATPase is also regulated in a paracrine manner by luminal angiotensin II by activation of the angiotensin II type 2 receptor (AGTR2), which is located in basal cells. Basal cells have the remarkable property of extending long and slender cytoplasmic projections that cross the tight junction barrier to monitor the luminal environment. Clear cells are activated by a nitric oxide signal that originates from basal cells. Thus, a complex interplay between the different cell types present in the epithelium leads to activation of the luminal acidifying capacity of the epididymis, a process that is crucial for sperm maturation and storage.
Collapse
Affiliation(s)
- Winnie W C Shum
- Center for Systems Biology, Program in Membrane Biology, Nephrology Division, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | |
Collapse
|