1
|
Boerlijst SP, van der Gaast A, Adema LMW, Bouman RW, Boelee E, van Bodegom PM, Schrama M. Taking it with a grain of salt: tolerance to increasing salinization in Culex pipiens (Diptera: Culicidae) across a low-lying delta. Parasit Vectors 2024; 17:251. [PMID: 38858771 PMCID: PMC11165877 DOI: 10.1186/s13071-024-06268-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/01/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Salinity, exacerbated by rising sea levels, is a critical environmental cue affecting freshwater ecosystems. Predicting ecosystem structure in response to such changes and their implications for the geographical distribution of arthropod disease vectors requires further insights into the plasticity and adaptability of lower trophic level species in freshwater systems. Our study investigated whether populations of the mosquito Culex pipiens, typically considered sensitive to salt, have adapted due to gradual exposure. METHODS Mesocosm experiments were conducted to evaluate responses in life history traits to increasing levels of salinity in three populations along a gradient perpendicular to the North Sea coast. Salt concentrations up to the brackish-marine transition zone (8 g/l chloride) were used, upon which no survival was expected. To determine how this process affects oviposition, a colonization experiment was performed by exposing the coastal population to the same concentrations. RESULTS While concentrations up to the currently described median lethal dose (LD50) (4 g/l) were surprisingly favored during egg laying, even the treatment with the highest salt concentration was incidentally colonized. Differences in development rates among populations were observed, but the influence of salinity was evident only at 4 g/l and higher, resulting in only a 1-day delay. Mortality rates were lower than expected, reaching only 20% for coastal and inland populations and 41% for the intermediate population at the highest salinity. Sex ratios remained unaffected across the tested range. CONCLUSIONS The high tolerance to salinity for all key life history parameters across populations suggests that Cx. pipiens is unlikely to shift its distribution in the foreseeable future, with potential implications for the disease risk of associated pathogens.
Collapse
Affiliation(s)
- Sam Philip Boerlijst
- Center for Environmental Research Leiden, Department of Environmental Biology, Leiden University, Einsteinweg 2, 2333 CC, Leiden, The Netherlands.
- Division of Inland Water Systems, Deltares, 177, 2600 MH, Delft, The Netherlands.
| | - Antje van der Gaast
- Center for Environmental Research Leiden, Department of Environmental Biology, Leiden University, Einsteinweg 2, 2333 CC, Leiden, The Netherlands
| | - Lisa Maria Wilhelmina Adema
- Center for Environmental Research Leiden, Department of Environmental Biology, Leiden University, Einsteinweg 2, 2333 CC, Leiden, The Netherlands
| | - Roderick Wiebe Bouman
- Hortus Botanicus Leiden, 9500, 2300 RA, Leiden, The Netherlands
- Naturalis Biodiversity Center, 9517, 2300 RA, Leiden, Netherlands
- Institute of Biology Leiden, Leiden University, 9505, 2300 RA, Leiden, Netherlands
| | - Eline Boelee
- Division of Inland Water Systems, Deltares, 177, 2600 MH, Delft, The Netherlands
| | - Peter Michiel van Bodegom
- Center for Environmental Research Leiden, Department of Environmental Biology, Leiden University, Einsteinweg 2, 2333 CC, Leiden, The Netherlands
| | - Maarten Schrama
- Center for Environmental Research Leiden, Department of Environmental Biology, Leiden University, Einsteinweg 2, 2333 CC, Leiden, The Netherlands
| |
Collapse
|
2
|
Farrell S, Dates J, Ramirez N, Hausknecht-Buss H, Kolosov D. Voltage-gated ion channels are expressed in the Malpighian tubules and anal papillae of the yellow fever mosquito (Aedes aegypti), and may regulate ion transport during salt and water imbalance. J Exp Biol 2024; 227:jeb246486. [PMID: 38197515 PMCID: PMC10912814 DOI: 10.1242/jeb.246486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/22/2023] [Indexed: 01/11/2024]
Abstract
Vectors of infectious disease include several species of Aedes mosquitoes. The life cycle of Aedes aegypti, the yellow fever mosquito, consists of a terrestrial adult and an aquatic larval life stage. Developing in coastal waters can expose larvae to fluctuating salinity, causing salt and water imbalance, which is addressed by two prime osmoregulatory organs - the Malpighian tubules (MTs) and anal papillae (AP). Voltage-gated ion channels (VGICs) have recently been implicated in the regulation of ion transport in the osmoregulatory epithelia of insects. In the current study, we: (i) generated MT transcriptomes of freshwater-acclimated and brackish water-exposed larvae of Ae. aegypti, (ii) detected expression of several voltage-gated Ca2+, K+, Na+ and non-ion-selective ion channels in the MTs and AP using transcriptomics, PCR and gel electrophoresis, (iii) demonstrated that mRNA abundance of many altered significantly following brackish water exposure, and (iv) immunolocalized CaV1, NALCN, TRP/Painless and KCNH8 in the MTs and AP of larvae using custom-made antibodies. We found CaV1 to be expressed in the apical membrane of MTs of both larvae and adults, and its inhibition to alter membrane potentials of this osmoregulatory epithelium. Our data demonstrate that multiple VGICs are expressed in osmoregulatory epithelia of Ae. aegypti and may play an important role in the autonomous regulation of ion transport.
Collapse
Affiliation(s)
- Serena Farrell
- Department of Biological Sciences, California State University San Marcos, 333 S. Twin Oaks Valley Road, San Marcos, CA 92096, USA
| | - Jocelyne Dates
- Department of Biological Sciences, California State University San Marcos, 333 S. Twin Oaks Valley Road, San Marcos, CA 92096, USA
| | - Nancy Ramirez
- Department of Biological Sciences, California State University San Marcos, 333 S. Twin Oaks Valley Road, San Marcos, CA 92096, USA
| | - Hannah Hausknecht-Buss
- Department of Biological Sciences, California State University San Marcos, 333 S. Twin Oaks Valley Road, San Marcos, CA 92096, USA
| | - Dennis Kolosov
- Department of Biological Sciences, California State University San Marcos, 333 S. Twin Oaks Valley Road, San Marcos, CA 92096, USA
| |
Collapse
|
3
|
Boerlijst SP, Johnston ES, Ummels A, Krol L, Boelee E, van Bodegom PM, Schrama MJJ. Biting the hand that feeds: Anthropogenic drivers interactively make mosquitoes thrive. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159716. [PMID: 36302419 DOI: 10.1016/j.scitotenv.2022.159716] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/02/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Anthropogenic stressors on the environment are increasing at unprecedented rates and include urbanization, nutrient pollution, water management, altered land use and climate change. Their effects on disease vectors are poorly understood. A series of full factorial experiments investigated how key human induced abiotic pressures, and interactions between these, affect population parameters of the cosmopolitan disease vector, Culex pipiens s.l. Selected pressures include eutrophication, salinity, mean temperature, and temperature fluctuation. Data were collected for each individual pressure and for potential interactions between eutrophication, salinization and temperature. All experiments assessed survival, time to pupation, time to emergence, sex-ratio and ovipositioning behavior. The results show that stressors affect vector survival, may speed up development and alter female to male ratio, although large differences between stressors exist to quite different extents. While positive effects of increasing levels of eutrophication on survival were consistent, negative effects of salinity on survival were only apparent at higher temperatures, thus indicating a strong interaction effect between salinization and temperature. Temperature had no independent effect on larval survival. Overall, increasing eutrophication and temperatures, and the fluctuations thereof, lowered development rate, time to pupation and time to emergence while increasing levels of salinity increased development time. Higher levels of eutrophication positively impacted egg-laying behavior; the reverse was found for salinity while no effects of temperature on egg-laying behavior were observed. Results suggest large and positive impacts of anthropogenically induced habitat alterations on mosquito population dynamics. Many of these effects are exacerbated by increasing temperatures and fluctuations therein. In a world where eutrophication and salinization are increasingly abundant, mosquitoes are likely important benefactors. Ultimately, this study illustrates the importance of including multiple and combined stressors in predictive models as well as in prevention and mitigation strategies, particularly because they resonate with possible, but yet underdeveloped action plans.
Collapse
Affiliation(s)
- S P Boerlijst
- Center for Environmental Research Leiden, Department of Environmental biology, University of Leiden, Einsteinweg 2, 2333CC Leiden, the Netherlands; Deltares, Daltonlaan 600, 3584 BK Utrecht, the Netherlands.
| | - E S Johnston
- University of Utrecht, Department Population Health Sciences, Yalelaan 7, 3584 CL Utrecht, the Netherlands
| | - A Ummels
- Center for Environmental Research Leiden, Department of Environmental biology, University of Leiden, Einsteinweg 2, 2333CC Leiden, the Netherlands
| | - L Krol
- Center for Environmental Research Leiden, Department of Environmental biology, University of Leiden, Einsteinweg 2, 2333CC Leiden, the Netherlands; Deltares, Daltonlaan 600, 3584 BK Utrecht, the Netherlands
| | - E Boelee
- Deltares, Daltonlaan 600, 3584 BK Utrecht, the Netherlands
| | - P M van Bodegom
- Center for Environmental Research Leiden, Department of Environmental biology, University of Leiden, Einsteinweg 2, 2333CC Leiden, the Netherlands
| | - M J J Schrama
- Center for Environmental Research Leiden, Department of Environmental biology, University of Leiden, Einsteinweg 2, 2333CC Leiden, the Netherlands
| |
Collapse
|
4
|
Lee CE, Charmantier G, Lorin-Nebel C. Mechanisms of Na + uptake from freshwater habitats in animals. Front Physiol 2022; 13:1006113. [PMID: 36388090 PMCID: PMC9644288 DOI: 10.3389/fphys.2022.1006113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/28/2022] [Indexed: 07/20/2023] Open
Abstract
Life in fresh water is osmotically and energetically challenging for living organisms, requiring increases in ion uptake from dilute environments. However, mechanisms of ion uptake from freshwater environments are still poorly understood and controversial, especially in arthropods, for which several hypothetical models have been proposed based on incomplete data. One compelling model involves the proton pump V-type H+ ATPase (VHA), which energizes the apical membrane, enabling the uptake of Na+ (and other cations) via an unknown Na+ transporter (referred to as the "Wieczorek Exchanger" in insects). What evidence exists for this model of ion uptake and what is this mystery exchanger or channel that cooperates with VHA? We present results from studies that explore this question in crustaceans, insects, and teleost fish. We argue that the Na+/H+ antiporter (NHA) is a likely candidate for the Wieczorek Exchanger in many crustaceans and insects; although, there is no evidence that this is the case for fish. NHA was discovered relatively recently in animals and its functions have not been well characterized. Teleost fish exhibit redundancy of Na+ uptake pathways at the gill level, performed by different ion transporter paralogs in diverse cell types, apparently enabling tolerance of low environmental salinity and various pH levels. We argue that much more research is needed on overall mechanisms of ion uptake from freshwater habitats, especially on NHA and other potential Wieczorek Exchangers. Such insights gained would contribute greatly to our general understanding of ionic regulation in diverse species across habitats.
Collapse
Affiliation(s)
- Carol Eunmi Lee
- Department of Integrative Biology, University of Wisconsin, Madison, WI, United States
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Guy Charmantier
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | | |
Collapse
|
5
|
Cochran JK, Buchwalter DB. The acclimatory response of the mayfly Neocloeon triangulifer to dilute conditions is linked to the plasticity of sodium transport. Proc Biol Sci 2022; 289:20220529. [PMID: 35892216 PMCID: PMC9326274 DOI: 10.1098/rspb.2022.0529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Relative to a growing body of knowledge about the negative consequences of freshwater salinization, little is known about how aquatic insects respond to progressively ion-poor conditions. Here, we examined life-history and physiological acclimation in Neocloeon triangulifer by rearing nymphs from 1-day post-egg hatch to adulthood across a gradient of decreasing Na concentrations (15, 8, 4, 2 and 1 mg l-1 Na). We found no significant changes in survival, growth, development time and whole-body Na content across these treatments. Radiotracer data revealed that nymphs acclimated to their dilute exposures by increasing their rates of Na uptake and were able to maintain a relatively narrow range of uptake rates (±s.e.m.) of 38.5 ± 4.2 µg Na g-1 h-1 across all treatments. By contrast, the Na uptake rates observed in naive nymphs were much more concentration dependent. This acclimatory response is partially explained by differences in ionocyte counts on the gills of nymphs reared under different salinities. Acclimated nymphs were surprisingly less retentive of their sodium composition when subjected to deionized water challenge. By contrasting our findings with a previous N. triangulifer salinity acclimation study, we show a physiological affinity for dilute conditions in this emerging mayfly model.
Collapse
Affiliation(s)
- Jamie K. Cochran
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - David B. Buchwalter
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
6
|
Silver S, Donini A. Physiological responses of freshwater insects to salinity: molecular-, cellular- and organ-level studies. J Exp Biol 2021; 224:272480. [PMID: 34652452 DOI: 10.1242/jeb.222190] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Salinization of freshwater is occurring throughout the world, affecting freshwater biota that inhabit rivers, streams, ponds, marshes and lakes. There are many freshwater insects, and these animals are important for ecosystem health. These insects have evolved physiological mechanisms to maintain their internal salt and water balance based on a freshwater environment that has comparatively little salt. In these habitats, insects must counter the loss of salts and dilution of their internal body fluids by sequestering salts and excreting water. Most of these insects can tolerate salinization of their habitats to a certain level; however, when exposed to salinization they often exhibit markers of stress and impaired development. An understanding of the physiological mechanisms for controlling salt and water balance in freshwater insects, and how these are affected by salinization, is needed to predict the consequences of salinization for freshwater ecosystems. Recent research in this area has addressed the whole-organism response, but the purpose of this Review is to summarize the effects of salinization on the osmoregulatory physiology of freshwater insects at the molecular to organ level. Research of this type is limited, and pursuing such lines of inquiry will improve our understanding of the effects of salinization on freshwater insects and the ecosystems they inhabit.
Collapse
Affiliation(s)
- Sydney Silver
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | - Andrew Donini
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
7
|
The Influence of the pH and Salinity of Water in Breeding Sites on the Occurrence and Community Composition of Immature Mosquitoes in the Green Belt of the City of São Paulo, Brazil. INSECTS 2021; 12:insects12090797. [PMID: 34564237 PMCID: PMC8469630 DOI: 10.3390/insects12090797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary Immature mosquitoes are found in natural and artificial aquatic habitats. Variations in physicochemical parameters of water, such as pH, salinity, conductivity, and total dissolved solids, in breeding habitats can influence larval occurrence and drive the proliferation of adult mosquitoes. Herein, we investigated the association between different values of physicochemical parameters in a variety of aquatic habitats and the occurrence and community composition of immature mosquito species in two environmentally protected areas in the city of São Paulo, Brazil. The aquatic habitats surveyed included epiphytic and ground bromeliads, bamboo internodes, ponds, tree hollows, lakes, and artificial containers. Our results revealed a statistically significant relationship between species occurrence and the variables of pH and salinity. The type of aquatic habitat also had a significant influence on mosquito species distribution. Investigating the interactions between immature mosquitoes and the environment in which they develop is important to elucidate the factors driving their occurrence and abundance, and could also be an important tool in planning and implementing immature mosquito control practices. Abstract The physicochemical parameters of water, such as pH, salinity, conductivity, and total dissolved solids, can influence mosquito larval development, survival, and abundance. Therefore, it is important to elucidate how these factors influence mosquito occurrence. We hypothesized that the occurrence and community composition of immature mosquito species are driven not only by the availability of suitable aquatic habitats, but also by the physicochemical factors of these habitats. The primary objective of this study was therefore to investigate the influence of the physicochemical parameters of water in different types of aquatic habitats on the occurrence of mosquito species in two remnants of Atlantic Forest in the city of São Paulo, Brazil. Collections of immature mosquitoes and assessment of the physicochemical characteristics of the water in the collection sites were carried out for twelve months. The variation in species composition and occurrence with the measured physicochemical parameters and the type of breeding site was assessed using constrained ordination methods. The results indicate that there was a statistically significant difference in species composition as a function of the different types of aquatic habitats, and that pH had an influence on species occurrence even when the variance explained by the type of aquatic habitat was removed from the analysis. There was a statistically significant association between mosquito species occurrence and pH and salinity, and the former had a significant influence on the mosquito species collected regardless of the type of aquatic habitat, showing that the pH of the breeding site water is an important factor in driving mosquito population dynamics and species distribution.
Collapse
|
8
|
Lobato Rodrigues AB, Martins RL, Rabelo ÉDM, Tomazi R, Santos LL, Brandão LB, Faustino CG, Ferreira Farias AL, dos Santos CBR, de Castro Cantuária P, Galardo AKR, de Almeida SSMDS. Development of nano-emulsions based on Ayapana triplinervis essential oil for the control of Aedes aegypti larvae. PLoS One 2021; 16:e0254225. [PMID: 34242328 PMCID: PMC8270136 DOI: 10.1371/journal.pone.0254225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 06/22/2021] [Indexed: 11/19/2022] Open
Abstract
Ayapana triplinervis is a plant species used in traditional medicine and in mystical-religious rituals by traditional communities in the Amazon. The aim of this study are to develop a nano-emulsion containing essential oil from A. triplinervis morphotypes, to evaluate larvicidal activity against Aedes aegypti and acute oral toxicity in Swiss albino mice (Mus musculus). The essential oils were extracted by steam dragging, identified by gas chromatography coupled to mass spectrometry, and nano-emulsions were prepared using the low energy method. Phytochemical analyses indicated the major compounds, expressed as area percentage, β-Caryophyllene (45.93%) and Thymohydroquinone Dimethyl Ether (32.93%) in morphotype A; and Thymohydroquinone Dimethyl Ether (84.53%) was found in morphotype B. Morphotype A essential oil nano-emulsion showed a particle size of 101.400 ± 0.971 nm (polydispersity index = 0.124 ± 0.009 and zeta potential = -19.300 ± 0.787 mV). Morphotype B essential oil nano-emulsion had a particle size of 104.567 ± 0.416 nm (polydispersity index = 0.168 ± 0.016 and zeta potential = -27.700 ± 1.307 mV). Histomorphological analyses showed the presence of inflammatory cells in the liver of animals treated with morphotype A essential oil nano-emulsion (MAEON) and morphotype B essential oil nano-emulsion (MBEON). Congestion and the presence of transudate with leukocyte infiltration in the lung of animals treated with MAEON were observed. The nano-emulsions containing essential oils of A. triplinervis morphotypes showed an effective nanobiotechnological product in the chemical control of A. aegypti larvae with minimal toxicological action for non-target mammals.
Collapse
Affiliation(s)
| | - Rosany Lopes Martins
- Department of Biological and Health Sciences, Federal University of Amapa, Macapá, Amapá, Brazil
| | - Érica de Menezes Rabelo
- Department of Biological and Health Sciences, Federal University of Amapa, Macapá, Amapá, Brazil
| | - Rosana Tomazi
- Department of Biological and Health Sciences, Federal University of Amapa, Macapá, Amapá, Brazil
| | - Lizandra Lima Santos
- Department of Biological and Health Sciences, Federal University of Amapa, Macapá, Amapá, Brazil
| | - Lethícia Barreto Brandão
- Department of Biological and Health Sciences, Federal University of Amapa, Macapá, Amapá, Brazil
| | - Cleidjane Gomes Faustino
- Department of Biological and Health Sciences, Federal University of Amapa, Macapá, Amapá, Brazil
| | | | | | - Patrick de Castro Cantuária
- Amapaense Herbarium, Institute of Scientific and Technological Research of the State of Amapá, Macapá, Amapá, Brazil
| | - Allan Kardec Ribeiro Galardo
- Laboratory of Medical Entomology, Institute of Scientific and Technological Research of the State of Amapá, Macapá, Amapá, Brazil
| | - Sheylla Susan Moreira da Silva de Almeida
- Department of Exact and Technological Sciences, Federal University of Amapá, Macapá, Amapá, Brazil
- Department of Biological and Health Sciences, Federal University of Amapa, Macapá, Amapá, Brazil
| |
Collapse
|
9
|
Ramasamy R, Thiruchenthooran V, Jayadas TTP, Eswaramohan T, Santhirasegaram S, Sivabalakrishnan K, Naguleswaran A, Uzest M, Cayrol B, Voisin SN, Bulet P, Surendran SN. Transcriptomic, proteomic and ultrastructural studies on salinity-tolerant Aedes aegypti in the context of rising sea levels and arboviral disease epidemiology. BMC Genomics 2021; 22:253. [PMID: 33836668 PMCID: PMC8034070 DOI: 10.1186/s12864-021-07564-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/29/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Aedes aegypti mosquito, the principal global vector of arboviral diseases, lays eggs and undergoes larval and pupal development to become adult mosquitoes in fresh water (FW). It has recently been observed to develop in coastal brackish water (BW) habitats of up to 50% sea water, and such salinity tolerance shown to be an inheritable trait. Genomics of salinity tolerance in Ae. aegypti has not been previously studied, but it is of fundamental biological interest and important for controlling arboviral diseases in the context of rising sea levels increasing coastal ground water salinity. RESULTS BW- and FW-Ae. aegypti were compared by RNA-seq analysis on the gut, anal papillae and rest of the carcass in fourth instar larvae (L4), proteomics of cuticles shed when L4 metamorphose into pupae, and transmission electron microscopy of cuticles in L4 and adults. Genes for specific cuticle proteins, signalling proteins, moulting hormone-related proteins, membrane transporters, enzymes involved in cuticle metabolism, and cytochrome P450 showed different mRNA levels in BW and FW L4 tissues. The salinity-tolerant Ae. aegypti were also characterized by altered L4 cuticle proteomics and changes in cuticle ultrastructure of L4 and adults. CONCLUSIONS The findings provide new information on molecular and ultrastructural changes associated with salinity adaptation in FW mosquitoes. Changes in cuticles of larvae and adults of salinity-tolerant Ae. aegypti are expected to reduce the efficacy of insecticides used for controlling arboviral diseases. Expansion of coastal BW habitats and their neglect for control measures facilitates the spread of salinity-tolerant Ae. aegypti and genes for salinity tolerance. The transmission of arboviral diseases can therefore be amplified in multiple ways by salinity-tolerant Ae. aegypti and requires appropriate mitigating measures. The findings in Ae. aegypti have attendant implications for the development of salinity tolerance in other fresh water mosquito vectors and the diseases they transmit.
Collapse
Affiliation(s)
- Ranjan Ramasamy
- ID-FISH Technology Inc., Milpitas, CA, 95035, USA. .,Department of Zoology, University of Jaffna, Jaffna, Sri Lanka.
| | | | | | | | | | | | | | - Marilyne Uzest
- UMR BGPI, University of Montpellier, INRAE, CIRAD, SupAgro, Montpellier, France
| | - Bastien Cayrol
- UMR BGPI, University of Montpellier, INRAE, CIRAD, SupAgro, Montpellier, France
| | | | - Philippe Bulet
- Platform BioPark Archamps, Archamps, France.,CR Université Grenoble Alpes, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Grenoble, France
| | | |
Collapse
|
10
|
Mamai W, Maiga H, Bimbilé Somda NS, Wallner T, Masso OB, Resch C, Yamada H, Bouyer J. Does Tap Water Quality Compromise the Production of Aedes Mosquitoes in Genetic Control Projects? INSECTS 2021; 12:insects12010057. [PMID: 33445407 PMCID: PMC7826741 DOI: 10.3390/insects12010057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/01/2021] [Accepted: 01/07/2021] [Indexed: 12/26/2022]
Abstract
Simple Summary Scientists all over the world are continually rearing and producing insects in laboratories for many purposes including pest control programmes. Aedes aegypti and Ae. albopictus are mosquitoes of public health importance due to their ability to vector human and animal pathogens and thus vector control represents an important component of many disease control programmes. Water is a factor of great importance in the larval environment of mosquito species. However, obtaining sufficient water of reliable quality for mosquito rearing is still challenging, especially in developing and least developed countries, where access even to clean drinking water is limited. In prospect of cost-effective methods for improved mass-rearing toward SIT application, we assessed the impact of using tap water on the development and quality of Aedes mosquitoes. Results showed that, tap water with hardness/electrical conductivity beyond certain levels (140 mg/l CaCO3 or 368 µS/cm) was shown to have a negative impact on the production of Ae. albopictus and Ae. aegypti mosquitoes. These results suggest that the quality of water should be checked when using for rearing mosquitoes for release purposes in order to optimize the production performance of mass-rearing facilities. This may have important implications for the implementation of the sterile insect technique in areas where reverse osmosis water is a scarce or costly resource. Abstract A mosquito’s life cycle includes an aquatic phase. Water quality is therefore an important determinant of whether or not the female mosquitoes will lay their eggs and the resulting immature stages will survive and successfully complete their development to the adult stage. In response to variations in laboratory rearing outputs, there is a need to investigate the effect of tap water (TW) (in relation to water hardness and electrical conductivity) on mosquito development, productivity and resulting adult quality. In this study, we compared the respective responses of Aedes aegypti and Ae. albopictus to different water hardness/electrical conductivity. First-instar larvae were reared in either 100% water purified through reverse osmosis (ROW) (low water hardness/electrical conductivity), 100% TW (high water hardness/electrical conductivity) or a 80:20, 50:50, 20:80 mix of ROW and TW. The immature development time, pupation rate, adult emergence, body size, and longevity were determined. Overall, TW (with higher hardness and electrical conductivity) was associated with increased time to pupation, decreased pupal production, female body size in both species and longevity in Ae. albopictus only. However, Ae. albopictus was more sensitive to high water hardness/EC than Ae. aegypti. Moreover, in all water hardness/electrical conductivity levels tested, Ae. aegypti developed faster than Ae. albopictus. Conversely, Ae. albopictus adults survived longer than Ae. aegypti. These results imply that water with hardness of more than 140 mg/l CaCO3 or electrical conductivity more than 368 µS/cm cannot be recommended for the optimal rearing of Aedes mosquitoes and highlight the need to consider the level of water hardness/electrical conductivity when rearing Aedes mosquitoes for release purposes.
Collapse
Affiliation(s)
- Wadaka Mamai
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria; (H.M.); (N.S.B.S.); (T.W.); (O.B.M.); (H.Y.); (J.B.)
- Institut de Recherche Agricole pour le Développement (IRAD), PO. Box 2123 Yaoundé, Cameroon
- Correspondence:
| | - Hamidou Maiga
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria; (H.M.); (N.S.B.S.); (T.W.); (O.B.M.); (H.Y.); (J.B.)
- Institut de Recherche en Sciences de la Santé/Direction Régionale de l’Ouest (IRSS/DRO), 01 PO. Box 545 Bobo-Dioulasso, Burkina Faso
| | - Nanwintoum Sévérin Bimbilé Somda
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria; (H.M.); (N.S.B.S.); (T.W.); (O.B.M.); (H.Y.); (J.B.)
- Institut de Recherche en Sciences de la Santé/Direction Régionale de l’Ouest (IRSS/DRO), 01 PO. Box 545 Bobo-Dioulasso, Burkina Faso
- Laboratoire d’Entomologie Fondamentale et Appliquée (LEFA), Université Joseph Ki-Zerbo, 03 PO. Box 7021 Ouagadougou, Burkina Faso
| | - Thomas Wallner
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria; (H.M.); (N.S.B.S.); (T.W.); (O.B.M.); (H.Y.); (J.B.)
| | - Odet Bueno Masso
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria; (H.M.); (N.S.B.S.); (T.W.); (O.B.M.); (H.Y.); (J.B.)
| | - Christian Resch
- Soil and Water Management and Crop Nutrition Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria;
| | - Hanano Yamada
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria; (H.M.); (N.S.B.S.); (T.W.); (O.B.M.); (H.Y.); (J.B.)
| | - Jérémy Bouyer
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria; (H.M.); (N.S.B.S.); (T.W.); (O.B.M.); (H.Y.); (J.B.)
| |
Collapse
|
11
|
Misyura L, Grieco Guardian E, Durant AC, Donini A. A comparison of aquaporin expression in mosquito larvae (Aedes aegypti) that develop in hypo-osmotic freshwater and iso-osmotic brackish water. PLoS One 2020; 15:e0234892. [PMID: 32817668 PMCID: PMC7440623 DOI: 10.1371/journal.pone.0234892] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 06/30/2020] [Indexed: 12/23/2022] Open
Abstract
The mosquito Aedes aegypti vectors the arboviral diseases yellow fever, dengue, Zika and chikungunya. Larvae are usually found developing in freshwater; however, more recently they have been increasingly found in brackish water, potential habitats which are traditionally ignored by mosquito control programs. Aedes aegypti larvae are osmo-regulators maintaining their hemolymph osmolarity in a range of ~ 250 to 300 mOsmol l-1. In freshwater, the larvae must excrete excess water while conserving ions while in brackish water, they must alleviate an accumulation of salts. The compensatory physiological mechanisms must involve the transport of ions and water but little is known about the water transport mechanisms in the osmoregulatory organs of these larvae. Water traverses cellular membranes predominantly through transmembrane proteins named aquaporins (AQPs) and Aedes aegypti possesses 6 AQP homologues (AaAQP1 to 6). The objective of this study was to determine if larvae that develop in freshwater or brackish water have differential aquaporin expression in osmoregulatory organs, which could inform us about the relative importance and function of aquaporins to mosquito survival under these different osmotic conditions. We found that AaAQP transcript abundance was similar in organs of freshwater and brackish water mosquito larvae. Furthermore, in the Malpighian tubules and hindgut AaAQP protein abundance was unaffected by the rearing conditions, but in the gastric caeca the protein level of one aquaporin, AaAQP1 was elevated in brackish water. We found that AaAQP1 was expressed apically while AaAQP4 and AaAQP5 were found to be apical and/or basal in the epithelia of osmoregulatory organs. Overall, the results suggest that aquaporin expression in the osmoregulatory organs is mostly consistent between larvae that are developing in freshwater and brackish water. This suggests that aquaporins may not have major roles in adapting to longterm survival in brackish water or that aquaporin function may be regulated by other mechanisms like post-translational modifications.
Collapse
Affiliation(s)
- Lidiya Misyura
- Department of Biology, York University, Toronto, Ontario, Canada
| | | | | | - Andrew Donini
- Department of Biology, York University, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
12
|
Durant AC, Donini A. Development of Aedes aegypti (Diptera: Culicidae) mosquito larvae in high ammonia sewage in septic tanks causes alterations in ammonia excretion, ammonia transporter expression, and osmoregulation. Sci Rep 2019; 9:19028. [PMID: 31836747 PMCID: PMC6911005 DOI: 10.1038/s41598-019-54413-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/12/2019] [Indexed: 12/18/2022] Open
Abstract
Larvae of the disease vector mosquito, Aedes aegypti (L.) readily develop in ammonia rich sewage in the British Virgin Islands. To understand how the larvae survive in ammonia levels that are lethal to most animals, an examination of ammonia excretory physiology in larvae collected from septic-water and freshwater was carried out. A. aegypti larvae were found to be remarkably plastic in dealing with high external ammonia through the modulation of NH4+ excretion at the anal papillae, measured using the scanning ion-selective electrode technique (SIET), and NH4+ secretion in the primary urine by the Malpighian tubules when developing in septicwater. Ammonia transporters, Amt and Rh proteins, are expressed in ionoregulatory and excretory organs, with increases in Rh protein, Na+-K+-ATPase, and V-type-H+-ATPase expression observed in the Malpighian tubules, hindgut, and anal papillae in septic-water larvae. A comparative approach using laboratory A. aegypti larvae reared in high ammonia septic-water revealed similar responses to collected A. aegypti with regard to altered ammonia secretion and hemolymph ion composition. Results suggest that the observed alterations in excretory physiology of larvae developing in septic-water is a consequence of the high ammonia levels and that A. aegypti larvae may rely on ammonia transporting proteins coupled to active transport to survive in septic-water.
Collapse
Affiliation(s)
- Andrea C Durant
- Department of Biology, York University, Toronto, Ontario, Canada.
| | - Andrew Donini
- Department of Biology, York University, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Martini M. INCIDENCE OF DENGUE HEMORRHAGIC FEVER (DHF) IN SEMARANG COASTAL AREA: EPIDEMIOLOGY DESCRIPTIVE CASE AND BIONOMIC VECTOR. INDONESIAN JOURNAL OF TROPICAL AND INFECTIOUS DISEASE 2019. [DOI: 10.20473/ijtid.v7i6.10389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
North Semarang sub-district is located on the coast of the Java Sea. The coastal area is characterized by high salt content on both the ground and the water compare to other areas. The high salt content environment should have limited the breeding of Dengue Hemorrhagic Fever (DHF) vectors; yet, quite high incidents of DHF cases are reported taken place in North Semarang coastal area. The aim of this study was to describe the epidemiology of DHF incidence, characteristic of cases, and bionomics vector in the coastal area of North Semarang sub-district. This study was applied descriptive observational design to analyze samples consisting of 62 dengue cases and 184 houses. The research variables consisted of coordinate of DHF cases, water salinity, House Index (HI), Container Index (CI), and Aedes species. Data were processed using SPSS in a bivariate manner; while, mapping was analyzed spatially using ArcGIS 10.3. A total of 184 houses were surveyed and 55 cases of DHF were identified. Most cases occurred in 6 -16 year age group (47.3%), water salinity ranged from 2-3%, indicating that the water in the coastal area tended to be brackish water. The results of the Pearson Correlation test showed that there was no relationship between HI and Incidence Rate (IR) of DHF in North Semarang District. Aedes aegypti was identified in a positive container, otherwise Aedes albopictus was not found. DHF cases mostly occurred in school age groups, and were distributed in all villages near or far from the beach. DHF vector could breed in areas with little brackish water, so that dengue transmission might occur in this area.
Collapse
|
14
|
Castillo-Morales RM, Carreño Otero AL, Mendez-Sanchez SC, Da Silva MAN, Stashenko EE, Duque JE. Mitochondrial affectation, DNA damage and AChE inhibition induced by Salvia officinalis essential oil on Aedes aegypti larvae. Comp Biochem Physiol C Toxicol Pharmacol 2019; 221:29-37. [PMID: 30905844 DOI: 10.1016/j.cbpc.2019.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/11/2019] [Accepted: 03/19/2019] [Indexed: 11/29/2022]
Abstract
The aim of this research study was to understand the mechanism of action of Salvia officinalis (Lamiaceae) essential oil (EO) on Aedes aegypti larvae. We evaluated the effect on DNA damage, acetylcholinesterase (AChE) inhibition and mitochondrial enzymatic alterations. The major components were analyzed in silico using OSIRIS and Molispiration free software. Aedes aegypti DNA was extracted from mosquito larvae between third (L3) and fourth (L4) instars to determine the DNA fragmentation or degradation at S. officinalis EO lethal concentrations (LC10, LC20, LC50, and LC90). DNA integrity was assessed in both LCs in larvae treated for 24 h and in larvae homogenized with EO; we also assessed purified DNA larvae by a densitometric analysis. The AChE inhibition was quantified in protein larvae L3-L4 following Ellman's method and the enzymatic activities related to the mitochondrial respiratory chain of mitochondrial proteins was estimated by spectrophotometry. In silico analysis of 1,8-cineol and of α-thujone, major EO components, showed that they were highly permeable in biological membranes without mutagenic risks. Alterations in the integrity of DNA were observed in larvae exposed and homogenized with S. officinalis EO. The EO induced an AChE inhibition of 37 ± 2.6% to IC50. On the other hand, mitochondrial bioenergetics suggest that EO inhibits electrons entry to the respiratory chain, via Complex II. AChE activity alteration causes mortality of individuals, by blocking the insect cholinergic functions. These results indicate that EO affects the integrity of DNA, the mitochondrial respiration chain and the AChE activity.
Collapse
Affiliation(s)
- Ruth Mariela Castillo-Morales
- Centro de Investigaciones en Enfermedades Tropicales - CINTROP, Facultad de Salud, Escuela de Medicina, Departamento de Ciencias Básicas, Universidad Industrial de Santander, Bucaramanga, Santander, Colombia
| | - Aurora L Carreño Otero
- Laboratorio de Química Orgánica y Biomolecular-LQOBio, Facultad de Ciencias, Escuela de Química, Centro de Investigaciónes en Enfermedades Tropicales - CINTROP, Facultad de Salud, Escuela de Medicina, Departamento de Ciencias Básicas, Universidad Industrial de Santander, Bucaramanga, Colombia.
| | - Stelia Carolina Mendez-Sanchez
- Grupo de Investigación en Bioquímica y Microbiología-GIBIM, Escuela de Química, Universidad Industrial de Santander, Bucaramanga, Colombia.
| | - Mario Antônio Navarro Da Silva
- Laboratório de Morfologia e Fisiologia de Culicidae e Chironomidae, Universidade Federal do Paraná, Departamento de Zoología, Pós-graduação em Entomología, PO Box 19020, 81531-980 Curitiba, Paraná, Brazil.
| | - Elena E Stashenko
- Centro de Investigación en Biomoléculas-CIBIMOL, Centro Nacional de Investigación para la Agroindustrialización de Plantas Aromáticas y Medicinales Tropicales - CENIVAM, Escuela de Química, Universidad Industrial de Santander, Bucaramanga, Santander, Colombia.
| | - Jonny E Duque
- Centro de Investigaciones en Enfermedades Tropicales - CINTROP, Facultad de Salud, Escuela de Medicina, Departamento de Ciencias Básicas, Universidad Industrial de Santander Parque Tecnológico y de Investigaciones Guatiguara, Km 2 Vía El Refugio, Piedecuesta, Santander, Colombia.
| |
Collapse
|
15
|
Nowghani F, Chen CC, Jonusaite S, Watson-Leung T, Kelly SP, Donini A. Impact of salt-contaminated freshwater on osmoregulation and tracheal gill function in nymphs of the mayfly Hexagenia rigida. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 211:92-104. [PMID: 30954848 DOI: 10.1016/j.aquatox.2019.03.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
The impact of freshwater (FW) salinization on osmoregulation as well as tracheal gill morphology and function was examined in nymphs of the mayfly Hexagenia rigida following exposure to salt contaminated water (SCW, 7.25 g/l NaCl) for a 7-day period. Ionoregulatory homeostasis was perturbed in SCW exposed H. rigida nymphs as indicated by increased hemolymph Na+, K+ and Cl- levels as well as hemolymph pH and water content. Despite this, SCW did not alter gill Na+-K+-ATPase (NKA) or V-type H+-ATPase (VA) activity. In addition, NKA and VA immunolocalization in gill ionocytes did not show alterations in enzyme location or changes in ionocyte abundance. The latter observation was confirmed using scanning electron microscopy (SEM) to examine exposed tracheal gill ionocyte numbers. Ionocyte surface morphometrics also revealed that SCW did not change individual ionocyte surface area or ionocyte fractional surface area. Nevertheless, analysis of Na+ movement across the tracheal gill of mayfly nymphs using scanning ion-selective electrode technique indicated that FW nymphs acquired Na+ from surrounding water, while tracheal gills of SCW nymphs had the capacity to secrete Na+. Because Na+ secretion across the gill of SCW-exposed animals occurred in the absence of any change in (1) NKA and VA activity or (2) ionocyte numbers/surface exposure, it was reasoned that Na+ movement across the gill of SCW animals may be occurring, at least in part, through the paracellular pathway. The ultrastructure of tracheal gill septate junctions (SJs) supported this idea as they exhibited morphological alterations indicative of a leakier pathway. Data provide a first look at alterations in osmoregulatory mechanisms that allow H. rigida nymphs to tolerate sub-lethal salinization of their surroundings.
Collapse
Affiliation(s)
- Fargol Nowghani
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
| | - Chun Chih Chen
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
| | - Sima Jonusaite
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada; Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Trudy Watson-Leung
- Aquatic Toxicology Unit, Ontario Ministry of the Environment, Conservation and Parks, 125 Resources Road, Etobicoke, ON, M9P 3V6, Canada
| | - Scott P Kelly
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
| | - Andrew Donini
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada.
| |
Collapse
|
16
|
Durant AC, Donini A. Evidence that Rh proteins in the anal papillae of the freshwater mosquito Aedes aegypti are involved in the regulation of acid-base balance in elevated salt and ammonia environments. ACTA ACUST UNITED AC 2018; 221:jeb.186866. [PMID: 30305376 DOI: 10.1242/jeb.186866] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/04/2018] [Indexed: 12/13/2022]
Abstract
Aedes aegypti commonly inhabit ammonia-rich sewage effluents in tropical regions of the world where the adults are responsible for the spread of disease. Studies have shown the importance of the anal papillae of A. aegypti in ion uptake and ammonia excretion. The anal papillae express ammonia transporters and Rhesus (Rh) proteins which are involved in ammonia excretion and studies have primarily focused on understanding these mechanisms in freshwater. In this study, effects of rearing larvae in salt (5 mmol l-1 NaCl) or ammonia (5 mmol l-1 NH4Cl) on physiological endpoints of ammonia and ion regulation were assessed. In anal papillae of NaCl-reared larvae, Rh protein expression increased, NHE3 transcript abundance decreased and NH4 + excretion increased, and this coincided with decreased hemolymph [NH4 +] and pH. We propose that under these conditions, larvae excrete more NH4 + through Rh proteins as a means of eliminating acid from the hemolymph. In anal papillae of NH4Cl-reared larvae, expression of an apical ammonia transporter and the Rh proteins decreased, the activities of NKA and VA decreased and increased, respectively, and this coincided with hemolymph acidification. The results present evidence for a role of Rh proteins in acid-base balance in response to elevated levels of salt, whereby ammonia is excreted as an acid equivalent.
Collapse
Affiliation(s)
- Andrea C Durant
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | - Andrew Donini
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| |
Collapse
|
17
|
Leonard EM, Belowitz R, Agema P, O'Donnell MJ. Characterization of cadmium and calcium fluxes along the gut, malpighian tubules, and anal papillae of the dipteran Chironomus riparius. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:2542-2549. [PMID: 29920766 DOI: 10.1002/etc.4211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/10/2018] [Accepted: 06/14/2018] [Indexed: 06/08/2023]
Abstract
Chironomids are often one of the dominant organisms in significantly polluted freshwater. Many invertebrate studies have characterized whole-organism mechanisms of toxicity, for example, assessing cadmium (Cd) uptake via calcium (Ca) channels. However, with the use of the scanning ion-selective electrode technique and an innovative Cd-selective microelectrode, we analyze this relationship at the organ level using a realistic concentration of Cd and Ca in the hemolymph (blood). Generally, Cd fluxes follow the same directional pattern as Ca, although Ca fluxes are approximately 5 times higher than those of Cd. These results correlate well with previous studies indicating that chironomids have a higher affinity for Ca over Cd, which affords them tolerance to Cd toxicity. When saline Ca concentration was increased to 10 times physiological levels, Cd fluxes from the gut lumen into the cells of the midgut regions were reduced by 50 to 80%. Transport of Cd from hemolymph to tissue for the posterior midgut, Malpighian tubule, and proximal ceca was also reduced by approximately 50%. The present results indicate that Cd fluxes into or across the gut and Malpighian tubules are reduced by high Ca, suggesting that Cd may be transported in some cells by similar mechanisms. However, Cd was actively excreted at the anal papillae after a 48-h waterborne exposure to Cd, but this process was independent of Ca and instead may involve a P-glycoprotein-related pump to detoxify Cd. Environ Toxicol Chem 2018;37:2542-2549. © 2018 SETAC.
Collapse
Affiliation(s)
- Erin M Leonard
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Ryan Belowitz
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Pieter Agema
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
18
|
Hildebrandt JP, Wiesenthal AA, Müller C. Phenotypic Plasticity in Animals Exposed to Osmotic Stress - Is it Always Adaptive? Bioessays 2018; 40:e1800069. [PMID: 30160800 DOI: 10.1002/bies.201800069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/03/2018] [Indexed: 01/03/2023]
Abstract
Hyperplasia and hypertrophy are elements of phenotypic plasticity adjusting organ size and function. Because they are costly, we assume that they are beneficial. In this review, the authors discuss examples of tissue and organ systems that respond with plastic changes to osmotic stress to raise awareness that we do not always have sufficient experimental evidence to conclude that such processes provide fitness advantages. Changes in hydranth architecture in the hydroid Cordylophora caspia or variations in size in the anal papillae of insect larvae upon changes in medium salinity may be adaptive or not. The restructuring of salt glands in ducklings upon salt-loading is an example of phenotypic plasticity which indeed seems beneficial. As the genomes of model species are recently sequenced and the animals are easy to rear, these species are suitable study objects to investigate the biological significance of phenotypic plasticity and to study potential epigenetic and other mechanisms underlying phenotypic changes.
Collapse
Affiliation(s)
- Jan-Peter Hildebrandt
- Animal Physiology and Biochemistry, University of Greifswald, Felix Hausdorff-Strasse 1, D-17489 Greifswald, Germany
| | - Amanda A Wiesenthal
- Animal Physiology and Biochemistry, University of Greifswald, Felix Hausdorff-Strasse 1, D-17489 Greifswald, Germany
| | - Christian Müller
- Animal Physiology and Biochemistry, University of Greifswald, Felix Hausdorff-Strasse 1, D-17489 Greifswald, Germany
| |
Collapse
|
19
|
Rivera-Pérez C, Clifton ME, Noriega FG. How micronutrients influence the physiology of mosquitoes. CURRENT OPINION IN INSECT SCIENCE 2017; 23:112-117. [PMID: 29129275 PMCID: PMC5695569 DOI: 10.1016/j.cois.2017.07.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/03/2017] [Accepted: 07/06/2017] [Indexed: 05/11/2023]
Abstract
Micronutrients or non-energetic nutrients (NEN) are needed in reduced amounts, but are essential for many mosquito physiological processes that influence biological traits from vector competence to reproductive capacity. The NEN include amino acids (AA), vitamins, salts, metals and sterols. Free AA plays critical roles controlling most physiological processes, from digestion to reproduction. Particularly proline connects metabolic pathways in energy production, flight physiology and ammonia detoxification. Metal, in particular iron and calcium, salts, sterol and vitamin homeostasis are critical for cell signaling, respiration, metabolism and reproduction. Micronutrient homeostasis influence the symbiotic relationships with microorganisms, having important implications in mosquitoes' nutrition, physiology and behavior, as well as in mosquito immunity and vector competence.
Collapse
Affiliation(s)
| | | | - Fernando G Noriega
- Department of Biological Sciences, Florida International University, Miami, FL, USA; Biomolecular Science Institute, Florida International University, Miami, FL, USA.
| |
Collapse
|
20
|
Nowghani F, Jonusaite S, Watson-Leung T, Donini A, Kelly SP. Strategies of ionoregulation in the freshwater nymph of the mayfly Hexagenia rigida. ACTA ACUST UNITED AC 2017; 220:3997-4006. [PMID: 28860119 DOI: 10.1242/jeb.166132] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/29/2017] [Indexed: 02/06/2023]
Abstract
This study investigated ionoregulatory strategies used by freshwater (FW) nymphs of the mayfly Hexagenia rigida Like other FW organisms, H. rigida nymphs maintain hemolymph ion levels (in mmol l-1: Na+ ∼102; Cl- ∼84; K+ ∼6; pH ∼7.35) far in excess of their surroundings. This appears to be accomplished by the combined actions of the alimentary canal, Malpighian tubules (MTs) and tracheal gills. The alimentary canal contributes in a region-specific manner, a view supported by: (1) spatial differences in the activity of basolateral Na+/K+-ATPase (NKA) and apical V-type H+-ATPase (VA) and (2) region-specific Na+ and K+ flux rates. Both indicate a prominent role for the hindgut (rectum) in K+ reabsorption. MTs also exhibit region-specific differences in Na+ and K+ flux rates that are coupled with an organized but tortuous architecture. NKA and VA activities were highest in MTs versus all other organs examined. Tracheal gills were found to be sites of Na+ uptake, but no difference in Na+ uptake was found between gills taken from different regions of the abdomen or spatially along individual gills. This is likely because each gill exhibited a dense population of NKA and/or VA immunoreactive cells (putative ionocytes). Data provide new insight into how FW mayfly nymphs regulate salt and water balance using the alimentary canal, MTs and tracheal gills as well as the first direct evidence that tracheal gills acquire ions from FW.
Collapse
Affiliation(s)
- Fargol Nowghani
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | - Sima Jonusaite
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | - Trudy Watson-Leung
- Aquatic Toxicology Unit, Ontario Ministry of the Environment and Climate Change, 125 Resources Road, Etobicoke, ON, Canada M9P 3V6
| | - Andrew Donini
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | - Scott P Kelly
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| |
Collapse
|
21
|
Platek A, Turko AJ, Donini A, Kelly S, Wright PA. Environmental calcium regulates gill remodeling in a euryhaline teleost fish. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2017; 327:139-142. [PMID: 29356395 DOI: 10.1002/jez.2079] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 06/12/2017] [Indexed: 11/12/2022]
Abstract
Some cyprindid and cyprinidontiform fishes undergo gill remodeling via the proliferation or regression of an interlamellar cell mass (ILCM), resulting in the modification of gill surface area in response to environmental hypoxia or ion levels. We hypothesized that ion-related gill remodeling is regulated by water hardness through the interactions of Ca2+ with tight junctions, predicting that gills will exhibit a lower ILCM and more surface area in a high Ca2+ environment than in a low Ca2+ environment. To test this hypothesis, we acclimated euryhaline mangrove rivulus (Kryptolebias marmoratus) to natural hard water ([Ca2+] = 2.77 mmol/L), low Ca2+ ([Ca2+] = 0.13 mmol/L) freshwater, or high Ca2+ water (5.88 mmol/L). Fish exposed to hard water had a significantly lower ILCM height than fish exposed to low Ca2+ water. The addition of Ca2+ to low Ca2+ water restored gill surface area. Plasma Ca2+ activity was not significantly different between groups. This study provides support for an influence of external Ca2+ on gill remodeling and represents the first evidence of an ionic trigger (Ca2+) for gill remodeling in teleost fishes.
Collapse
Affiliation(s)
- Alexis Platek
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Andy J Turko
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Andrew Donini
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Scott Kelly
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Patricia A Wright
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
22
|
Jonusaite S, Kelly SP, Donini A. Identification of the septate junction protein gliotactin in the mosquito Aedes aegypti: evidence for a role in increased paracellular permeability in larvae. ACTA ACUST UNITED AC 2017; 220:2354-2363. [PMID: 28432154 DOI: 10.1242/jeb.156125] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/11/2017] [Indexed: 12/15/2022]
Abstract
Septate junctions (SJs) regulate paracellular permeability across invertebrate epithelia. However, little is known about the function of SJ proteins in aquatic invertebrates. In this study, a role for the transmembrane SJ protein gliotactin (Gli) in the osmoregulatory strategies of larval mosquito (Aedes aegypti) was examined. Differences in gli transcript abundance were observed between the midgut, Malpighian tubules, hindgut and anal papillae of A. aegypti, which are epithelia that participate in larval mosquito osmoregulation. Western blotting of Gli revealed its presence in monomer, putative dimer and alternatively processed protein forms in different larval mosquito organs. Gli localized to the entire SJ domain between midgut epithelial cells and showed a discontinuous localization along the plasma membranes of epithelial cells of the rectum as well as the syncytial anal papillae epithelium. In the Malpighian tubules, Gli immunolocalization was confined to SJs between the stellate and principal cells. Rearing larvae in 30% seawater caused an increase in Gli protein abundance in the anterior midgut, Malpighian tubules and hindgut. Transcriptional knockdown of gli using dsRNA reduced Gli protein abundance in the midgut and increased the flux rate of the paracellular permeability marker, polyethylene glycol (molecular weight 400 Da; PEG-400). Data suggest that in larval A. aegypti, Gli participates in the maintenance of salt and water balance and that one role for Gli is to participate in the regulation of paracellular permeability across the midgut of A. aegypti in response to changes in environmental salinity.
Collapse
Affiliation(s)
- Sima Jonusaite
- Department of Biology, York University, Toronto, Ontario, Canada M3J 1P3
| | - Scott P Kelly
- Department of Biology, York University, Toronto, Ontario, Canada M3J 1P3
| | - Andrew Donini
- Department of Biology, York University, Toronto, Ontario, Canada M3J 1P3
| |
Collapse
|
23
|
Griffith MB. Toxicological perspective on the osmoregulation and ionoregulation physiology of major ions by freshwater animals: Teleost fish, crustacea, aquatic insects, and Mollusca. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:576-600. [PMID: 27808448 PMCID: PMC6114146 DOI: 10.1002/etc.3676] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/11/2016] [Accepted: 11/01/2016] [Indexed: 05/21/2023]
Abstract
Anthropogenic sources increase freshwater salinity and produce differences in constituent ions compared with natural waters. Moreover, ions differ in physiological roles and concentrations in intracellular and extracellular fluids. Four freshwater taxa groups are compared, to investigate similarities and differences in ion transport processes and what ion transport mechanisms suggest about the toxicity of these or other ions in freshwater. Although differences exist, many ion transporters are functionally similar and may belong to evolutionarily conserved protein families. For example, the Na+ /H+ -exchanger in teleost fish differs from the H+ /2Na+ (or Ca2+ )-exchanger in crustaceans. In osmoregulation, Na+ and Cl- predominate. Stenohaline freshwater animals hyperregulate until they are no longer able to maintain hypertonic extracellular Na+ and Cl- concentrations with increasing salinity and become isotonic. Toxic effects of K+ are related to ionoregulation and volume regulation. The ionic balance between intracellular and extracellular fluids is maintained by Na+ /K+ -adenosine triphosphatase (ATPase), but details are lacking on apical K+ transporters. Elevated H+ affects the maintenance of internal Na+ by Na+ /H+ exchange; elevated HCO3- inhibits Cl- uptake. The uptake of Mg2+ occurs by the gills or intestine, but details are lacking on Mg2+ transporters. In unionid gills, SO42- is actively transported, but most epithelia are generally impermeant to SO42- . Transporters of Ca2+ maintain homeostasis of dissolved Ca2+ . More integration of physiology with toxicology is needed to fully understand freshwater ion effects. Environ Toxicol Chem 2017;36:576-600. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.
Collapse
Affiliation(s)
- Michael B. Griffith
- Office of Research and Development, National Center for Environmental Assessment, US Environmental Protection Agency, Cincinnati, Ohio, USA
| |
Collapse
|
24
|
Akhter H, Misyura L, Bui P, Donini A. Salinity responsive aquaporins in the anal papillae of the larval mosquito, Aedes aegypti. Comp Biochem Physiol A Mol Integr Physiol 2017; 203:144-151. [DOI: 10.1016/j.cbpa.2016.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 12/23/2022]
|
25
|
D'Silva NM, Patrick ML, O'Donnell MJ. Effects of rearing salinity on expression and function of ion motive ATPases and ion transport across the gastric caecum of Aedes aegypti larvae. J Exp Biol 2017; 220:3172-3180. [DOI: 10.1242/jeb.163170] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 06/26/2017] [Indexed: 01/15/2023]
Abstract
Larvae of Aedes aegypti, the yellow fever vector, inhabit a variety of aquatic habitats ranging from fresh water to brackish water. This study focuses on the gastric caecum of the larvae, an organ that has not been widely studied. We provide the first measurements of H+, K+, and Na+ fluxes at the distal and proximal gastric caecum, and have shown that they differ in the two regions, consistent with previously reported regionalization of ion transporters. Moreover we have shown that the regionalization of vacuolar H+-ATPase and Na+/K+ -ATPase is altered when larvae are reared in brackish water (30% seawater) relative to fresh water. Measurements of luminal Na+ and K+ concentrations also show a 5-fold increase in Na+/K+ ratio in the caecal lumen in larvae reared in brackish water relative to fresh water, whereas transepithelial potential and luminal pH were unchanged. Calculated electrochemical potentials reveal changes in the active accumulation of Na+ and K+ in the lumen of the gastric caecum of fresh water versus brackish water larvae. Together with the results of previous studies of the larval midgut, our results show that the caecum is functionally distinct from the adjacent anterior midgut, and may play an important role in osmoregulation as well as uptake of nutrients.
Collapse
|
26
|
Salinity alters snakeskin and mesh transcript abundance and permeability in midgut and Malpighian tubules of larval mosquito, Aedes aegypti. Comp Biochem Physiol A Mol Integr Physiol 2016; 205:58-67. [PMID: 27988380 DOI: 10.1016/j.cbpa.2016.12.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 11/21/2022]
Abstract
This study examined the distribution and localization of the septate junction (SJ) proteins snakeskin (Ssk) and mesh in osmoregulatory organs of larval mosquito (Aedes aegypti), as well as their response to altered environmental salt levels. Ssk and mesh transcripts and immunoreactivity were detected in tissues of endodermal origin such as the midgut and Malpighian tubules of A. aegypti larvae, but not in ectodermally derived hindgut and anal papillae. Immunolocalization of Ssk and mesh in the midgut and Malpighian tubules indicated that both proteins are concentrated at regions of cell-cell contact between epithelial cells. Transcript abundance of ssk and mesh was higher in the midgut and Malpighian tubules of brackish water (BW, 30% SW) reared A. aegypti larvae when compared with freshwater (FW) reared animals. Therefore, [3H]polyethylene glycol (MW 400Da, PEG-400) flux was examined across isolated midgut and Malpighian tubule preparations as a measure of their paracellular permeability. It was found that PEG-400 flux was greater across the midgut of BW versus FW larvae while the Malpighian tubules of BW-reared larvae had reduced PEG-400 permeability in conjunction with increased Cl- secretion compared to FW animals. Taken together, data suggest that Ssk and mesh are found in smooth SJs (sSJs) of larval A. aegypti and that their abundance alters in association with changes in epithelial permeability when larvae reside in water of differing salt content. This latter observation suggests that Ssk and mesh play a role in the homeostatic control of salt and water balance in larval A. aegypti.
Collapse
|
27
|
Zadeh-Tahmasebi M, Bui P, Donini A. FLUID AND ION SECRETION BY MALPIGHIAN TUBULES OF LARVAL CHIRONOMIDS, Chironomus riparius: EFFECTS OF REARING SALINITY, TRANSPORT INHIBITORS, AND SEROTONIN. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2016; 93:67-85. [PMID: 27357470 DOI: 10.1002/arch.21342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Larvae of Chironomus riparius respond to ion-poor and brackish water (IPW, BW) conditions by activating ion uptake mechanisms in the anal papillae and reducing ion absorption at the rectum, respectively. The role that the Malpighian tubules play in ion and osmoregulation under these conditions is not known in this species. This study examines rates of fluid secretion and major cation composition of secreted fluid from tubules of C. riparius reared in IPW, freshwater (FW) and BW. Fluid secretion of tubules from FW and BW larvae was similar but tubules from IPW larvae secrete fluid at higher rates, are more sensitive to serotonin stimulation, and the secreted fluid contains less Na(+) . Therefore in IPW, tubules work in concert with anal papillae to eliminate excess water while conserving Na(+) in the hemolymph. Tubules do not appear to play a significant role in ion/osmoregulation under BW. Serotonin immunoreactivity in the nervous system and gastrointestinal tract of larval C. riparius was similar to that seen in mosquito larvae with the exception that the hindgut was devoid of staining. Hemolymph serotonin titer was similar in FW and IPW; hence, serotonin is not responsible for the observed high rates of fluid secretion in IPW. Instead, it is suggested that serotonin may work in a synergistic manner with an unidentified hormonal factor in IPW. Ion transport mechanisms in the tubules of C. riparius are pharmacologically similar to those of other insects.
Collapse
Affiliation(s)
| | - Phuong Bui
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Andrew Donini
- Department of Biology, York University, Toronto, Ontario, Canada.
| |
Collapse
|
28
|
The response of claudin-like transmembrane septate junction proteins to altered environmental ion levels in the larval mosquito Aedes aegypti. J Comp Physiol B 2016; 186:589-602. [DOI: 10.1007/s00360-016-0979-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 03/06/2016] [Accepted: 03/12/2016] [Indexed: 11/26/2022]
|
29
|
Scheibener SA, Richardi VS, Buchwalter DB. Comparative sodium transport patterns provide clues for understanding salinity and metal responses in aquatic insects. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 171:20-29. [PMID: 26730725 DOI: 10.1016/j.aquatox.2015.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 12/04/2015] [Accepted: 12/12/2015] [Indexed: 06/05/2023]
Abstract
The importance of insects in freshwater ecosystems has led to their extensive use in ecological monitoring programs. As freshwater systems are increasingly challenged by salinization and metal contamination, it is important to understand fundamental aspects of aquatic insect physiology (e.g., osmoregulatory processes) that contribute to insect responses to these stressors. Here we compared the uptake dynamics of Na as NaCl, NaHCO3 and Na2SO4 in the caddisfly Hydropsyche betteni across a range of Na concentrations (0.06-15.22 mM) encompassing the vast majority of North American freshwater ecosystems. Sulfate as the major anion resulted in decreased Na uptake rates relative to the chloride and bicarbonate salts. A comparison of Na (as NaHCO3) turnover rates in the caddisfly Hydropsyche sparna and the mayfly Maccaffertium sp. revealed different patterns in the 2 species. Both species appeared to tightly regulate their whole body sodium concentrations (at ∼47±1.8 μmol/g wet wt) across a range of Na concentrations (0.06-15.22 mM) over 7 days. However, at the highest Na concentration (15.22 mM), Na uptake rates in H. sparna (419.1 μM Na g(-1) hr(-1) wet wt) appeared close to saturation while Na uptake rates in Maccaffertium sp. were considerably faster (715 g μM Na g(-1) hr(-1) wet wt) and appeared to not be close to saturation. Na efflux studies in H. sparna revealed that loss rates are commensurate with uptake rates and are responsive to changes in water Na concentrations. A comparison of Na uptake rates (at 0.57 mM Na) across 9 species representing 4 major orders (Ephemeroptera, Plecoptera, Trichoptera and Diptera) demonstrated profound physiological differences across species after accounting for the influence of body weight. Faster Na uptake rates were associated with species described as being sensitive to salinization in field studies. The metals silver (Ag) and copper (Cu), known to be antagonistic to Na uptake in other aquatic taxa did not generally exhibit this effect in aquatic insects. Ag only reduced Na uptake at extremely high concentrations, while Cu generally stimulated Na uptake in aquatic insects, rather than suppress it. These results help explain the lack of insect responses to dissolved metal exposures in traditional toxicity testing and highlight the need to better understand fundamental physiological processes in this ecologically important faunal group.
Collapse
Affiliation(s)
- S A Scheibener
- Department of Biological Sciences, Environmental and Molecular Toxicology, North Carolina State University, Raleigh, NC 27695, USA
| | - V S Richardi
- Department of Zoology, Entomology Program, Universidade Federal do Parana, Curitiba, Brazil
| | - D B Buchwalter
- Department of Biological Sciences, Environmental and Molecular Toxicology, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
30
|
Comparative salinity tolerance in native flies from the subantarctic Kerguelen Islands: a metabolomic approach. Polar Biol 2014. [DOI: 10.1007/s00300-014-1605-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
31
|
Larsen EH, Deaton LE, Onken H, O'Donnell M, Grosell M, Dantzler WH, Weihrauch D. Osmoregulation and Excretion. Compr Physiol 2014; 4:405-573. [DOI: 10.1002/cphy.c130004] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
32
|
Lin LY, Pang W, Chuang WM, Hung GY, Lin YH, Horng JL. Extracellular Ca2+ and Mg2+ modulate aminoglycoside blockade of mechanotransducer channel-mediated Ca2+ entry in zebrafish hair cells: an in vivo study with the SIET. Am J Physiol Cell Physiol 2013; 305:C1060-8. [DOI: 10.1152/ajpcell.00077.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Zebrafish lateral-line hair cells are an in vivo model for studying hair cell development, function, and ototoxicity. However, the molecular identification and properties of the mechanotransducer (MET) channel in hair cells are still controversial. In this study, a noninvasive electrophysiological method, the scanning ion-electrode technique (SIET), was applied for the first time to investigate properties of MET channels in intact zebrafish embryos. With the use of a Ca2+-selective microelectrode to deflect hair bundles and simultaneously record the Ca2+ flux, the inward Ca2+ flux was detected at stereocilia of hair cells in 2- to ∼4-day postfertilization embryos. Ca2+ influx was blocked by MET channel blockers (BAPTA, La3+, Gd3+, and curare). In addition, 10 μM aminoglycoside antibiotics (neomycin and gentamicin) were found to effectively block Ca2+ influx within 10 min. Elevating the external Ca2+ level (0.2–2 mM) neutralized the effects of neomycin and gentamicin. However, elevating the Mg2+ level up to 5 mM neutralized blockade by gentamicin but not by neomycin. This study demonstrated MET channel-mediated Ca2+ entry at hair cells and showed that the SIET to be a sensitive approach for functionally assaying MET channels in zebrafish.
Collapse
Affiliation(s)
- Li-Yih Lin
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan, Republic of China
| | - Wei Pang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan, Republic of China
| | - Wei-Min Chuang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan, Republic of China
| | - Giun-Yi Hung
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
- Department of Pediatrics, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Yuan-Hsiang Lin
- Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, Republic of China; and
| | - Jiun-Lin Horng
- Department of Anatomy, Taipei Medical University, Taipei, Taiwan, Republic of China
| |
Collapse
|
33
|
Jonusaite S, Kelly SP, Donini A. Tissue-specific ionomotive enzyme activity and K+ reabsorption reveal the rectum as an important ionoregulatory organ in larval Chironomus riparius exposed to varying salinity. ACTA ACUST UNITED AC 2013; 216:3637-48. [PMID: 23788699 DOI: 10.1242/jeb.089219] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A role for the rectum in the ionoregulatory homeostasis of larval Chironomus riparius was revealed by rearing animals in different saline environments and examining: (1) the spatial distribution and activity of keystone ionomotive enzymes Na(+)-K(+)-ATPase (NKA) and V-type H(+)-ATPase (VA) in the alimentary canal, and (2) rectal K(+) transport with the scanning ion-selective electrode technique (SIET). NKA and VA activity were measured in four distinct regions of the alimentary canal as follows: the combined foregut and anterior midgut, the posterior midgut, the Malpighian tubules and the hindgut. Both enzymes exhibited 10-20 times greater activity in the hindgut relative to all other areas. When larvae were reared in either ion-poor water (IPW) or freshwater (FW), no significant difference in hindgut enzyme activity was observed. However, in larvae reared in brackish water (BW), NKA and VA activity in the hindgut significantly decreased. Immunolocalization of NKA and VA in the hindgut revealed that the bulk of protein was located in the rectum. Therefore, K(+) transport across the rectum was examined using SIET. Measurement of K(+) flux along the rectum revealed a net K(+) reabsorption that was reduced fourfold in BW-reared larvae versus larvae reared in FW or IPW. Inhibition of NKA with ouabain, VA with bafilomycin and K(+) channels with charybdotoxin diminished rectal K(+) reabsorption in FW- and IPW-reared larvae, but not BW-reared larvae. Data suggest that the rectum of C. riparius plays an important role in allowing these larvae to cope with dilute as well as salinated environmental conditions.
Collapse
Affiliation(s)
- Sima Jonusaite
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | | | | |
Collapse
|
34
|
Tse JJ, Gallego-Gallegos M, Franz ED, Liber K, Pickering IJ. Selenium speciation and localization in chironomids from lakes receiving treated metal mine effluent. CHEMOSPHERE 2012; 89:274-279. [PMID: 22608132 DOI: 10.1016/j.chemosphere.2012.04.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 04/09/2012] [Accepted: 04/16/2012] [Indexed: 06/01/2023]
Abstract
A lake system in northern Saskatchewan receiving treated metal mine and mill effluent contains elevated levels of selenium (Se). An important step in the trophic transfer of Se is the bioaccumulation of Se by benthic invertebrates, especially primary consumers serving as a food source for higher trophic level organisms. Chironomids, ubiquitous components of many northern aquatic ecosystems, were sampled at lakes downstream of the milling operation and were found to contain Se concentrations ranging from 7 to 80 mgkg(-1)dry weight. For comparison, laboratory-reared Chironomus dilutus were exposed to waterborne selenate, selenite, or seleno-DL-methionine under laboratory conditions at the average total Se concentrations found in lakes near the operation. Similarities in Se localization and speciation in laboratory and field chironomids were observed using synchrotron-based X-ray fluorescence (XRF) imaging and X-ray absorption spectroscopy (XAS). Selenium localized primarily in the head capsule, brain, salivary glands and gut lining, with organic Se species modeled as selenocystine and selenomethionine being the most abundant. Similarities between field chironomids and C. dilutus exposed in the laboratory to waterborne selenomethionine suggest that selenomethionine-like species are most readily accumulated, whether from diet or water.
Collapse
Affiliation(s)
- Justin J Tse
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | | | | | | | | |
Collapse
|
35
|
Foucreau N, Renault D, Hidalgo K, Lugan R, Pétillon J. Effects of diet and salinity on the survival, egg laying and metabolic fingerprints of the ground-dwelling spider Arctosa fulvolineata (Araneae, Lycosidae). Comp Biochem Physiol A Mol Integr Physiol 2012; 163:388-95. [PMID: 22796366 DOI: 10.1016/j.cbpa.2012.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 07/04/2012] [Accepted: 07/05/2012] [Indexed: 11/17/2022]
Abstract
Soil salinity and the salinity of trophic resources may alter the osmoregulatory processes of arthropod, challenging the smooth regulation of body water, and, ultimately, survival. The intra and extracellular build-up of osmolytes represent a common strategy to attenuate acute hyperosmotic stress in several arthropod species. In the present study, we aimed to determine the impact of substrate and trophic resource salinities on salt tolerance in the female wolf spider, Arctosa fulvolineata, which is considered a specialist salt marsh species. We evaluated adult female survival and egg laying, and quantified the osmo-induced accumulation of compatible solutes (GC-MS). Three concentrations of substrate salinity were tested (0‰, 35‰ and 70‰) under three trophic conditions (starved spiders, spiders fed with salt prey [intertidal amphipods] and spiders fed with unsalted prey [freshwater amphipods]). We found no support for diet preferences in female A. fulvolineata, which exhibited similar predation rates on freshwater and marine amphipods. Survival and egg-laying were significantly impaired when female A. fulvolineata were exposed to hypersaline conditions for 12 days. Our results showed an increase in the level of several compatible solutes when spiders were exposed for 12 days to saline conditions. For instance, α-alanine, β-alanine, arginine, asparagine, aspartate, homoserine, glutamine, glycine, proline and serine levels were 4-10 times higher under hypersaline conditions. The osmo-induced accumulation of amino acids may increase the osmolality of body fluids, thus enhancing the smooth regulation of body fluids and survival ability of wolf spider under extreme saline conditions.
Collapse
Affiliation(s)
- Natacha Foucreau
- Université de Rennes 1, UMR CNRS 6553 Ecobio, Campus Beaulieu, 263 Avenue du Général Leclerc, 35042 Rennes Cedex, France
| | | | | | | | | |
Collapse
|
36
|
Del Duca O, Nasirian A, Galperin V, Donini A. Pharmacological characterisation of apical Na+ and Cl- transport mechanisms of the anal papillae in the larval mosquito Aedes aegypti. ACTA ACUST UNITED AC 2012; 214:3992-9. [PMID: 22071191 DOI: 10.1242/jeb.063719] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The anal papillae of freshwater mosquito larvae are important sites of NaCl uptake, thereby acting to offset the dilution of the hemolymph by the dilute habitat. The ion-transport mechanisms in the anal papillae are not well understood. In this study, the scanning ion-selective electrode technique (SIET) was utilized to measure ion fluxes at the anal papillae, and pharmacological inhibitors of ion transport were utilized to identify ion-transport mechanisms. Na(+) uptake by the anal papillae was inhibited by bafilomycin and phenamil but not by HMA. Cl(-) uptake was inhibited by methazolamide, SITS and DIDS but not by bafilomycin. H(+) secretion was inhibited by bafilomycin and methazolamide. Ouabain and bumetanide had no effect on NaCl uptake or H(+) secretion. Together, the results suggest that Na(+) uptake at the apical membrane occurs through a Na(+) channel that is driven by a V-type H(+)-ATPase and that Cl(-) uptake occurs through a Cl(-)/HCO(3)(-) exchanger, with carbonic anhydrase providing H(+) and HCO(3)(-) to the V-type H(+)-ATPase and exchanger, respectively.
Collapse
|
37
|
Lee CE, Posavi M, Charmantier G. Rapid evolution of body fluid regulation following independent invasions into freshwater habitats. J Evol Biol 2012; 25:625-33. [PMID: 22296332 DOI: 10.1111/j.1420-9101.2012.02459.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Colonizations from marine to freshwater environments constitute among the most dramatic evolutionary transitions in the history of life. Colonizing dilute environments poses great challenges for acquiring essential ions against steep concentration gradients. This study explored the evolution of body fluid regulation following freshwater invasions by the copepod Eurytemora affinis. The goals of this study were to determine (1) whether invasions from saline to freshwater habitats were accompanied by evolutionary shifts in body fluid regulation (hemolymph osmolality) and (2) whether parallel shifts occurred during independent invasions. We measured hemolymph osmolality for ancestral saline and freshwater invading populations reared across a range of common-garden salinities (0.2-25 PSU). Our results revealed the evolution of increased hemolymph osmolality (by 16-31%) at lower salinities in freshwater populations of E. affinis relative to their saline ancestors. Moreover, we observed the same evolutionary shifts across two independent freshwater invasions. Such increases in hemolymph osmolality are consistent with evidence of increased ion uptake in freshwater populations at low salinity, found in a previous study, and are likely to entail increased energetic costs upon invading freshwater habitats. Our findings are consistent with the evolution of increased physiological regulation accompanying transitions into stressful environments.
Collapse
Affiliation(s)
- Carol Eunmi Lee
- Center of Rapid Evolution, University of Wisconsin, Madison, WI 53706, USA.
| | | | | |
Collapse
|
38
|
Jonusaite S, Kelly SP, Donini A. The physiological response of larval Chironomus riparius (Meigen) to abrupt brackish water exposure. J Comp Physiol B 2010; 181:343-52. [DOI: 10.1007/s00360-010-0526-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 10/14/2010] [Accepted: 10/17/2010] [Indexed: 10/18/2022]
|
39
|
Nguyen H, Donini A. Larvae of the midge Chironomus riparius possess two distinct mechanisms for ionoregulation in response to ion-poor conditions. Am J Physiol Regul Integr Comp Physiol 2010; 299:R762-73. [PMID: 20631293 DOI: 10.1152/ajpregu.00745.2009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study examined the role of the anal papillae of the freshwater (FW) chironomid larva Chironomus riparius in ionoregulation under ion-poor conditions. The scanning ion-selective electrode technique (SIET) was utilized to characterize the species, direction, and rates of inorganic ion transport by the anal papillae following acute and long-term exposure to ion-poor water (IPW). The major inorganic ions in the hemolymph of larvae treated as above were measured using standard ion-selective microelectrodes. The anal papillae of C. riparius are sites of net NaCl uptake and H(+) secretion under FW and IPW conditions and are not likely to be a major contributor of K(+) exchange. Acute and long-term exposure to IPW increased total net transport of Na(+), Cl(-), and H(+) by the anal papillae, but the mechanisms underlying the increase under the two conditions were different. Acute IPW exposure increased the magnitude of net ion fluxes at sites along the anal papillae, while long-term IPW exposure resulted in increased size of the anal papillae with no change in the magnitude of net ion fluxes. The contribution of the anal papillae to observed alterations of hemolymph ion activities upon exposure to IPW is discussed. Inhibitors of the Na(+)/H(+) exchangers (EIPA) and carbonic anhydrase (methazolamide) provide evidence for Na(+)/H(+) and Cl(-)/HCO(3)(-) exchange mechanisms in the anal papillae. This study demonstrates that C. riparius larvae employ two different mechanisms to upregulate the total net transport of ions by the anal papillae, and these mechanisms are at least partially responsible for regulating hemolymph ion activity.
Collapse
Affiliation(s)
- Hang Nguyen
- Department of Biology, York University, Toronto, Ontario, Canada
| | | |
Collapse
|
40
|
Clark TM, Lawecki JL, Shepherd JJ, Hirschler AN, Samandu TR. Effects of serotonergic agents on survival and hemolymph composition of the larval mosquito Aedes aegypti (Diptera: Culicidae, L.) in vivo: does serotonin regulate hemolymph acid-base homeostasis? ACTA ACUST UNITED AC 2010; 212:3728-36. [PMID: 19880735 DOI: 10.1242/jeb.032086] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The role of serotonin in the regulation of larval Aedes aegypti hemolymph composition was investigated in vivo using two reuptake inhibitors (SSRIs), alaproclate HCl and 6-nitroquipazine maleate, and the receptor antagonist methiothepin mesylate. Larvae were placed in media differing in pH and salinity in the presence and absence of serotonergic agents. The toxicity of each agent was strongly influenced by ambient pH. For each agent, toxicity was negligible in acidic media, intermediate in neutral media and greatest in alkaline media. By contrast, toxicity of all agents was independent of salinity. No effects on mass-specific body water or hemolymph volume were observed whereas hemolymph osmotic pressure, Na(+) concentrations and pH differed significantly among treatments. 6-nitroquipazine caused a decrease in Na(+) from 115+/-1.7 to 103+/-0.9 mmol l(-1), and alaproclate caused alkalosis of the hemolymph from pH 7.55+/-0.026 to pH 7.72+/-0.044. Methiothepin decreased hemolymph osmotic pressure from 329+/-9.9 to 304+/-8.8 and showed the greatest overall toxicity. Control larvae excreted net base in pH 4 media (1.4 micromol g(-1) h(-1)) and net acid in pH 7 (1.2 micromol g(-1) h(-1)) and pH 11 (5.1 micromol g(-1) h(-1)) media. In pH 4 media, alaproclate and methiothepin caused a shift to net H(+) excretion (1.1 and 1.5 micromol g(-1) h(1), respectively) whereas these agents did not influence acid excretion rates in pH 7 or pH 11 media. The hypothesis that serotonin is involved in hemolymph acid-base balance is discussed.
Collapse
Affiliation(s)
- T M Clark
- Indiana University South Bend, 46634-1700, USA.
| | | | | | | | | |
Collapse
|
41
|
Horng JL, Hwang PP, Shih TH, Wen ZH, Lin CS, Lin LY. Chloride transport in mitochondrion-rich cells of euryhaline tilapia (Oreochromis mossambicus) larvae. Am J Physiol Cell Physiol 2009; 297:C845-54. [PMID: 19657057 DOI: 10.1152/ajpcell.00218.2009] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A noninvasive scanning ion-selective electrode technique (SIET) was applied to measure Cl- transport at individual mitochondrion-rich cells (MRCs) in the skin of euryhaline tilapia (Oreochromis mossambicus) larvae. In seawater (SW)-acclimated larvae, outward Cl- gradients (20-80 mM higher than the background) were measured at the surface, indicating a secretion of Cl- from the skin. By serial probing over the surface of MRCs and adjacent keratinocytes (KCs), a significant outward flux of Cl- was detected at the apical opening (membrane) of MRCs. Treatment with 100 microM ouabain or bumetanide inhibited the Cl- secretion by approximately 75%. In freshwater (FW)-acclimated larvae, a lower level of outward Cl- gradients (0.2-1 mM) was measured at the skin surface. Low-Cl- water (<0.005 mM) acclimation increased the apical Na+-Cl- cotransporter (NCC) immunoreactivity of MRCs in the larval skin. An inward flux of Cl- was detected when probing the exterior surface of a group of MRCs (convex-MRCs) that express the NCC. An NCC inhibitor (100 microM metolazone) reduced the flux by approximately 90%. This study provides direct and convincing evidence for Cl- transport by MRCs of SW- and FW-acclimated euryhaline tilapia and the involvement of an apical NCC in Cl- uptake of MRCs of FW-acclimated fish.
Collapse
Affiliation(s)
- Jiun-Lin Horng
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei
| | | | | | | | | | | |
Collapse
|
42
|
Stergiopoulos K, Cabrero P, Davies SA, Dow JAT. Salty dog, an SLC5 symporter, modulates Drosophila response to salt stress. Physiol Genomics 2008; 37:1-11. [PMID: 19018044 DOI: 10.1152/physiolgenomics.90360.2008] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To regulate their internal environments, organisms must adapt to varying ion levels in their diet. Adult Drosophila were exposed to dietary salt stress, and their physiological, survival, and gene expression responses monitored. Insects continued to feed on NaCl-elevated diet, although levels >4% wt/vol ultimately proved fatal. Affymetrix microarray analysis of flies fed on diet containing elevated NaCl showed a phased response: the earliest response was widespread upregulation of immune genes, followed by upregulation of carbohydrate metabolism as the immune response was downregulated, then finally a switch to amino acid catabolism and inhibition of genes associated with the reproductive axis. Significantly, the online transcriptomic resource FlyAtlas reports that most of the modulated genes are predominantly expressed in hindgut or Malpighian (renal) tubule, implicating these excretory tissues as the major responders to salt stress. Three genes were selected for further study: the SLC5 symporter CG2196, the GLUT transporter CG6484, and the transcription factor sugarbabe (previously implicated in starvation and stress responses). Expression profiles predicted by microarray were validated by quantitative PCR (qPCR); expression was mapped to the alimentary canal by in situ hybridization. CG2196::eYFP overexpression constructs were localized to the basolateral membrane of the Malpighian (renal) tubules, and RNAi against CG2196 improved survival on high-salt diet, even when driven specifically to just principal cells of the Malpighian tubule, confirming both this tissue and this transporter as major determinants of survival upon salt stress. Accordingly, CG2196 was renamed salty dog (salt).
Collapse
Affiliation(s)
- Konstantinos Stergiopoulos
- Integrative & Systems Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | | | | |
Collapse
|