1
|
Li H, Lee C, Kay LM. Testing effects of trigeminal stimulation on binary odor mixture quality in rats. Front Neurosci 2023; 17:1059741. [PMID: 36960175 PMCID: PMC10027748 DOI: 10.3389/fnins.2023.1059741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 02/16/2023] [Indexed: 03/09/2023] Open
Abstract
Prior attempts at forming theoretical predictions regarding the quality of binary odor mixtures have failed to find any consistent predictor for overshadowing of one component in a binary mixture by the other. We test here the hypothesis that trigeminality contributes to overshadowing effects in binary mixture perception. Most odorants stimulate the trigeminal nerve in the nasal sensory epithelium. In the current study we test rats' ability to detect component odorants in four binary odor sets chosen for their relative trigeminality. We predicted that the difference in trigeminal intensity would predict the degree of overshadowing by boosting or suppressing perceptual intensity of these odorants during learning or during mixture perception. We used a two-alternative choice (TAC) task in which rats were trained to recognize the two components of each mixture and tested on a range of mixtures of the two without reinforcement. We found that even though odorant concentrations were adjusted to balance volatility, all odor sets produced asymmetric psychometric curves. Odor pairs with the greatest difference in trigeminality showed overshadowing by the odorant with weaker trigeminal properties. Odor sets with more evenly matched trigeminal properties also showed asymmetry that was not predicted by either small differences in volatility or trigeminality. Thus, trigeminal properties may influence overshadowing in odor mixtures, but other factors are also likely involved. These mixed results further support the need to test each odor mixture to determine its odor quality and underscore recent results at the level of olfactory receptor neurons that show massive and unpredictable inhibition among odorants in complex mixtures.
Collapse
Affiliation(s)
- Huibo Li
- Department of Psychology, The University of Chicago, Chicago, IL, United States
- Institute for Mind and Biology, The University of Chicago, Chicago, IL, United States
| | - Clara Lee
- The College, The University of Chicago, Chicago, IL, United States
| | - Leslie M. Kay
- Department of Psychology, The University of Chicago, Chicago, IL, United States
- Institute for Mind and Biology, The University of Chicago, Chicago, IL, United States
- The College, The University of Chicago, Chicago, IL, United States
- *Correspondence: Leslie M. Kay,
| |
Collapse
|
2
|
Coureaud G, Thomas-Danguin T, Sandoz JC, Wilson DA. Biological constraints on configural odour mixture perception. J Exp Biol 2022; 225:274695. [PMID: 35285471 PMCID: PMC8996812 DOI: 10.1242/jeb.242274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Animals, including humans, detect odours and use this information to behave efficiently in the environment. Frequently, odours consist of complex mixtures of odorants rather than single odorants, and mixtures are often perceived as configural wholes, i.e. as odour objects (e.g. food, partners). The biological rules governing this 'configural perception' (as opposed to the elemental perception of mixtures through their components) remain weakly understood. Here, we first review examples of configural mixture processing in diverse species involving species-specific biological signals. Then, we present the original hypothesis that at least certain mixtures can be processed configurally across species. Indeed, experiments conducted in human adults, newborn rabbits and, more recently, in rodents and honeybees show that these species process some mixtures in a remarkably similar fashion. Strikingly, a mixture AB (A, ethyl isobutyrate; B, ethyl maltol) induces configural processing in humans, who perceive a mixture odour quality (pineapple) distinct from the component qualities (A, strawberry; B, caramel). The same mixture is weakly configurally processed in rabbit neonates, which perceive a particular odour for the mixture in addition to the component odours. Mice and honeybees also perceive the AB mixture configurally, as they respond differently to the mixture compared with its components. Based on these results and others, including neurophysiological approaches, we propose that certain mixtures are convergently perceived across various species of vertebrates/invertebrates, possibly as a result of a similar anatomical organization of their olfactory systems and the common necessity to simplify the environment's chemical complexity in order to display adaptive behaviours.
Collapse
Affiliation(s)
- Gérard Coureaud
- Centre de Recherche en Neurosciences de Lyon, Team Sensory Neuroethology (ENES), CNRS/INSERM/UCBL1/UJM, 69500 Lyon, France
| | - Thierry Thomas-Danguin
- Centre des Sciences du Goût et de l'Alimentation, Team Flavor, Food Oral Processing and Perception, INRAE, CNRS, Institut Agro Dijon, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Jean-Christophe Sandoz
- Evolution, Genomes, Behavior and Ecology, CNRS, Université Paris-Saclay, IRD, 91190 Gif-sur-Yvette, France
| | - Donald A Wilson
- Department of Child & Adolescent Psychiatry, New York University Langone School of Medicine and Nathan S. Kline Institute for Psychiatric Research, New York, NY 10016, USA
| |
Collapse
|
3
|
Romero-Diaz C, Campos SM, Herrmann MA, Soini HA, Novotny MV, Hews DK, Martins EP. Composition and compound proportions affect the response to complex chemical signals in a spiny lizard. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-02987-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
Wycke MA, Coureaud G, Thomas-Danguin T, Sandoz JC. Configural perception of a binary olfactory mixture in honey bees, as in humans, rodents and newborn rabbits. J Exp Biol 2020; 223:jeb227611. [PMID: 33046568 DOI: 10.1242/jeb.227611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/06/2020] [Indexed: 11/20/2022]
Abstract
How animals perceive and learn complex stimuli, such as mixtures of odorants, is a difficult problem, for which the definition of general rules across the animal kingdom remains elusive. Recent experiments conducted in human and rodent adults as well as newborn rabbits suggested that these species process particular odor mixtures in a similar, configural manner. Thus, the binary mixture of ethyl isobutyrate (EI) and ethyl maltol (EM) induces configural processing in humans, who perceive a mixture odor quality (pineapple) that is distinct from the quality of each component (strawberry and caramel). Similarly, rabbit neonates treat the mixture differently, at least in part, from its components. In the present study, we asked whether the properties of the EI.EM mixture extend to an influential invertebrate model, the honey bee Apis mellifera. We used appetitive conditioning of the proboscis extension response to evaluate how bees perceive the EI.EM mixture. In a first experiment, we measured perceptual similarity between this mixture and its components in a generalization protocol. In a second experiment, we measured the ability of bees to differentiate between the mixture and both of its components in a negative patterning protocol. In each experimental series, the performance of bees with this mixture was compared with that obtained with four other mixtures, chosen from previous work in humans, newborn rabbits and bees. Our results suggest that when having to differentiate mixture and components, bees treat the EI.EM in a robust configural manner, similarly to mammals, suggesting the existence of common perceptual rules across the animal kindgdom.
Collapse
Affiliation(s)
- Marie-Anne Wycke
- Evolution, Genomes, Behavior and Ecology, CNRS, Université Paris-Saclay, IRD, 91190 Gif-sur-Yvette, France
| | - Gérard Coureaud
- Centre de Recherche en Neurosciences de Lyon, Equipe Codage et Mémoire Olfactive, CNRS/INSERM/UCBL1, 69500 Bron, France
| | - Thierry Thomas-Danguin
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Jean-Christophe Sandoz
- Evolution, Genomes, Behavior and Ecology, CNRS, Université Paris-Saclay, IRD, 91190 Gif-sur-Yvette, France
| |
Collapse
|
5
|
Wilson DA, Fleming G, Vervoordt SM, Coureaud G. Cortical processing of configurally perceived odor mixtures. Brain Res 2020; 1729:146617. [PMID: 31866364 PMCID: PMC6941848 DOI: 10.1016/j.brainres.2019.146617] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 02/01/2023]
Abstract
Most odors are not composed of a single volatile chemical species, but rather are mixtures of many different volatile molecules, the perception of which is dependent on the identity and relative concentrations of the components. Changing either the identity or ratio of components can lead to shifts between configural and elemental perception of the mixture. For example, a 30/70 ratio of ethyl isobutyrate (odorant A, a strawberry scent) and ethyl maltol (odorant B, a caramel scent) is perceived as pineapple by humans - a configural percept distinct from the components. In contrast, a 68/32 ratio of the same odorants is perceived elementally, and is identified as the component odors. Here, we examined single-unit responses in the anterior and posterior piriform cortex (aPCX and pPCX) of mice to these A and B mixtures. We first demonstrate that mouse behavior is consistent with a configural/elemental perceptual shift as concentration ratio varies. We then compared responses to the configural mixture to those evoked by the elemental mixture, as well as to the individual components. Hierarchical cluster analyses suggest that in the mouse aPCX, the configural mixture was coded as distinct from both components, while the elemental mixture was coded as similar to the components. In contrast, mixture perception did not predict pPCX ensemble coding. Similar electrophysiological results were also observed in rats. The results suggest similar perceptual characteristics of the AB mixture across species, and a division in the roles of aPCX and pPCX in the coding of configural and elemental odor mixtures.
Collapse
Affiliation(s)
- Donald A Wilson
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Child & Adolescent Psychiatry, NYU School of Medicine, New York, NY, USA.
| | - Gloria Fleming
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Samantha M Vervoordt
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Gérard Coureaud
- Lyon Neuroscience Research Center, INSERM U1028/CNRS UMR 5292/Lyon 1 University, Bron, France.
| |
Collapse
|
6
|
Coureaud G, Letagneaux C, Thomas‐Danguin T, Romagny S. Developmental changes in elemental and configural perception of odor mixtures in young rabbits. Dev Psychobiol 2019; 62:471-483. [DOI: 10.1002/dev.21929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/12/2019] [Accepted: 09/18/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Gérard Coureaud
- Centre de Recherche en Neurosciences de Lyon (Lyon Neuroscience Research Center) INSERM U1028, CNRS UMR 5292 Université Claude Bernard Lyon 1 Centre Hospitalier le Vinatier ‐ Bâtiment Neurocampus Bron Cedex France
| | - Chloé Letagneaux
- Centre des Sciences du Goût et de l'Alimentation AgroSup Dijon, CNRS UMR 6265, INRA 1324 Université Bourgogne Franche‐Comté Dijon France
| | - Thierry Thomas‐Danguin
- Centre des Sciences du Goût et de l'Alimentation AgroSup Dijon, CNRS UMR 6265, INRA 1324 Université Bourgogne Franche‐Comté Dijon France
| | - Sébastien Romagny
- Centre des Sciences du Goût et de l'Alimentation AgroSup Dijon, CNRS UMR 6265, INRA 1324 Université Bourgogne Franche‐Comté Dijon France
| |
Collapse
|
7
|
Odor mixture training enhances dogs' olfactory detection of Home-Made Explosive precursors. Heliyon 2018; 4:e00947. [PMID: 30582032 PMCID: PMC6299160 DOI: 10.1016/j.heliyon.2018.e00947] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/21/2018] [Accepted: 11/15/2018] [Indexed: 11/24/2022] Open
Abstract
Complex odor mixtures have traditionally been thought to be perceived configurally, implying that there is little identification of the individual components in the mixture. Prior research has suggested that the chemical and or perceptual similarity of components in a mixture may influence whether they can be detected individually; however, how experience and training influence the ability to identify individual components in complex mixtures (a figure-background segregation) is less clear. Figure-background segregation is a critical task for dogs tasked with discriminating between Home Made Explosives and very similar, but innocuous, complex odor mixtures. In a cross-over experimental design, we evaluated the effect of two training procedures on dogs' ability to identify the presence of a critical oxidizer in complex odor mixtures. In the Mixture training procedure, dogs received odor mixtures that varied from trial to trial with and without an oxidizer. In the more typical procedure for canine detection training, dogs were presented with the pure oxidizer only, and had to discriminate this from decoy mixtures (target-only training). Mixture training led to above chance discrimination of the oxidizer from variable backgrounds and dogs were able to readily generalize performance, with no decrement, to mixtures containing novel odorants. Target-only training, however, led to a precipitous drop in hit rate when the oxidizer was presented in a mixture background containing either familiar and/or novel odorants. Furthermore, by giving Target-only trained dogs Mixture training, they learned to identify the oxidizer in mixtures. Together, these results demonstrate that training method has significant impacts on the perception of components in odor mixtures and highlights the importance of olfactory learning for the effective detection of Home Made Explosives by dogs.
Collapse
|
8
|
Romagny S, Coureaud G, Thomas-Danguin T. Key odorants or key associations? Insights into elemental and configural odour processing. FLAVOUR FRAG J 2017. [DOI: 10.1002/ffj.3429] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sébastien Romagny
- Centre des Sciences du Goût et de l'Alimentation, INRA, CNRS, AgroSup Dijon; Université Bourgogne Franche-Comté; F-21000 Dijon France
| | - Gérard Coureaud
- Centre des Sciences du Goût et de l'Alimentation, INRA, CNRS, AgroSup Dijon; Université Bourgogne Franche-Comté; F-21000 Dijon France
| | - Thierry Thomas-Danguin
- Centre des Sciences du Goût et de l'Alimentation, INRA, CNRS, AgroSup Dijon; Université Bourgogne Franche-Comté; F-21000 Dijon France
| |
Collapse
|
9
|
Hughes R, Cunningham GB. Embryonic exposure of chicken chicks (Gallus gallus domesticus) leads to heightened sensitivities towards the exposed scent. BEHAVIOUR 2017. [DOI: 10.1163/1568539x-00003472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
In chickens, food consumption can be altered by exposing the chicks to scents as embryos. We exposed eggs to an orange-scented food additive in the final days of incubation. Following hatching, we tested these exposed chicks’ ability to detect this scent at a variety of concentrations. We found that orange-exposed chicks responded to an orange-scented solution at lower concentrations than control chicks. This sensitization may allow chicks to be more effective at locating acceptable food items but requires further testing to determine its significance. Orange-exposed and control chicks were also tested with the scent of raspberry. Orange-exposed chicks responded to the raspberry presentation significantly more than the control chicks did, suggesting that the embryonic exposure to orange may have influenced how the chicks responded towards another fruity smell. This result suggests that chicks may be learning general characteristics of exposed scents while in the egg, though this needs further research.
Collapse
Affiliation(s)
- Ryan Hughes
- Department of Biology, St. John Fisher College, 3690 East Avenue, Rochester, NY 14618, USA
| | - Gregory B. Cunningham
- Department of Biology, St. John Fisher College, 3690 East Avenue, Rochester, NY 14618, USA
| |
Collapse
|
10
|
Mammary pheromone-induced odour learning influences sucking behaviour and milk intake in the newborn rabbit. Anim Behav 2016. [DOI: 10.1016/j.anbehav.2015.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Experience shapes our odor perception but depends on the initial perceptual processing of the stimulus. Atten Percept Psychophys 2015; 77:1794-806. [PMID: 25832188 DOI: 10.3758/s13414-015-0883-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The questions of whether configural and elemental perceptions are competitive or exclusive perceptual processes and whether they rely on independent or dependent mechanisms are poorly understood. To examine these questions, we modified perceptual experience through preexposure to mixed or single odors and measured the resulting variation in the levels of configural and elemental perception of target odor mixtures. We used target mixtures that were spontaneously processed in a configural or an elemental manner. The AB binary mixture spontaneously involved the configural perception of a pineapple odor, whereas component A smelled like strawberry and component B smelled like caramel. The CD mixture produced the elemental perceptions of banana (C) and smoky (D) odors. Perceptual experience was manipulated through repeated exposure to either a mixture (AB or CD) or the components (A and B or C and D). The odor typicality rating data recorded after exposure revealed different influences of experience on odor mixtures and single-component perception, depending both on the type of exposure (components or mixture) and the mixture's initial perceptual property (configural or elemental). Although preexposure to A and B decreased the pineapple typicality of the configural AB mixture, preexposure to AB did not modify its odor quality. In contrast, preexposure to the CD elemental mixture induced a quality transfer between the components. These results emphasize the relative plasticity of odor mixture perception, which is prone to experience-induced modulations but depends on the stimulus's initial perceptual properties, suggesting that configural and elemental forms of odor mixture perception rely on rather independent processes.
Collapse
|
12
|
Coureaud G, Thomas-Danguin T, Wilson DA, Ferreira G. Neonatal representation of odour objects: distinct memories of the whole and its parts. Proc Biol Sci 2015; 281:20133319. [PMID: 24990670 DOI: 10.1098/rspb.2013.3319] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Extraction of relevant information from highly complex environments is a prerequisite to survival. Within odour mixtures, such information is contained in the odours of specific elements or in the mixture configuration perceived as a whole unique odour. For instance, an AB mixture of the element A (ethyl isobutyrate) and the element B (ethyl maltol) generates a configural AB percept in humans and apparently in another species, the rabbit. Here, we examined whether the memory of such a configuration is distinct from the memory of the individual odorants. Taking advantage of the newborn rabbit's ability to learn odour mixtures, we combined behavioural and pharmacological tools to specifically eliminate elemental memory of A and B after conditioning to the AB mixture and evaluate consequences on configural memory of AB. The amnesic treatment suppressed responsiveness to A and B but not to AB. Two other experiments confirmed the specific perception and particular memory of the AB mixture. These data demonstrate the existence of configurations in certain odour mixtures and their representation as unique objects: after learning, animals form a configural memory of these mixtures, which coexists with, but is relatively dissociated from, memory of their elements. This capability emerges very early in life.
Collapse
Affiliation(s)
- Gérard Coureaud
- Centre des Sciences du Goût et de l'Alimentation (CSGA), UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, 9E Boulevard Jeanne d'Arc, 21000 Dijon, France
| | - Thierry Thomas-Danguin
- Centre des Sciences du Goût et de l'Alimentation (CSGA), UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, 9E Boulevard Jeanne d'Arc, 21000 Dijon, France
| | - Donald A Wilson
- Department of Child and Adolescent Psychiatry, New York University Langone School of Medicine, New York, NY 10016, USA
| | - Guillaume Ferreira
- Nutrition and Integrative Neurobiology group, INRA UMR 1286, 33000 Bordeaux, France Université de Bordeaux, 33000 Bordeaux, France
| |
Collapse
|
13
|
Brain processing of a configural vs elemental odor mixture in the newborn rabbit. Brain Struct Funct 2015; 221:2527-39. [DOI: 10.1007/s00429-015-1055-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/30/2015] [Indexed: 10/23/2022]
|
14
|
Bos N, Roussel E, Giurfa M, d'Ettorre P. Appetitive and aversive olfactory learning induce similar generalization rates in the honey bee. Anim Cogn 2015; 17:399-406. [PMID: 23959466 DOI: 10.1007/s10071-013-0671-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 07/31/2013] [Accepted: 08/06/2013] [Indexed: 11/25/2022]
Abstract
Appetitive and aversive learning drive an animal toward or away from stimuli predicting reinforcement, respectively. The specificity of these memories may vary due to differences in cost–benefit relationships associated with appetitive and aversive contexts. As a consequence, generalization performances may differ after appetitive and aversive training. Here, we determined whether honey bees show different rates of olfactory generalization following appetitive olfactory conditioning of the proboscis extension response, or aversive olfactory conditioning of the sting extension response. In both cases, we performed differential conditioning, which improves discrimination learning between a reinforced odor (CS?) and a non-reinforced odor (CS-) and evaluated generalization to two novel odors whose similarity to the CS? and the CS- was different. We show, given the same level of discriminatory performance, that rates of generalization are similar between the two conditioning protocols and discuss the possible causes for this phenomenon.
Collapse
|
15
|
Romagny S, Thomas-Danguin T, Coureaud G. Configural processing of odor mixture: Does the learning of elements prevent the perception of configuration in the newborn rabbit? Physiol Behav 2015; 142:161-9. [DOI: 10.1016/j.physbeh.2015.02.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 02/04/2015] [Accepted: 02/10/2015] [Indexed: 10/24/2022]
|
16
|
Newborn rabbit perception of 6-odorant mixtures depends on configural processing and number of familiar elements. PLoS One 2014; 9:e107560. [PMID: 25248149 PMCID: PMC4172776 DOI: 10.1371/journal.pone.0107560] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 08/19/2014] [Indexed: 11/19/2022] Open
Abstract
Perception of odors, i.e. usually of mixtures of odorants, is elemental (the odorants' odor qualities are perceived in the mixture) or configural (the odor quality of the mixture differs from the one of each odorant). In human adults, the Red Cordial (RC) mixture is a configurally-processed, 6-odorant mixture. It evokes a red cordial odor quality while none of the elements carries that odor. Interestingly, in newborn rabbits, the same RC mixture is weak configurally perceived: the newborns behaviorally respond to all the elements after conditioning to the whole mixture, but not to the mixture after conditioning to a single element. Thus, they perceive in the RC mixture both the odor quality of the RC configuration and the quality of each element. Here, we aimed to determine whether this perception is modulated by quantitative (number of elements) and/or qualitative bits of information (nature of elements) previously learned by the animals. Newborns were conditioned to RC sub-mixtures of different complexity and composition before behavioral testing to RC. Pups generalized their sucking-related response to RC after learning at least 4 odorants. In contrast, after conditioning to sub-mixtures of another 6-odorant mixture, the elementally perceived MV mixture, pups responded to MV after learning one or two odorants. The different generalization to RC and MV mixtures after learning some of their elements is discussed according to three hypotheses: i) the configural perception of RC sub-mixtures, ii) the ratio of familiar/unfamiliar individual information elementally and configurally perceived, iii) the perception of RC becoming purely elemental. The results allow the first hypothesis to be dismissed, while further experiments are required to distinguish between the remaining two.
Collapse
|
17
|
Dunkel A, Steinhaus M, Kotthoff M, Nowak B, Krautwurst D, Schieberle P, Hofmann T. Nature's chemical signatures in human olfaction: a foodborne perspective for future biotechnology. Angew Chem Int Ed Engl 2014; 53:7124-43. [PMID: 24939725 DOI: 10.1002/anie.201309508] [Citation(s) in RCA: 353] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 02/02/2014] [Indexed: 02/03/2023]
Abstract
The biocatalytic production of flavor naturals that determine chemosensory percepts of foods and beverages is an ever challenging target for academic and industrial research. Advances in chemical trace analysis and post-genomic progress at the chemistry-biology interface revealed odor qualities of nature's chemosensory entities to be defined by odorant-induced olfactory receptor activity patterns. Beyond traditional views, this review and meta-analysis now shows characteristic ratios of only about 3 to 40 genuine key odorants for each food, from a group of about 230 out of circa 10 000 food volatiles. This suggests the foodborn stimulus space has co-evolved with, and roughly match our circa 400 olfactory receptors as best natural agonists. This perspective gives insight into nature's chemical signatures of smell, provides the chemical odor codes of more than 220 food samples, and beyond addresses industrial implications for producing recombinants that fully reconstruct the natural odor signatures for use in flavors and fragrances, fully immersive interactive virtual environments, or humanoid bioelectronic noses.
Collapse
Affiliation(s)
- Andreas Dunkel
- Chair of Food Chemistry and Molecular Sensory Science, Technische Universität München, Lise-Meitnerstrasse 34, 85354 Freising-Weihenstephan (Germany)
| | | | | | | | | | | | | |
Collapse
|
18
|
Dunkel A, Steinhaus M, Kotthoff M, Nowak B, Krautwurst D, Schieberle P, Hofmann T. Genuine Geruchssignaturen der Natur – Perspektiven aus der Lebensmittelchemie für die Biotechnologie. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201309508] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Andreas Dunkel
- Lehrstuhl für Lebensmittelchemie und molekulare Sensorik, Technische Universität München, Lise‐Meitner‐Straße 34, 85354 Freising‐Weihenstephan (Deutschland)
| | - Martin Steinhaus
- Deutsche Forschungsanstalt für Lebensmittelchemie – Leibniz Institut, Lise‐Meitner‐Straße 34, 85354 Freising‐Weihenstephan (Deutschland)
| | - Matthias Kotthoff
- Deutsche Forschungsanstalt für Lebensmittelchemie – Leibniz Institut, Lise‐Meitner‐Straße 34, 85354 Freising‐Weihenstephan (Deutschland)
| | - Bettina Nowak
- Deutsche Forschungsanstalt für Lebensmittelchemie – Leibniz Institut, Lise‐Meitner‐Straße 34, 85354 Freising‐Weihenstephan (Deutschland)
| | - Dietmar Krautwurst
- Deutsche Forschungsanstalt für Lebensmittelchemie – Leibniz Institut, Lise‐Meitner‐Straße 34, 85354 Freising‐Weihenstephan (Deutschland)
| | - Peter Schieberle
- Deutsche Forschungsanstalt für Lebensmittelchemie – Leibniz Institut, Lise‐Meitner‐Straße 34, 85354 Freising‐Weihenstephan (Deutschland)
| | - Thomas Hofmann
- Lehrstuhl für Lebensmittelchemie und molekulare Sensorik, Technische Universität München, Lise‐Meitner‐Straße 34, 85354 Freising‐Weihenstephan (Deutschland)
| |
Collapse
|
19
|
Coureaud G, Thomas-Danguin T, Datiche F, Wilson DA, Ferreira G. Differential memory persistence of odor mixture and components in newborn rabbits: competition between the whole and its parts. Front Behav Neurosci 2014; 8:211. [PMID: 24982622 PMCID: PMC4059275 DOI: 10.3389/fnbeh.2014.00211] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 05/26/2014] [Indexed: 12/02/2022] Open
Abstract
Interacting with the mother during the daily nursing, newborn rabbits experience her body odor cues. In particular, the mammary pheromone (MP) contained in rabbit milk triggers the typical behavior which helps to localize and seize the nipples. It also promotes the very rapid appetitive learning of simple or complex stimuli (odorants or mixtures) through associative conditioning. We previously showed that 24 h after MP-induced conditioning to odorants A (ethyl isobutyrate) or B (ethyl maltol), newborn rabbits perceive the AB mixture in a weak configural way, i.e., they perceive the odor of the AB configuration in addition to the odors of the elements. Moreover, after conditioning to the mixture, elimination of the memories of A and B does not affect the memory of AB, suggesting independent elemental and configural memories of the mixture. Here, we evaluated whether configural memory persistence differs from elemental one. First, whereas 1 or 3-day-old pups conditioned to A or B maintained their responsiveness to the conditioned odorant for 4 days, those conditioned to AB did not respond to the mixture after the same retention period. Second, the pups conditioned to AB still responded to A and B 4 days after conditioning, which indicates stronger retention of the elements than of the configuration when all information are learned together. Third, we determined whether the memory of the elements competes with the memory of the configuration: after conditioning to AB, when the memories of A and B were erased using pharmacological treatment, the memory of the mixture was extended to day 5. Thus, newborn rabbits have access to both elemental and configural information in certain odor mixtures, and competition between these distinct representations of the mixture influences the persistence of their memories. Such effects certainly occur in the natural context of mother-pup interactions and may contribute to early acquisition of knowledge about the surroundings.
Collapse
Affiliation(s)
- Gérard Coureaud
- Centre des Sciences du Goût et de l'Alimentation (CSGA), UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne Dijon, France
| | - Thierry Thomas-Danguin
- Centre des Sciences du Goût et de l'Alimentation (CSGA), UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne Dijon, France
| | - Frédérique Datiche
- Centre des Sciences du Goût et de l'Alimentation (CSGA), UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne Dijon, France
| | - Donald A Wilson
- Department of Child and Adolescent Psychiatry, New York University Langone School of Medicine New York, NY, USA
| | - Guillaume Ferreira
- Nutrition and Integrative Neurobiology Group, INRA UMR 1286 Bordeaux, France ; Université de Bordeaux Bordeaux, France
| |
Collapse
|
20
|
Thomas-Danguin T, Sinding C, Romagny S, El Mountassir F, Atanasova B, Le Berre E, Le Bon AM, Coureaud G. The perception of odor objects in everyday life: a review on the processing of odor mixtures. Front Psychol 2014; 5:504. [PMID: 24917831 PMCID: PMC4040494 DOI: 10.3389/fpsyg.2014.00504] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 05/08/2014] [Indexed: 11/13/2022] Open
Abstract
Smelling monomolecular odors hardly ever occurs in everyday life, and the daily functioning of the sense of smell relies primarily on the processing of complex mixtures of volatiles that are present in the environment (e.g., emanating from food or conspecifics). Such processing allows for the instantaneous recognition and categorization of smells and also for the discrimination of odors among others to extract relevant information and to adapt efficiently in different contexts. The neurophysiological mechanisms underpinning this highly efficient analysis of complex mixtures of odorants is beginning to be unraveled and support the idea that olfaction, as vision and audition, relies on odor-objects encoding. This configural processing of odor mixtures, which is empirically subject to important applications in our societies (e.g., the art of perfumers, flavorists, and wine makers), has been scientifically studied only during the last decades. This processing depends on many individual factors, among which are the developmental stage, lifestyle, physiological and mood state, and cognitive skills; this processing also presents striking similarities between species. The present review gathers the recent findings, as observed in animals, healthy subjects, and/or individuals with affective disorders, supporting the perception of complex odor stimuli as odor objects. It also discusses peripheral to central processing, and cognitive and behavioral significance. Finally, this review highlights that the study of odor mixtures is an original window allowing for the investigation of daily olfaction and emphasizes the need for knowledge about the underlying biological processes, which appear to be crucial for our representation and adaptation to the chemical environment.
Collapse
Affiliation(s)
- Thierry Thomas-Danguin
- Centre des Sciences du Goût et de l'Alimentation, CNRS UMR6265, INRA UMR1324, Université de Bourgogne Dijon, France
| | - Charlotte Sinding
- Smell and Taste Clinic, Department of Otorhinolaryngoly TU Dresden, Dresden, Germany
| | - Sébastien Romagny
- Centre des Sciences du Goût et de l'Alimentation, CNRS UMR6265, INRA UMR1324, Université de Bourgogne Dijon, France
| | - Fouzia El Mountassir
- Centre des Sciences du Goût et de l'Alimentation, CNRS UMR6265, INRA UMR1324, Université de Bourgogne Dijon, France
| | | | | | - Anne-Marie Le Bon
- Centre des Sciences du Goût et de l'Alimentation, CNRS UMR6265, INRA UMR1324, Université de Bourgogne Dijon, France
| | - Gérard Coureaud
- Centre des Sciences du Goût et de l'Alimentation, CNRS UMR6265, INRA UMR1324, Université de Bourgogne Dijon, France
| |
Collapse
|
21
|
Coureaud G, Tourat A, Ferreira G. Sensory preconditioning in newborn rabbits: from common to distinct odor memories. Learn Mem 2013; 20:453-8. [PMID: 23950192 DOI: 10.1101/lm.030965.113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This study evaluated whether olfactory preconditioning is functional in newborn rabbits and based on joined or independent memory of odorants. First, after exposure to odorants A+B, the conditioning of A led to high responsiveness to odorant B. Second, responsiveness to B persisted after amnesia of A. Third, preconditioning was also functional with two overlapping pairs of odorants (A+B and B+C) and amnesia of one odorant did not affect memory of the others. Thus, incidental pairing of odorants allows reinforcement of one odorant to implicitly reinforce the others, the bond then vanishes, and the memory of each element becomes independent.
Collapse
Affiliation(s)
- Gérard Coureaud
- Developmental Ethology and Cognitive Psychology Group, Research Center for Taste and Feeding Behaviour, UMR 6265 CNRS, 1324 INRA, Université de Bourgogne, 21000 Dijon, France.
| | | | | |
Collapse
|
22
|
Millisecond stimulus onset-asynchrony enhances information about components in an odor mixture. J Neurosci 2013; 33:6060-9. [PMID: 23554487 DOI: 10.1523/jneurosci.5838-12.2013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Airborne odorants rarely occur as pure, isolated stimuli. In a natural environment, odorants that intermingle from multiple sources create mixtures in which the onset and offset of odor components are asynchronous. Odor mixtures are known to elicit interactions in both behavioral and physiological responses, changing the perceptive quality of mixtures compared with the components. However, relevant odors need to be segregated from a distractive background. Honeybees (Apis mellifera) can use stimulus onset asynchrony of as little as 6 ms to segregate learned odor components within a mixture. Using in vivo calcium imaging of projection neurons in the honeybee, we studied neuronal mechanisms of odor-background segregation based on stimulus onset asynchrony in the antennal lobe. We found that asynchronous mixtures elicit response patterns that are different from their synchronous counterpart: the responses to asynchronous mixtures contain more information about the constituent components. With longer onset shifts, more features of the components were present in the mixture response patterns. Moreover, we found that the processing of asynchronous mixtures activated more inhibitory interactions than the processing of synchronous mixtures. This study provides evidence of neuronal mechanisms that underlie odor-object segregation on a timescale much faster than found for mammals.
Collapse
|
23
|
Bos N, d'Ettorre P, Guerrieri FJ. Chemical structure of odorants and perceptual similarity in ants. ACTA ACUST UNITED AC 2013; 216:3314-20. [PMID: 23685976 DOI: 10.1242/jeb.087007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Animals are often immersed in a chemical world consisting of mixtures of many compounds rather than of single substances, and they constantly face the challenge of extracting relevant information out of the chemical landscape. To this purpose, the ability to discriminate among different stimuli with different valence is essential, but it is also important to be able to generalise, i.e. to treat different but similar stimuli as equivalent, as natural variation does not necessarily affect stimulus valence. Animals can thus extract regularities in their environment and make predictions, for instance about distribution of food resources. We studied perceptual similarity of different plant odours by conditioning individual carpenter ants to one odour, and subsequently testing their response to another, structurally different odour. We found that asymmetry in generalisation, where ants generalise from odour A to B, but not from B to A, is dependent on both chain length and functional group. By conditioning ants to a binary mixture, and testing their reaction to the individual components of the mixture, we show that overshadowing, where parts of a mixture are learned better than others, is rare. Additionally, generalisation is dependent not only on the structural similarity of odorants, but also on their functional value, which might play a crucial role. Our results provide insight into how ants make sense of the complex chemical world around them, for example in a foraging context, and provide a basis with which to investigate the neural mechanisms behind perceptual similarity.
Collapse
Affiliation(s)
- Nick Bos
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
24
|
Sinding C, Thomas-Danguin T, Chambault A, Béno N, Dosne T, Chabanet C, Schaal B, Coureaud G. Rabbit neonates and human adults perceive a blending 6-component odor mixture in a comparable manner. PLoS One 2013; 8:e53534. [PMID: 23341948 PMCID: PMC3547025 DOI: 10.1371/journal.pone.0053534] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 12/03/2012] [Indexed: 11/18/2022] Open
Abstract
Young and adult mammals are constantly exposed to chemically complex stimuli. The olfactory system allows for a dual processing of relevant information from the environment either as single odorants in mixtures (elemental perception) or as mixtures of odorants as a whole (configural perception). However, it seems that human adults have certain limits in elemental perception of odor mixtures, as suggested by their inability to identify each odorant in mixtures of more than 4 components. Here, we explored some of these limits by evaluating the perception of three 6-odorant mixtures in human adults and newborn rabbits. Using free-sorting tasks in humans, we investigated the configural or elemental perception of these mixtures, or of 5-component sub-mixtures, or of the 6-odorant mixtures with modified odorants' proportion. In rabbit pups, the perception of the same mixtures was evaluated by measuring the orocephalic sucking response to the mixtures or their components after conditioning to one of these stimuli. The results revealed that one mixture, previously shown to carry the specific odor of red cordial in humans, was indeed configurally processed in humans and in rabbits while the two other 6-component mixtures were not. Moreover, in both species, such configural perception was specific not only to the 6 odorants included in the mixture but also to their respective proportion. Interestingly, rabbit neonates also responded to each odorant after conditioning to the red cordial mixture, which demonstrates their ability to perceive elements in addition to configuration in this complex mixture. Taken together, the results provide new insights related to the processing of relatively complex odor mixtures in mammals and the inter-species conservation of certain perceptual mechanisms; the results also revealed some differences in the expression of these capacities between species putatively linked to developmental and ecological constraints.
Collapse
Affiliation(s)
| | | | | | - Noelle Béno
- Centre des Sciences du Goût et de l'Alimentation, Dijon, France
| | - Thibaut Dosne
- Centre des Sciences du Goût et de l'Alimentation, Dijon, France
| | - Claire Chabanet
- Centre des Sciences du Goût et de l'Alimentation, Dijon, France
| | - Benoist Schaal
- Centre des Sciences du Goût et de l'Alimentation, Dijon, France
| | - Gérard Coureaud
- Centre des Sciences du Goût et de l'Alimentation, Dijon, France
- * E-mail: (TTD); (GC)
| |
Collapse
|
25
|
Sinding C, Thomas-Danguin T, Crepeaux G, Schaal B, Coureaud G. Experience influences elemental and configural perception of certain binary odour mixtures in newborn rabbits. J Exp Biol 2011; 214:4171-8. [DOI: 10.1242/jeb.063610] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Elemental and configural olfactory perception allows interaction with the environment from very early in life. To evaluate how newborn rabbits can extract and respond to information from the highly complex chemical surroundings, and how experience acts on this sensory, cognitive and behavioural capability, we ran a study in four steps including a total of eight experiments. We mainly used a binary AB mixture comprising ethyl isobutyrate (component A) and ethyl maltol (component B), previously shown as a bearer of blending properties; in rabbit pups (as in human adults), the mixture elicits a weak configural perception, i.e. the perception of a configural odour different from the odours of the components. First, a repeated exposure to one component of AB led to a more elemental perception of this mixture; conversely, a repeated exposure to AB facilitated its configural processing. Second, similar impact of experience did not appear with a non-blending AC mixture (ethyl isobutyrate-guaïacol). Third, repeated exposure to AB impacted not only the perception of AB, but also and in the same way the perception of the AC mixture sharing one component, and reciprocally. However, facilitation to perceive one mixture in one mode (configural/elemental) was not generalized to a mixture sharing no components with the experienced mixture [AB versus DE (damascenone and vanillin)]. Thus, experience contributes to the neonatal perception of odour mixtures and adds plasticity to the perceptual system. However, this impact remains dependent on the chemical composition of the mixtures.
Collapse
Affiliation(s)
- Charlotte Sinding
- Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Agrosup Dijon, 9E Boulevard Jeanne d'Arc, 21000 Dijon, France
| | - Thierry Thomas-Danguin
- Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Agrosup Dijon, 9E Boulevard Jeanne d'Arc, 21000 Dijon, France
| | - Guillemette Crepeaux
- Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Agrosup Dijon, 9E Boulevard Jeanne d'Arc, 21000 Dijon, France
| | - Benoist Schaal
- Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Agrosup Dijon, 9E Boulevard Jeanne d'Arc, 21000 Dijon, France
| | - Gérard Coureaud
- Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Agrosup Dijon, 9E Boulevard Jeanne d'Arc, 21000 Dijon, France
| |
Collapse
|
26
|
Barkat S, Le Berre E, Coureaud G, Sicard G, Thomas-Danguin T. Perceptual Blending in Odor Mixtures Depends on the Nature of Odorants and Human Olfactory Expertise. Chem Senses 2011; 37:159-66. [DOI: 10.1093/chemse/bjr086] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
27
|
Proportion of Odorants Impacts the Configural versus Elemental Perception of a Binary Blending Mixture in Newborn Rabbits. Chem Senses 2011; 36:693-700. [DOI: 10.1093/chemse/bjr049] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
28
|
van Wijk M, de Bruijn PJA, Sabelis MW. The predatory mite Phytoseiulus persimilis does not perceive odor mixtures as strictly elemental objects. J Chem Ecol 2010; 36:1211-25. [PMID: 20872172 PMCID: PMC2980619 DOI: 10.1007/s10886-010-9858-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 08/12/2010] [Accepted: 09/03/2010] [Indexed: 11/25/2022]
Abstract
Phytoseiulus persimilis is a predatory mite that in absence of vision relies on the detection of herbivore-induced plant odors to locate its prey, the two-spotted spider-mite Tetranychus urticae. This herbivorous prey is feeding on leaves of a wide variety of plant species in different families. The predatory mites respond to numerous structurally different compounds. However, typical spider-mite induced plant compounds do not attract more predatory mites than plant compounds not associated with prey. Because the mites are sensitive to many compounds, components of odor mixtures may affect each other’s perception. Although the response to pure compounds has been well documented, little is known how interactions among compounds affect the response to odor mixtures. We assessed the relation between the mites’ responses elicited by simple mixtures of two compounds and by the single components of these mixtures. The preference for the mixture was compared to predictions under three conceptual models, each based on one of the following assumptions: (1) the responses elicited by each of the individual components can be added to each other; (2) they can be averaged; or (3) one response overshadows the other. The observed response differed significantly from the response predicted under the additive response, average response, and overshadowing response model in 52, 36, and 32% of the experimental tests, respectively. Moreover, the behavioral responses elicited by individual compounds and their binary mixtures were determined as a function of the odor concentration. The relative contribution of each component to the behavioral response elicited by the mixture varied with the odor concentration, even though the ratio of both compounds in the mixture was kept constant. Our experiments revealed that compounds that elicited no response had an effect on the response elicited by binary mixtures that they were part of. The results are not consistent with the hypothesis that P. persimilis perceives odor mixtures as a collection of strictly elemental objects. They suggest that odor mixtures rather are perceived as one synthetic whole.
Collapse
Affiliation(s)
- Michiel van Wijk
- Institute for Biodiversity and Ecosystem Dynamics (IBED), Section Population Biology, University of Amsterdam, Science Park 904, 1090 GE Amsterdam, The Netherlands.
| | | | | |
Collapse
|
29
|
|
30
|
Coureaud G, Charra R, Datiche F, Sinding C, Thomas-Danguin T, Languille S, Hars B, Schaal B. A pheromone to behave, a pheromone to learn: the rabbit mammary pheromone. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2010; 196:779-90. [PMID: 20574828 DOI: 10.1007/s00359-010-0548-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Revised: 06/08/2010] [Accepted: 06/08/2010] [Indexed: 12/13/2022]
Abstract
Birth is part of a continuum and is a major developmental change. Newborns need to adapt rapidly to the environment in terms of physiology and behaviour, and ability to locate the maternal source of milk is vital. Mechanisms have evolved resulting in the emission of olfactory cues by the mother and the processing of these cues by the young. Here, we focus on some sensory, cognitive and behavioural strategies developed by the European rabbit (Oryctolagus cuniculus) that optimize the early development of offspring. In this species, chemosensory communication between the mother and young plays a critical role in eliciting adaptive neonatal responses. In particular, lactating females release a molecule, the mammary pheromone, which has several functional impacts. It triggers orocephalic responses involved in the quick localization of nipples and sucking. Moreover, this unconditioned signal promotes rapid appetitive learning of novel odorants, acting as a potent organizer of neonatal cognition. The mammary-pheromone-induced odour memory requires consolidation/reconsolidation processes to be maintained in the long term. Finally, as this mode of conditioning also promotes learning of mixtures of odorants, it supports investigations related to the capacity of neonatal olfaction to extract biological value from the complex environment.
Collapse
Affiliation(s)
- Gérard Coureaud
- Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France.
| | | | | | | | | | | | | | | |
Collapse
|