1
|
Aspatwar A, Syrjänen L, Parkkila S. Roles of Carbonic Anhydrases and Carbonic Anhydrase Related Proteins in Zebrafish. Int J Mol Sci 2022; 23:ijms23084342. [PMID: 35457162 PMCID: PMC9032886 DOI: 10.3390/ijms23084342] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 11/25/2022] Open
Abstract
During recent decades, zebrafish (Danio rerio) have become one of the most important model organisms in which to study different physiological and biological phenomena. The research field of carbonic anhydrases (CAs) and carbonic anhydrase related proteins (CARPs) is not an exception to this. The best-known function of CAs is the regulation of acid–base balance. However, studies performed with zebrafish, among others, have revealed important roles for these proteins in many other physiological processes, some of which had not yet been predicted in the light of previous studies and suggestions. Examples include roles in zebrafish pigmentation as well as motor coordination. Disruption of the function of these proteins may generate lethal outcomes. In this review, we summarize the current knowledge of CA-related studies performed in zebrafish from 1993–2021 that was obtained from PubMed search.
Collapse
|
2
|
Hughes MC, Perry SF. Does blood flow limit acute hypoxia performance in larval zebrafish (Danio rerio)? J Comp Physiol B 2021; 191:469-478. [PMID: 33580284 DOI: 10.1007/s00360-020-01331-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/22/2020] [Accepted: 11/18/2020] [Indexed: 01/21/2023]
Abstract
Oxygen uptake (ṀO2) in larval zebrafish prior to maturation of the gill relies on cutaneous O2 transfer. Under normoxic conditions, rates of cutaneous O2 transfer are unaffected by haemoglobin availability but are diminished in fish lacking a functional circulatory system, suggesting that internal convection is critically involved in setting the resting ṀO2 in zebrafish larvae, even when relying on cutaneous O2 transfer. The reliance of ṀO2 on blood circulation led to the first objective of the current study, to determine whether loss of internal convection would reduce acute hypoxia performance (as determined by measuring critical PO2; Pcrit) in larval zebrafish under conditions of moderate hypoxia (PO2 = 55 mmHg) at 28.5 and 34 °C. Internal convection was eliminated by preventing development of blood vessels using morpholino knockdown of vascular endothelial growth factor (VEGF); these fish are termed VEGF morphants. Breathing frequency (fV) and heart rate (fH) also were measured (at 28.5 °C) to determine whether any detriment in performance might be linked to cardiorespiratory dysfunction. Although ṀO2 was reduced in the VEGF morphants, there was no significant effect on Pcrit at 28.5 °C. Raising temperature to 34 °C resulted in the VEGF morphants exhibiting a higher Pcrit than the shams, suggesting an impairment of hypoxia tolerance in the morphants at the higher temperature. The usual robust increase in fV during hypoxia was absent or attenuated in VEGF morphants at 4 and 5 days post fertilization (dpf), respectively. Resting fH was reduced in the VEGF morphants and unlike the sham fish, the morphants did not exhibit hypoxic tachycardia at 4 or 5 dpf. The number of cutaneous neuroepithelial cells (presumptive O2 chemoreceptors) was significantly higher in the VEGF morphants and thus the cardiorespiratory impairment in the morphants during hypoxia was unlikely related to inadequate peripheral O2 sensing.
Collapse
Affiliation(s)
- M C Hughes
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N6N5, Canada
| | - S F Perry
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N6N5, Canada.
| |
Collapse
|
3
|
Babić S, Čižmek L, Maršavelski A, Malev O, Pflieger M, Strunjak-Perović I, Popović NT, Čož-Rakovac R, Trebše P. Utilization of the zebrafish model to unravel the harmful effects of biomass burning during Amazonian wildfires. Sci Rep 2021; 11:2527. [PMID: 33510260 PMCID: PMC7844006 DOI: 10.1038/s41598-021-81789-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/11/2021] [Indexed: 12/26/2022] Open
Abstract
Amazonian wildfires in 2019 have raised awareness about rainforest burning due to increased emissions of particulate matter and carbon. In the context of these emissions, by-products of lignin thermal degradation (i.e. methoxyphenols) are often neglected. Methoxyphenols entering the atmosphere may form intermediates with currently unknown reaction mechanisms and toxicity. This study for the first time provides a comprehensive insight into the impact of lignin degradation products [guaiacol, catechol], and their nitrated intermediates [4-nitrocatechol, 4,6-dinitroguaiacol, 5-nitroguaiacol] on zebrafish Danio rerio. Results revealed 4-nitrocatechol and catechol as the most toxic, followed by 4,6DNG > 5NG > GUA. The whole-organism bioassay integrated with molecular modeling emphasized the potential of methoxyphenols to inhibit tyrosinase, lipoxygenase, and carbonic anhydrase, consequently altering embryonic development (i.e. affected sensorial, skeletal, and physiological parameters, pigmentation formation failure, and non-hatching of larvae). The whole-organism bioassay integrated with in silico approach confirmed the harmful effects of lignin degradation products and their intermediates on aquatic organisms, emphasizing the need for their evaluation within ecotoxicity studies focused on aquatic compartments.
Collapse
Affiliation(s)
- Sanja Babić
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia.,Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| | - Lara Čižmek
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia.,Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| | - Aleksandra Maršavelski
- Faculty of Science, Department of Chemistry, University of Zagreb, Horvatovac 102a, Zagreb, Croatia
| | - Olga Malev
- Faculty of Science, Department of Biology, University of Zagreb, Roosevelt square 6, Zagreb, Croatia. .,Laboratory for Biological Diversity, Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia.
| | - Maryline Pflieger
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, Ljubljana, Slovenia
| | - Ivančica Strunjak-Perović
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia.,Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| | - Natalija Topić Popović
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia.,Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| | - Rozelindra Čož-Rakovac
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia.,Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| | - Polonca Trebše
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, Ljubljana, Slovenia.
| |
Collapse
|
4
|
Aggarwal K, Kuka TP, Banik M, Medellin BP, Ngo CQ, Xie D, Fernandes Y, Dangerfield TL, Ye E, Bouley B, Johnson KA, Zhang YJ, Eberhart JK, Que EL. Visible Light Mediated Bidirectional Control over Carbonic Anhydrase Activity in Cells and in Vivo Using Azobenzenesulfonamides. J Am Chem Soc 2020; 142:14522-14531. [PMID: 32623882 PMCID: PMC8063266 DOI: 10.1021/jacs.0c05383] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Two azobenzenesulfonamide molecules with thermally stable cis configurations resulting from fluorination of positions ortho to the azo group are reported that can differentially regulate the activity of carbonic anhydrase in the trans and cis configurations. These fluorinated probes each use two distinct visible wavelengths (520 and 410 or 460 nm) for isomerization with high photoconversion efficiency. Correspondingly, the cis isomer of these systems is highly stable and persistent (as evidenced by structural studies in solid and solution state), permitting regulation of metalloenzyme activity without continuous irradiation. Herein, we use these probes to demonstrate the visible light mediated bidirectional control over the activity of zinc-dependent carbonic anhydrase in solution as an isolated protein, in intact live cells and in vivo in zebrafish during embryo development.
Collapse
Affiliation(s)
- Kanchan Aggarwal
- Department of Chemistry, University of Texas at Austin, 105 E. 24th Street Stop A5300, Austin, Texas 78712, United States
| | - Timothy P Kuka
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, 100 E. 24th Street Stop A5000, Austin, Texas 78712, United States
| | - Mandira Banik
- Department of Chemistry, University of Texas at Austin, 105 E. 24th Street Stop A5300, Austin, Texas 78712, United States
| | - Brenda P Medellin
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, 100 E. 24th Street Stop A5000, Austin, Texas 78712, United States
| | - Chinh Q Ngo
- Department of Chemistry, University of Texas at Austin, 105 E. 24th Street Stop A5300, Austin, Texas 78712, United States
| | - Da Xie
- Department of Chemistry, University of Texas at Austin, 105 E. 24th Street Stop A5300, Austin, Texas 78712, United States
| | - Yohaan Fernandes
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, 100 E. 24th Street Stop A5000, Austin, Texas 78712, United States
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, A4800, Austin, Texas 78712, United States
| | - Tyler L Dangerfield
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, 100 E. 24th Street Stop A5000, Austin, Texas 78712, United States
| | - Elva Ye
- Department of Chemistry, University of Texas at Austin, 105 E. 24th Street Stop A5300, Austin, Texas 78712, United States
| | - Bailey Bouley
- Department of Chemistry, University of Texas at Austin, 105 E. 24th Street Stop A5300, Austin, Texas 78712, United States
| | - Kenneth A Johnson
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, 100 E. 24th Street Stop A5000, Austin, Texas 78712, United States
| | - Yan Jessie Zhang
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, 100 E. 24th Street Stop A5000, Austin, Texas 78712, United States
| | - Johann K Eberhart
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, 100 E. 24th Street Stop A5000, Austin, Texas 78712, United States
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, A4800, Austin, Texas 78712, United States
| | - Emily L Que
- Department of Chemistry, University of Texas at Austin, 105 E. 24th Street Stop A5300, Austin, Texas 78712, United States
| |
Collapse
|
5
|
Lonthair J, Dichiera AM, Esbaugh AJ. Mechanisms of acid-base regulation following respiratory alkalosis in red drum (Sciaenops ocellatus). Comp Biochem Physiol A Mol Integr Physiol 2020; 250:110779. [PMID: 32763467 DOI: 10.1016/j.cbpa.2020.110779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 10/23/2022]
Abstract
Respiratory acidosis and subsequent metabolic compensation are well-studied processes in fish exposed to elevated CO2 (hypercapnia). Yet, such exposures in the marine environment are invariably accompanied by a return of environmental CO2 to atmospheric baselines. This understudied phenomenon has the potential to cause a respiratory alkalosis that would necessitate base excretion. Here we sought to explore this question and the associated physiological mechanisms that may accompany base excretions using the red drum (Sciaenops ocellatus). As expected, when high pCO2 (15,000 μatm CO2) acclimated red drum were transferred to normal pCO2, their net H+ excretion shifted from positive (0.157 ± 0.044 μmol g-1 h-1) to negative (-0.606 ± 0.116 μmol g-1 h-1) in the 2 h post-transfer period. Net H+ excretion returned to control rates during the 3 to 24 h flux period. Gene expression and enzyme activity assays demonstrated that while the acidosis resulted in significant changes in several relevant transporters, no significant changes accompanied the alkalosis phase. Confocal microscopy was used to assess alkalosis-stimulated translocation of V-type H+ ATPase to the basolateral membrane previously seen in other marine species; however, no apparent translocation was observed. Overall, these data demonstrate that fluctuations in environmental CO2 result in both acidic and alkalotic respiratory disturbances; however, red drum maintain sufficient regulatory capacity to accommodate base excretion. Furthermore, this work does not support a role for basolateral VHA translocation in metabolic compensation from a systemic alkalosis in teleosts.
Collapse
Affiliation(s)
- Joshua Lonthair
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX 78373, USA; Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA 01003, USA; Fisheries Resources Division, Southwest Fisheries Science Center, National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), La Jolla, CA 92037, USA.
| | - Angelina M Dichiera
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX 78373, USA
| | - Andrew J Esbaugh
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX 78373, USA
| |
Collapse
|
6
|
Yew HM, Zimmer AM, Perry SF. Assessing intracellular pH regulation in H +-ATPase-rich ionocytes in zebrafish larvae using in vivo ratiometric imaging. J Exp Biol 2020; 223:jeb212928. [PMID: 32029462 DOI: 10.1242/jeb.212928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/28/2020] [Indexed: 12/11/2022]
Abstract
The H+-ATPase-rich (HR) cells of zebrafish larvae are a sub-type of ion-transporting cell located on the yolk sac epithelium that are responsible for Na+ uptake and H+ extrusion. Current models of HR cell ion transport mechanisms in zebrafish larvae are well established, but little is known about the involvement of the various ion transport pathways in regulating intracellular acid-base status. Here, a ratiometric imaging technique was developed and validated to monitor intracellular pH (pHi) continuously in larval zebrafish HR cells in vivo Gene knockdown or CRISPR/Cas9 knockout approaches were used to evaluate the roles of the two principal apical membrane acid excretory pathways, the Na+/H+ exchanger (NHE3b; slc9a3.2) and the H+-ATPase (atpv1aa). Additionally, the role of HR cell cytosolic carbonic anhydrase (CAc) was investigated because of its presumed role in providing H+ for Na+/H+ exchange and H+-ATPase. The temporal pattern and extent of intracellular acidification during exposure of fish to 1% CO2 and the extent of post-CO2 alkalisation were altered markedly in fish experiencing knockdown/knockout of CAc, NHE3b or H+-ATPase. Although there were slight differences among the three knockdown/knockout experiments, the typical response was a greater degree of intracellular acidification during CO2 exposure and a reduced capacity to restore pHi to baseline levels post-hypercapnia. The metabolic alkalosis and subsequent acidification associated with 20 mmol l-1 NH4Cl exposure and its washout were largely unaffected by gene knockdown. Overall, the results suggest markedly different mechanisms of intracellular acid-base regulation in zebrafish HR cells depending on the nature of the acid-base disturbance.
Collapse
Affiliation(s)
- H M Yew
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON KIN 6N5, Canada
| | - A M Zimmer
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON KIN 6N5, Canada
| | - S F Perry
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON KIN 6N5, Canada
| |
Collapse
|
7
|
Lotufo GR, Gust KA, Ballentine ML, Moores LC, Kennedy AJ, Barker ND, Ji Q, Chappell P. Comparative Toxicological Evaluation of UV-Degraded versus Parent-Insensitive Munition Compound 1-Methyl-3-Nitroguanidine in Fathead Minnow. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:612-622. [PMID: 31845397 DOI: 10.1002/etc.4647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/09/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
The US Army is replacing traditional munitions with insensitive munitions resistant to accidental detonation. Although the parent insensitive munition compound nitroguanidine (NQ) is generally not acutely toxic at concentrations >1000 mg/L in aquatic exposures, products formed by intensive ultraviolet (UV) degradation resulted in multiple-order of magnitude increases in toxicity. A methylated congener of NQ, 1-methyl-3-nitroguanidine (MeNQ), is also being assessed for potential use in insensitive munition explosive formulations; therefore, the present study investigated the hazard of parent versus UV-degraded MeNQ using fathead minnows (Pimephales promelas). Although up to 716 mg/L parent MeNQ caused no significant mortality or effects on growth in larval P. promelas fish in 7-d exposures, a similar concentration of MeNQ subjected to UV treatment resulted in 85% mortality. The UV treatment degraded only 3.3% of the MeNQ (5800 mg/L stock, UV-treated for 6 h), indicating that MeNQ degradation products have potentially high toxicity. The parent MeNQ exposure caused significantly decreased transcriptional expression of genes within the significantly enriched insulin metabolic pathway, suggesting antagonism of bioenergetics pathways, which complements observed, although nonsignificant, decreases in body weight. Significant differential transcriptional expression in the UV-degraded MeNQ treatments resulted in significant enrichment of pathways and functions related to the cell cycle, as well as erythrocyte function involved in O2 /CO2 exchange. These functions represent potential mechanistic sources of increased toxicity observed in the UV-degraded MeNQ exposures, which are distinct from previously observed mechanisms underlying increased toxicity of UV-degraded NQ in fish. Environ Toxicol Chem 2020;39:612-622. © 2019 SETAC.
Collapse
Affiliation(s)
- Guilherme R Lotufo
- US Army, Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi
| | - Kurt A Gust
- US Army, Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi
| | - Mark L Ballentine
- US Army, Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi
| | - Lee C Moores
- US Army, Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi
| | - Alan J Kennedy
- US Army, Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi
| | | | - Qing Ji
- Bennett Aerospace, Cary, North Carolina, USA
| | | |
Collapse
|
8
|
Ferreira MS, Wood CM, Harter TS, Dal Pont G, Val AL, Matthews PGD. Metabolic fuel use after feeding in the zebrafish ( Danio rerio): a respirometric analysis. ACTA ACUST UNITED AC 2019; 222:jeb.194217. [PMID: 30573666 DOI: 10.1242/jeb.194217] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/18/2018] [Indexed: 01/17/2023]
Abstract
We used respirometric theory and a new respirometry apparatus to assess, for the first time, the sequential oxidation of the major metabolic fuels during the post-prandial period (10 h) in adult zebrafish fed with commercial pellets (51% protein, 2.12% ration). Compared with a fasted group, fed fish presented peak increases of oxygen consumption (78%), and carbon dioxide (80%) and nitrogen excretion rates (338%) at 7-8 h, and rates remained elevated at 10 h. The respiratory quotient increased slightly (0.89 to 0.97) whereas the nitrogen quotient increased greatly (0.072 to 0.140), representing peak amino acid/protein usage (52%) at this time. After 48-h fasting, endogenous carbohydrate and lipid were the major fuels, but in the first few hours after feeding, carbohydrate oxidation increased greatly, fueling the first part of the post-prandial specific dynamic action, whereas increased protein/amino acid usage predominated from 6 h onwards. Excess dietary protein/amino acids were preferentially metabolized for energy production.
Collapse
Affiliation(s)
- Marcio S Ferreira
- Laboratório de Ecofisiologia e Evolução Molecular, Instituto Nacional de Pesquisas da Amazônia (INPA), 69.067-375 Manaus, Brasil
| | - Chris M Wood
- Laboratório de Ecofisiologia e Evolução Molecular, Instituto Nacional de Pesquisas da Amazônia (INPA), 69.067-375 Manaus, Brasil.,Department of Zoology, University of British Columbia, Vancouver, Canada V6T 1Z4
| | - Till S Harter
- Department of Zoology, University of British Columbia, Vancouver, Canada V6T 1Z4
| | - Giorgi Dal Pont
- Department of Zoology, University of British Columbia, Vancouver, Canada V6T 1Z4.,Grupo Integrado de Aquicultura e Estudos Ambientais, Universidade Federal do Paraná (UFPR), 80.060-000 Curitiba, Brasil
| | - Adalberto L Val
- Laboratório de Ecofisiologia e Evolução Molecular, Instituto Nacional de Pesquisas da Amazônia (INPA), 69.067-375 Manaus, Brasil
| | - Philip G D Matthews
- Department of Zoology, University of British Columbia, Vancouver, Canada V6T 1Z4
| |
Collapse
|
9
|
Ma J, Qiao L, Ji L, Ren B, Hu Y, Zhao R, Ren Z. The online monitoring and assessment of thallium stress using oxygen consumption rate and carbon dioxide excretion rate of zebrafish (Danio rerio). CHEMOSPHERE 2019; 216:103-109. [PMID: 30366264 DOI: 10.1016/j.chemosphere.2018.10.127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 06/08/2023]
Abstract
An online monitoring and assessment system of metabolism to measure oxygen consumption rate (OC) and carbon dioxide (CO2) excretion rate (CR) of zebrafish (Danio rerio) was used to illustrate changes in stressful states in 15 days' (360 h) 0.1 μg/L Tl exposure. Tl had a significant inhibition on zebrafish OC and CR (p < 0.01). OC was more suitable for Tl stress assessment than CR, considering that the OC response was more stable and discernible from the control comparing with CR. However, CR is a suitable alternative to characterize toxic effects on different metabolic substrates. Both OC and CR were integrated to present the respiratory quotient (RQ) analysis. RQ was efficient in differentiating between CO2 produced by respiration in the control group (RQ less than 0.7) and CO2 used for urination or stored in tissues after Tl exposure (some RQs larger than 1.0). Circadian rhythm was observed in RC and CR in the controls and persisted in 0.1 μg/L Tl treatments. The rhythm was relatively more disordered in CR. OC and CR would be suitable for indicating physiological stress in the online system as sensitive physiological indices.
Collapse
Affiliation(s)
- Jingchun Ma
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan, 250014, People's Republic of China
| | - Linlin Qiao
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan, 250014, People's Republic of China
| | - Lizhen Ji
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan, 250014, People's Republic of China
| | - Baixiang Ren
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan, 250014, People's Republic of China
| | - Yongyuan Hu
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan, 250014, People's Republic of China
| | - Ruibin Zhao
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan, 250014, People's Republic of China
| | - Zongming Ren
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan, 250014, People's Republic of China.
| |
Collapse
|
10
|
Hughes MC, Zimmer AM, Perry SF. Role of internal convection in respiratory gas transfer and aerobic metabolism in larval zebrafish ( Danio rerio). Am J Physiol Regul Integr Comp Physiol 2019; 316:R255-R264. [PMID: 30601704 DOI: 10.1152/ajpregu.00315.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Purely diffusive O2 transport typically is insufficient to sustain aerobic metabolism in most multicellular organisms. In animals that are small enough, however, a high surface-to-volume ratio may allow passive diffusion alone to supply sufficient O2 transfer. The purpose of this study was to explore the impacts of internal convection on respiratory gas transfer in a small complex organism, the larval zebrafish ( Danio rerio). Specifically, we tested the hypothesis that internal convection is required for the normal transfer of the respiratory gases O2 and CO2 and maintenance of resting aerobic metabolic rate in larvae at 4 days postfertilization (dpf). Morpholino knockdown of the vascular endothelial growth factor (VEGF) or cardiac troponin T (TNNT2) proteins allowed an examination of gas transfer in two independent models lacking internal convection. With the use of a scanning micro-optrode technique to measure regional epithelial O2 fluxes ( Jo2), it was demonstrated that larvae lacking convection exhibited reduced Jo2 in regions spanning the head to the trunk. Moreover, the acute loss of internal convection caused by heart stoppage resulted in reduced rates of cutaneous Jo2, an effect that was reversed upon the restoration of internal convection. With the use of whole body respirometry, it was shown that loss of internal convection was associated with reduced resting rates of O2 consumption and CO2 excretion in larvae at 4 dpf. The results of these experiments clearly demonstrate that internal convection is required to maintain resting rates of respiratory gas transfer in larval zebrafish.
Collapse
Affiliation(s)
- Malcolm C Hughes
- Department of Biology, University of Ottawa , Ottawa, Ontario , Canada
| | - Alex M Zimmer
- Department of Biology, University of Ottawa , Ottawa, Ontario , Canada
| | - Steve F Perry
- Department of Biology, University of Ottawa , Ottawa, Ontario , Canada
| |
Collapse
|
11
|
Zimmer AM, Wright PA, Wood CM. Ammonia and urea handling by early life stages of fishes. ACTA ACUST UNITED AC 2018; 220:3843-3855. [PMID: 29093184 DOI: 10.1242/jeb.140210] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nitrogen metabolism in fishes has been a focus of comparative physiologists for nearly a century. In this Review, we focus specifically on early life stages of fishes, which have received considerable attention in more recent work. Nitrogen metabolism and excretion in early life differs fundamentally from that of juvenile and adult fishes because of (1) the presence of a chorion capsule in embryos that imposes a limitation on effective ammonia excretion, (2) an amino acid-based metabolism that generates a substantial ammonia load, and (3) the lack of a functional gill, which is the primary site of nitrogen excretion in juvenile and adult fishes. Recent findings have shed considerable light on the mechanisms by which these constraints are overcome in early life. Perhaps most importantly, the discovery of Rhesus (Rh) glycoproteins as ammonia transporters and their expression in ion-transporting cells on the skin of larval fishes has transformed our understanding of ammonia excretion by fishes in general. The emergence of larval zebrafish as a model species, together with genetic knockdown techniques, has similarly advanced our understanding of ammonia and urea metabolism and excretion by larval fishes. It has also now been demonstrated that ammonia excretion is one of the primary functions of the developing gill in rainbow trout larvae, leading to new hypotheses regarding the physiological demands driving gill development in larval fishes. Here, we highlight and discuss the dramatic changes in nitrogen handling that occur over early life development in fishes.
Collapse
Affiliation(s)
- Alex M Zimmer
- Department of Biology, University of Ottawa, Ottawa, ON, Canada K1N 6N57
| | - Patricia A Wright
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4.,Department of Biology, McMaster University, Hamilton, ON, Canada L8S 4K1
| |
Collapse
|
12
|
Sulukan E, Köktürk M, Ceylan H, Beydemir Ş, Işik M, Atamanalp M, Ceyhun SB. An approach to clarify the effect mechanism of glyphosate on body malformations during embryonic development of zebrafish (Daino rerio). CHEMOSPHERE 2017; 180:77-85. [PMID: 28391155 DOI: 10.1016/j.chemosphere.2017.04.018] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/01/2017] [Accepted: 04/03/2017] [Indexed: 06/07/2023]
Abstract
In this study, it has been investigated that the effects of glyphosate, which is a herbicide within organophosphate and unselective widely used in agriculture on enzyme activity of carbonic anhydrase, production of reactive oxygen species, cell apoptosis and body morphology during the embryonic development of zebrafish. To this end, it has been treated embryo with 1, 5, 10 and 100 mg/L gyphosate at 96 h. The embryos treated with glyphosate from 4 hpf were evaluated by considering the survival rates, hatching rates, body malformations under the stereo microscope in 24, 48, 72 and 96th hours. In order to clarify the mechanism of the abnormalities ROS, enzyme activity of carbonic anhydrase and cellular death were detected end of the 96th hour. The data obtained in the present study have shown that glyphosate treatment inhibited CA activity, caused production of ROS especially branchial regions, triggered cellular apoptosis and caused several types of malformations including pericardial edema, yolk sac edema, spinal curvature and body malformation in a dose-dependent manner. As a conclusion, in light of present and previous studies, we can deduce that (1) the probable reason of ROS production was CA inhibition via decreasing of CO2 extraction and developing respiratory acidosis (however, one needs to clarify), (2) abundance of ROS triggered cellular apoptosis and (3) as a result of cellular apoptosis malformations increased. These data will enable us to further understand potential toxic mechanism of glyphosate on embryonic development stage of zebrafish and may be useful for assessment in the toxicology studies.
Collapse
Affiliation(s)
- Ekrem Sulukan
- Atatürk University, Fisheries Faculty, Aquaculture Department, Erzurum, Turkey
| | - Mine Köktürk
- Atatürk University, Fisheries Faculty, Aquaculture Department, Erzurum, Turkey; Atatürk University, Fisheries Faculty, Aquatic Biotechnology Laboratory, Erzurum, Turkey
| | - Hamid Ceylan
- Atatürk University, Science Faculty, Molecular Biology and Genetic Department, Erzurum, Turkey
| | - Şükrü Beydemir
- Anadolu University, Faculty of Pharmacy, Department of Biochemistry, Eskişehir, Turkey
| | - Mesut Işik
- Harran University, Department of Medical Services and Techniques, Health Services Vocational School, Şanlıurfa, Turkey
| | - Muhammed Atamanalp
- Atatürk University, Fisheries Faculty, Aquaculture Department, Erzurum, Turkey
| | - Saltuk Buğrahan Ceyhun
- Atatürk University, Fisheries Faculty, Aquaculture Department, Erzurum, Turkey; Atatürk University, Fisheries Faculty, Aquatic Biotechnology Laboratory, Erzurum, Turkey.
| |
Collapse
|
13
|
Talbot K, Kwong RWM, Gilmour KM, Perry SF. The water channel aquaporin-1a1 facilitates movement of CO₂ and ammonia in zebrafish (Danio rerio) larvae. ACTA ACUST UNITED AC 2017; 218:3931-40. [PMID: 26677259 DOI: 10.1242/jeb.129759] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The present study tested the hypothesis that zebrafish (Danio rerio) aquaporin-1a1 (AQP1a1) serves as a multi-functional channel for the transfer of the small gaseous molecules, CO2 and ammonia, as well as water, across biological membranes. Zebrafish embryos were microinjected with a translation-blocking morpholino oligonucleotide targeted to AQP1a1. Knockdown of AQP1a1 significantly reduced rates of CO2 and ammonia excretion, as well as water fluxes, in larvae at 4 days post fertilization (dpf). Because AQP1a1 is expressed both in ionocytes present on the body surface and in red blood cells, the haemolytic agent phenylhydrazine was used to distinguish between the contributions of AQP1a1 to gas transfer in these two locations. Phenylhydrazine treatment had no effect on AQP1a1-linked excretion of CO2 or ammonia, providing evidence that AQP1a1 localized to the yolk sac epithelium, rather than red blood cell AQP1a1, is the major site of CO2 and ammonia movements. The possibility that AQP1a1 and the rhesus glycoprotein Rhcg1, which also serves as a dual CO2 and ammonia channel, act in concert to facilitate CO2 and ammonia excretion was explored. Although knockdown of each protein did not affect the abundance of mRNA and protein of the other protein under control conditions, impairment of ammonia excretion by chronic exposure to high external ammonia triggered a significant increase in the abundance of AQP1a1 mRNA and protein in 4 dpf larvae experiencing Rhcg1 knockdown. Collectively, these results suggest that AQP1a1 in zebrafish larvae facilitates the movement of CO2 and ammonia, as well as water, in a physiologically relevant fashion.
Collapse
Affiliation(s)
- Krystle Talbot
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Raymond W M Kwong
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Kathleen M Gilmour
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Steve F Perry
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
14
|
Tollefsen KE, Song Y, Kleiven M, Mahrosh U, Meland S, Rosseland BO, Teien HC. Transcriptional changes in Atlantic salmon (Salmo salar) after embryonic exposure to road salt. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 169:58-68. [PMID: 26517176 DOI: 10.1016/j.aquatox.2015.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/02/2015] [Accepted: 10/04/2015] [Indexed: 06/05/2023]
Abstract
Road salt is extensively used as a deicing chemical in road maintenance during winter and has in certain areas of the world led to density stratifications in lakes and ponds, and adversely impacted aquatic organisms in the recipients of the road run-off. Aquatic vertebrates such as fish have been particularly sensitive during fertilisation, as the fertilisation of eggs involves rapid uptake of the surrounding water, reduction in egg swelling and in ovo exposure to high road salt concentrations. The present study aimed to identify the persistent molecular changes occurring in Atlantic salmon (Salmo salar) eggs after 24h exposure to high concentrations (5000 mg/L) of road salt at fertilisation. The global transcriptional changes were monitored by a 60k salmonid microarray at the eyed egg stage (cleavage stage, 255 degree days after fertilisation) and identified a high number of transcripts being differentially regulated. Functional enrichment, pathway and gene-gene interaction analysis identified that the differentially expressed genes (DEGs) were mainly associated with toxiciologically relevant processes involved in osmoregulation, ionregulation, oxidative stress, metabolism (energy turnover), renal function and developmental in the embryos. Quantitative rtPCR analysis of selected biomarkers, identified by global transcriptomics, were monitored in the eggs for an extended range of road salt concentrations (0, 50, 100, 500 and 5000 mg/L) and revealed a positive concentration-dependent increase in cypa14, a gene involved in lipid turnover and renal function, and nav1, a gene involved in neuraxonal development. Biomarkers for osmoregulatory responses such as atp1a2, the gene encoding the main sodium/potassium ATP-fueled transporter for chloride ions, and txdc9, a gene involved in regulation of cell redox homeostasis (oxidative stress), displayed apparent concentration-dependency with exposure, although large variance in the control group precluded robust statistical discrimination between the groups. A No Transcriptional Effect Level (NOTEL) of 50mg/L road salt was found to be several orders of magnitude lower than the adverse effects documented in developing fish embryos elsewhere, albeit at concentrations realistic in lotic systems receiving run-off from road salt. It remains to be determined whether these transcriptional changes may cause adverse effects in fish at ecologically relevant exposure concentrations of road salt.
Collapse
Affiliation(s)
- Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science & Technology, Dept. for Environmental Sciences, P.O. Box 5003, N-1432 Ås, Norway; Norwegian University of Life Sciences (NMBU), Centre for Environmental Radioactivity (CERAD CoE), Isotope Laboratory, P.O. Box 5003, N-1432 Ås, Norway.
| | - You Song
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo, Norway; Norwegian University of Life Sciences (NMBU), Centre for Environmental Radioactivity (CERAD CoE), Isotope Laboratory, P.O. Box 5003, N-1432 Ås, Norway
| | - Merethe Kleiven
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science & Technology, Dept. for Environmental Sciences, P.O. Box 5003, N-1432 Ås, Norway; Norwegian University of Life Sciences (NMBU), Centre for Environmental Radioactivity (CERAD CoE), Isotope Laboratory, P.O. Box 5003, N-1432 Ås, Norway
| | - Urma Mahrosh
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science & Technology, Dept. for Environmental Sciences, P.O. Box 5003, N-1432 Ås, Norway
| | - Sondre Meland
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science & Technology, Dept. for Environmental Sciences, P.O. Box 5003, N-1432 Ås, Norway; Norwegian Public Roads Administration, Environmental Assessment Section, P.O. Box 8142 Dep, N-0033 Oslo, Norway
| | - Bjørn Olav Rosseland
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science & Technology, Dept. for Environmental Sciences, P.O. Box 5003, N-1432 Ås, Norway; Norwegian University of Life Sciences (NMBU), Centre for Environmental Radioactivity (CERAD CoE), Isotope Laboratory, P.O. Box 5003, N-1432 Ås, Norway
| | - Hans-Christian Teien
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science & Technology, Dept. for Environmental Sciences, P.O. Box 5003, N-1432 Ås, Norway; Norwegian University of Life Sciences (NMBU), Centre for Environmental Radioactivity (CERAD CoE), Isotope Laboratory, P.O. Box 5003, N-1432 Ås, Norway
| |
Collapse
|
15
|
Esbaugh AJ, Secor SM, Grosell M. Characterization of carbonic anhydrase XIII in the erythrocytes of the Burmese python, Python molurus bivittatus. Comp Biochem Physiol B Biochem Mol Biol 2015; 187:71-7. [PMID: 26005204 DOI: 10.1016/j.cbpb.2015.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/08/2015] [Accepted: 05/11/2015] [Indexed: 11/28/2022]
Abstract
Carbonic anhydrase (CA) is one of the most abundant proteins found in vertebrate erythrocytes with the majority of species expressing a low activity CA I and high activity CA II. However, several phylogenetic gaps remain in our understanding of the expansion of cytoplasmic CA in vertebrate erythrocytes. In particular, very little is known about isoforms from reptiles. The current study sought to characterize the erythrocyte isoforms from two squamate species, Python molurus and Nerodia rhombifer, which was combined with information from recent genome projects to address this important phylogenetic gap. Obtained sequences grouped closely with CA XIII in phylogenetic analyses. CA II mRNA transcripts were also found in erythrocytes, but found at less than half the levels of CA XIII. Structural analysis suggested similar biochemical activity as the respective mammalian isoforms, with CA XIII being a low activity isoform. Biochemical characterization verified that the majority of CA activity in the erythrocytes was due to a high activity CA II-like isoform; however, titration with copper supported the presence of two CA pools. The CA II-like pool accounted for 90 % of the total activity. To assess potential disparate roles of these isoforms a feeding stress was used to up-regulate CO2 excretion pathways. Significant up-regulation of CA II and the anion exchanger was observed; CA XIII was strongly down-regulated. While these results do not provide insight into the role of CA XIII in the erythrocytes, they do suggest that the presence of two isoforms is not simply a case of physiological redundancy.
Collapse
Affiliation(s)
- A J Esbaugh
- Department of Marine Science, University of Texas at Austin, Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78418, USA.
| | - S M Secor
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487-0344, USA
| | - M Grosell
- Division of Marine Biology and Fisheries, University of Miami, Rosenstiel School of Marine and Atmospheric Science, 4600 Rickenbacker Causeway, Miami, FL 33149, USA
| |
Collapse
|
16
|
Huang CY, Lin CH, Lin HC. Development of gas exchange and ion regulation in two species of air-breathing fish, Betta splendens and Macropodus opercularis. Comp Biochem Physiol A Mol Integr Physiol 2015; 185:24-32. [PMID: 25783787 DOI: 10.1016/j.cbpa.2015.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 03/08/2015] [Accepted: 03/09/2015] [Indexed: 11/30/2022]
Abstract
Aquatic air-breathing anabantoids, a group of fish species characterized by the presence of a labyrinth organ and some gills, exhibit morphological variations. This study aimed to examine whether unequal gill growth begins during the early stages and described the sequence of the early gill developmental events in Betta splendens and Macropodus opercularis. To determine when the ion regulatory and gas exchange abilities first appear in the gills, mitochondria-rich cells (MRCs) and neuroepithelial cells (NECs) were examined in young B. splendens. To evaluate the relative importance of the gills and the labyrinth organ under different levels of oxygen uptake stress, the levels of carbonic anhydrase II (CAII) and Na(+)/K(+)-ATPase (NKA) protein expressions in 2 gills and the labyrinth organ were examined in M. opercularis. We found that the first 3 gills developed earlier than the 4th gill in both species, an indication that the morphological variation begins early in life. In B. splendens, the MRCs and NECs clearly appeared in the first 3 gills at 4 dph and were first found in the 4th gill until 11 dph. The oxygen-sensing ability of the gills was concordant with the ionoregulatory function. In M. opercularis, the hypoxic group had a significantly higher air-breathing frequency. CAII protein expression was higher in the labyrinth organ in the hypoxic group. The gills exhibited increased NKA protein expression in the hypoxic and restricted groups, respectively. Functional plasticity in CAII and NKA protein expressions was found between the gills and the labyrinth organ in adult M. opercularis.
Collapse
Affiliation(s)
- Chun-Yen Huang
- Department of Life Science, Tunghai University, Taichung 40704, Taiwan; Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan; Center for Tropical Ecology and Biodiversity, Tunghai University, Taichung 40704, Taiwan
| | - Cheng-Huang Lin
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Hui-Chen Lin
- Department of Life Science, Tunghai University, Taichung 40704, Taiwan; Center for Tropical Ecology and Biodiversity, Tunghai University, Taichung 40704, Taiwan.
| |
Collapse
|
17
|
Miller S, Pollack J, Bradshaw J, Kumai Y, Perry SF. Cardiac responses to hypercapnia in larval zebrafish (Danio rerio): the links between CO2 chemoreception, catecholamines and carbonic anhydrase. ACTA ACUST UNITED AC 2014; 217:3569-78. [PMID: 25063853 DOI: 10.1242/jeb.107987] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The ontogeny of carbon dioxide (CO2) sensing in zebrafish (Danio rerio) has not been examined. In this study, CO2-mediated increases in heart rate were used to gauge the capacity of zebrafish larvae to sense CO2. CO2 is thought to be detected via neuroepithelial cells (NECs), which are homologous to mammalian carotid body glomus cells. Larvae at 5 days post-fertilization (d.p.f.) exhibited tachycardia when exposed for 30 min to 0.75% CO2 (~5.63 mmHg); at 7 d.p.f., tachycardia was elicited by 0.5% CO2 (~3.75 mmHg). Based on pharmacological evidence using β-adrenergic receptor (β-AR) antagonists, and confirmed by β1-AR translational gene knockdown using morpholinos, the reflex tachycardia accompanying hypercapnia was probably mediated by the interaction of catecholamines with cardiac β1 receptors. Because the cardiac response to hypercapnia was abolished by the ganglionic blocker hexamethonium, it is probable that the reflex cardio-acceleration was mediated by catecholamines derived from sympathetic adrenergic neurons. Owing to its likely role in facilitating intracellular acidification during exposure to hypercapnia, it was hypothesized that carbonic anhydrase (CA) is involved in CO2 sensing, and that inhibition of CA activity would blunt the downstream responses. Indeed, the cardiac response to hypercapnia (0.75% CO2) was reduced in fish at 5 d.p.f. exposed to acetazolamide, a CA inhibitor, and in fish experiencing zCAc (CA2-like a) knockdown. Successful knockdown of zCAc was confirmed by CA activity measurements, western blotting and immunocytochemistry. Co-injection of embryos with zCAc morpholino and mRNA modified at the morpholino binding site restored normal levels of CA activity and protein levels, and restored (rescued) the usual cardiac responses to hypercapnia. These data, combined with the finding that zCAc is expressed in NECs located on the skin, suggest that the afferent limb of the CO2-induced cardiac reflex in zebrafish larvae is initiated by coetaneous CO2-sensing neuroepithelial cells.
Collapse
Affiliation(s)
- Scott Miller
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada, K1N 6N5
| | - Jacob Pollack
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada, K1N 6N5
| | - Julia Bradshaw
- Department of Fisheries and Oceans, Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, BC, Canada, V9T 6N7
| | - Yusuke Kumai
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Steve F Perry
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada, K1N 6N5
| |
Collapse
|
18
|
Watson O, Novodvorsky P, Gray C, Rothman AMK, Lawrie A, Crossman DC, Haase A, McMahon K, Gering M, Van Eeden FJM, Chico TJA. Blood flow suppresses vascular Notch signalling via dll4 and is required for angiogenesis in response to hypoxic signalling. Cardiovasc Res 2013; 100:252-61. [PMID: 23812297 PMCID: PMC3797625 DOI: 10.1093/cvr/cvt170] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Aims The contribution of blood flow to angiogenesis is incompletely understood. We examined the effect of blood flow on Notch signalling in the vasculature of zebrafish embryos, and whether blood flow regulates angiogenesis in zebrafish with constitutively up-regulated hypoxic signalling. Methods and results Developing zebrafish (Danio rerio) embryos survive via diffusion in the absence of circulation induced by knockdown of cardiac troponin T2 or chemical cardiac cessation. The absence of blood flow increased vascular Notch signalling in 48 h post-fertilization old embryos via up-regulation of the Notch ligand dll4. Despite this, patterning of the intersegmental vessels is not affected by absent blood flow. We therefore examined homozygous vhl mutant zebrafish that have constitutively up-regulated hypoxic signalling. These display excessive and aberrant angiogenesis from 72 h post-fertilization, with significantly increased endothelial number, vessel diameter, and length. The absence of blood flow abolished these effects, though normal vessel patterning was preserved. Conclusion We show that blood flow suppresses vascular Notch signalling via down-regulation of dll4. We have also shown that blood flow is required for angiogenesis in response to hypoxic signalling but is not required for normal vessel patterning. These data indicate important differences in hypoxia-driven vs. developmental angiogenesis.
Collapse
Affiliation(s)
- Oliver Watson
- Lab D38, MRC Centre for Developmental and Biomedical Genetics, University of Sheffield, Firth Court, Sheffield S10 2TN, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
CO2-driven seawater acidification differentially affects development and molecular plasticity along life history of fish (Oryzias latipes). Comp Biochem Physiol A Mol Integr Physiol 2013; 165:119-30. [DOI: 10.1016/j.cbpa.2013.02.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 02/04/2013] [Accepted: 02/06/2013] [Indexed: 01/09/2023]
|
20
|
Carbonic anhydrase 5 regulates acid-base homeostasis in zebrafish. PLoS One 2012; 7:e39881. [PMID: 22745834 PMCID: PMC3382148 DOI: 10.1371/journal.pone.0039881] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 05/28/2012] [Indexed: 11/19/2022] Open
Abstract
The regulation of the acid-base balance in cells is essential for proper cellular homeostasis. Disturbed acid-base balance directly affects cellular physiology, which often results in various pathological conditions. In every living organism, the protein family of carbonic anhydrases regulate a broad variety of homeostatic processes. Here we describe the identification, mapping and cloning of a zebrafish carbonic anhydrase 5 (ca5) mutation, collapse of fins (cof), which causes initially a collapse of the medial fins followed by necrosis and rapid degeneration of the embryo. These phenotypical characteristics can be mimicked in wild-type embryos by acetazolamide treatment, suggesting that CA5 activity in zebrafish is essential for a proper development. In addition we show that CA5 regulates acid-base balance during embryonic development, since lowering the pH can compensate for the loss of CA5 activity. Identification of selective modulators of CA5 activity could have a major impact on the development of new therapeutics involved in the treatment of a variety of disorders.
Collapse
|
21
|
Hu MY, Tseng YC, Stumpp M, Gutowska MA, Kiko R, Lucassen M, Melzner F. Elevated seawater Pco2 differentially affects branchial acid-base transporters over the course of development in the cephalopod Sepia officinalis. Am J Physiol Regul Integr Comp Physiol 2011; 300:R1100-14. [DOI: 10.1152/ajpregu.00653.2010] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The specific transporters involved in maintenance of blood pH homeostasis in cephalopod molluscs have not been identified to date. Using in situ hybridization and immunohistochemical methods, we demonstrate that Na+/K+-ATPase ( soNKA), a V-type H+-ATPase ( soV-HA), and Na+/HCO3− cotransporter ( soNBC) are colocalized in NKA-rich cells in the gills of Sepia officinalis. mRNA expression patterns of these transporters and selected metabolic genes were examined in response to moderately elevated seawater Pco2 (0.16 and 0.35 kPa) over a time course of 6 wk in different ontogenetic stages. The applied CO2 concentrations are relevant for ocean acidification scenarios projected for the coming decades. We determined strong expression changes in late-stage embryos and hatchlings, with one to three log2-fold reductions in soNKA, soNBCe, socCAII, and COX. In contrast, no hypercapnia-induced changes in mRNA expression were observed in juveniles during both short- and long-term exposure. However, a transiently increased ion regulatory demand was evident during the initial acclimation reaction to elevated seawater Pco2. Gill Na+/K+-ATPase activity and protein concentration were increased by ∼15% during short (2–11 days) but not long-term (42-days) exposure. Our findings support the hypothesis that the energy budget of adult cephalopods is not significantly compromised during long-term exposure to moderate environmental hypercapnia. However, the downregulation of ion regulatory and metabolic genes in late-stage embryos, taken together with a significant reduction in somatic growth, indicates that cephalopod early life stages are challenged by elevated seawater Pco2.
Collapse
Affiliation(s)
- Marian Y. Hu
- Biological Oceanography, Leibniz-Institute of Marine Sciences (IFM-GEOMAR), Kiel, Germany
| | - Yung-Che Tseng
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, Taiwan, Republic of China
| | - Meike Stumpp
- Biological Oceanography, Leibniz-Institute of Marine Sciences (IFM-GEOMAR), Kiel, Germany
| | | | - Rainer Kiko
- Biological Oceanography, Leibniz-Institute of Marine Sciences (IFM-GEOMAR), Kiel, Germany
| | - Magnus Lucassen
- Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
| | - Frank Melzner
- Biological Oceanography, Leibniz-Institute of Marine Sciences (IFM-GEOMAR), Kiel, Germany
| |
Collapse
|
22
|
Huang CY, Lin HC. The effect of acidity on gill variations in the aquatic air-breathing fish, Trichogaster lalius. Comp Biochem Physiol A Mol Integr Physiol 2011; 158:61-71. [DOI: 10.1016/j.cbpa.2010.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 09/06/2010] [Accepted: 09/07/2010] [Indexed: 11/27/2022]
|
23
|
Pelster B, Gittenberger‐de Groot A, Poelmann R, Rombough P, Schwerte T, Thompson M. Functional Plasticity of the Developing Cardiovascular System: Examples from Different Vertebrates. Physiol Biochem Zool 2010; 83:775-91. [DOI: 10.1086/656004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Perry SF, Braun MH, Noland M, Dawdy J, Walsh PJ. Do zebrafish Rh proteins act as dual ammonia-CO2 channels? ACTA ACUST UNITED AC 2010; 313:618-21. [DOI: 10.1002/jez.631] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Knight K. ZEBRAFISH EMBRYOS EXCRETE CO2 EARLY. J Exp Biol 2009. [DOI: 10.1242/jeb.040451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|