1
|
Gladman NW, Askew GN. The contractile efficiency of the mantle muscle of European common cuttlefish (Sepia officinalis) during cyclical contractions. J Exp Biol 2024; 227:jeb249297. [PMID: 39297692 DOI: 10.1242/jeb.249297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/05/2024] [Indexed: 11/09/2024]
Abstract
Escape jet propulsion swimming in cuttlefish (Sepia officinalis) is powered by the circular muscles surrounding the mantle cavity. This mode of locomotion is energetically costly compared with undulatory swimming. The energetic cost of swimming is determined by the mechanical power requirements and the efficiency with which chemical energy is transferred into useful mechanical work. One step in this energy transduction process is the transfer of energy from ATP hydrolysis into mechanical work by the muscles. Here, we determined the efficiency of this step, termed the contractile efficiency. Muscle preparations from the circular muscles of the mantle cavity were subjected to sinusoidal length changes at different cycle frequencies, and stimulated with a phase and duration that maximised initial net work. Changes in ATP, arginine phosphate and octopine content between control and exercised muscles were determined and used to calculate the energy released from ATP hydrolysis (Emet). The maximum contractile efficiency (the ratio of net work to Emet) was 0.37, occurring at the same cycle frequency at which mechanical power was maximal and that was used during jet propulsion swimming, suggesting that cuttlefish muscle is adapted to generate muscular power efficiently. The overall efficiency of cuttlefish jet propulsion swimming was estimated to be 0.17, which is broadly comparable to that measured during animal flight and human-powered pedalled locomotion, indicating the high energetic costs of jet propulsion swimming are not due to inefficient locomotion per se; instead, they result from the relatively high mechanical power requirements.
Collapse
Affiliation(s)
- Nicholas W Gladman
- School of Biomedical Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT, UK
| | - Graham N Askew
- School of Biomedical Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT, UK
| |
Collapse
|
2
|
Gladman NW, Elemans CPH. Male and female syringeal muscles exhibit superfast shortening velocities in zebra finches. J Exp Biol 2024; 227:jeb246330. [PMID: 38563308 PMCID: PMC11058336 DOI: 10.1242/jeb.246330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
Vocalisations play a key role in the communication behaviour of many vertebrates. Vocal production requires extremely precise motor control, which is executed by superfast vocal muscles that can operate at cycle frequencies over 100 Hz and up to 250 Hz. The mechanical performance of these muscles has been quantified with isometric performance and the workloop technique, but owing to methodological limitations we lack a key muscle property characterising muscle performance, the force-velocity relationship. Here, we quantified the force-velocity relationship in zebra finch superfast syringeal muscles using the isovelocity technique and tested whether the maximal shortening velocity is different between males and females. We show that syringeal muscles exhibit high maximal shortening velocities of 25L0 s-1 at 30°C. Using Q10-based extrapolation, we estimate they can reach 37-42L0 s-1 on average at body temperature, exceeding other vocal and non-avian skeletal muscles. The increased speed does not adequately compensate for reduced force, which results in low power output. This further highlights the importance of high-frequency operation in these muscles. Furthermore, we show that isometric properties positively correlate with maximal shortening velocities. Although male and female muscles differ in isometric force development rates, maximal shortening velocity is not sex dependent. We also show that cyclical methods to measure force-length properties used in laryngeal studies give the same result as conventional stepwise methodologies, suggesting either approach is appropriate. We argue that vocal behaviour may be affected by the high thermal dependence of superfast vocal muscle performance.
Collapse
Affiliation(s)
- Nicholas W. Gladman
- Vocal Neuromechanics Lab, Sound Communication and Behaviour Group, Department of Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Coen P. H. Elemans
- Vocal Neuromechanics Lab, Sound Communication and Behaviour Group, Department of Biology, University of Southern Denmark, 5230 Odense M, Denmark
| |
Collapse
|
3
|
Castro AA, Garland T, Ahmed S, Holt NC. Trade-offs in muscle physiology in selectively bred high runner mice. J Exp Biol 2022; 225:jeb244083. [PMID: 36408738 PMCID: PMC9789404 DOI: 10.1242/jeb.244083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 10/25/2022] [Indexed: 11/22/2022]
Abstract
A trade-off between locomotor speed and endurance occurs in various taxa, and is thought to be underpinned by a muscle-level trade-off. Among four replicate high runner (HR) lines of mice, selectively bred for voluntary wheel-running behavior, a negative correlation between average running speed and time spent running has evolved. We hypothesize that this trade-off is due to changes in muscle physiology. We studied the HR lines at generation 90, at which time one line (L3) is fixed for the mini-muscle phenotype, another is polymorphic (L6) and the others (L7, L8) lack mini-muscle individuals. We used in situ preparations to quantify the contractile properties of the triceps surae muscle complex. Maximal shortening velocity varied significantly, being lowest in mini-muscle mice (L3 mini=25.2 mm s-1, L6 mini=25.5 mm s-1), highest in normal-muscle mice L6 and L8 (40.4 and 50.3 mm s-1, respectively) and intermediate in normal-muscle L7 mice (37.2 mm s-1). Endurance, measured both as the slope of the decline in force and the proportion of initial force that could be sustained, also varied significantly. The slope was shallowest in mini-muscle mice (L3 mini=-0.00348, L6 mini=-0.00238), steepest in lines L6 and L8 (-0.01676 and -0.01853), and intermediate in L7 (-0.01145). Normalized sustained force was highest in mini-muscle mice (L3 mini=0.98, L6 mini=0.92) and lowest in L8 (0.36). There were significant, negative correlations between velocity and endurance metrics, indicating a muscle-level trade-off. However, this muscle-level trade-off does not seem to underpin the organismal-level speed and endurance trade-off previously reported as the ordering of the lines is reversed: the lines that run the fastest for the least time have the lowest muscle complex velocity and highest endurance.
Collapse
Affiliation(s)
- Alberto A. Castro
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Saad Ahmed
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Natalie C. Holt
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
4
|
Krishnan K, Garde B, Bennison A, Cole NC, Cole EL, Darby J, Elliott KH, Fell A, Gómez-Laich A, de Grissac S, Jessopp M, Lempidakis E, Mizutani Y, Prudor A, Quetting M, Quintana F, Robotka H, Roulin A, Ryan PG, Schalcher K, Schoombie S, Tatayah V, Tremblay F, Weimerskirch H, Whelan S, Wikelski M, Yoda K, Hedenström A, Shepard ELC. The role of wingbeat frequency and amplitude in flight power. J R Soc Interface 2022; 19:20220168. [PMID: 36000229 PMCID: PMC9403799 DOI: 10.1098/rsif.2022.0168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023] Open
Abstract
Body-mounted accelerometers provide a new prospect for estimating power use in flying birds, as the signal varies with the two major kinematic determinants of aerodynamic power: wingbeat frequency and amplitude. Yet wingbeat frequency is sometimes used as a proxy for power output in isolation. There is, therefore, a need to understand which kinematic parameter birds vary and whether this is predicted by flight mode (e.g. accelerating, ascending/descending flight), speed or morphology. We investigate this using high-frequency acceleration data from (i) 14 species flying in the wild, (ii) two species flying in controlled conditions in a wind tunnel and (iii) a review of experimental and field studies. While wingbeat frequency and amplitude were positively correlated, R2 values were generally low, supporting the idea that parameters can vary independently. Indeed, birds were more likely to modulate wingbeat amplitude for more energy-demanding flight modes, including climbing and take-off. Nonetheless, the striking variability, even within species and flight types, highlights the complexity of describing the kinematic relationships, which appear sensitive to both the biological and physical context. Notwithstanding this, acceleration metrics that incorporate both kinematic parameters should be more robust proxies for power than wingbeat frequency alone.
Collapse
Affiliation(s)
| | - Baptiste Garde
- Department of Biosciences, Swansea University, Swansea SA1 8PP, UK
| | - Ashley Bennison
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork T23 N73 K, Ireland
- British Antarctic Survey, Natural Environment Research Council, Cambridge, UK
| | - Nik C. Cole
- Durrell Wildlife Conservation Trust, La Profonde Rue, Jersey JE3 5BP, Jersey
| | - Emma-L. Cole
- Department of Biosciences, Swansea University, Swansea SA1 8PP, UK
| | - Jamie Darby
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork T23 N73 K, Ireland
| | - Kyle H. Elliott
- Department of Natural Resources Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Adam Fell
- Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Agustina Gómez-Laich
- Departamento de Ecología, Genética y Evolución and Instituto de Ecología, Genética Y Evolución de Buenos Aires (IEGEBA), CONICET, Pabellón II Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Sophie de Grissac
- Diomedea Science – Research and Scientific Communication, 819 route de la Jars, 38 950 Quaix-en-Chartreuse, France
| | - Mark Jessopp
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork T23 N73 K, Ireland
| | | | - Yuichi Mizutani
- Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Aurélien Prudor
- Centres d'Etudes Biologiques de Chizé – CNRS, Villiers-en-Bois, France
| | - Michael Quetting
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany
| | - Flavio Quintana
- Instituto de Biología de Organismos Marinos (IBIOMAR), CONICET, Boulevard Brown, 2915, U9120ACD, Puerto Madryn, Chubut, Argentina
| | | | - Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Building Biophore, 1015 Lausanne, Switzerland
| | - Peter G. Ryan
- FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, South Africa
| | - Kim Schalcher
- Department of Ecology and Evolution, University of Lausanne, Building Biophore, 1015 Lausanne, Switzerland
| | - Stefan Schoombie
- FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, South Africa
| | - Vikash Tatayah
- Mauritian Wildlife Foundation, Grannum Road, Vacoas 73418, Mauritius
| | - Fred Tremblay
- Department of Natural Resources Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | | | - Shannon Whelan
- Department of Natural Resources Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Martin Wikelski
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78457 Konstanz, Germany
| | - Ken Yoda
- Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Anders Hedenström
- Department of Biology, Centre for Animal Movement Research, Lund University, Lund, Sweden
| | | |
Collapse
|
5
|
Mizrahy-Rewald O, Perinot E, Fritz J, Vyssotski AL, Fusani L, Voelkl B, Ruf T. Empirical Evidence for Energy Efficiency Using Intermittent Gliding Flight in Northern Bald Ibises. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.891079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Birds face exceptionally high energy demands during their flight. One visible feature of some species is alternating between flapping and gliding, which should allow them to save energy. To date, there is no empirical evidence of an energetic benefit to this. To understand the physiology behind the strategy, we equipped hand-raised Northern Bald Ibises (Geronticus eremita) with data loggers during human-guided migration. We monitored the position of the birds, wingbeats, overall dynamic body acceleration (ODBA), and heart rates as a proxy for energy expenditure. The energy expenditure was significantly affected by the length of flapping and gliding bouts. A pronounced decrease in heart rate was measured after already 1 s of gliding. Additionally, the heart rate at flapping bouts up to 30 s increased steadily but stabilized thereafter. The gilding proportion during intermittent flight affected the energy saving compared to continuous flapping. At a gliding proportion of about 20%, we measured a maximum of 11% saving based on heart rate measurement. At higher gliding proportions, the additional energy saving was negligible. Furthermore, as during flight, not all energy is used for mechanical work, we found a greater decrease rate of ODBA at different gliding proportions compared to heart rate. Nevertheless, the combination of the two methods is essential to determine birds’ movement and energy expenditure. This study provides empirical evidence that intermittent flight is energetically beneficial and can reduce the high costs of flights.
Collapse
|
6
|
Michel KB, West TG, Daley MA, Allen VR, Hutchinson JR. Appendicular Muscle Physiology and Biomechanics in Crocodylus niloticus. Integr Org Biol 2020; 2:obaa038. [PMID: 33791576 PMCID: PMC7810574 DOI: 10.1093/iob/obaa038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Archosaurian reptiles (including living crocodiles and birds) had an explosive diversification of locomotor form and function since the Triassic approximately 250 million years ago. Their limb muscle physiology and biomechanics are pivotal to our understanding of how their diversity and evolution relate to locomotor function. Muscle contraction velocity, force, and power in extinct archosaurs such as early crocodiles, pterosaurs, or non-avian dinosaurs are not available from fossil material, but are needed for biomechanical modeling and simulation. However, an approximation or range of potential parameter values can be obtained by studying extant representatives of the archosaur lineage. Here, we study the physiological performance of three appendicular muscles in Nile crocodiles (Crocodylus niloticus). Nile crocodile musculature showed high power and velocity values—the flexor tibialis internus 4 muscle, a small “hamstring” hip extensor, and knee flexor actively used for terrestrial locomotion, performed particularly well. Our findings demonstrate some physiological differences between muscles, potentially relating to differences in locomotor function, and muscle fiber type composition. By considering these new data from a previously unstudied archosaurian species in light of existing data (e.g., from birds), we can now better bracket estimates of muscle parameters for extinct species and related extant species. Nonetheless, it will be important to consider the potential specialization and physiological variation among muscles, because some archosaurian muscles (such as those with terrestrial locomotor function) may well have close to double the muscle power and contraction velocity capacities of others.
Collapse
Affiliation(s)
- Krijn B Michel
- Department of Comparative Biomedical Sciences, Structure and Motion Laboratory, Royal Veterinary College, North Mymms, Hawkshead Lane, Hertfordshire, AL9 7TA, UK
| | - Tim G West
- Department of Comparative Biomedical Sciences, Structure and Motion Laboratory, Royal Veterinary College, North Mymms, Hawkshead Lane, Hertfordshire, AL9 7TA, UK
| | - Monica A Daley
- Department of Comparative Biomedical Sciences, Structure and Motion Laboratory, Royal Veterinary College, North Mymms, Hawkshead Lane, Hertfordshire, AL9 7TA, UK.,Department of Ecology and Evolution, University of California, Irvine, CA, 94704, USA
| | - Vivian R Allen
- Department of Comparative Biomedical Sciences, Structure and Motion Laboratory, Royal Veterinary College, North Mymms, Hawkshead Lane, Hertfordshire, AL9 7TA, UK
| | - John R Hutchinson
- Department of Comparative Biomedical Sciences, Structure and Motion Laboratory, Royal Veterinary College, North Mymms, Hawkshead Lane, Hertfordshire, AL9 7TA, UK
| |
Collapse
|
7
|
Hedh L, Guglielmo CG, Johansson LC, Deakin JE, Voigt CC, Hedenström A. Measuring power input, power output and energy conversion efficiency in un-instrumented flying birds. J Exp Biol 2020; 223:jeb223545. [PMID: 32796040 DOI: 10.1242/jeb.223545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 08/05/2020] [Indexed: 11/20/2022]
Abstract
Cost of flight at various speeds is a crucial determinant of flight behaviour in birds. Aerodynamic models, predicting that mechanical power (Pmech) varies with flight speed in a U-shaped manner, have been used together with an energy conversion factor (efficiency) to estimate metabolic power (Pmet). Despite few empirical studies, efficiency has been assumed constant across flight speeds at 23%. Ideally, efficiency should be estimated from measurements of both Pmech and Pmet in un-instrumented flight. Until recently, progress has been hampered by methodological constraints. The main aim of this study was to evaluate recently developed techniques and estimate flight efficiency across flight speeds. We used the 13C-labelled sodium bicarbonate method (NaBi) and particle image velocimetry (PIV) to measure Pmet and Pmech in blackcaps flying in a wind tunnel. We also cross-validated measurements made by NaBi with quantitative magnetic resonance (QMR) body composition analysis in yellow-rumped warblers. We found that Pmet estimated by NaBi was ∼12% lower than corresponding values estimated by QMR. Pmet varied in a U-shaped manner across flight speeds in blackcaps, but the pattern was not statistically significant. Pmech could only be reliably measured for two intermediate speeds and estimated efficiency ranged between 14% and 22% (combining the two speeds for raw and weight/lift-specific power, with and without correction for the ∼12% difference between NaBi and QMR), which were close to the currently used default value. We conclude that NaBi and PIV are viable techniques, allowing researchers to address some of the outstanding questions regarding bird flight energetics.
Collapse
Affiliation(s)
- Linus Hedh
- Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Christopher G Guglielmo
- Department of Biology, Advanced Facility for Avian Research, University of Western Ontario, London, ON, Canada, N6A 5B7
| | | | - Jessica E Deakin
- Department of Biology, Advanced Facility for Avian Research, University of Western Ontario, London, ON, Canada, N6A 5B7
| | - Christian C Voigt
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Berlin 10315 Germany
| | | |
Collapse
|
8
|
Richards CT, Eberhard EA. In vitro virtual reality: an anatomically explicit musculoskeletal simulation powered by in vitro muscle using closed-loop tissue-software interaction. J Exp Biol 2020; 223:jeb210054. [PMID: 32253284 DOI: 10.1242/jeb.210054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 03/20/2020] [Indexed: 11/20/2022]
Abstract
Muscle force-length dynamics are governed by intrinsic contractile properties, motor stimulation and mechanical load. Although intrinsic properties are well characterised, physiologists lack in vitro instrumentation to account for combined effects of limb inertia, musculoskeletal architecture and contractile dynamics. We introduce in vitro virtual reality (in vitro-VR) which enables in vitro muscle tissue to drive a musculoskeletal jumping simulation. In hardware, muscle force from a frog plantaris was transmitted to a software model where joint torques, inertia and ground reaction forces were computed to advance the simulation at 1 kHz. To close the loop, simulated muscle strain was returned to update in vitro length. We manipulated (1) stimulation timing and (2) the virtual muscle's anatomical origin. This influenced interactions among muscular, inertial, gravitational and contact forces dictating limb kinematics and jump performance. We propose that in vitro-VR can be used to illustrate how neuromuscular control and musculoskeletal anatomy influence muscle dynamics and biomechanical performance.
Collapse
|
9
|
Holt NC. Beyond bouncy gaits: The role of multiscale compliance in skeletal muscle performance. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2019; 333:50-59. [DOI: 10.1002/jez.2261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/15/2019] [Accepted: 03/05/2019] [Indexed: 01/21/2023]
Affiliation(s)
- Natalie C. Holt
- Department of Biological Sciences; Northern Arizona University; Flagstaff Arizona
| |
Collapse
|
10
|
Ingersoll R, Lentink D. How the hummingbird wingbeat is tuned for efficient hovering. ACTA ACUST UNITED AC 2018; 221:221/20/jeb178228. [PMID: 30323114 DOI: 10.1242/jeb.178228] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 08/09/2018] [Indexed: 11/20/2022]
Abstract
Both hummingbirds and insects flap their wings to hover. Some insects, like fruit flies, improve efficiency by lifting their body weight equally over the upstroke and downstroke, while utilizing elastic recoil during stroke reversal. It is unclear whether hummingbirds converged on a similar elastic storage solution, because of asymmetries in their lift generation and specialized flight muscle apparatus. The muscles are activated a quarter of a stroke earlier than in larger birds, and contract superfast, which cannot be explained by previous stroke-averaged analyses. We measured the aerodynamic force and kinematics of Anna's hummingbirds to resolve wing torque and power within the wingbeat. Comparing these wingbeat-resolved aerodynamic weight support measurements with those of fruit flies, hawk moths and a generalist bird, the parrotlet, we found that hummingbirds have about the same low induced power losses as the two insects, lower than that of the generalist bird in slow hovering flight. Previous analyses emphasized how bird flight muscles have to overcome wing drag midstroke. We found that high wing inertia revises this for hummingbirds - the pectoralis has to coordinate upstroke to downstroke reversal while the supracoracoideus coordinates downstroke to upstroke reversal. Our mechanistic analysis aligns with all previous muscle recordings and shows how early activation helps furnish elastic recoil through stroke reversal to stay within the physiological limits of muscles. Our findings thus support Weis-Fogh's hypothesis that flies and hummingbirds have converged on a mechanically efficient wingbeat to meet the high energetic demands of hovering flight. These insights can help improve the efficiency of flapping robots.
Collapse
Affiliation(s)
- Rivers Ingersoll
- Department of Mechanical Engineering, Stanford University, Palo Alto, CA 94305, USA
| | - David Lentink
- Department of Mechanical Engineering, Stanford University, Palo Alto, CA 94305, USA
| |
Collapse
|
11
|
Holt NC, Williams CD. Can Strain Dependent Inhibition of Cross-Bridge Binding Explain Shifts in Optimum Muscle Length? Integr Comp Biol 2018; 58:174-185. [PMID: 29873724 PMCID: PMC6104710 DOI: 10.1093/icb/icy050] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Skeletal muscle force is generated by cross-bridge interactions between the overlapping contractile proteins, actin and myosin. The geometry of this overlap gives us the force-length relationship in which maximum isometric force is generated at an intermediate, optimum, length. However, the force-length relationship is not constant; optimum length increases with decreasing muscle activation. This effect is not predicted from actin-myosin overlap. Here we present evidence that this activation-dependent shift in optimum length may be due to a series compliance within muscles. As muscles generate force during fixed-end contractions, fibers shorten against series compliance until forces equilibrate and they become isometric. Shortening against series-compliance is proportional to activation, and creates conditions under which shortening-induced force depression may suppress full force development. Greater shortening will result in greater force depression. Hence, optimum length may decrease as activation rises due to greater fiber shortening. We discuss explanations of such history dependence, giving a review of previously proposed processes and suggesting a novel mechanistic explanation for the most likely candidate process based on tropomyosin kinetics. We suggest this mechanism could change the relationship between actin-myosin overlap and cross-bridge binding potential, not only depressing force at any given length, but also altering the relationship between force and length. This would have major consequences for our understanding of in vivo muscle performance.
Collapse
Affiliation(s)
- N C Holt
- Department of Biological Sciences, Northern Arizona University, S. San Francisco Street, Flagstaff, AZ 86011, USA
| | - C D Williams
- Allen Institute for Cell Science, 615 Westlake Ave N, Seattle, WA 98109, USA
| |
Collapse
|
12
|
Williams CD, Holt NC. Spatial Scale and Structural Heterogeneity in Skeletal Muscle Performance. Integr Comp Biol 2018; 58:163-173. [DOI: 10.1093/icb/icy057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- C D Williams
- Allen Institute for Cell Science, 615 Westlake Ave N, Seattle, WA 98109, USA
| | - N C Holt
- Department of Biology, Northern Arizona University, S. San Francisco Street, Flagstaff, AZ 86011, USA
| |
Collapse
|
13
|
Chin DD, Matloff LY, Stowers AK, Tucci ER, Lentink D. Inspiration for wing design: how forelimb specialization enables active flight in modern vertebrates. J R Soc Interface 2017; 14:20170240. [PMID: 28592663 PMCID: PMC5493806 DOI: 10.1098/rsif.2017.0240] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/15/2017] [Indexed: 12/31/2022] Open
Abstract
Harnessing flight strategies refined by millions of years of evolution can help expedite the design of more efficient, manoeuvrable and robust flying robots. This review synthesizes recent advances and highlights remaining gaps in our understanding of how bird and bat wing adaptations enable effective flight. Included in this discussion is an evaluation of how current robotic analogues measure up to their biological sources of inspiration. Studies of vertebrate wings have revealed skeletal systems well suited for enduring the loads required during flight, but the mechanisms that drive coordinated motions between bones and connected integuments remain ill-described. Similarly, vertebrate flight muscles have adapted to sustain increased wing loading, but a lack of in vivo studies limits our understanding of specific muscular functions. Forelimb adaptations diverge at the integument level, but both bird feathers and bat membranes yield aerodynamic surfaces with a level of robustness unparalleled by engineered wings. These morphological adaptations enable a diverse range of kinematics tuned for different flight speeds and manoeuvres. By integrating vertebrate flight specializations-particularly those that enable greater robustness and adaptability-into the design and control of robotic wings, engineers can begin narrowing the wide margin that currently exists between flying robots and vertebrates. In turn, these robotic wings can help biologists create experiments that would be impossible in vivo.
Collapse
Affiliation(s)
- Diana D Chin
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Laura Y Matloff
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Amanda Kay Stowers
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Emily R Tucci
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - David Lentink
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
14
|
Konow N, Cheney JA, Roberts TJ, Iriarte-Díaz J, Breuer KS, Waldman JRS, Swartz SM. Speed-dependent modulation of wing muscle recruitment intensity and kinematics in two bat species. ACTA ACUST UNITED AC 2017; 220:1820-1829. [PMID: 28235906 DOI: 10.1242/jeb.144550] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 02/21/2017] [Indexed: 02/05/2023]
Abstract
Animals respond to changes in power requirements during locomotion by modulating the intensity of recruitment of their propulsive musculature, but many questions concerning how muscle recruitment varies with speed across modes of locomotion remain unanswered. We measured normalized average burst EMG (aEMG) for pectoralis major and biceps brachii at different flight speeds in two relatively distantly related bat species: the aerial insectivore Eptesicus fuscus, and the primarily fruit-eating Carollia perspicillata These ecologically distinct species employ different flight behaviors but possess similar wing aspect ratio, wing loading and body mass. Because propulsive requirements usually correlate with body size, and aEMG likely reflects force, we hypothesized that these species would deploy similar speed-dependent aEMG modulation. Instead, we found that aEMG was speed independent in E. fuscus and modulated in a U-shaped or linearly increasing relationship with speed in C. perspicillata This interspecific difference may be related to differences in muscle fiber type composition and/or overall patterns of recruitment of the large ensemble of muscles that participate in actuating the highly articulated bat wing. We also found interspecific differences in the speed dependence of 3D wing kinematics: E. fuscus modulates wing flexion during upstroke significantly more than C. perspicillata Overall, we observed two different strategies to increase flight speed: C. perspicillata tends to modulate aEMG, and E. fuscus tends to modulate wing kinematics. These strategies may reflect different requirements for avoiding negative lift and overcoming drag during slow and fast flight, respectively, a subject we suggest merits further study.
Collapse
Affiliation(s)
- Nicolai Konow
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| | - Jorn A Cheney
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| | - Thomas J Roberts
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| | - Jose Iriarte-Díaz
- Department of Oral Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Kenneth S Breuer
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA.,School of Engineering, Brown University, Providence, RI 02912, USA
| | - J Rhea S Waldman
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA.,Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Sharon M Swartz
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA.,School of Engineering, Brown University, Providence, RI 02912, USA
| |
Collapse
|
15
|
McFarlane L, Altringham JD, Askew GN. Intra-specific variation in wing morphology and its impact on take-off performance in blue tits (Cyanistes caeruleus) during escape flights. ACTA ACUST UNITED AC 2016; 219:1369-77. [PMID: 26994175 PMCID: PMC4874562 DOI: 10.1242/jeb.126888] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 02/23/2016] [Indexed: 12/03/2022]
Abstract
Diurnal and seasonal increases in body mass and seasonal reductions in wing area may compromise a bird's ability to escape, as less of the power available from the flight muscles can be used to accelerate and elevate the animal's centre of mass. Here, we investigated the effects of intra-specific variation in wing morphology on escape take-off performance in blue tits (Cyanistes caeruleus). Flights were recorded using synchronised high-speed video cameras and take-off performance was quantified as the sum of the rates of change of the kinetic and potential energies of the centre of mass. Individuals with a lower wing loading, WL (WL=body weight/wing area) had higher escape take-off performance, consistent with the increase in lift production expected from relatively larger wings. Unexpectedly, it was found that the total power available from the flight muscles (estimated using an aerodynamic analysis) was inversely related to WL. This could simply be because birds with a higher WL have relatively smaller flight muscles. Alternatively or additionally, variation in the aerodynamic load on the wing resulting from differences in wing morphology will affect the mechanical performance of the flight muscles via effects on the muscle's length trajectory. Consistent with this hypothesis is the observation that wing beat frequency and relative downstroke duration increase with decreasing WL; both are factors that are expected to increase muscle power output. Understanding how wing morphology influences take-off performance gives insight into the potential risks associated with feather loss and seasonal and diurnal fluctuations in body mass. Summary: Blue tits with relatively larger wings have higher escape take-off performance, indicating that moult could increase the risk of predation.
Collapse
Affiliation(s)
- Laura McFarlane
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - John D Altringham
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Graham N Askew
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
16
|
Holt NC, Azizi E. The effect of activation level on muscle function during locomotion: are optimal lengths and velocities always used? Proc Biol Sci 2016; 283:rspb.2015.2832. [PMID: 26817770 DOI: 10.1098/rspb.2015.2832] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/04/2016] [Indexed: 11/12/2022] Open
Abstract
Skeletal muscle exhibits broad functional diversity, despite its inherent length and velocity constraints. The observed variation in morphology and physiology is assumed to have evolved to allow muscle to operate at its optimal length and velocity during locomotion. Here, we used the variation in optimum lengths and velocities that occurs with muscle activation level to experimentally test this assumption. Muscle ergometry and sonomicrometry were used to characterize force-length and power-velocity relationships, and in vivo operating lengths and velocities, at a range of activation levels. Operating lengths and velocities were mapped onto activation level specific force-length and power-velocity relationships to determine whether they tracked changing optima. Operating velocities decreased in line with decreased optimal velocities, suggesting that optimal velocities are always used. However, operating lengths did not change with changing optima. At high activation levels, fibres used an optimal range of lengths. However, at lower activation levels, fibres appeared to operate on the ascending limb of sub-maximally activated force-length relationships. This suggests that optimal lengths are only used when demand is greatest. This study provides the first mapping of operating lengths to activation level-specific optima, and as such, provides insight into our assumptions about the factors that determine muscle performance during locomotion.
Collapse
Affiliation(s)
- N C Holt
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| | - E Azizi
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| |
Collapse
|
17
|
Donovan ER, Keeney BK, Kung E, Makan S, Wild JM, Altshuler DL. Muscle Activation Patterns and Motor Anatomy of Anna’s HummingbirdsCalypte annaand Zebra FinchesTaeniopygia guttata. Physiol Biochem Zool 2013; 86:27-46. [DOI: 10.1086/668697] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Reiser PJ, Welch KC, Suarez RK, Altshuler DL. Very low force-generating ability and unusually high temperature-dependency in hummingbird flight muscle fibers. J Exp Biol 2013; 216:2247-56. [DOI: 10.1242/jeb.068825] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Hummingbird flight muscle is estimated to have among the highest mass-specific power output among vertebrates, based on aerodynamic models. However, little is known about fundamental contractile properties of their remarkable flight muscles. We hypothesized that hummingbird pectoralis fibers generate relatively low force when activated in a tradeoff for high shortening speeds associated with the characteristic high wing beat frequencies that are required for sustained hovering. Our objective was to measure maximal force-generating ability (maximal force/cross-sectional area, Po/CSA) in single, skinned fibers from the pectoralis and supracoracoideus muscles, which power the wing downstroke and upstroke, respectively, in hummingbirds (Calypte anna) and in another similarly-sized species, zebra finch (Taeniopygia guttata), which also has a very high wingbeat frequency during flight but does not perform a sustained hover. Mean Po/CSA in hummingbird pectoralis fibers was very low - 1.6, 6.1 and 12.2 kN/m2, at 10, 15 and 20oC, respectively. Po/CSA in finch pectoralis fibers was also very low (for both species, ~5% of the reported Po/CSA of chicken pectoralis fast fibers at 15oC). Force generated at 20oC/force generated at 10oC ('Q10-force' value) was very high for hummingbird and finch pectoralis fibers (mean = 15.3 and 11.5, respectively), compared to rat slow and fast fibers (1.8 and 1.9, respectively). Po/CSA in hummingbird leg fibers was much higher than in pectoralis fibers, at each temperature, and the mean Q10-force was much lower. Thus, hummingbird and finch pectoralis fibers have an extremely low force-generating ability, compared to other bird and mammalian limb fibers, and an extremely high temperature-dependence of force generation. The extrapolated maximum force-generating ability of hummingbird pectoralis fibers in vivo (~48 kN/m2) is, however, substantially higher than the estimated requirements for hovering flight of C. anna. The unusually low Po/CSA of hummingbird and zebra finch pectoralis fibers may reflect a constraint imposed by a need for extremely high contraction frequencies, especially during hummingbird hovering.
Collapse
|
19
|
Robertson AMB, Biewener AA. Muscle function during takeoff and landing flight in the pigeon (Columba livia). ACTA ACUST UNITED AC 2012; 215:4104-14. [PMID: 22972885 DOI: 10.1242/jeb.075275] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This study explored the muscle strain and activation patterns of several key flight muscles of the pigeon (Columba livia) during takeoff and landing flight. Using electromyography (EMG) to measure muscle activation, and sonomicrometry to quantify muscle strain, we evaluated the muscle function patterns of the pectoralis, biceps, humerotriceps and scapulotriceps as pigeons flew between two perches. These recordings were analyzed in the context of three-dimensional wing kinematics. To understand the different requirements of takeoff, midflight and landing, we compared the activity and strain of these muscles among the three flight modes. The pectoralis and biceps exhibited greater fascicle strain rates during takeoff than during midflight or landing. However, the triceps muscles did not exhibit notable differences in strain among flight modes. All observed strain, activation and kinematics were consistent with hypothesized muscle functions. The biceps contracted to stabilize and flex the elbow during the downstroke. The humerotriceps contracted to extend the elbow at the upstroke-downstroke transition, followed by scapulotriceps contraction to maintain elbow extension during the downstroke. The scapulotriceps also appeared to contribute to humeral elevation. Greater muscle activation intensity was observed during takeoff, compared with mid-flight and landing, in all muscles except the scapulotriceps. The timing patterns of muscle activation and length change differed among flight modes, yet demonstrated that pigeons do not change the basic mechanical actions of key flight muscles as they shift from flight activities that demand energy production, such as takeoff and midflight, to maneuvers that require absorption of energy, such as landing. Similarly, joint kinematics were consistent among flight modes. The stereotypy of these neuromuscular and joint kinematic patterns is consistent with previously observed stereotypy of wing kinematics relative to the pigeon's body (in the local body frame) across these flight behaviors. Taken together, these observations suggest that the control of takeoff and landing flight primarily involves modulation of overall body pitch to effect changes in stroke plane angle and resulting wing aerodynamics.
Collapse
Affiliation(s)
- Angela M Berg Robertson
- Center for Neuromotor and Biomechanics Research, University of Houston, Houston, TX 77054, USA.
| | | |
Collapse
|
20
|
Jackson BE, Tobalske BW, Dial KP. The broad range of contractile behaviour of the avian pectoralis: functional and evolutionary implications. ACTA ACUST UNITED AC 2011; 214:2354-61. [PMID: 21697427 DOI: 10.1242/jeb.052829] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Wing-assisted incline running (WAIR) in birds combines the use of the wings and hindlimbs to ascend otherwise insurmountable obstacles. It is a means of escape in precocial birds before they are able to fly, and it is used by a variety of juvenile and adult birds as an alternative to flight for exploiting complex three-dimensional environments at the interface of the ground and air. WAIR and controlled flapping descent (CFD) are the bases of the ontogenetic-transitional wing hypothesis, wherein WAIR and CFD are proposed to be extant biomechanical analogs for incremental adaptive stages in the evolutionary origin of flight. A primary assumption of the hypothesis is that work and power requirements from the primary downstroke muscle, the pectoralis, incrementally increase from shallow- to steep-angled terrestrial locomotion, and between terrestrial and aerial locomotion. To test this assumption, we measured in vivo force, electromyographic (EMG) activity and length change in the pectoralis of pigeons (Columba livia) as the birds engaged in shallow and steep WAIR (65 and 85 deg, respectively) and in three modes of slow flight immediately following take-off: ascending at 80 deg, level and descending at -60 deg. Mean EMG amplitude, muscle stress, strain, work and power were minimal during shallow WAIR and increased stepwise from steep WAIR to descending flight and level flight to reach the highest levels during ascending flight. Relative to resting length of the pectoralis, fractional lengthening (maximum muscle strain) was similar among behaviors, but fractional shortening (minimum muscle strain) was absent during WAIR such that the pectoralis did not shorten to less than the resting length. These data dramatically extend the known range of in vivo contractile behavior for the pectoralis in birds. We conclude that WAIR remains a useful extant model for the evolutionary transition from terrestrial to aerial locomotion in birds because work and power requirements from the pectoralis increase incrementally during WAIR and from WAIR to flight.
Collapse
Affiliation(s)
- Brandon E Jackson
- Field Research Station at Fort Missoula, Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | | | | |
Collapse
|
21
|
Biewener AA. Muscle function in avian flight: achieving power and control. Philos Trans R Soc Lond B Biol Sci 2011; 366:1496-506. [PMID: 21502121 DOI: 10.1098/rstb.2010.0353] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Flapping flight places strenuous requirements on the physiological performance of an animal. Bird flight muscles, particularly at smaller body sizes, generally contract at high frequencies and do substantial work in order to produce the aerodynamic power needed to support the animal's weight in the air and to overcome drag. This is in contrast to terrestrial locomotion, which offers mechanisms for minimizing energy losses associated with body movement combined with elastic energy savings to reduce the skeletal muscles' work requirements. Muscles also produce substantial power during swimming, but this is mainly to overcome body drag rather than to support the animal's weight. Here, I review the function and architecture of key flight muscles related to how these muscles contribute to producing the power required for flapping flight, how the muscles are recruited to control wing motion and how they are used in manoeuvring. An emergent property of the primary flight muscles, consistent with their need to produce considerable work by moving the wings through large excursions during each wing stroke, is that the pectoralis and supracoracoideus muscles shorten over a large fraction of their resting fibre length (33-42%). Both muscles are activated while being lengthened or undergoing nearly isometric force development, enhancing the work they perform during subsequent shortening. Two smaller muscles, the triceps and biceps, operate over a smaller range of contractile strains (12-23%), reflecting their role in controlling wing shape through elbow flexion and extension. Remarkably, pigeons adjust their wing stroke plane mainly via changes in whole-body pitch during take-off and landing, relative to level flight, allowing their wing muscles to operate with little change in activation timing, strain magnitude and pattern.
Collapse
Affiliation(s)
- Andrew A Biewener
- Concord Field Station, Harvard University, 100 Old Causeway Road, Bedford, MA 01730, USA.
| |
Collapse
|
22
|
Morris CR, Nelson FE, Askew GN. The metabolic power requirements of flight and estimations of flight muscle efficiency in the cockatiel (Nymphicus hollandicus). ACTA ACUST UNITED AC 2010; 213:2788-96. [PMID: 20675549 DOI: 10.1242/jeb.035717] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Little is known about how in vivo muscle efficiency, that is the ratio of mechanical and metabolic power, is affected by changes in locomotory tasks. One of the main problems with determining in vivo muscle efficiency is the large number of muscles generally used to produce mechanical power. Animal flight provides a unique model for determining muscle efficiency because only one muscle, the pectoralis muscle, produces nearly all of the mechanical power required for flight. In order to estimate in vivo flight muscle efficiency, we measured the metabolic cost of flight across a range of flight speeds (6-13 m s(-1)) using masked respirometry in the cockatiel (Nymphicus hollandicus) and compared it with measurements of mechanical power determined in the same wind tunnel. Similar to measurements of the mechanical power-speed relationship, the metabolic power-speed relationship had a U-shape, with a minimum at 10 m s(-1). Although the mechanical and metabolic power-speed relationships had similar minimum power speeds, the metabolic power requirements are not a simple multiple of the mechanical power requirements across a range of flight speeds. The pectoralis muscle efficiency (estimated from mechanical and metabolic power, basal metabolism and an assumed value for the 'postural costs' of flight) increased with flight speed and ranged from 6.9% to 11.2%. However, it is probable that previous estimates of the postural costs of flight have been too low and that the pectoralis muscle efficiency is higher.
Collapse
Affiliation(s)
- Charlotte R Morris
- Institute of Integrative and Comparative Biology, University of Leeds, Leeds, UK
| | | | | |
Collapse
|
23
|
Knight K. HOW BIRDS POWER FLIGHT. J Exp Biol 2010. [DOI: 10.1242/jeb.049114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Morris CR, Askew GN. Comparison between mechanical power requirements of flight estimated using an aerodynamic model and in vitro muscle performance in the cockatiel (Nymphicus hollandicus). J Exp Biol 2010; 213:2781-7. [DOI: 10.1242/jeb.035709] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
There have been few comparisons between the relationship between the mechanical power requirements of flight and flight speed obtained using different approaches. It is unclear whether differences in the power–speed relationships reported in the literature are due to the use of different techniques for determining flight power or due to inter-specific differences. Here we compare the power–speed relationships in cockatiels (Nymphicus hollandicus) determined using both an aerodynamic model and measurements of in vitro performance of bundles of pectoralis muscle fibres under simulated in vivo strain and activity patterns. Aerodynamic power was calculated using different ranges of values for the coefficients in the equations: induced power factor (k 1.0–1.4), the profile (CD,pro 0.01–0.03) and parasite drag (CD,par 0.05–0.195) coefficients. We found that the aerodynamic power-speed relationship was highly sensitive to the values assumed for these coefficients and best fit the power calculated from in vitro muscle performance when k=1.2, CD,pro=0.02 and CD,par=0.13.
Collapse
Affiliation(s)
- Charlotte R. Morris
- Institute of Integrative and Comparative Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Graham N. Askew
- Institute of Integrative and Comparative Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|