1
|
Skowronski N, Malek Pour M, Singh S, Longo SJ, St Pierre R. Design and control of jumping microrobots with torque reversal latches. BIOINSPIRATION & BIOMIMETICS 2024; 19:046007. [PMID: 38697139 DOI: 10.1088/1748-3190/ad46b9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/01/2024] [Indexed: 05/04/2024]
Abstract
Jumping microrobots and insects power their impressive leaps through systems of springs and latches. Using springs and latches, rather than motors or muscles, as actuators to power jumps imposes new challenges on controlling the performance of the jump. In this paper, we show how tuning the motor and spring relative to one another in a torque reversal latch can lead to an ability to control jump output, producing either tuneable (variable) or stereotyped jumps. We develop and utilize a simple mathematical model to explore the underlying design, dynamics, and control of a torque reversal mechanism, provides the opportunity to achieve different outcomes through the interaction between geometry, spring properties, and motor voltage. We relate system design and control parameters to performance to guide the design of torque reversal mechanisms for either variable or stereotyped jump performance. We then build a small (356 mg) microrobot and characterize the constituent components (e.g. motor and spring). Through tuning the actuator and spring relative to the geometry of the torque reversal mechanism, we demonstrate that we can achieve jumping microrobots that both jump with different take-off velocities given the actuator input (variable jumping), and those that jump with nearly the same take-off velocity with actuator input (stereotyped jumping). The coupling between spring characteristics and geometry in this system has benefits for resource-limited microrobots, and our work highlights design combinations that have synergistic impacts on output, compared to others that constrain it. This work will guide new design principles for enabling control in resource-limited jumping microrobots.
Collapse
Affiliation(s)
- Nolan Skowronski
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260, United States of America
| | - Mohammadamin Malek Pour
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260, United States of America
| | - Shashwat Singh
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260, United States of America
| | - Sarah J Longo
- Department of Biological Sciences, Towson University, Towson, MD 21252, United States of America
| | - Ryan St Pierre
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260, United States of America
- Department of Computer Science and Engineering, University at Buffalo, Buffalo, NY 14260, United States of America
| |
Collapse
|
2
|
Divi S, St Pierre R, Foong HM, Bergbreiter S. Controlling jumps through latches in small jumping robots. BIOINSPIRATION & BIOMIMETICS 2023; 18:066003. [PMID: 37683672 DOI: 10.1088/1748-3190/acf824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/08/2023] [Indexed: 09/10/2023]
Abstract
Small jumping robots can use springs to maximize jump performance, but they are typically not able to control the height of each jump owing to design constraints. This study explores the use of the jumper's latch, the component that mediates the release of energy stored in the spring, as a tool for controlling jumps. A reduced-order model that considers the dynamics of the actuator pulling the latch and the effect of spring force on the latch is presented. This model is then validated using high speed video and ground reaction force measurements from a 4gjumper. Both the model and experimental results demonstrate that jump performance in small insect-inspired resource-constrained robots can be tuned to a range of outputs using latch mediation, despite starting with a fixed spring potential energy. For a fixed set of input voltages to the latch actuator, the results also show that a jumper with a larger latch radius has greater tunability. However, this greater tunability comes with a trade-off in maximum performance. Finally, we define a new metric, 'Tunability Range,' to capture the range of controllable jump behaviors that a jumper with a fixed spring compression can attain given a set of control inputs (i.e. latch actuation voltage) to choose from.
Collapse
Affiliation(s)
- Sathvik Divi
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| | - Ryan St Pierre
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260, United States of America
- Department of Computer Science and Engineering, University at Buffalo, Buffalo, NY 14260, United States of America
| | - Hui Min Foong
- School of Mechanical and Aerospace Engineering, Singapore 639798, Singapore
| | - Sarah Bergbreiter
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| |
Collapse
|
3
|
Harrison JS, Patek SN. Developing elastic mechanisms: ultrafast motion and cavitation emerge at the millimeter scale in juvenile snapping shrimp. J Exp Biol 2023; 226:287686. [PMID: 36854255 DOI: 10.1242/jeb.244645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 01/12/2023] [Indexed: 03/02/2023]
Abstract
Organisms such as jumping froghopper insects and punching mantis shrimp use spring-based propulsion to achieve fast motion. Studies of elastic mechanisms have primarily focused on fully developed and functional mechanisms in adult organisms. However, the ontogeny and development of these mechanisms can provide important insights into the lower size limits of spring-based propulsion, the ecological or behavioral relevance of ultrafast movement, and the scaling of ultrafast movement. Here, we examined the development of the spring-latch mechanism in the bigclaw snapping shrimp, Alpheus heterochaelis (Alpheidae). Adult snapping shrimp use an enlarged claw to produce high-speed strikes that generate cavitation bubbles. However, until now, it was unclear when the elastic mechanism emerges during development and whether juvenile snapping shrimp can generate cavitation at this size. We reared A. heterochaelis from eggs, through their larval and postlarval stages. Starting 1 month after hatching, the snapping shrimp snapping claw gradually developed a spring-actuated mechanism and began snapping. We used high-speed videography (300,000 frames s-1) to measure juvenile snaps. We discovered that juvenile snapping shrimp generate the highest recorded accelerations (5.8×105±3.3×105 m s-2) for repeated-use, underwater motion and are capable of producing cavitation at the millimeter scale. The angular velocity of snaps did not change as juveniles grew; however, juvenile snapping shrimp with larger claws produced faster linear speeds and generated larger, longer-lasting cavitation bubbles. These findings establish the development of the elastic mechanism and cavitation in snapping shrimp and provide insights into early life-history transitions in spring-actuated mechanisms.
Collapse
Affiliation(s)
| | - S N Patek
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
4
|
Longo SJ, St Pierre R, Bergbreiter S, Cox S, Schelling B, Patek SN. Geometric latches enable tuning of ultrafast, spring-propelled movements. J Exp Biol 2023; 226:286280. [PMID: 36606724 DOI: 10.1242/jeb.244363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023]
Abstract
The smallest, fastest, repeated-use movements are propelled by power-dense elastic mechanisms, yet the key to their energetic control may be found in the latch-like mechanisms that mediate transformation from elastic potential energy to kinetic energy. Here, we tested how geometric latches enable consistent or variable outputs in ultrafast, spring-propelled systems. We constructed a reduced-order mathematical model of a spring-propelled system that uses a torque reversal (over-center) geometric latch. The model was parameterized to match the scales and mechanisms of ultrafast systems, specifically snapping shrimp. We simulated geometric and energetic configurations that enabled or reduced variation of strike durations and dactyl rotations given variation of stored elastic energy and latch mediation. Then, we collected an experimental dataset of the energy storage mechanism and ultrafast snaps of live snapping shrimp (Alpheus heterochaelis) and compared our simulations with their configuration. We discovered that snapping shrimp deform the propodus exoskeleton prior to the strike, which may contribute to elastic energy storage. Regardless of the amount of variation in spring loading duration, strike durations were far less variable than spring loading durations. When we simulated this species' morphological configuration in our mathematical model, we found that the low variability of strike duration is consistent with their torque reversal geometry. Even so, our simulations indicate that torque reversal systems can achieve either variable or invariant outputs through small adjustments to geometry. Our combined experiments and mathematical simulations reveal the capacity of geometric latches to enable, reduce or enhance variation of ultrafast movements in biological and synthetic systems.
Collapse
Affiliation(s)
- Sarah J Longo
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Ryan St Pierre
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Sarah Bergbreiter
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Suzanne Cox
- Department of Biology, Duke University, Durham, NC 27708, USA
| | | | - S N Patek
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
5
|
Hyun NP, Olberding JP, De A, Divi S, Liang X, Thomas E, St Pierre R, Steinhardt E, Jorge J, Longo SJ, Cox S, Mendoza E, Sutton GP, Azizi E, Crosby AJ, Bergbreiter S, Wood RJ, Patek SN. Spring and latch dynamics can act as control pathways in ultrafast systems. BIOINSPIRATION & BIOMIMETICS 2023; 18:026002. [PMID: 36595244 DOI: 10.1088/1748-3190/acaa7c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Ultrafast movements propelled by springs and released by latches are thought limited to energetic adjustments prior to movement, and seemingly cannot adjust once movement begins. Even so, across the tree of life, ultrafast organisms navigate dynamic environments and generate a range of movements, suggesting unrecognized capabilities for control. We develop a framework of control pathways leveraging the non-linear dynamics of spring-propelled, latch-released systems. We analytically model spring dynamics and develop reduced-parameter models of latch dynamics to quantify how they can be tuned internally or through changing external environments. Using Lagrangian mechanics, we test feedforward and feedback control implementation via spring and latch dynamics. We establish through empirically-informed modeling that ultrafast movement can be controllably varied during latch release and spring propulsion. A deeper understanding of the interconnection between multiple control pathways, and the tunability of each control pathway, in ultrafast biomechanical systems presented here has the potential to expand the capabilities of synthetic ultra-fast systems and provides a new framework to understand the behaviors of fast organisms subject to perturbations and environmental non-idealities.
Collapse
Affiliation(s)
- N P Hyun
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States of America
| | - J P Olberding
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA 92697, United States of America
| | - A De
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States of America
| | - S Divi
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| | - X Liang
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, MA 01003, United States of America
| | - E Thomas
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, MA 01003, United States of America
| | - R St Pierre
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| | - E Steinhardt
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States of America
| | - J Jorge
- Biology Department, Duke University, Durham, NC 27708, United States of America
| | - S J Longo
- Biology Department, Duke University, Durham, NC 27708, United States of America
| | - S Cox
- Biology Department, Duke University, Durham, NC 27708, United States of America
| | - E Mendoza
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA 92697, United States of America
| | - G P Sutton
- School of Life Sciences, University of Lincoln, Lincoln, United Kingdom
| | - E Azizi
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA 92697, United States of America
| | - A J Crosby
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, MA 01003, United States of America
| | - S Bergbreiter
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| | - R J Wood
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States of America
| | - S N Patek
- Biology Department, Duke University, Durham, NC 27708, United States of America
| |
Collapse
|
6
|
Vujić VD, Ilić BS, Lučić LR, Jovanović ZS, Milovanović JZ, Dudić BD, Stojanović DZ. Presence of morphological integration and modularity of the forcipular apparatus in Lithobius melanops (Chilopoda: Lithobiomorpha: Lithobiidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2022; 71:101203. [PMID: 36088838 DOI: 10.1016/j.asd.2022.101203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/15/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
The presence of morphological integration and modularity of the forcipular apparatus, despite its evolutionary significance, has not been analyzed in centipedes. This morphological structure has a crucial role in feeding and defense, thanks to its poisonous part (forcipules), which is important for catching the prey. The aims of our study were: i) to test the hypothesis of modularity of the forcipular apparatus in centipede Lithobius melanops; and ii) to investigate the influence of allometry on overall morphological integration in the aforementioned species using a geometric morphometric approach. The presence of fluctuating asymmetry was obtained by Procrustes ANOVA. Allometry was significant only for the symmetric component of the forcipular apparatus. The modularity hypothesis was not accepted, because the covariance coefficients for symmetric and asymmetric components were lower than 89.5% and 72.1% (respectively) of other RV coefficients obtained by a random contiguous partition of the forcipular apparatus. Results of the present study indicate that allometry does increase the level of morphological integration in the forcipular apparatus. According to our results, the forcipular coxosternite and forcipules could not be considered as separate modules; namely, they probably share similar developmental pathways and function in different forms of behavior and survival in L. melanops.
Collapse
Affiliation(s)
- Vukica D Vujić
- University of Belgrade, Institute of Zoology, Studentski Trg 16, 11000, Belgrade, Serbia.
| | - Bojan S Ilić
- University of Belgrade, Institute of Zoology, Studentski Trg 16, 11000, Belgrade, Serbia.
| | - Luka R Lučić
- University of Belgrade, Institute of Zoology, Studentski Trg 16, 11000, Belgrade, Serbia.
| | - Zvezdana S Jovanović
- University of Belgrade, Institute of Zoology, Studentski Trg 16, 11000, Belgrade, Serbia.
| | - Jelena Z Milovanović
- University of Belgrade, Institute of Zoology, Studentski Trg 16, 11000, Belgrade, Serbia.
| | - Boris D Dudić
- University of Belgrade, Institute of Zoology, Studentski Trg 16, 11000, Belgrade, Serbia.
| | - Dalibor Z Stojanović
- University of Belgrade, Institute of Zoology, Studentski Trg 16, 11000, Belgrade, Serbia.
| |
Collapse
|
7
|
Friedman ST, Muñoz MM. The Effect of Thermally Robust Ballistic Mechanisms on Climatic Niche in Salamanders. Integr Org Biol 2022; 4:obac020. [PMID: 35975191 PMCID: PMC9375770 DOI: 10.1093/iob/obac020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/04/2022] [Accepted: 05/18/2022] [Indexed: 11/12/2022] Open
Abstract
Many organismal functions are temperature-dependent due to the contractile properties of muscle. Spring-based mechanisms offer a thermally robust alternative to temperature-sensitive muscular movements and may correspondingly expand a species' climatic niche by partially decoupling the relationship between temperature and performance. Using the ballistic tongues of salamanders as a case study, we explore whether the thermal robustness of elastic feeding mechanisms increases climatic niche breadth, expands geographic range size, and alters the dynamics of niche evolution. Combining phylogenetic comparative methods with global climate data, we find that the feeding mechanism imparts no discernable signal on either climatic niche properties or the evolutionary dynamics of most climatic niche parameters. Although biomechanical innovation in feeding influences many features of whole-organism performance, it does not appear to drive macro-climatic niche evolution in salamanders. We recommend that future work incorporate micro-scale environmental data to better capture the conditions that salamanders experience, and we discuss a few outstanding questions in this regard. Overall, this study lays the groundwork for an investigation into the evolutionary relationships between climatic niche and biomechanical traits in ectotherms.
Collapse
Affiliation(s)
- Sarah T Friedman
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511,USA
| | - Martha M Muñoz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511,USA
| |
Collapse
|
8
|
Sutton GP, St Pierre R, Kuo CY, Summers AP, Bergbreiter S, Cox S, Patek SN. Dual spring force couples yield multifunctionality and ultrafast, precision rotation in tiny biomechanical systems. J Exp Biol 2022; 225:275995. [PMID: 35863219 DOI: 10.1242/jeb.244077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/15/2022] [Indexed: 12/31/2022]
Abstract
Small organisms use propulsive springs rather than muscles to repeatedly actuate high acceleration movements, even when constrained to tiny displacements and limited by inertial forces. Through integration of a large kinematic dataset, measurements of elastic recoil, energetic math modeling and dynamic math modeling, we tested how trap-jaw ants (Odontomachus brunneus) utilize multiple elastic structures to develop ultrafast and precise mandible rotations at small scales. We found that O. brunneus develops torque on each mandible using an intriguing configuration of two springs: their elastic head capsule recoils to push and the recoiling muscle-apodeme unit tugs on each mandible. Mandibles achieved precise, planar, circular trajectories up to 49,100 rad s-1 (470,000 rpm) when powered by spring propulsion. Once spring propulsion ended, the mandibles moved with unconstrained and oscillatory rotation. We term this mechanism a 'dual spring force couple', meaning that two springs deliver energy at two locations to develop torque. Dynamic modeling revealed that dual spring force couples reduce the need for joint constraints and thereby reduce dissipative joint losses, which is essential to the repeated use of ultrafast, small systems. Dual spring force couples enable multifunctionality: trap-jaw ants use the same mechanical system to produce ultrafast, planar strikes driven by propulsive springs and for generating slow, multi-degrees of freedom mandible manipulations using muscles, rather than springs, to directly actuate the movement. Dual spring force couples are found in other systems and are likely widespread in biology. These principles can be incorporated into microrobotics to improve multifunctionality, precision and longevity of ultrafast systems.
Collapse
Affiliation(s)
- Gregory P Sutton
- School of Life Sciences , University of Lincoln, Lincoln LN6 7TS, UK
| | - Ryan St Pierre
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Chi-Yun Kuo
- Biology Department, Duke University, Durham, NC 27708, USA
| | - Adam P Summers
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
| | - Sarah Bergbreiter
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Suzanne Cox
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - S N Patek
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
9
|
Cox SM, DeBoef A, Salzano MQ, Katugam K, Piazza SJ, Rubenson J. Plasticity of the gastrocnemius elastic system in response to decreased work and power demand during growth. J Exp Biol 2021; 224:jeb242694. [PMID: 34522962 PMCID: PMC10659036 DOI: 10.1242/jeb.242694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/08/2021] [Indexed: 11/20/2022]
Abstract
Elastic energy storage and release can enhance performance that would otherwise be limited by the force-velocity constraints of muscle. Although functional influence of a biological spring depends on tuning between components of an elastic system (the muscle, spring-driven mass and lever system), we do not know whether elastic systems systematically adapt to functional demand. To test whether altering work and power generation during maturation alters the morphology of an elastic system, we prevented growing guinea fowl (Numida meleagris) from jumping. We compared the jump performance of our treatment group at maturity with that of controls and measured the morphology of the gastrocnemius elastic system. We found that restricted birds jumped with lower jump power and work, yet there were no significant between-group differences in the components of the elastic system. Further, subject-specific models revealed no difference in energy storage capacity between groups, though energy storage was most sensitive to variations in muscle properties (most significantly operating length and least dependent on tendon stiffness). We conclude that the gastrocnemius elastic system in the guinea fowl displays little to no plastic response to decreased demand during growth and hypothesize that neural plasticity may explain performance variation.
Collapse
Affiliation(s)
- Suzanne M. Cox
- Biology Department, Duke University, Durham, NC 27708, USA
- Biomechanics Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Adam DeBoef
- Biomechanics Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
- The Department of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Matthew Q. Salzano
- Biomechanics Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
- Integrative and Biomedical Physiology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Kinesiology, The University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | - Kavya Katugam
- Biomechanics Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Stephen J. Piazza
- Biomechanics Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jonas Rubenson
- Biomechanics Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
- Integrative and Biomedical Physiology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
10
|
Acharya R, Challita EJ, Ilton M, Saad Bhamla M. The ultrafast snap of a finger is mediated by skin friction. J R Soc Interface 2021; 18:20210672. [PMID: 34784775 PMCID: PMC8596009 DOI: 10.1098/rsif.2021.0672] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The snap of a finger has been used as a form of communication and music for millennia across human cultures. However, a systematic analysis of the dynamics of this rapid motion has not yet been performed. Using high-speed imaging and force sensors, we analyse the dynamics of the finger snap. We discover that the finger snap achieves peak angular accelerations of 1.6 × 106° s-2 in 7 ms, making it one of the fastest recorded angular accelerations the human body produces (exceeding professional baseball pitches). Our analysis reveals the central role of skin friction in mediating the snap dynamics by acting as a latch to control the resulting high velocities and accelerations. We evaluate the role of this frictional latch experimentally, by covering the thumb and middle finger with different materials to produce different friction coefficients and varying compressibility. In doing so, we reveal that the compressible, frictional latch of the finger pads likely operates in a regime optimally tuned for both friction and compression. We also develop a soft, compressible friction-based latch-mediated spring actuated model to further elucidate the key role of friction and how it interacts with a compressible latch. Our mathematical model reveals that friction plays a dual role in the finger snap, both aiding in force loading and energy storage while hindering energy release. Our work reveals how friction between surfaces can be harnessed as a tunable latch system and provides design insight towards the frictional complexity in many robotic and ultra-fast energy-release structures.
Collapse
Affiliation(s)
- Raghav Acharya
- Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30311, USA
| | - Elio J. Challita
- Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30311, USA,George W. Woodruff School of Mechanical Engineering, Georgia Tech, Atlanta, GA 30311, USA
| | - Mark Ilton
- Department of Physics, Harvey Mudd College, Claremont, CA 91711, USA
| | - M. Saad Bhamla
- Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30311, USA
| |
Collapse
|
11
|
Kallal RJ, Elias DO, Wood HM. Not So Fast: Strike Kinematics of the Araneoid Trap-Jaw Spider Pararchaea alba (Malkaridae: Pararchaeinae). Integr Org Biol 2021; 3:obab027. [PMID: 34661063 PMCID: PMC8514421 DOI: 10.1093/iob/obab027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/02/2021] [Accepted: 09/20/2021] [Indexed: 02/05/2023] Open
Abstract
To capture prey otherwise unattainable by muscle function alone, some animal lineages have evolved movements that are driven by stored elastic energy, producing movements of remarkable speed and force. One such example that has evolved multiple times is a trap-jaw mechanism, in which the mouthparts of an animal are loaded with energy as they open to a wide gape and then, when triggered to close, produce a terrific force. Within the spiders (Araneae), this type of attack has thus far solely been documented in the palpimanoid family Mecysmaucheniidae but a similar morphology has also been observed in the distantly related araneoid subfamily Pararchaeinae, leading to speculation of a trap-jaw attack in that lineage as well. Here, using high-speed videography, we test whether cheliceral strike power output suggests elastic-driven movements in the pararchaeine Pararchaea alba. The strike speed attained places P. alba as a moderately fast striker exceeding the slowest mecysmaucheniids, but failing to the reach the most extreme high-speed strikers that have elastic-driven mechanisms. Using microcomputed tomography, we compare the morphology of P. alba chelicerae in the resting and open positions, and their related musculature, and based on results propose a mechanism for cheliceral strike function that includes a torque reversal latching mechanism. Similar to the distantly related trap-jaw mecysmaucheniid spiders, the unusual prosoma morphology in P. alba seemingly allows for highly maneuverable chelicerae with a much wider gape than typical spiders, suggesting that increasingly maneuverable joints coupled with a latching mechanism may serve as a precursor to elastic-driven movements.
Collapse
Affiliation(s)
- Robert J Kallal
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Damian O Elias
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| | - Hannah M Wood
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| |
Collapse
|
12
|
A physical model of mantis shrimp for exploring the dynamics of ultrafast systems. Proc Natl Acad Sci U S A 2021; 118:2026833118. [PMID: 34389671 DOI: 10.1073/pnas.2026833118] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Efficient and effective generation of high-acceleration movement in biology requires a process to control energy flow and amplify mechanical power from power density-limited muscle. Until recently, this ability was exclusive to ultrafast, small organisms, and this process was largely ascribed to the high mechanical power density of small elastic recoil mechanisms. In several ultrafast organisms, linkages suddenly initiate rotation when they overcenter and reverse torque; this process mediates the release of stored elastic energy and enhances the mechanical power output of extremely fast, spring-actuated systems. Here we report the discovery of linkage dynamics and geometric latching that reveals how organisms and synthetic systems generate extremely high-acceleration, short-duration movements. Through synergistic analyses of mantis shrimp strikes, a synthetic mantis shrimp robot, and a dynamic mathematical model, we discover that linkages can exhibit distinct dynamic phases that control energy transfer from stored elastic energy to ultrafast movement. These design principles are embodied in a 1.5-g mantis shrimp scale mechanism capable of striking velocities over 26 m [Formula: see text] in air and 5 m [Formula: see text] in water. The physical, mathematical, and biological datasets establish latching mechanics with four temporal phases and identify a nondimensional performance metric to analyze potential energy transfer. These temporal phases enable control of an extreme cascade of mechanical power amplification. Linkage dynamics and temporal phase characteristics are easily adjusted through linkage design in robotic and mathematical systems and provide a framework to understand the function of linkages and latches in biological systems.
Collapse
|
13
|
Liang Y, Zhang H, Zhao Q, Lin Z, Zhang Z, Han Z, Ren L. Study on the heterogeneous material coupling connection characteristics and mechanical strength of Oratosquilla oratoria mantis shrimp saddle. Microscopy (Oxf) 2021; 70:361-367. [PMID: 33480427 DOI: 10.1093/jmicro/dfab004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/21/2020] [Accepted: 01/22/2021] [Indexed: 11/12/2022] Open
Abstract
The microstructure, chemical composition and mechanical strength of heterogeneous materials of mantis shrimp (Oratosquilla oratoria) saddle were studied. As the key component of the striking system, the saddle comprised two distinct layers including outer layer and inner layer. The outer layer contained blocky microtubules and exhibited compact appearance. The inner layer presented a typical periodic lamellar structure. Due to the change of the thickness of the mineralized outer layer, the organic multilamellar structure became the foundation and enhanced the connection strength (4.55 MPa) at the connect regions between the saddle and merus exoskeleton and membrane, respectively. In the process of fracture, the lamellar structure dispersed the stress effectively by the change of the crack deflection direction and the microfibrils ordered arrangement. The exploration of mantis shrimp saddle region is beneficial to understand the striking system and provided the possibility for the stable connection of heterogeneous materials in engineering fields. The microstructure, heterogeneous material connection characteristics and high mechanical strength of saddle provide bionic models for the preparation of fiber-reinforced resin composites and soft composites.
Collapse
Affiliation(s)
- Yunhong Liang
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, Jilin, China
| | - Hao Zhang
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, Jilin, China
| | - Qian Zhao
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, Jilin, China
| | - Zhaohua Lin
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, Jilin, China
| | - Zhihui Zhang
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, Jilin, China
| | - Zhiwu Han
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, Jilin, China
| | - Luquan Ren
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, Jilin, China
| |
Collapse
|
14
|
Zhao Q, Chang Y, Lin Z, Zhang Z, Han Z, Ren L. Investigation of microstructure and dissimilar materials connection patterns of mantis shrimp saddle. Microsc Res Tech 2021; 84:2075-2081. [PMID: 34050589 DOI: 10.1002/jemt.23763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 02/22/2021] [Accepted: 03/16/2021] [Indexed: 11/08/2022]
Abstract
The microstructure and dissimilar materials connection patterns of mantis shrimp saddle were investigated. The outer layer with layered helical structure and inner layer with slablike laminae structure constructed the microstructure characteristics of saddle. The merus and membrane were characterized by layered structure. The lamina of saddle connected the corresponding lamina in merus and membrane, building the continuous and smooth coupling connection patterns. The entitative "hard-hard" and "hard-soft" transitions of dissimilar materials at micro level enhanced the steady transmit of driven force. The saddle exhibited high mechanical strength. With the increase of in-situ tensile displacement, the number of fractured fragments on saddle outer layer surface increased, which subjected to tensile load and defused the damage in the form of mineralized surface fragmentation. In the inner part of saddle, the fracture of mineralized laminae and crack deflection mechanisms bore the tensile load influence. The combination of microstructure with high mechanical strength and continues micro lamina connection endowed the concise dissimilar materials connection and efficient elastic energy storage property of saddle, which can be treated as the bionic models for design and preparation of fiber reinforced resin composite, hyperelastic material and so on.
Collapse
Affiliation(s)
- Qian Zhao
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
| | - Yanjiao Chang
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China.,School of Mechanical and Aerospace Engineering, Jilin University, Changchun, China
| | - Zhaohua Lin
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China.,School of Mechanical and Aerospace Engineering, Jilin University, Changchun, China
| | - Zhihui Zhang
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
| | - Zhiwu Han
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
| | - Luquan Ren
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
| |
Collapse
|
15
|
Giavazzi F, Spini S, Carpineti M, Vailati A. Optimal leap angle of legged and legless insects in a landscape of uniformly distributed random obstacles. ROYAL SOCIETY OPEN SCIENCE 2021; 8:202279. [PMID: 34084545 PMCID: PMC8150032 DOI: 10.1098/rsos.202279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
We investigate theoretically the ballistic motion of small legged insects and legless larvae after a jump. Notwithstanding their completely different morphologies and jumping strategies, some legged and legless animals have convergently evolved to jump with a take-off angle of 60°, which differs significantly from the leap angle of 45° that allows reaching maximum range. We show that in the presence of uniformly distributed random obstacles the probability of a successful jump is directly proportional to the area under the trajectory. In the presence of negligible air drag, the probability is maximized by a take-off angle of 60°. The numerical calculation of the trajectories shows that they are significantly affected by air drag, but the maximum probability of a successful jump still occurs for a take-off angle of 59-60° in a wide range of the dimensionless Reynolds and Froude numbers that control the process. We discuss the implications of our results for the exploration of unknown environments such as planets and disaster scenarios by using jumping robots.
Collapse
Affiliation(s)
- Fabio Giavazzi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, 20133 Milano, Italy
| | - Samuele Spini
- Dipartimento di Fisica A. Pontremoli, Università degli Studi di Milano, 20133 Milano, Italy
| | - Marina Carpineti
- Dipartimento di Fisica A. Pontremoli, Università degli Studi di Milano, 20133 Milano, Italy
| | - Alberto Vailati
- Dipartimento di Fisica A. Pontremoli, Università degli Studi di Milano, 20133 Milano, Italy
| |
Collapse
|
16
|
Kirkton SD, Yazdani AA. Chronic electrical stimulation reduces reliance on anaerobic metabolism in locust jumping muscle. Comp Biochem Physiol A Mol Integr Physiol 2021; 257:110954. [PMID: 33831581 DOI: 10.1016/j.cbpa.2021.110954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 10/21/2022]
Abstract
Chronic electrical stimulation (CES) is a well-documented method for changing mammalian muscle from more fast-twitch to slow-twitch metabolic and contractile profiles. Although both mammalian and insect muscles have many similar anatomical and physiological properties, it is unknown if CES produces similar muscle plasticity changes in insects. To test this idea, we separated Schistocerca americana grasshoppers into two groups (n = 37 to 47): one that was subjected to CES for 180 min each day for five consecutive days and one group that was not. Each group was then electrically stimulated for a single time period (0, 5, 30, 60, or 180 min) before measuring jumping muscle lactate, a characteristic of fast-twitch type fibers. At each time point, CES led to a significantly reduced jumping muscle lactate concentration. Based on similar short-term CES mammalian studies, the reduction in lactate production was most likely due to a reduced reliance on anaerobic metabolism. Thus, longer stimulation periods should result in greater aerobic enzymatic activities, altered myosin ATPase, and shift fiber types. This is the first study to use electrical stimulation to explore insect muscle plasticity and our results show that grasshopper jumping muscle responds similarly to mammalian muscle.
Collapse
Affiliation(s)
- Scott D Kirkton
- Department of Biological Sciences, Union College, Schenectady, NY 12308, United States of America.
| | - Ariella A Yazdani
- Department of Biological Sciences, Union College, Schenectady, NY 12308, United States of America
| |
Collapse
|
17
|
Mukherjee R, Caron DP, Edson T, Trimmer BA. The control of nocifensive movements in the caterpillar Manduca sexta. J Exp Biol 2020; 223:jeb221010. [PMID: 32647020 DOI: 10.1242/jeb.221010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 07/01/2020] [Indexed: 11/20/2022]
Abstract
In response to a noxious stimulus on the abdomen, caterpillars lunge their head towards the site of stimulation. This nocifensive 'strike' behavior is fast (∼0.5 s duration), targeted and usually unilateral. It is not clear how the fast strike movement is generated and controlled, because caterpillar muscle develops peak force relatively slowly (∼1 s) and the baseline hemolymph pressure is low (<2 kPa). Here, we show that strike movements are largely driven by ipsilateral muscle activation that propagates from anterior to posterior segments. There is no sustained pre-strike muscle activation that would be expected for movements powered by the rapid release of stored elastic energy. Although muscle activation on the ipsilateral side is correlated with segment shortening, activity on the contralateral side consists of two phases of muscle stimulation and a marked decline between them. This decrease in motor activity precedes rapid expansion of the segment on the contralateral side, presumably allowing the body wall to stretch more easily. The subsequent increase in contralateral motor activation may slow or stabilize movements as the head reaches its target. Strike behavior is therefore a controlled fast movement involving the coordination of muscle activity on each side and along the length of the body.
Collapse
Affiliation(s)
- Ritwika Mukherjee
- Tufts University, Department of Biology, 200 Boston Avenue, Suite 2600, MA 02155, USA
| | - Daniel P Caron
- Tufts University, Department of Biology, 200 Boston Avenue, Suite 2600, MA 02155, USA
| | - Timothy Edson
- Department of Chemistry and Biochemistry, Bates College, 2 Andrews Road, Lewiston, ME 04240, USA
| | - Barry A Trimmer
- Tufts University, Department of Biology, 200 Boston Avenue, Suite 2600, MA 02155, USA
| |
Collapse
|
18
|
Wood HM. Morphology and performance of the 'trap-jaw' cheliceral strikes in spiders (Araneae, Mecysmaucheniidae). J Exp Biol 2020; 223:jeb219899. [PMID: 32561635 DOI: 10.1242/jeb.219899] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 06/02/2020] [Indexed: 08/26/2023]
Abstract
Mecysmaucheniidae spiders have evolved ultra-fast cheliceral strikes 4 times independently. The mechanism for producing these high-speed strikes is likely due to a latch/spring system that allows for stored energy to be rapidly released. This study examined two different sister lineages: Zearchaea has ultra-fast cheliceral strikes and Aotearoa, based on external morphology of the clypeus, is hypothesized to have slower strikes. Using high-speed videography, I first gathered kinematic data on each taxon. Then, using histology and data from micro-computed tomography scanning, I examined internal cheliceral muscle morphology to test whether shifts in muscle anatomy correspond to performance differences in cheliceral strike. Results from high-speed video analysis revealed that Zearchaea achieves peak angular velocities of 25.0×103±4.8×103 rad s-1 (mean±s.d.) in durations of 0.0843±0.017 ms. The fastest recorded strike had a peak angular and linear velocity of 30.8×103 rad s-1 and 18.2 m s-1, respectively. The slower striking sister species, Aotearoa magna, was three orders of magnitude slower in velocity and longer in duration. Histology revealed sarcomere length differences, with some muscles optimized for force, and other muscles for speed. 3D printed models revealed structural differences that explain how the chelicerae hinge open and close. Combining all of this evidence, I put forth a hypothesis for the ultra-fast trap-jaw mechanism. This research documents the morphological shifts that accompany ultra-fast movements that result in increased rotation in joints and increased muscle specialization.
Collapse
Affiliation(s)
- Hannah M Wood
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
| |
Collapse
|
19
|
Whitford MD, Freymiller GA, Higham TE, Clark RW. The effects of temperature on the defensive strikes of rattlesnakes. J Exp Biol 2020; 223:jeb223859. [PMID: 32561628 DOI: 10.1242/jeb.223859] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/28/2020] [Indexed: 08/26/2023]
Abstract
Movements of ectotherms are constrained by their body temperature owing to the effects of temperature on muscle physiology. As physical performance often affects the outcome of predator-prey interactions, environmental temperature can influence the ability of ectotherms to capture prey and/or defend themselves against predators. However, previous research on the kinematics of ectotherms suggests that some species may use elastic storage mechanisms when attacking or defending, thereby mitigating the effects of sub-optimal temperature. Rattlesnakes (Crotalus spp.) are a speciose group of ectothermic viperid snakes that rely on crypsis, rattling and striking to deter predators. We examined the influence of body temperature on the behavior and kinematics of two rattlesnake species (Crotalus oreganus helleri and Crotalus scutulatus) when defensively striking towards a threatening stimulus. We recorded defensive strikes at body temperatures ranging from 15-35°C. We found that strike speed and speed of mouth gaping during the strike were positively correlated with temperature. We also found a marginal effect of temperature on the probability of striking, latency to strike and strike outcome. Overall, warmer snakes are more likely to strike, strike faster, open their mouth faster and reach maximum gape earlier than colder snakes. However, the effects of temperature were less than would be expected for purely muscle-driven movements. Our results suggest that, although rattlesnakes are at a greater risk of predation at colder body temperatures, their decrease in strike performance may be mitigated to some extent by employing mechanisms in addition to skeletal muscle contraction (e.g. elastic energy storage) to power strikes.
Collapse
Affiliation(s)
- Malachi D Whitford
- Department of Biology, San Diego State University, San Diego, CA, USA
- Ecology Graduate Group, University of California, Davis, CA, USA
| | - Grace A Freymiller
- Department of Biology, San Diego State University, San Diego, CA, USA
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Timothy E Higham
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Rulon W Clark
- Department of Biology, San Diego State University, San Diego, CA, USA
- Chiricahua Desert Museum, Rodeo, NM 88056, USA
| |
Collapse
|
20
|
Termite's Twisted Mandible Presents Fast, Powerful, and Precise Strikes. Sci Rep 2020; 10:9462. [PMID: 32528013 PMCID: PMC7289866 DOI: 10.1038/s41598-020-66294-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/23/2020] [Indexed: 11/25/2022] Open
Abstract
The asymmetric mandibles of termites are hypothetically more efficient, rapid, and powerful than the symmetric mandibles of snap-jaw ants or termites. We investigated the velocity, force, precision, and defensive performance of the asymmetric mandibular snaps of a termite species, Pericapritermes nitobei. Ultrahigh-speed recordings of termites revealed a new record in biological movement, with a peak linear velocity of 89.7–132.4 m/s within 8.68 μs after snapping, which caused an impact force of 105.8–156.2 mN. High-speed video recordings of ball-strike experiments on termites were analysed using the principle of energy conservation; the left mandibles precisely hit metal balls at the left-to-front side with a maximum linear velocity of 80.3 ± 15.9 m/s (44.0–107.7 m/s) and an impact force of 94.7 ± 18.8 mN (51.9–127.1 mN). In experimental fights between termites and ant predators, Pe. nitobei killed 90–100% of the generalist ants with a single snap and was less likely to harm specialist ponerine ants. Compared with other forms, the asymmetric snapping mandibles of Pe. nitobei required less elastic energy to achieve high velocity. Moreover, the ability of P. nitobei to strike its target at the front side is advantageous for defence in tunnels.
Collapse
|
21
|
Wan C, Hao Z. Natural arrangement of micro-strips reduces shear strain in the locust cuticle during power amplification. J Biomech 2020; 107:109842. [DOI: 10.1016/j.jbiomech.2020.109842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/23/2020] [Accepted: 05/11/2020] [Indexed: 10/24/2022]
|
22
|
Deban SM, Scales JA, Bloom SV, Easterling CM, O'Donnell MK, Olberding JP. Evolution of a high-performance and functionally robust musculoskeletal system in salamanders. Proc Natl Acad Sci U S A 2020; 117:10445-10454. [PMID: 32341147 PMCID: PMC7229748 DOI: 10.1073/pnas.1921807117] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The evolution of ballistic tongue projection in plethodontid salamanders-a high-performance and thermally robust musculoskeletal system-is ideal for examining how the components required for extreme performance in animal movement are assembled in evolution. Our comparative data on whole-organism performance measured across a range of temperatures and the musculoskeletal morphology of the tongue apparatus were examined in a phylogenetic framework and combined with data on muscle contractile physiology and neural control. Our analysis reveals that relatively minor evolutionary changes in morphology and neural control have transformed a muscle-powered system with modest performance and high thermal sensitivity into a spring-powered system with extreme performance and functional robustness in the face of evolutionarily conserved muscle contractile physiology. Furthermore, these changes have occurred in parallel in both major clades of this largest family of salamanders. We also find that high-performance tongue projection that exceeds available muscle power and thermal robustness of performance coevolve, both being emergent properties of the same elastic-recoil mechanism. Among the taxa examined, we find muscle-powered and fully fledged elastic systems with enormous performance differences, but no intermediate forms, suggesting that incipient elastic mechanisms do not persist in evolutionary time. A growing body of data from other elastic systems suggests that similar coevolution of traits may be found in other ectothermic animals with high performance, particularly those for which thermoregulation is challenging or ecologically costly.
Collapse
Affiliation(s)
- Stephen M Deban
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620;
| | - Jeffrey A Scales
- Department of Biological Sciences, California State University Stanislaus, Turlock, CA 95382
| | - Segall V Bloom
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620
| | | | - Mary Kate O'Donnell
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620
| | - Jeffrey P Olberding
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620
| |
Collapse
|
23
|
Patek SN. The Power of Mantis Shrimp Strikes: Interdisciplinary Impacts of an Extreme Cascade of Energy Release. Integr Comp Biol 2020; 59:1573-1585. [PMID: 31304967 DOI: 10.1093/icb/icz127] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In the course of a single raptorial strike by a mantis shrimp (Stomatopoda), the stages of energy release span six to seven orders of magnitude of duration. To achieve their mechanical feats of striking at the outer limits of speeds, accelerations, and impacts among organisms, they use a mechanism that exemplifies a cascade of energy release-beginning with a slow and forceful, spring-loading muscle contraction that lasts for hundreds of milliseconds and ending with implosions of cavitation bubbles that occur in nanoseconds. Mantis shrimp use an elastic mechanism built of exoskeleton and controlled with a latching mechanism. Inspired by both their mechanical capabilities and evolutionary diversity, research on mantis shrimp strikes has provided interdisciplinary and fundamental insights to the fields of elastic mechanisms, fluid dynamics, evolutionary dynamics, contest dynamics, the physics of fast, small systems, and the rapidly-expanding field of bioinspired materials science. Even with these myriad connections, numerous discoveries await, especially in the arena of energy flow through materials actuating and controlling fast, impact fracture resistant systems.
Collapse
Affiliation(s)
- S N Patek
- Biology Department, Duke University, Durham, NC, USA
| |
Collapse
|
24
|
Sutton GP, Mendoza E, Azizi E, Longo SJ, Olberding JP, Ilton M, Patek SN. Why do Large Animals Never Actuate Their Jumps with Latch-Mediated Springs? Because They can Jump Higher Without Them. Integr Comp Biol 2020; 59:1609-1618. [PMID: 31399734 PMCID: PMC6907395 DOI: 10.1093/icb/icz145] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
As animals get smaller, their ability to generate usable work from muscle contraction is decreased by the muscle's force-velocity properties, thereby reducing their effective jump height. Very small animals use a spring-actuated system, which prevents velocity effects from reducing available energy. Since force-velocity properties reduce the usable work in even larger animals, why don't larger animals use spring-actuated jumping systems as well? We will show that muscle length-tension properties limit spring-actuated systems to generating a maximum one-third of the possible work that a muscle could produce-greatly restricting the jumping height of spring-actuated jumpers. Thus a spring-actuated jumping animal has a jumping height that is one-third of the maximum possible jump height achievable were 100% of the possible muscle work available. Larger animals, which could theoretically use all of the available muscle energy, have a maximum jumping height that asymptotically approaches a value that is about three times higher than that of spring-actuated jumpers. Furthermore, a size related "crossover point" is evident for these two jumping mechanisms: animals smaller than this point can jump higher with a spring-actuated mechanism, while animals larger than this point can jump higher with a muscle-actuated mechanism. We demonstrate how this limit on energy storage is a consequence of the interaction between length-tension properties of muscles and spring stiffness. We indicate where this crossover point occurs based on modeling and then use jumping data from the literature to validate that larger jumping animals generate greater jump heights with muscle-actuated systems than spring-actuated systems.
Collapse
Affiliation(s)
| | - Elizabeth Mendoza
- School of Biological Sciences, University of California, Irvine, CA, USA
| | - Emanuel Azizi
- School of Biological Sciences, University of California, Irvine, CA, USA
| | | | | | - Mark Ilton
- Department of Physics, Harvey Mudd College, Claremont, CA
| | | |
Collapse
|
25
|
Mendoza E, Azizi E, Moen DS. What explains vast differences in jumping power within a clade? Diversity, ecology and evolution of anuran jumping power. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Elizabeth Mendoza
- Department of Ecology and Evolutionary Biology University of California Irvine CA USA
- Department of Integrative Biology Oklahoma State University Stillwater OK USA
| | - Emanuel Azizi
- Department of Ecology and Evolutionary Biology University of California Irvine CA USA
| | - Daniel S. Moen
- Department of Integrative Biology Oklahoma State University Stillwater OK USA
| |
Collapse
|
26
|
Feller KD, Sutton GP, Gonzalez-Bellido PT. Medium compensation in a spring-actuated system. J Exp Biol 2020; 223:jeb208678. [PMID: 31988162 DOI: 10.1242/jeb.208678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 01/16/2020] [Indexed: 12/27/2022]
Abstract
Mantis shrimp strikes are one of the fastest animal movements, despite their occurrence in a water medium with viscous drag. Since the strike is produced by a latch-mediated spring-actuated system and not directly driven by muscle action, we predicted that strikes performed in air would be faster than underwater as a result of reduction in the medium's drag. Using high-speed video analysis of stereotyped strikes elicited from Squilla mantis, we found the exact opposite: strikes are much slower and less powerful in air than in water. S. mantis strikes in air have a similar mass and performance to latch-mediated spring-actuated jumps in locusts, suggesting a potential threshold for the energetics of a 1-2 g limb rotating in air. Drag forces induced by the media may be a key feature in the evolution of mantis shrimp strikes and provide a potential target for probing the braking system of these extremely fast movements.
Collapse
Affiliation(s)
- Kathryn D Feller
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Gregory P Sutton
- University of Lincoln, School of Life Sciences, Lincoln LN6 7TS, UK
| | | |
Collapse
|
27
|
Spatial and temporal changes in buccal pressure during prey-capture in the trumpetfish (Aulostomus maculatus). ZOOMORPHOLOGY 2019. [DOI: 10.1007/s00435-019-00470-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Ilton M, Cox SM, Egelmeers T, Sutton GP, Patek SN, Crosby AJ. The effect of size-scale on the kinematics of elastic energy release. SOFT MATTER 2019; 15:9579-9586. [PMID: 31724691 DOI: 10.1039/c9sm00870e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Elastically-driven motion has been used as a strategy to achieve high speeds in small organisms and engineered micro-robotic devices. We examine the size-scaling relations determining the limit of elastic energy release from elastomer bands that efficiently cycle mechanical energy with minimal loss. The maximum center-of-mass velocity of the elastomer bands was found to be size-scale independent, while smaller bands demonstrated larger accelerations and shorter durations of elastic energy release. Scaling relationships determined from these measurements are consistent with the performance of small organisms and engineered devices which utilize elastic elements to power motion.
Collapse
Affiliation(s)
- Mark Ilton
- Department of Physics, Harvey Mudd College, Claremont, CA 91711, USA
| | | | | | | | | | | |
Collapse
|
29
|
Mechanical characterization of the key portions in locust semi-lunar processes under different strain rates. J Biomech 2019; 95:109314. [DOI: 10.1016/j.jbiomech.2019.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/04/2019] [Accepted: 08/06/2019] [Indexed: 11/21/2022]
|
30
|
Kehl CE, Wu J, Lu S, Neustadter DM, Drushel RF, Smoldt RK, Chiel HJ. Soft-surface grasping: radular opening in Aplysia californica. J Exp Biol 2019; 222:jeb191254. [PMID: 31350299 PMCID: PMC6739808 DOI: 10.1242/jeb.191254] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 07/01/2019] [Indexed: 12/22/2022]
Abstract
Grasping soft, irregular material is challenging both for animals and robots. The feeding systems of many animals have adapted to this challenge. In particular, the feeding system of the marine mollusk Aplysia californica, a generalist herbivore, allows it to grasp and ingest seaweeds of varying shape, texture and toughness. On the surface of the grasper of A. californica is a structure known as the radula, a thin flexible cartilaginous sheet with fine teeth. Previous in vitro studies suggested that intrinsic muscles, I7, are responsible for opening the radula. Lesioning I7 in vivo does not prevent animals from grasping and ingesting food. New in vitro studies demonstrate that a set of fine muscle fibers on the ventral surface of the radula - the sub-radular fibers (SRFs) - mediate opening movements even if the I7 muscles are absent. Both in vitro and in vivo lesions demonstrate that removing the SRFs leads to profound deficits in radular opening, and significantly reduces feeding efficiency. A theoretical biomechanical analysis of the actions of the SRFs suggests that they induce the radular surface to open around a central crease in the radular surface and to arch the radular surface, allowing it to softly conform to irregular material. A three-dimensional model of the radular surface, based on in vivo observations and magnetic resonance imaging of intact animals, provides support for the biomechanical analysis. These results suggest how a soft grasper can work during feeding, and suggest novel designs for artificial soft graspers.
Collapse
Affiliation(s)
- Catherine E Kehl
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Joey Wu
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sisi Lu
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | - Richard F Drushel
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Rebekah K Smoldt
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Hillel J Chiel
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
31
|
Longo SJ, Cox SM, Azizi E, Ilton M, Olberding JP, St Pierre R, Patek SN. Beyond power amplification: latch-mediated spring actuation is an emerging framework for the study of diverse elastic systems. ACTA ACUST UNITED AC 2019; 222:222/15/jeb197889. [PMID: 31399509 DOI: 10.1242/jeb.197889] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Rapid biological movements, such as the extraordinary strikes of mantis shrimp and accelerations of jumping insects, have captivated generations of scientists and engineers. These organisms store energy in elastic structures (e.g. springs) and then rapidly release it using latches, such that movement is driven by the rapid conversion of stored elastic to kinetic energy using springs, with the dynamics of this conversion mediated by latches. Initially drawn to these systems by an interest in the muscle power limits of small jumping insects, biologists established the idea of power amplification, which refers both to a measurement technique and to a conceptual framework defined by the mechanical power output of a system exceeding muscle limits. However, the field of fast elastically driven movements has expanded to encompass diverse biological and synthetic systems that do not have muscles - such as the surface tension catapults of fungal spores and launches of plant seeds. Furthermore, while latches have been recognized as an essential part of many elastic systems, their role in mediating the storage and release of elastic energy from the spring is only now being elucidated. Here, we critically examine the metrics and concepts of power amplification and encourage a framework centered on latch-mediated spring actuation (LaMSA). We emphasize approaches and metrics of LaMSA systems that will forge a pathway toward a principled, interdisciplinary field.
Collapse
Affiliation(s)
- S J Longo
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - S M Cox
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - E Azizi
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA 92697, USA
| | - M Ilton
- Department of Physics, Harvey Mudd College, Claremont, CA 91711, USA
| | - J P Olberding
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA 92697, USA
| | - R St Pierre
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - S N Patek
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
32
|
Farley GM, Wise MJ, Harrison JS, Sutton GP, Kuo C, Patek SN. Adhesive latching and legless leaping in small, worm-like insect larvae. J Exp Biol 2019; 222:222/15/jeb201129. [DOI: 10.1242/jeb.201129] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/05/2019] [Indexed: 12/16/2022]
Abstract
ABSTRACT
Jumping is often achieved using propulsive legs, yet legless leaping has evolved multiple times. We examined the kinematics, energetics and morphology of long-distance jumps produced by the legless larvae of gall midges (Asphondylia sp.). They store elastic energy by forming their body into a loop and pressurizing part of their body to form a transient ‘leg’. They prevent movement during elastic loading by placing two regions covered with microstructures against each other, which likely serve as a newly described adhesive latch. Once the latch releases, the transient ‘leg’ launches the body into the air. Their average takeoff speeds (mean: 0.85 m s−1; range: 0.39–1.27 m s−1) and horizontal travel distances (up to 36 times body length or 121 mm) rival those of legged insect jumpers and their mass-specific power density (mean: 910 W kg−1; range: 150–2420 W kg−1) indicates the use of elastic energy storage to launch the jump. Based on the forces reported for other microscale adhesive structures, the adhesive latching surfaces are sufficient to oppose the loading forces prior to jumping. Energetic comparisons of insect larval crawling versus jumping indicate that these jumps are orders of magnitude more efficient than would be possible if the animals had crawled an equivalent distance. These discoveries integrate three vibrant areas in engineering and biology – soft robotics, small, high-acceleration systems, and adhesive systems – and point toward a rich, and as-yet untapped area of biological diversity of worm-like, small, legless jumpers.
Collapse
Affiliation(s)
- G. M. Farley
- Biology Department, Duke University, Durham, NC 27708, USA
| | - M. J. Wise
- Department of Biology, Roanoke College, Salem, VA 24153, USA
| | - J. S. Harrison
- Biology Department, Duke University, Durham, NC 27708, USA
| | - G. P. Sutton
- School of Life Sciences, University of Lincoln, Lincoln LN6 7TS, UK
| | - C. Kuo
- Division of Evolutionary Biology, Ludwig Maximilian University of Munich, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - S. N. Patek
- Biology Department, Duke University, Durham, NC 27708, USA
| |
Collapse
|
33
|
Davranoglou LR, Cicirello A, Taylor GK, Mortimer B. Planthopper bugs use a fast, cyclic elastic recoil mechanism for effective vibrational communication at small body size. PLoS Biol 2019; 17:e3000155. [PMID: 30860993 PMCID: PMC6413918 DOI: 10.1371/journal.pbio.3000155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/05/2019] [Indexed: 11/18/2022] Open
Abstract
Vibrations through substrates are an important source of information for diverse organisms, from nematodes to elephants. The fundamental challenge for small animals using vibrational communication is to move their limited mass fast enough to provide sufficient kinetic energy for effective information transfer through the substrate whilst optimising energy efficiency over repeated cycles. Here, we describe a vibratory organ found across a commercially important group of plant-feeding insects, the planthoppers (Hemiptera: Fulgoromorpha). This elastic recoil snapping organ generates substrate-borne broadband vibrations using fast, cyclical abdominal motion that transfers kinetic energy to the substrate through the legs. Elastic potential energy is stored and released twice using two different latched energy-storage mechanisms, each utilising a different form of elastic recoil to increase the speed of motion. Comparison to the acoustic tymbal organ of cicadas (Hemiptera: Cicadomorpha) reveals functional convergence in their use of elastic mechanisms to increase the efficacy of mechanical communication. Planthopper insects produce fast abdominal twerks for vibrational communication through the substrate, employing a novel vibratory organ that uses two reciprocal elastic recoil mechanisms to generate fast cyclical motion. Animals use substrate-borne vibrations for eavesdropping and communication over an immense range of body size—from elephants to nematodes. Vibrational communication is especially challenging for small animals because of the high mechanical power that is needed to transmit information effectively over extended distances through a substrate. Here, we show that planthoppers, a commercially important group of insects, produce vibrations for communication using a reciprocal elastic recoil mechanism that proves remarkably effective at small body size. By combining morphological and biomechanical analyses of a previously overlooked vibratory organ on the abdomen, we show that planthoppers use fast, cyclical abdominal motions to generate substrate-borne vibrations. This novel, to our knowledge, mechanism, which we term the snapping organ, makes use of slow energy storage and fast elastic recoil twice during each cycle of motion, involving two distinct elastic elements. This cyclical mechanism allows planthoppers to transmit signal pulses containing a broad range of frequencies to the substrate. The mechanism is efficient, achieving fast cyclical motion without relying on high muscle power and mass, both of which are limited for animals of small size. The snapping organ is ubiquitous across planthoppers and presents an interesting example of how elastic mechanisms can be used to enable nonacoustic vibrational communication between animals.
Collapse
Affiliation(s)
| | - Alice Cicirello
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Graham K. Taylor
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Beth Mortimer
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
- * E-mail:
| |
Collapse
|
34
|
Larabee FJ, Smith AA, Suarez AV. Snap-jaw morphology is specialized for high-speed power amplification in the Dracula ant, Mystrium camillae. ROYAL SOCIETY OPEN SCIENCE 2018; 5:181447. [PMID: 30662749 PMCID: PMC6304126 DOI: 10.1098/rsos.181447] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
What is the limit of animal speed and what mechanisms produce the fastest movements? More than natural history trivia, the answer provides key insight into the form-function relationship of musculoskeletal movement and can determine the outcome of predator-prey interactions. The fastest known animal movements belong to arthropods, including trap-jaw ants, mantis shrimp and froghoppers, that have incorporated latches and springs into their appendage systems to overcome the limits of muscle power. In contrast to these examples of power amplification, where separate structures act as latch and spring to accelerate an appendage, some animals use a 'snap-jaw' mechanism that incorporates the latch and spring on the accelerating appendage itself. We examined the kinematics and functional morphology of the Dracula ant, Mystrium camillae, who use a snap-jaw mechanism to quickly slide their mandibles across each other similar to a finger snap. Kinematic analysis of high-speed video revealed that snap-jaw ant mandibles complete their strike in as little as 23 µsec and reach peak velocities of 90 m s-1, making them the fastest known animal appendage. Finite-element analysis demonstrated that snap-jaw mandibles were less stiff than biting non-power-amplified mandibles, consistent with their use as a flexible spring. These results extend our understanding of animal speed and demonstrate how small changes in morphology can result in dramatic differences in performance.
Collapse
Affiliation(s)
- Fredrick J. Larabee
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Department of Entomology, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Adrian A. Smith
- Research and Collections, North Carolina Museum of Natural Sciences, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Andrew V. Suarez
- Department of Entomology, University of Illinois, Urbana-Champaign, Urbana, IL, USA
- Department of Animal Biology, University of Illinois, Urbana-Champaign, Urbana, IL, USA
- Beckman Institute for Science and Technology, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
35
|
Longo SJ, Goodearly T, Wainwright PC. Extremely fast feeding strikes are powered by elastic recoil in a seahorse relative, the snipefish, Macroramphosus scolopax. Proc Biol Sci 2018; 285:20181078. [PMID: 30051834 PMCID: PMC6053929 DOI: 10.1098/rspb.2018.1078] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 06/12/2018] [Indexed: 11/12/2022] Open
Abstract
Among over 30 000 species of ray-finned fishes, seahorses and pipefishes have a unique feeding mechanism whereby the elastic recoil of tendons allows them to rotate their long snouts extremely rapidly in order to capture small elusive prey. To understand the evolutionary origins of this feeding mechanism, its phylogenetic distribution among closely related lineages must be assessed. We present evidence for elastic recoil-powered feeding in snipefish (Macroramphosus scolopax) from kinematics, dynamics and morphology. High-speed videos of strikes show they achieve extremely fast head and hyoid rotational velocities, resulting in rapid prey capture in as short a duration as 2 ms. The maximum instantaneous muscle-mass-specific power requirement for head rotation in snipefish was above the known vertebrate maximum, which is evidence that strikes are not the result of direct muscle power. Finally, we show that the over-centre conformation of the four-bar linkage mechanism coupling head elevation to hyoid rotation in snipefish can function as a torque reversal latch, preventing the head from rotating and providing the opportunity for elastic energy storage. The presence of elastic recoil feeding in snipefish means that this high-performance mechanism is not restricted to the Syngnathidae (seahorses and pipefish) and may have evolved in parallel.
Collapse
Affiliation(s)
- Sarah J Longo
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - Tyler Goodearly
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - Peter C Wainwright
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| |
Collapse
|
36
|
Ilton M, Bhamla MS, Ma X, Cox SM, Fitchett LL, Kim Y, Koh JS, Krishnamurthy D, Kuo CY, Temel FZ, Crosby AJ, Prakash M, Sutton GP, Wood RJ, Azizi E, Bergbreiter S, Patek SN. The principles of cascading power limits in small, fast biological and engineered systems. Science 2018; 360:360/6387/eaao1082. [PMID: 29700237 DOI: 10.1126/science.aao1082] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 03/07/2018] [Indexed: 01/24/2023]
Abstract
Mechanical power limitations emerge from the physical trade-off between force and velocity. Many biological systems incorporate power-enhancing mechanisms enabling extraordinary accelerations at small sizes. We establish how power enhancement emerges through the dynamic coupling of motors, springs, and latches and reveal how each displays its own force-velocity behavior. We mathematically demonstrate a tunable performance space for spring-actuated movement that is applicable to biological and synthetic systems. Incorporating nonideal spring behavior and parameterizing latch dynamics allows the identification of critical transitions in mass and trade-offs in spring scaling, both of which offer explanations for long-observed scaling patterns in biological systems. This analysis defines the cascading challenges of power enhancement, explores their emergent effects in biological and engineered systems, and charts a pathway for higher-level analysis and synthesis of power-amplified systems.
Collapse
Affiliation(s)
- Mark Ilton
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - M Saad Bhamla
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Xiaotian Ma
- Department of Mechanical Engineering and Institute for Systems Research, University of Maryland, College Park, College Park, MD 20742, USA
| | - Suzanne M Cox
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Leah L Fitchett
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Yongjin Kim
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Je-Sung Koh
- School of Engineering and Applied Sciences and Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | | | - Chi-Yun Kuo
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Fatma Zeynep Temel
- School of Engineering and Applied Sciences and Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Alfred J Crosby
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Manu Prakash
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Gregory P Sutton
- School of Biological Sciences, University of Bristol, Bristol BS8 1TH, UK
| | - Robert J Wood
- School of Engineering and Applied Sciences and Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Emanuel Azizi
- Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, USA
| | - Sarah Bergbreiter
- Department of Mechanical Engineering and Institute for Systems Research, University of Maryland, College Park, College Park, MD 20742, USA
| | - S N Patek
- Department of Biology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
37
|
Gibson JC, Larabee FJ, Touchard A, Orivel J, Suarez AV. Mandible strike kinematics of the trap‐jaw ant genus
Anochetus
Mayr (Hymenoptera: Formicidae). J Zool (1987) 2018. [DOI: 10.1111/jzo.12580] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- J. C. Gibson
- Department of Entomology University of Illinois at Urbana‐Champaign Urbana IL USA
| | - F. J. Larabee
- Department of Entomology University of Illinois at Urbana‐Champaign Urbana IL USA
- Department of Entomology National Museum of Natural History Smithsonian Institution Washington DC USA
| | - A. Touchard
- EA7417‐BTSB Université Fédérale Toulouse Midi‐Pyrénées INU Champollion Albi France
| | - J. Orivel
- CNRS UMR Ecologie des Forêts de Guyane (EcoFoG) AgroParisTech CIRAD INRA Université de Guyane Université des Antilles Kourou Cedex France
| | - A. V. Suarez
- Department of Entomology University of Illinois at Urbana‐Champaign Urbana IL USA
- Department of Animal Biology University of Illinois at Urbana‐Champaign Urbana IL USA
| |
Collapse
|
38
|
Listening in the bog: I. Acoustic interactions and spacing between males of Sphagniana sphagnorum. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2018; 204:339-351. [PMID: 29441409 PMCID: PMC5849662 DOI: 10.1007/s00359-018-1250-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/14/2017] [Accepted: 02/01/2018] [Indexed: 11/25/2022]
Abstract
Males of the katydid Sphagniana sphagnorum form calling aggregations in boreal sphagnum bogs to attract mates. They broadcast frequency-modulated (FM) songs in steady series, each song comprised of two wing-stroking modes that alternate audio and ultrasonic spectra. NN analysis of three populations found mean distances between 5.1 and 8.4 m, but failed to find spacing regularity: in one males spaced randomly, in another they were clumped, but within the clumps spaced at random. We tested a mechanism for maintaining inter-male distances by playback of conspecific song to resident males and analysing song interactions between neighbouring males in the field. The results indicate that the song rate is an important cue for males. Information coded in song rates is confounded by variation in bog temperatures and by the linear correlation of song rates with temperature. The ultrasonic and audio spectral modes suffer different excess attenuation: the ultrasonic mode is favoured at shorter distances (< 6 m), the audio mode at longer distances (> 6 m), supporting a hypothesized function in distance estimation. Another katydid, Conocephalus fasciatus, shares habitat with S. sphagnorum and could mask its ultrasonic mode; however, mapping of both species indicate the spacing of S. sphagnorum is unaffected by the sympatric species.
Collapse
|
39
|
Robertson JW, Struthers CN, Syme DA. Enhancement of muscle and locomotor performance by a series compliance: A mechanistic simulation study. PLoS One 2018; 13:e0191828. [PMID: 29370246 PMCID: PMC5784993 DOI: 10.1371/journal.pone.0191828] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 01/11/2018] [Indexed: 11/18/2022] Open
Abstract
The objective was to better understand how a series compliance alters contraction kinetics and power output of muscle to enhance the work done on a load. A mathematical model was created in which a gravitational point load was connected via a linear spring to a muscle (based on the contractile properties of the sartorius of leopard frogs, Rana pipiens). The model explored the effects of load mass, tendon compliance, and delay between onset of contraction and release of the load (catch) on lift height and power output as measures of performance. Series compliance resulted in increased lift height over a relatively narrow range of compliances, and the effect was quite modest without an imposed catch mechanism unless the load was unrealistically small. Peak power of the muscle-tendon complex could be augmented up to four times that produced with a muscle alone, however, lift height was not predicted by peak power. Rather, lift height was improved as a result of the compliance synchronizing the time courses of muscle force and shortening velocity, in particular by stabilizing shortening velocity such that muscle power was sustained rather than rising and immediately falling. With a catch mechanism, enhanced performance resulted largely from energy storage in the compliance during the period of catch, rather than increased time for muscle activation before movement commenced. However, series compliance introduced a trade-off between work done before versus after release of the catch. Thus, the ability of tendons to enhance locomotor performance (i.e. increase the work done by muscle) appears dependent not only on their established role in storing energy and increasing power, but also on their ability to modulate the kinetics of muscle contraction such that power is sustained over more of the contraction, and maximizing the balance of work done before versus after release of a catch.
Collapse
Affiliation(s)
- Jason W Robertson
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Colin N Struthers
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Douglas A Syme
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
40
|
Urca T, Ribak G. The effect of air resistance on the jump performance of a small parasitoid wasp, Anagyrus pseudococci (Encyrtidae). J Exp Biol 2018; 221:jeb.177600. [DOI: 10.1242/jeb.177600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 02/15/2018] [Indexed: 01/31/2023]
Abstract
The distance a small insect moves through air during a jump is limited by the launch velocity at take-off and by air resistance. The launch velocity is limited by the length of the jumping legs and the maximum power that the jump apparatus can provide for pushing against the ground. The effect of air resistance is determined by the insect mass-to-area ratio. Both limitations are highly dependent on the body size, making high jumps a challenge for smaller insects. We studied both effects in the tiny Encyrtid wasp Anagyrus pseudococci. Males are smaller than females (mean body length 1.2 and 1.8 mm, respectively), but both sexes take-off in a powerful jump. Using high-speed cameras, we analyzed the relationship between take-off kinematics and distance traveled through air. We show that the velocity, acceleration and mass-specific power while leaving the ground places A. pseudococci among the most prominent jumpers of the insect world. However, the absolute distance moved through air is modest compared to other jumping insects, due to air resistance acting on the small body. A biomechanical model suggests that air resistance reduces the jump distance of these insects by 49%, compared to jumping in the absence of air resistance. The effect of air resistance is more pronounced in the smaller males resulting in a segregation of the jumping performance between sexes. The limiting effect of air resistance is inversely proportional to body mass, seriously constraining jumping as a form of moving through air in these and other small insects.
Collapse
Affiliation(s)
- Tomer Urca
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, 6997801, Israel
| | - Gal Ribak
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, 6997801, Israel
- The Steinhardt Museum of Natural History, Israel National Center for Biodiversity Studies, Tel Aviv 6997801, Israel
| |
Collapse
|
41
|
Rosario MV, Sutton GP, Patek SN, Sawicki GS. Muscle-spring dynamics in time-limited, elastic movements. Proc Biol Sci 2017; 283:rspb.2016.1561. [PMID: 27629031 DOI: 10.1098/rspb.2016.1561] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 08/18/2016] [Indexed: 11/12/2022] Open
Abstract
Muscle contractions that load in-series springs with slow speed over a long duration do maximal work and store the most elastic energy. However, time constraints, such as those experienced during escape and predation behaviours, may prevent animals from achieving maximal force capacity from their muscles during spring-loading. Here, we ask whether animals that have limited time for elastic energy storage operate with springs that are tuned to submaximal force production. To answer this question, we used a dynamic model of a muscle-spring system undergoing a fixed-end contraction, with parameters from a time-limited spring-loader (bullfrog: Lithobates catesbeiana) and a non-time-limited spring-loader (grasshopper: Schistocerca gregaria). We found that when muscles have less time to contract, stored elastic energy is maximized with lower spring stiffness (quantified as spring constant). The spring stiffness measured in bullfrog tendons permitted less elastic energy storage than was predicted by a modelled, maximal muscle contraction. However, when muscle contractions were modelled using biologically relevant loading times for bullfrog jumps (50 ms), tendon stiffness actually maximized elastic energy storage. In contrast, grasshoppers, which are not time limited, exhibited spring stiffness that maximized elastic energy storage when modelled with a maximal muscle contraction. These findings demonstrate the significance of evolutionary variation in tendon and apodeme properties to realistic jumping contexts as well as the importance of considering the effect of muscle dynamics and behavioural constraints on energy storage in muscle-spring systems.
Collapse
Affiliation(s)
- M V Rosario
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - G P Sutton
- School of Biological Sciences, University of Bristol, Bristol BS8 1TH, UK
| | - S N Patek
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - G S Sawicki
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC 27514, USA
| |
Collapse
|
42
|
Lieber RL, Roberts TJ, Blemker SS, Lee SSM, Herzog W. Skeletal muscle mechanics, energetics and plasticity. J Neuroeng Rehabil 2017; 14:108. [PMID: 29058612 PMCID: PMC5651624 DOI: 10.1186/s12984-017-0318-y] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 10/05/2017] [Indexed: 01/06/2023] Open
Abstract
The following papers by Richard Lieber (Skeletal Muscle as an Actuator), Thomas Roberts (Elastic Mechanisms and Muscle Function), Silvia Blemker (Skeletal Muscle has a Mind of its Own: a Computational Framework to Model the Complex Process of Muscle Adaptation) and Sabrina Lee (Muscle Properties of Spastic Muscle (Stroke and CP) are summaries of their representative contributions for the session on skeletal muscle mechanics, energetics and plasticity at the 2016 Biomechanics and Neural Control of Movement Conference (BANCOM 2016). Dr. Lieber revisits the topic of sarcomere length as a fundamental property of skeletal muscle contraction. Specifically, problems associated with sarcomere length non-uniformity and the role of sarcomerogenesis in diseases such as cerebral palsy are critically discussed. Dr. Roberts then makes us aware of the (often neglected) role of the passive tissues in muscles and discusses the properties of parallel elasticity and series elasticity, and their role in muscle function. Specifically, he identifies the merits of analyzing muscle deformations in three dimensions (rather than just two), because of the potential decoupling of the parallel elastic element length from the contractile element length, and reviews the associated implications for the architectural gear ratio of skeletal muscle contraction. Dr. Blemker then tackles muscle adaptation using a novel way of looking at adaptive processes and what might drive adaptation. She argues that cells do not have pre-programmed behaviors that are controlled by the nervous system. Rather, the adaptive responses of muscle fibers are determined by sub-cellular signaling pathways that are affected by mechanical and biochemical stimuli; an exciting framework with lots of potential. Finally, Dr. Lee takes on the challenging task of determining human muscle properties in vivo. She identifies the dilemma of how we can demonstrate the effectiveness of a treatment, specifically in cases of muscle spasticity following stroke or in children with cerebral palsy. She then discusses the merits of ultrasound based elastography, and the clinical possibilities this technique might hold. Overall, we are treated to a vast array of basic and clinical problems in skeletal muscle mechanics and physiology, with some solutions, and many suggestions for future research.
Collapse
Affiliation(s)
- Richard L Lieber
- Rehabilitation Institute of Chicago, Chicago, USA.,Northwestern University, Evanston, USA
| | | | | | | | - Walter Herzog
- University of Calgary, Faculty of Kinesiology, Calgary, Canada.
| |
Collapse
|
43
|
Larabee FJ, Gronenberg W, Suarez AV. Performance, morphology and control of power-amplified mandibles in the trap-jaw ant Myrmoteras (Hymenoptera: Formicidae). J Exp Biol 2017; 220:3062-3071. [DOI: 10.1242/jeb.156513] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 06/12/2017] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Trap-jaw ants are characterized by high-speed mandibles used for prey capture and defense. Power-amplified mandibles have independently evolved at least four times among ants, with each lineage using different structures as a latch, spring and trigger. We examined two species from the genus Myrmoteras (subfamily Formicinae), whose morphology is unique among trap-jaw ant lineages, and describe the performance characteristics, spring-loading mechanism and neuronal control of Myrmoteras strikes. Like other trap-jaw ants, Myrmoteras latch their jaws open while the large closer muscle loads potential energy in a spring. The latch differs from other lineages and is likely formed by the co-contraction of the mandible opener and closer muscles. The cuticle of the posterior margin of the head serves as a spring, and is deformed by approximately 6% prior to a strike. The mandibles are likely unlatched by a subgroup of closer muscle fibers with particularly short sarcomeres. These fast fibers are controlled by two large motor neurons whose dendrites overlap with terminals of large sensory neurons originating from labral trigger hairs. Upon stimulation of the trigger hairs, the mandibles shut in as little as 0.5 ms and at peak velocities that are comparable with other trap-jaw ants, but with much slower acceleration. The estimated power output of the mandible strike (21 kW kg−1) confirms that Myrmoteras jaws are indeed power amplified. However, the power output of Myrmoteras mandibles is significantly lower than distantly related trap-jaw ants using different spring-loading mechanisms, indicating a relationship between power-amplification mechanism and performance.
Collapse
Affiliation(s)
- Fredrick J. Larabee
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
- Department of Entomology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Wulfila Gronenberg
- Department of Neuroscience, University of Arizona, Tucson, AZ 85721, USA
| | - Andrew V. Suarez
- Department of Entomology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Department of Animal Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, Urbana 61801, IL, USA
| |
Collapse
|
44
|
Abstract
ABSTRACT
Insects represent more than 60% of all multicellular life forms, and are easily among the most diverse and abundant organisms on earth. They evolved functional wings and the ability to fly, which enabled them to occupy diverse niches. Insects of the hyper-diverse orders show extreme miniaturization of their body size. The reduced body size, however, imposes steep constraints on flight ability, as their wings must flap faster to generate sufficient forces to stay aloft. Here, we discuss the various physiological and biomechanical adaptations of the thorax in flies which enabled them to overcome the myriad constraints of small body size, while ensuring very precise control of their wing motion. One such adaptation is the evolution of specialized myogenic or asynchronous muscles that power the high-frequency wing motion, in combination with neurogenic or synchronous steering muscles that control higher-order wing kinematic patterns. Additionally, passive cuticular linkages within the thorax coordinate fast and yet precise bilateral wing movement, in combination with an actively controlled clutch and gear system that enables flexible flight patterns. Thus, the study of thoracic biomechanics, along with the underlying sensory-motor processing, is central in understanding how the insect body form is adapted for flight.
Collapse
Affiliation(s)
- Tanvi Deora
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK campus, Bellary Road, Bangalore, Karnataka 560065, India
| | - Namrata Gundiah
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Sanjay P. Sane
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK campus, Bellary Road, Bangalore, Karnataka 560065, India
| |
Collapse
|
45
|
Olberding JP, Scales JA, Deban SM. Movements of vastly different performance have similar underlying muscle physiology. J Exp Biol 2017; 221:jeb.166900. [DOI: 10.1242/jeb.166900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/23/2017] [Indexed: 11/20/2022]
Abstract
Many animals use elastic-recoil mechanisms to power extreme movements, achieving levels of performance that would not be possible using muscle power alone. Contractile performance of vertebrate muscle depends strongly on temperature, but the release of energy from elastic structures is far less thermally dependent, thus elastic recoil confers thermal robustness to whole-animal performance. Here we explore the role that muscle contractile properties play in the differences in performance and thermal robustness between elastic and non-elastic systems by examining muscle from two species of plethodontid salamanders that use elastically powered tongue projection to capture prey and one that uses non-elastic tongue projection. In species with elastic mechanisms, tongue projection is characterized by higher mechanical power output and thermal robustness compared with tongue projection of closely related genera with non-elastic mechanisms. In vitro and in situ muscle experiments reveal that species differ in their muscle contractile properties, but these patterns do not predict the performance differences between elastic and non-elastic tongue projection. Overall, salamander tongue muscles are similar to other vertebrate muscles in contractile performance and thermal sensitivity. We conclude that changes in the tongue-projection mechanism, specifically the elaboration of elastic structures, are responsible for high performance and thermal robustness in species with elastic tongue projection. This suggests that the evolution of high-performance and thermally robust elastic-recoil mechanisms can occur via relatively simple changes to morphology, while muscle contractile properties remain relatively unchanged.
Collapse
Affiliation(s)
- Jeffrey P. Olberding
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Ave., Science Center 110, Tampa, FL 33620, USA
| | - Jeffrey A. Scales
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Ave., Science Center 110, Tampa, FL 33620, USA
| | - Stephen M. Deban
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Ave., Science Center 110, Tampa, FL 33620, USA
| |
Collapse
|
46
|
Sutton GP, Doroshenko M, Cullen DA, Burrows M. Take-off speed in jumping mantises depends on body size and a power-limited mechanism. ACTA ACUST UNITED AC 2016; 219:2127-36. [PMID: 27284067 PMCID: PMC4958293 DOI: 10.1242/jeb.133728] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 05/03/2016] [Indexed: 11/20/2022]
Abstract
Many insects such as fleas, froghoppers and grasshoppers use a catapult mechanism to jump, and a direct consequence of this is that their take-off velocities are independent of their mass. In contrast, insects such as mantises, caddis flies and bush crickets propel their jumps by direct muscle contractions. What constrains the jumping performance of insects that use this second mechanism? To answer this question, the jumping performance of the mantis Stagmomantis theophila was measured through all its developmental stages, from 5 mg first instar nymphs to 1200 mg adults. Older and heavier mantises have longer hind and middle legs and higher take-off velocities than younger and lighter mantises. The length of the propulsive hind and middle legs scaled approximately isometrically with body mass (exponent=0.29 and 0.32, respectively). The front legs, which do not contribute to propulsion, scaled with an exponent of 0.37. Take-off velocity increased with increasing body mass (exponent=0.12). Time to accelerate increased and maximum acceleration decreased, but the measured power that a given mass of jumping muscle produced remained constant throughout all stages. Mathematical models were used to distinguish between three possible limitations to the scaling relationships: first, an energy-limited model (which explains catapult jumpers); second, a power-limited model; and third, an acceleration -: limited model. Only the model limited by muscle power explained the experimental data. Therefore, the two biomechanical mechanisms impose different limitations on jumping: those involving direct muscle contractions (mantises) are constrained by muscle power, whereas those involving catapult mechanisms are constrained by muscle energy.
Collapse
Affiliation(s)
- G P Sutton
- School of Biological Sciences, University of Bristol, Bristol BS8 1UG, UK
| | - M Doroshenko
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - D A Cullen
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK Zoological Institute, KU Leuven, Leuven BE 3000, Belgium
| | - M Burrows
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| |
Collapse
|
47
|
Ribak G, Dafni E, Gerling D. Whiteflies stabilize their take-off with closed wings. J Exp Biol 2016; 219:1639-48. [PMID: 27045098 DOI: 10.1242/jeb.127886] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 03/08/2016] [Indexed: 11/20/2022]
Abstract
The transition from ground to air in flying animals is often assisted by the legs pushing against the ground as the wings start to flap. Here, we show that when tiny whiteflies (Bemisia tabaci, body length ca. 1 mm) perform take-off jumps with closed wings, the abrupt push against the ground sends the insect into the air rotating forward in the sagittal (pitch) plane. However, in the air, B. tabaci can recover from this rotation remarkably fast (less than 11 ms), even before spreading its wings and flapping. The timing of body rotation in air, a simplified biomechanical model and take-off in insects with removed wings all suggest that the wings, resting backwards alongside the body, stabilize motion through air to prevent somersaulting. The increased aerodynamic force at the posterior tip of the body results in a pitching moment that stops body rotation. Wing deployment increases the pitching moment further, returning the body to a suitable angle for flight. This inherent stabilizing mechanism is made possible by the wing shape and size, in which half of the wing area is located behind the posterior tip of the abdomen.
Collapse
Affiliation(s)
- Gal Ribak
- Department of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Eyal Dafni
- Department of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Dan Gerling
- Department of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
48
|
Morris GK, Braun H, Wirkner CS. Stridulation of the clear-wing meadow katydid Xiphelimum amplipennis, adaptive bandwidth. BIOACOUSTICS 2016. [DOI: 10.1080/09524622.2016.1138883] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Glenn K. Morris
- Department of Biology, University of Toronto at Mississauga, Mississauga, Canada
| | - Holger Braun
- División Entomología, Museo de La Plata, Universidad Nacional de La Plata, La Plata, Argentina
| | - Christian S. Wirkner
- Universität Rostock, Institut für Biowissenschaften Allgemeine und Spezielle Zoologie, Rostock, Germany
| |
Collapse
|
49
|
Khandaker MSK, Dudek DM, Beers EP, Dillard DA, Bevan DR. Molecular modeling of the elastomeric properties of repeating units and building blocks of resilin, a disordered elastic protein. J Mech Behav Biomed Mater 2016; 61:110-121. [PMID: 26851528 DOI: 10.1016/j.jmbbm.2016.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/18/2016] [Indexed: 11/24/2022]
Abstract
The mechanisms responsible for the properties of disordered elastomeric proteins are not well known. To better understand the relationship between elastomeric behavior and amino acid sequence, we investigated resilin, a disordered rubber-like protein, found in specialized regions of the cuticle of insects. Resilin of Drosophila melanogaster contains Gly-rich repetitive motifs comprised of the amino acids, PSSSYGAPGGGNGGR, which confer elastic properties to resilin. The repetitive motifs of insect resilin can be divided into smaller partially conserved building blocks: PSS, SYGAP, GGGN and GGR. Using molecular dynamics (MD) simulations, we studied the relative roles of SYGAP, and its less common variants SYSAP and TYGAP, on the elastomeric properties of resilin. Results showed that SYGAP adopts a bent structure that is one-half to one-third the end-to-end length of the other motifs having an equal number of amino acids but containing SYSAP or TYGAP substituted for SYGAP. The bent structure of SYGAP forms due to conformational freedom of glycine, and hydrogen bonding within the motif apparently plays a role in maintaining this conformation. These structural features of SYGAP result in higher extensibility compared to other motifs, which may contribute to elastic properties at the macroscopic level. Overall, the results are consistent with a role for the SYGAP building block in the elastomeric properties of these disordered proteins. What we learned from simulating the repetitive motifs of resilin may be applicable to the biology and mechanics of other elastomeric biomaterials, and may provide us the deeper understanding of their unique properties.
Collapse
Affiliation(s)
- Md Shahriar K Khandaker
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, VA, United States.
| | - Daniel M Dudek
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, VA, United States
| | - Eric P Beers
- Horticulture Department, Virginia Polytechnic Institute and State University, United States.
| | - David A Dillard
- Department of Biomedical Engineering & Mechanics, Virginia Polytechnic Institute and State University, United States.
| | - David R Bevan
- Biochemistry Department, Virginia Polytechnic Institute and State University, United States.
| |
Collapse
|
50
|
Kagaya K, Patek SN. Feed-forward motor control of ultrafast, ballistic movements. ACTA ACUST UNITED AC 2015; 219:319-33. [PMID: 26643091 DOI: 10.1242/jeb.130518] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/09/2015] [Indexed: 12/22/2022]
Abstract
To circumvent the limits of muscle, ultrafast movements achieve high power through the use of springs and latches. The time scale of these movements is too short for control through typical neuromuscular mechanisms, thus ultrafast movements are either invariant or controlled prior to movement. We tested whether mantis shrimp (Stomatopoda: Neogonodactylus bredini) vary their ultrafast smashing strikes and, if so, how this control is achieved prior to movement. We collected high-speed images of strike mechanics and electromyograms of the extensor and flexor muscles that control spring compression and latch release. During spring compression, lateral extensor and flexor units were co-activated. The strike initiated several milliseconds after the flexor units ceased, suggesting that flexor activity prevents spring release and determines the timing of strike initiation. We used linear mixed models and Akaike's information criterion to serially evaluate multiple hypotheses for control mechanisms. We found that variation in spring compression and strike angular velocity were statistically explained by spike activity of the extensor muscle. The results show that mantis shrimp can generate kinematically variable strikes and that their kinematics can be changed through adjustments to motor activity prior to the movement, thus supporting an upstream, central-nervous-system-based control of ultrafast movement. Based on these and other findings, we present a shishiodoshi model that illustrates alternative models of control in biological ballistic systems. The discovery of feed-forward control in mantis shrimp sets the stage for the assessment of targets, strategic variation in kinematics and the role of learning in ultrafast animals.
Collapse
Affiliation(s)
- K Kagaya
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - S N Patek
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|