1
|
Rivi V, Benatti C, Rigillo G, Blom JMC. Invertebrates as models of learning and memory: investigating neural and molecular mechanisms. J Exp Biol 2023; 226:jeb244844. [PMID: 36719249 DOI: 10.1242/jeb.244844] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In this Commentary, we shed light on the use of invertebrates as model organisms for understanding the causal and conserved mechanisms of learning and memory. We provide a condensed chronicle of the contribution offered by mollusks to the studies on how and where the nervous system encodes and stores memory and describe the rich cognitive capabilities of some insect species, including attention and concept learning. We also discuss the use of planarians for investigating the dynamics of memory during brain regeneration and highlight the role of stressful stimuli in forming memories. Furthermore, we focus on the increasing evidence that invertebrates display some forms of emotions, which provides new opportunities for unveiling the neural and molecular mechanisms underlying the complex interaction between stress, emotions and cognition. In doing so, we highlight experimental challenges and suggest future directions that we expect the field to take in the coming years, particularly regarding what we, as humans, need to know for preventing and/or delaying memory loss. This article has an associated ECR Spotlight interview with Veronica Rivi.
Collapse
Affiliation(s)
- Veronica Rivi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Cristina Benatti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giovanna Rigillo
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Joan M C Blom
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
2
|
Maasz G, Molnar E, Mayer M, Kuzma M, Takács P, Zrinyi Z, Pirger Z, Kiss T. Illicit Drugs as a Potential Risk to the Aquatic Environment of a Large Freshwater Lake after a Major Music Festival. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:1491-1498. [PMID: 33502775 DOI: 10.1002/etc.4998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/15/2020] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
The present study strengthens the view that residues of drugs of abuse may become widespread surface water contaminants following a local music festival. Overall, 10 illicit drugs were detected from the aquatic environment after the festival; cocaine and 3,4-methylenedioxymethamphetamine were present in the highest concentrations. The presence of illicit drugs and their metabolites over 3 monitored festival yr suggested that consumption of these drugs was temporally linked with events. Weather conditions seriously influenced detection of contaminants deriving from events at the lakeshore. Most of the illicit drugs retained their pharmacological activities, with a potentially adverse impact on wildlife. Environ Toxicol Chem 2021;40:1491-1498. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Gabor Maasz
- NAP Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, Centre for Ecological Research, Tihany, Hungary
- Soós Ernő Research and Development Center, University of Pannonia, Nagykanizsa, Hungary
| | - Eva Molnar
- NAP Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, Centre for Ecological Research, Tihany, Hungary
| | - Matyas Mayer
- Department of Forensic Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Monika Kuzma
- Department of Forensic Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Péter Takács
- Department of Hydrozoology, Balaton Limnological Institute, Centre for Ecological Research, Tihany, Hungary
| | - Zita Zrinyi
- NAP Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, Centre for Ecological Research, Tihany, Hungary
- Soós Ernő Research and Development Center, University of Pannonia, Nagykanizsa, Hungary
| | - Zsolt Pirger
- NAP Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, Centre for Ecological Research, Tihany, Hungary
| | - Tibor Kiss
- NAP Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, Centre for Ecological Research, Tihany, Hungary
| |
Collapse
|
3
|
Fan X, Yang J, Dong Y, Hou Y, Liu S, Wu C. Oxytocin inhibits methamphetamine-associated learning and memory alterations by regulating DNA methylation at the Synaptophysin promoter. Addict Biol 2020; 25:e12697. [PMID: 30585381 DOI: 10.1111/adb.12697] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/26/2018] [Accepted: 10/17/2018] [Indexed: 01/02/2023]
Abstract
Methamphetamine (METH) causes memory changes, but the underlying mechanisms are poorly understood. Epigenetic mechanisms, including DNA methylation, can potentially cause synaptic changes in the brain. Oxytocin (OT) plays a central role in learning and memory, but little is known of the impact of OT on METH-associated memory changes. Here, we explored the role of OT in METH-induced epigenetic alterations that underlie spatial and cognitive memory changes. METH (2.0 mg/kg, i.p.) was administered to male C57BL/6 mice once every other day for 8 days. OT (2.5 μg, i.c.v.) or aCSF was given prior to METH. Spatial and cognitive memory were assessed. In Hip and PFC, synaptic structures and proteins were examined, levels of DNA methyltransferases (DNMTs) and methyl CpG binding protein 2 (MECP2) were determined, and the DNA methylation status at the Synaptophysin (Syn) promoter was assessed. METH enhanced spatial memory, decreased synapse length, downregulated DNMT1, DNMT3A, DNMT3B, and MECP2, and induced DNA hypomethylation at the Syn promoter in Hip. In contrast, METH reduced cognitive memory, increased synapse thickness, upregulated DNMT1, DNMT3A, and MECP2, and induced DNA hypermethylation at the Syn promoter in PFC. OT pretreatment specifically ameliorated METH-induced learning and memory alterations, normalized synapse structures, and regulated DNMTs and MECP2 to reverse the DNA methylation status changes at the Syn promoter in Hip and PFC. DNA methylation is an important gene regulatory mechanism underlying METH-induced learning and memory alterations. OT can potentially be used to specifically manipulate METH-related memory changes.
Collapse
Affiliation(s)
- Xin‐Yu Fan
- Department of PharmacologyShenyang Pharmaceutical University Shenyang China
| | - Jing‐Yu Yang
- Department of PharmacologyShenyang Pharmaceutical University Shenyang China
| | - Ying‐Xu Dong
- Department of PharmacologyShenyang Pharmaceutical University Shenyang China
| | - Ying Hou
- Department of PharmacologyShenyang Pharmaceutical University Shenyang China
| | - Shuai Liu
- Department of PharmacologyShenyang Pharmaceutical University Shenyang China
| | - Chun‐Fu Wu
- Department of PharmacologyShenyang Pharmaceutical University Shenyang China
| |
Collapse
|
4
|
Rivi V, Benatti C, Colliva C, Radighieri G, Brunello N, Tascedda F, Blom JMC. Lymnaea stagnalis as model for translational neuroscience research: From pond to bench. Neurosci Biobehav Rev 2019; 108:602-616. [PMID: 31786320 DOI: 10.1016/j.neubiorev.2019.11.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/24/2019] [Accepted: 11/25/2019] [Indexed: 12/18/2022]
Abstract
The purpose of this review is to illustrate how a reductionistic, but sophisticated, approach based on the use of a simple model system such as the pond snail Lymnaea stagnalis (L. stagnalis), might be useful to address fundamental questions in learning and memory. L. stagnalis, as a model, provides an interesting platform to investigate the dialog between the synapse and the nucleus and vice versa during memory and learning. More importantly, the "molecular actors" of the memory dialogue are well-conserved both across phylogenetic groups and learning paradigms, involving single- or multi-trials, aversion or reward, operant or classical conditioning. At the same time, this model could help to study how, where and when the memory dialog is impaired in stressful conditions and during aging and neurodegeneration in humans and thus offers new insights and targets in order to develop innovative therapies and technology for the treatment of a range of neurological and neurodegenerative disorders.
Collapse
Affiliation(s)
- V Rivi
- Dept. of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - C Benatti
- Dept. of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy; Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - C Colliva
- Dept. of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - G Radighieri
- Dept. of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - N Brunello
- Dept. of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - F Tascedda
- Dept. of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy; Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - J M C Blom
- Dept. of Education and Human Sciences, University of Modena and Reggio Emilia, Modena, Italy; Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
5
|
Lee AH, Brandon CL, Wang J, Frost WN. An Argument for Amphetamine-Induced Hallucinations in an Invertebrate. Front Physiol 2018; 9:730. [PMID: 29988540 PMCID: PMC6026665 DOI: 10.3389/fphys.2018.00730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 05/25/2018] [Indexed: 12/03/2022] Open
Abstract
Hallucinations – compelling perceptions of stimuli that aren’t really there – occur in many psychiatric and neurological disorders, and are triggered by certain drugs of abuse. Despite their clinical importance, the neuronal mechanisms giving rise to hallucinations are poorly understood, in large part due to the absence of animal models in which they can be induced, confirmed to be endogenously generated, and objectively analyzed. In humans, amphetamine (AMPH) and related psychostimulants taken in large or repeated doses can induce hallucinations. Here we present evidence for such phenomena in the marine mollusk Tritonia diomedea. Animals injected with AMPH were found to sporadically launch spontaneous escape swims in the absence of eliciting stimuli. Deafferented isolated brains exposed to AMPH, where real stimuli could play no role, generated sporadic, spontaneous swim motor programs. A neurophysiological search of the swim network traced the origin of these drug-induced spontaneous motor programs to spontaneous bursts of firing in the S-cells, the CNS afferent neurons that normally inform the animal of skin contact with its predators and trigger the animal’s escape swim. Further investigation identified AMPH-induced enhanced excitability and plateau potential properties in the S-cells. Taken together, these observations support an argument that Tritonia’s spontaneous AMPH-induced swims are triggered by false perceptions of predator contact – i.e., hallucinations—and illuminate potential cellular mechanisms for such phenomena.
Collapse
Affiliation(s)
- Anne H Lee
- Department of Cell Biology and Anatomy, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Cindy L Brandon
- Department of Cell Biology and Anatomy, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Jean Wang
- Department of Cell Biology and Anatomy, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - William N Frost
- Department of Cell Biology and Anatomy, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
6
|
Cao G, Zhang Y, Zhu L, Zhu J, Zhao N, Dong N, Dang Y, Chen Y, Chen T. The inhibitory effect of levo-tetrahydropalmatine on the methamphetamine-induced spatial memory impairment in mice. Neurosci Lett 2018; 672:34-39. [DOI: 10.1016/j.neulet.2018.02.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 10/18/2022]
|
7
|
Swinton E, de Freitas E, Swinton C, Shymansky T, Hiles E, Zhang J, Rothwell C, Lukowiak K. Green tea and cocoa enhance cognition in Lymnaea. Commun Integr Biol 2018; 11:e1434390. [PMID: 29497476 PMCID: PMC5824930 DOI: 10.1080/19420889.2018.1434390] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 02/05/2023] Open
Abstract
A flavonoid, (-)-epicatechi (Epi), enhances long-term memory (LTM) formation in Lymnaea and reverses memory obstruction caused by stress. Many foods contain substantial amounts of Epi, (e.g. green tea and cocoa). In humans eating such foods may directly or indirectly enhance cognition. We directly test whether operant conditioning training Lymnaea in these natural foods result in the same effects as training snails in pure Epi. We found that exposure to products containing high concentrations of Epi (e.g. green tea and cocoa) during training enhanced memory formation and could even reverse a learning and memory deficit brought about by stress. Epi can be photo-inactivated by exposure to ultraviolet light. We found that following photo-inactivation of Epi, memory enhancement did not occur. Photo-inactivation of foods containing Epi (e,g. green tea) blocked their ability to enhance LTM. Our data are thus consistent with the hypothesis that dietary sources of Epi can have positive benefits on cognitive ability and be able to reverse memory aversive states.
Collapse
Affiliation(s)
- Erin Swinton
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Emily de Freitas
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Cayley Swinton
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Tamila Shymansky
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Emily Hiles
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jack Zhang
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Cailin Rothwell
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ken Lukowiak
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
8
|
Tan R, Lukowiak K. Combining Factors That Individually Enhance Memory in Lymnaea. THE BIOLOGICAL BULLETIN 2018; 234:37-44. [PMID: 29694801 DOI: 10.1086/697197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
When applied individually, thermal stress (1 hour at 30 °C) and (-)epicatechin (a flavonol found in green tea, e.g.) each enhance long-term memory formation following operant conditioning of Lymnaea aerial respiratory behavior. Snails demonstrate enhanced long-term memory formation when trained in epicatechin-treated pond water or when placed in 30 °C pond water for 1 hour, 1 hour prior to training in pond water. We ask here whether the combined application of epicatechin + thermal stress enhances long-term memory retention length beyond the maximal lengths of the individual factors alone. We report that the applied combination of epicatechin + thermal stress has a synergistic memory-enhancing effect; that is, when the two are applied in combination, memory persists longer than when either is applied alone. We then ask whether quercetin, a heat shock protein blocker, will affect the memory enhancement produced by the combined treatment of thermal stress and epicatechin. We report that quercetin does not decrease the memory enhancement of epicatechin, but it does decrease the memory enhancement by thermal stress; and it also decreases the memory persistence of snails exposed to both treatments in combination.
Collapse
|
9
|
Carpenter S, Rothwell CM, Wright ML, de Hoog E, Walker S, Hudson E, Spencer GE. Extending the duration of long-term memories: Interactions between environmental darkness and retinoid signaling. Neurobiol Learn Mem 2016; 136:34-46. [PMID: 27646787 DOI: 10.1016/j.nlm.2016.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 08/30/2016] [Accepted: 09/15/2016] [Indexed: 01/05/2023]
Abstract
Retinoid signaling plays an important role in hippocampal-dependent vertebrate memories. However, we have previously demonstrated that retinoids are also involved in the formation of long-term implicit memory following operant conditioning of the invertebrate mollusc Lymnaea stagnalis. Furthermore, we have discovered an interaction between environmental light/dark conditions and retinoid signaling and the ability of both to convert intermediate-term memory into long-term memory. In this study, we extend these findings to show that retinoid receptor agonists and environmental darkness can both also extend the duration of long-term memory. Interestingly, exposure to constant environmental darkness significantly increased the expression of retinoid receptors in the adult central nervous system, as well as induced specific changes in a key neuron mediating the conditioned behaviour. These studies not only shed more light on how retinoids influence memory formation, but also further link environmental light conditions to the retinoid signaling pathway.
Collapse
Affiliation(s)
- Sevanne Carpenter
- Dept. Biological Sciences, Brock University, 1812 Sir Isaac Brock's Way, St. Catharines, Ontario L2S 3A1, Canada
| | - Cailin M Rothwell
- Dept. Biological Sciences, Brock University, 1812 Sir Isaac Brock's Way, St. Catharines, Ontario L2S 3A1, Canada
| | - Michelle L Wright
- Dept. Biological Sciences, Brock University, 1812 Sir Isaac Brock's Way, St. Catharines, Ontario L2S 3A1, Canada
| | - Eric de Hoog
- Dept. Biological Sciences, Brock University, 1812 Sir Isaac Brock's Way, St. Catharines, Ontario L2S 3A1, Canada
| | - Sarah Walker
- Dept. Biological Sciences, Brock University, 1812 Sir Isaac Brock's Way, St. Catharines, Ontario L2S 3A1, Canada
| | - Emma Hudson
- Dept. Biological Sciences, Brock University, 1812 Sir Isaac Brock's Way, St. Catharines, Ontario L2S 3A1, Canada
| | - Gaynor E Spencer
- Dept. Biological Sciences, Brock University, 1812 Sir Isaac Brock's Way, St. Catharines, Ontario L2S 3A1, Canada.
| |
Collapse
|
10
|
Rosi-Marshall EJ, Snow D, Bartelt-Hunt SL, Paspalof A, Tank JL. A review of ecological effects and environmental fate of illicit drugs in aquatic ecosystems. JOURNAL OF HAZARDOUS MATERIALS 2015; 282:18-25. [PMID: 25062553 DOI: 10.1016/j.jhazmat.2014.06.062] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 06/19/2014] [Accepted: 06/27/2014] [Indexed: 06/03/2023]
Abstract
Although illicit drugs are detected in surface waters throughout the world, their environmental fate and ecological effects are not well understood. Many illicit drugs and their breakdown products have been detected in surface waters and temporal and spatial variability in use translates into "hot spots and hot moments" of occurrence. Illicit drug occurrence in regions of production and use and areas with insufficient wastewater treatment are not well studied and should be targeted for further study. Evidence suggests that illicit drugs may not be persistent, as their half-lives are relatively short, but may exhibit "pseudo-persistence" wherein continual use results in persistent occurrence. We reviewed the literature on the ecological effects of these compounds on aquatic organisms and although research is limited, a wide array of aquatic organisms, including bacteria, algae, invertebrates, and fishes, have receptors that make them potentially sensitive to these compounds. In summary, illicit drugs occur in surface waters and aquatic organisms may be affected by these compounds; research is needed that focuses on concentrations of illicit drugs in areas of production and high use, environmental fate of these compounds, and effects of these compounds on aquatic ecosystems at the concentrations that typically occur in the environment.
Collapse
Affiliation(s)
- E J Rosi-Marshall
- Cary Institute of Ecosystem Studies, 2801 Sharon Turnpike, Millbrook, NY 12545, USA.
| | - D Snow
- University of Nebraska-Lincoln, Lincoln, NE 68583-0844, USA
| | | | - A Paspalof
- University of Nebraska-Lincoln, Lincoln, NE 68583-0844, USA
| | - J L Tank
- University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
11
|
Lukowiak K, Heckler B, Bennett TE, Schriner EK, Wyrick K, Jewett C, Todd RP, Sorg BA. Enhanced memory persistence is blocked by a DNA methyltransferase inhibitor in the snail Lymnaea stagnalis. ACTA ACUST UNITED AC 2014; 217:2920-9. [PMID: 24902747 DOI: 10.1242/jeb.106765] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lymnaea stagnalis provides an excellent model system for studying memory because these snails have a well-described set of neurons, a single one of which controls expression of long-term memory of operantly conditioned respiratory behavior. We have shown that several different manipulations, including pre-training exposure to serotonin (5-HT) or methamphetamine, submersion of snails after training to prevent memory interference, and exposure to effluent from predatory crayfish (CE), enhance memory persistence. Changes in DNA methylation underlie formation of strong memories in mammals and 5-HT-enhanced long-term facilitation in Aplysia. Here we determined the impact of the DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine (5-AZA; 87 μmol l(-1)), on enhanced memory persistence by all four manipulations. We found that 5-HT (100 μmol l(-1)) enhanced memory persistence, which was blocked by 5-AZA pretreatment. Snails pre-exposed to 3.3 μmol l(-1) Meth 4 h prior to training demonstrated memory 72 h later, which was not present in controls. This memory-enhancing effect was blocked by pre-treatment with 87 μmol l(-1) 5-AZA. Similarly, submersion to prevent interference learning as well as training in CE produced memory that was not present in controls, and these effects were blocked by pre-treatment with 87 μmol l(-1) 5-AZA. In contrast, 5-AZA injection did not alter expression of normal (non-enhanced) memory, suggesting that these four stimuli enhance memory persistence by increasing DNA methyltransferase activity, which, in turn, increases expression of memory-enhancing genes and/or inhibits memory suppressor genes. These studies lay important groundwork for delineating gene methylation changes that are common to persistent memory produced by different stimuli.
Collapse
Affiliation(s)
- Ken Lukowiak
- Cumming School of Medicine, University of Calgary, Calgary, AL T2N 4N1, Canada
| | - Benjamin Heckler
- Alcohol and Drug Abuse Research Program and Translational Addiction Research Center, Department of Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA 98686, USA
| | - Thomas E Bennett
- Alcohol and Drug Abuse Research Program and Translational Addiction Research Center, Department of Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA 98686, USA
| | - Ellen K Schriner
- Alcohol and Drug Abuse Research Program and Translational Addiction Research Center, Department of Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA 98686, USA
| | - Kathryn Wyrick
- Alcohol and Drug Abuse Research Program and Translational Addiction Research Center, Department of Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA 98686, USA
| | - Cynthia Jewett
- Alcohol and Drug Abuse Research Program and Translational Addiction Research Center, Department of Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA 98686, USA
| | - Ryan P Todd
- Alcohol and Drug Abuse Research Program and Translational Addiction Research Center, Department of Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA 98686, USA
| | - Barbara A Sorg
- Alcohol and Drug Abuse Research Program and Translational Addiction Research Center, Department of Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA 98686, USA
| |
Collapse
|
12
|
Takigami S, Sunada H, Lukowiak K, Sakakibara M. Spaced taste avoidance conditioning in Lymnaea. Neurobiol Learn Mem 2014; 107:79-86. [DOI: 10.1016/j.nlm.2013.10.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 10/31/2013] [Accepted: 10/31/2013] [Indexed: 12/11/2022]
|
13
|
Fruson L, Dalesman S, Lukowiak K. A flavonol present in cocoa [(-)epicatechin] enhances snail memory. ACTA ACUST UNITED AC 2013; 215:3566-76. [PMID: 23014569 DOI: 10.1242/jeb.070300] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Dietary consumption of flavonoids (plant phytochemicals) may improve memory and neuro-cognitive performance, though the mechanism is poorly understood. Previous work has assessed cognitive effects in vertebrates; here we assess the suitability of Lymnaea stagnalis as an invertebrate model to elucidate the effects of flavonoids on cognition. (-)Epicatechin (epi) is a flavonoid present in cocoa, green tea and red wine. We studied its effects on basic snail behaviours (aerial respiration and locomotion), long-term memory (LTM) formation and memory extinction of operantly conditioned aerial respiratory behaviour. We found no significant effect of epi exposure (15 mg l(-1)) on either locomotion or aerial respiration. However, when snails were operantly conditioned in epi for a single 0.5 h training session, which typically results in memory lasting ~3 h, they formed LTM lasting at least 24 h. Snails exposed to epi also showed significantly increased resistance to extinction, consistent with the hypothesis that epi induces a more persistent LTM. Thus training in epi facilitates LTM formation and results in a more persistent and stronger memory. Previous work has indicated that memory-enhancing stressors (predator kairomones and KCl) act via sensory input from the osphradium and are dependent on a serotonergic (5-HT) signalling pathway. Here we found that the effects of epi on LTM were independent of osphradial input and 5-HT, demonstrating that an alternative mechanism of memory enhancement exists in L. stagnalis. Our data are consistent with the notion that dietary sources of epi can improve cognitive abilities, and that L. stagnalis is a suitable model with which to elucidate neuronal mechanisms.
Collapse
Affiliation(s)
- Lee Fruson
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | | | | |
Collapse
|
14
|
Cao G, Zhu J, Zhong Q, Shi C, Dang Y, Han W, Liu X, Xu M, Chen T. Distinct roles of methamphetamine in modulating spatial memory consolidation, retrieval, reconsolidation and the accompanying changes of ERK and CREB activation in hippocampus and prefrontal cortex. Neuropharmacology 2012; 67:144-54. [PMID: 23159329 DOI: 10.1016/j.neuropharm.2012.10.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 10/23/2012] [Accepted: 10/31/2012] [Indexed: 10/27/2022]
Abstract
Drugs of abuse modulated learning and memory in humans yet the underlying mechanism remained unclear. The extracellular signal-regulated kinase (ERK) and the transcription factor cAMP response element-binding protein (CREB) were involved in neuroplastic changes associated with learning and memory. In the current study, we used a Morris water maze to examine the effect of methamphetamine (METH) on different processes of spatial memory in mice. We then investigated the status of ERK and CREB in the hippocampus and prefrontal cortex (PFC). We found that 1.0 mg/kg dose of METH facilitated spatial memory consolidation when it was injected immediately after the last learning trial. In contrast, the same dose of METH had no effect on spatial memory retrieval when it was injected 30 min before the test. Furthermore, 1.0 mg/kg dose of METH injected immediately after retrieval had no effect on spatial memory reconsolidation. Activation of both ERK and CREB in the hippocampus was found following memory consolidation but not after retrieval or reconsolidation in METH-treated mouse groups. In contrast, activation of both ERK and CREB in the PFC was found following memory retrieval but not other processes in METH-treated mouse groups. These results suggested that METH facilitated spatial memory consolidation but not retrieval or reconsolidation. Moreover, activation of the ERK and CREB signaling pathway in the hippocampus might be involved in METH-induced spatial memory changes.
Collapse
Affiliation(s)
- Guofen Cao
- Department of Forensic Medicine, Xi'an Jiaotong University, School of Medicine, Xi'an, Shaanxi 710061, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Knight K. METH(AMPHETAMINE) MAY STOP SNAILS FROM FORGETTING. J Exp Biol 2010. [DOI: 10.1242/jeb.046664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|