1
|
Schwarz S, Wystrach A, Cheng K, Kelly DM. Landmarks, beacons, or panoramic views: What do pigeons attend to for guidance in familiar environments? Learn Behav 2024; 52:69-84. [PMID: 38379118 DOI: 10.3758/s13420-023-00610-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2023] [Indexed: 02/22/2024]
Abstract
Birds and social insects represent excellent systems for understanding visually guided navigation. Both animal groups use surrounding visual cues for homing and foraging. Ants extract sufficient spatial information from panoramic views, which naturally embed all near and far spatial information, for successful homing. Although egocentric panoramic views allow for parsimonious explanations of navigational behaviors, this potential source of spatial information has been mostly neglected during studies of vertebrates. Here we investigate how distinct landmarks, a beacon, and panoramic views influence the reorientation behavior in pigeons (Columba livia). Pigeons were trained to search for a location characterized by a beacon and several distinct landmarks. Transformation tests manipulated aspects of the landmark configuration, allowing for a dissociation among navigational strategies. Quantitative image and path analyses provided support that the panoramic view was used by the pigeons. Although the results from some individuals support the use of beaconing, overall the pigeons relied predominantly on the panoramic view when spatial cues provided conflicting information regarding the goal location. Reorientation based on vector and bearing information derived from distinct landmarks as well as environmental geometry failed to account fully for the results. Thus, the results of our study support that pigeons can use panoramic views for reorientation in familiar environments. Given that the current model for landmark use by pigeons posits the use of different vectors from an object, a global panorama-matching strategy suggests a fundamental change in the theory of how pigeons use surrounding visual cues for localization.
Collapse
Affiliation(s)
- Sebastian Schwarz
- Department of Psychology, University of Manitoba, 190 Dysart Road, 190 Duff Roblin Building, Winnipeg, MB, R3T, 2N2, Canada
- Centre de Recherches sur la Cognition Animale, CNRS, Université Paul Sabatier, 31062, Toulouse Cedex, 09, France
- Institute of Biology, Karl-Franzen University, Graz, Universtitätsplatz 2, 8010, Austria
| | - Antoine Wystrach
- Centre de Recherches sur la Cognition Animale, CNRS, Université Paul Sabatier, 31062, Toulouse Cedex, 09, France
| | - Ken Cheng
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Debbie M Kelly
- Department of Psychology, University of Manitoba, 190 Dysart Road, 190 Duff Roblin Building, Winnipeg, MB, R3T, 2N2, Canada.
- Department of Biological Sciences, University of Manitoba, 212 Biological Sciences Building, Winnipeg, MB, R3T, 2N2, Canada.
| |
Collapse
|
2
|
Cormons MJ, Zeil J. Digger wasps Microbembex monodonta SAY (Hymenoptera, Crabronidae) rely exclusively on visual cues when pinpointing their nest entrances. PLoS One 2023; 18:e0282144. [PMID: 36989296 PMCID: PMC10058119 DOI: 10.1371/journal.pone.0282144] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/02/2023] [Indexed: 03/30/2023] Open
Abstract
The ability of insects to navigate and home is crucial to fundamental tasks, such as pollination, parental care, procuring food, and finding mates. Despite recent advances in our understanding of visual homing in insects, it remains unclear exactly how ground-nesting Hymenoptera are able to precisely locate their often inconspicuous or hidden reproductive burrow entrances. Here we show that the ground-nesting wasp Microbembex monodonta locates her hidden burrow entrance with the help of local landmarks, but only if their view of the wider panorama is not blocked. Moreover, the wasps are able to pinpoint the burrow location to within a few centimeters when potential olfactory, tactile and auditory cues are locally masked. We conclude that M. monodonta locate their hidden burrows relying exclusively on local visual cues in the context of the wider panorama. We discuss these results in the light of the older and more recent literature on nest recognition and homing in insects.
Collapse
Affiliation(s)
| | - Jochen Zeil
- Research School of Biology, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
3
|
Freas CA, Spetch ML. Varieties of visual navigation in insects. Anim Cogn 2023; 26:319-342. [PMID: 36441435 PMCID: PMC9877076 DOI: 10.1007/s10071-022-01720-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
The behaviours and cognitive mechanisms animals use to orient, navigate, and remember spatial locations exemplify how cognitive abilities have evolved to suit a number of different mobile lifestyles and habitats. While spatial cognition observed in vertebrates has been well characterised in recent decades, of no less interest are the great strides that have also been made in characterizing and understanding the behavioural and cognitive basis of orientation and navigation in invertebrate models and in particular insects. Insects are known to exhibit remarkable spatial cognitive abilities and are able to successfully migrate over long distances or pinpoint known locations relying on multiple navigational strategies similar to those found in vertebrate models-all while operating under the constraint of relatively limited neural architectures. Insect orientation and navigation systems are often tailored to each species' ecology, yet common mechanistic principles can be observed repeatedly. Of these, reliance on visual cues is observed across a wide number of insect groups. In this review, we characterise some of the behavioural strategies used by insects to solve navigational problems, including orientation over short-distances, migratory heading maintenance over long distances, and homing behaviours to known locations. We describe behavioural research using examples from a few well-studied insect species to illustrate how visual cues are used in navigation and how they interact with non-visual cues and strategies.
Collapse
Affiliation(s)
- Cody A. Freas
- Department of Psychology, University of Alberta, Edmonton, AB Canada ,School of Natural Sciences, Macquarie University, Sydney, NSW Australia
| | - Marcia L. Spetch
- Department of Psychology, University of Alberta, Edmonton, AB Canada
| |
Collapse
|
4
|
Notomi Y, Kazawa T, Maezawa S, Kanzaki R, Haupt SS. Use of Visual Information by Ant Species Occurring in Similar Urban Anthropogenic Environments. Zoolog Sci 2022; 39:529-544. [PMID: 36495488 DOI: 10.2108/zs220035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/27/2022] [Indexed: 12/12/2022]
Abstract
Many insects, including ants, are known to respond visually to conspicuous objects. In this study, we compared orientation in an arena containing only a black target beacon as local information in six species of ants of widely varying degree of phylogenic relatedness, foraging strategy, and eye morphology (Aphaenogaster, Brachyponera, Camponotus, Formica, and two Lasius spp.), often found associated in similar urban anthropogenic habitats. Four species of ants displayed orientation toward the beacon, with two orienting toward it directly, while the other two approached it via convoluted paths. The two remaining species did not show any orientation with respect to the beacon. The results did not correlate with morphological parameters of the visual systems and could not be fully interpreted in terms of the species' ecology, although convoluted paths are linked to higher significance of chemical signals. Beacon aiming was shown to be an innate behavior in visually naive Formica workers, which, however, were less strongly attracted to the beacon than older foragers. Thus, despite sharing the same habitats and supposedly having similar neural circuits, even a very simple stimulus-related behavior in the absence of other information can differ widely in ants but is likely an ancestral trait retained especially in species with smaller eyes. The comparative analysis of nervous systems opens the possibility of determining general features of circuits responsible for innate and possibly learned attraction toward particular stimuli.
Collapse
Affiliation(s)
- Yusuke Notomi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda-shi, Chiba 278-8510, Japan.,Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Tomoki Kazawa
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - So Maezawa
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda-shi, Chiba 278-8510, Japan
| | - Ryohei Kanzaki
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Stephan Shuichi Haupt
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan,
| |
Collapse
|
5
|
Yilmaz A, Gagnon Y, Byrne MJ, Foster JJ, Baird E, Dacke M. The balbyter ant Camponotus fulvopilosus combines several navigational strategies to support homing when foraging in the close vicinity of its nest. Front Integr Neurosci 2022; 16:914246. [PMID: 36187138 PMCID: PMC9523141 DOI: 10.3389/fnint.2022.914246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/14/2022] [Indexed: 11/28/2022] Open
Abstract
Many insects rely on path integration to define direct routes back to their nests. When shuttling hundreds of meters back and forth between a profitable foraging site and a nest, navigational errors accumulate unavoidably in this compass- and odometer-based system. In familiar terrain, terrestrial landmarks can be used to compensate for these errors and safely guide the insect back to its nest with pin-point precision. In this study, we investigated the homing strategies employed by Camponotus fulvopilosus ants when repeatedly foraging no more than 1.25 m away from their nest. Our results reveal that the return journeys of the ants, even when setting out from a feeder from which the ants could easily get home using landmark information alone, are initially guided by path integration. After a short run in the direction given by the home vector, the ants then switched strategies and started to steer according to the landmarks surrounding their nest. We conclude that even when foraging in the close vicinity of its nest, an ant still benefits from its path-integrated vector to direct the start of its return journey.
Collapse
Affiliation(s)
- Ayse Yilmaz
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
- *Correspondence: Ayse Yilmaz,
| | - Yakir Gagnon
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| | - Marcus J. Byrne
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - James J. Foster
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
- Biocenter, University of Wuerzburg, Wuerzburg, Germany
- Neurobiology, University of Konstanz, Konstanz, Germany
| | - Emily Baird
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Marie Dacke
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
6
|
Nguyen TAT, Beetz MJ, Merlin C, Pfeiffer K, el Jundi B. Weighting of Celestial and Terrestrial Cues in the Monarch Butterfly Central Complex. Front Neural Circuits 2022; 16:862279. [PMID: 35847485 PMCID: PMC9285895 DOI: 10.3389/fncir.2022.862279] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/10/2022] [Indexed: 12/02/2022] Open
Abstract
Monarch butterflies rely on external cues for orientation during their annual long-distance migration from Northern US and Canada to Central Mexico. These external cues can be celestial cues, such as the sun or polarized light, which are processed in a brain region termed the central complex (CX). Previous research typically focused on how individual simulated celestial cues are encoded in the butterfly's CX. However, in nature, the butterflies perceive several celestial cues at the same time and need to integrate them to effectively use the compound of all cues for orientation. In addition, a recent behavioral study revealed that monarch butterflies can rely on terrestrial cues, such as the panoramic skyline, for orientation and use them in combination with the sun to maintain a directed flight course. How the CX encodes a combination of celestial and terrestrial cues and how they are weighted in the butterfly's CX is still unknown. Here, we examined how input neurons of the CX, termed TL neurons, combine celestial and terrestrial information. While recording intracellularly from the neurons, we presented a sun stimulus and polarized light to the butterflies as well as a simulated sun and a panoramic scene simultaneously. Our results show that celestial cues are integrated linearly in these cells, while the combination of the sun and a panoramic skyline did not always follow a linear integration of action potential rates. Interestingly, while the sun and polarized light were invariantly weighted between individual neurons, the sun stimulus and panoramic skyline were dynamically weighted when both stimuli were simultaneously presented. Taken together, this dynamic weighting between celestial and terrestrial cues may allow the butterflies to flexibly set their cue preference during navigation.
Collapse
Affiliation(s)
| | - M. Jerome Beetz
- Biocenter, Zoology II, University of Wuerzburg, Würzburg, Germany
| | - Christine Merlin
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX, United States
| | - Keram Pfeiffer
- Biocenter, Zoology II, University of Wuerzburg, Würzburg, Germany
| | - Basil el Jundi
- Biocenter, Zoology II, University of Wuerzburg, Würzburg, Germany
- Department of Biology, Animal Physiology, Norwegian University of Science and Technology, Trondheim, Norway
- *Correspondence: Basil el Jundi
| |
Collapse
|
7
|
Khaldy L, Foster JJ, Yilmaz A, Belušič G, Gagnon Y, Tocco C, Byrne MJ, Dacke M. The interplay of directional information provided by unpolarised and polarised light in the heading direction network of the diurnal dung beetle Kheper lamarcki. J Exp Biol 2022; 225:274310. [PMID: 35037692 PMCID: PMC8918814 DOI: 10.1242/jeb.243734] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/11/2022] [Indexed: 11/20/2022]
Abstract
The sun is the most prominent source of directional information in the heading direction network of the diurnal, ball-rolling dung beetle Kheper lamarcki. If this celestial body is occluded from the beetle's field of view, the distribution of the relative weight between the directional cues that remain shifts in favour of the celestial pattern of polarised light. In this study, we continue to explore the interplay of the sun and polarisation pattern as directional cues in the heading direction network of K. lamarcki. By systematically altering the intensity and degree of the two cues presented, we effectively change the relative reliability of these directional cues as they appear to the dung beetle. The response of the ball-rolling beetle to these modifications allows us to closely examine how the weighting relationship of these two sources of directional information is influenced and altered in the heading direction network of the beetle. We conclude that the process in which K. lamarcki relies on directional information is very likely done based on Bayesian reasoning, where directional information conveying the highest certainty at a particular moment is afforded the greatest weight.
Collapse
Affiliation(s)
- Lana Khaldy
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
| | - James J Foster
- Zoology II, Biozentrum, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ayse Yilmaz
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
| | - Gregor Belušič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Yakir Gagnon
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
| | - Claudia Tocco
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
| | - Marcus J Byrne
- School of Animal, Plant and Environmental Sciences, University of the Witswatersrand, 1 Jan Smuts Avenue, Braamfontein, Johannesburg 2000, South Africa
| | - Marie Dacke
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden.,School of Animal, Plant and Environmental Sciences, University of the Witswatersrand, 1 Jan Smuts Avenue, Braamfontein, Johannesburg 2000, South Africa
| |
Collapse
|
8
|
Islam M, Deeti S, Murray T, Cheng K. What view information is most important in the homeward navigation of an Australian bull ant, Myrmecia midas? J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:545-559. [PMID: 36048246 PMCID: PMC9734209 DOI: 10.1007/s00359-022-01565-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 12/14/2022]
Abstract
Many insects orient by comparing current panoramic views of their environment to memorised views. We tested the navigational abilities of night-active Myrmecia midas foragers while we blocked segments of their visual panorama. Foragers failed to orient homewards when the front view, lower elevations, entire terrestrial surround, or the full panorama was blocked. Initial scanning increased whenever the visual panorama was blocked but scanning only increased along the rest of the route when the front, back, higher, or lower elevations were blocked. Ants meandered more when the front, the back, or the higher elevations were obscured. When everything except the canopy was blocked, the ants were quick and direct, but moved in random directions, as if to escape. We conclude that a clear front view, or a clear lower panorama is necessary for initial homeward headings. Furthermore, the canopy is neither necessary nor sufficient for homeward initial heading, and the back and upper segments of views, while not necessary, do make finding home easier. Discrepancies between image analysis and ant behaviour when the upper and lower views were blocked suggests that ants are selective in what portions of the scene they attend to or learn.
Collapse
Affiliation(s)
- Muzahid Islam
- grid.1004.50000 0001 2158 5405School of Natural Sciences, Macquarie University, Sydney, NSW 2109 Australia
| | - Sudhakar Deeti
- grid.1004.50000 0001 2158 5405School of Natural Sciences, Macquarie University, Sydney, NSW 2109 Australia
| | - Trevor Murray
- grid.1004.50000 0001 2158 5405School of Natural Sciences, Macquarie University, Sydney, NSW 2109 Australia
| | - Ken Cheng
- grid.1004.50000 0001 2158 5405School of Natural Sciences, Macquarie University, Sydney, NSW 2109 Australia
| |
Collapse
|
9
|
Flanigan KAS, Wiegmann DD, Casto P, Coppola VJ, Flesher NR, Hebets EA, Bingman VP. Visual control of refuge recognition in the whip spider Phrynus marginemaculatus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 207:729-737. [PMID: 34591165 DOI: 10.1007/s00359-021-01509-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 09/01/2021] [Accepted: 09/09/2021] [Indexed: 01/06/2023]
Abstract
Amblypygids, or whip spiders, are nocturnally active arachnids which live in structurally complex environments. Whip spiders are excellent navigators that can re-locate a home refuge without relying on visual input. Therefore, an open question is whether visual input can control any aspect of whip spider spatial behavior. In the current study, Phrynus marginemaculatus were trained to locate an escape refuge by discriminating between differently oriented black and white stripes placed either on the walls of a testing arena (frontal discrimination) or on the ceiling of the same testing arena (overhead discrimination). Regardless of the placement of the visual stimuli, the whip spiders were successful in learning the location of the escape refuge. In a follow-up study of the overhead discrimination, occluding the median eyes was found to disrupt the ability of the whip spiders to locate the shelter. The data support the conclusion that whip spiders can rely on vision to learn and recognize an escape shelter. We suggest that visual inputs to the brain's mushroom bodies enable this ability.
Collapse
Affiliation(s)
- Kaylyn A S Flanigan
- Department of Psychology, Bowling Green State University, Bowling Green, OH, USA. .,J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, USA.
| | - Daniel D Wiegmann
- J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, USA.,Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, USA
| | - Patrick Casto
- J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, USA.,Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, USA
| | - Vincent J Coppola
- Department of Behavioral Sciences, University of Findlay, Findlay, OH, USA
| | - Natasha R Flesher
- Department of Psychology, Bowling Green State University, Bowling Green, OH, USA.,J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, USA
| | - Eileen A Hebets
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
| | - Verner P Bingman
- Department of Psychology, Bowling Green State University, Bowling Green, OH, USA.,J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, USA
| |
Collapse
|
10
|
Foster JJ, Tocco C, Smolka J, Khaldy L, Baird E, Byrne MJ, Nilsson DE, Dacke M. Light pollution forces a change in dung beetle orientation behavior. Curr Biol 2021; 31:3935-3942.e3. [PMID: 34329592 DOI: 10.1016/j.cub.2021.06.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/30/2021] [Accepted: 06/11/2021] [Indexed: 01/10/2023]
Abstract
Increasing global light pollution1,2 threatens the night-time darkness to which most animals are adapted. Light pollution can have detrimental effects on behavior,3-5 including by disrupting the journeys of migratory birds,5,6 sand hoppers,7-9 and moths.10 This is particularly concerning, since many night-active species rely on compass information in the sky, including the moon,11,12 the skylight polarization pattern,13,14 and the stars,15 to hold their course. Even animals not directly exposed to streetlights and illuminated buildings may still experience indirect light pollution in the form of skyglow,3,4 which can extend far beyond urban areas.1,2 While some recent research used simulated light pollution to estimate how skyglow may affect orientation behavior,7-9 the consequences of authentic light pollution for celestial orientation have so far been neglected. Here, we present the results of behavioral experiments at light-polluted and dark-sky sites paired with photographic measurements of each environment. We find that light pollution obscures natural celestial cues and induces dramatic changes in dung beetle orientation behavior, forcing them to rely on bright earthbound beacons in place of their celestial compass. This change in behavior results in attraction toward artificial lights, thereby increasing inter-individual competition and reducing dispersal efficiency. For the many other species of insect, bird, and mammal that rely on the night sky for orientation and migration, these effects could dramatically hinder their vital night-time journeys.
Collapse
Affiliation(s)
- James J Foster
- Zoology II, Biozentrum, University of Würzburg, Am Hubland, 97074 Würzburg, Germany; Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35B, 223 62 Lund, Sweden.
| | - Claudia Tocco
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35B, 223 62 Lund, Sweden; School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Wits 2050, South Africa
| | - Jochen Smolka
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35B, 223 62 Lund, Sweden
| | - Lana Khaldy
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35B, 223 62 Lund, Sweden
| | - Emily Baird
- Functional Morphology, Department of Zoology, Stockholm University, Svante Arrheniusväg 18B, 106 91 Stockholm, Sweden
| | - Marcus J Byrne
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Wits 2050, South Africa
| | - Dan-Eric Nilsson
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35B, 223 62 Lund, Sweden
| | - Marie Dacke
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35B, 223 62 Lund, Sweden
| |
Collapse
|
11
|
Islam M, Deeti S, Kamhi JF, Cheng K. Minding the gap: learning and visual scanning behaviour in nocturnal bull ants. J Exp Biol 2021; 224:270965. [PMID: 34142708 PMCID: PMC8325935 DOI: 10.1242/jeb.242245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/14/2021] [Indexed: 01/17/2023]
Abstract
Insects possess small brains but exhibit sophisticated behaviour, specifically their ability to learn to navigate within complex environments. To understand how they learn to navigate in a cluttered environment, we focused on learning and visual scanning behaviour in the Australian nocturnal bull ant, Myrmecia midas, which are exceptional visual navigators. We tested how individual ants learn to detour via a gap and how they cope with substantial spatial changes over trips. Homing M. midas ants encountered a barrier on their foraging route and had to find a 50 cm gap between symmetrical large black screens, at 1 m distance towards the nest direction from the centre of the releasing platform in both familiar (on-route) and semi-familiar (off-route) environments. Foragers were tested for up to 3 learning trips with the changed conditions in both environments. The results showed that on the familiar route, individual foragers learned the gap quickly compared with when they were tested in the semi-familiar environment. When the route was less familiar, and the panorama was changed, foragers were less successful at finding the gap and performed more scans on their way home. Scene familiarity thus played a significant role in visual scanning behaviour. In both on-route and off-route environments, panoramic changes significantly affected learning, initial orientation and scanning behaviour. Nevertheless, over a few trips, success at gap finding increased, visual scans were reduced, the paths became straighter, and individuals took less time to reach the goal. Summary: Investigation of how nocturnal bull ants learn to move around obstacles in familiar and semi-familiar environments reveals that scene familiarity plays a significant role in navigation.
Collapse
Affiliation(s)
- Muzahid Islam
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Sudhakar Deeti
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - J Frances Kamhi
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia.,Neuroscience Department, Oberlin College, Oberlin, OH 44074, USA
| | - Ken Cheng
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
12
|
Khaldy L, Tocco C, Byrne M, Dacke M. Compass Cue Integration and Its Relation to the Visual Ecology of Three Tribes of Ball-Rolling Dung Beetles. INSECTS 2021; 12:insects12060526. [PMID: 34204081 PMCID: PMC8229028 DOI: 10.3390/insects12060526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022]
Abstract
To guide their characteristic straight-line orientation away from the dung pile, ball-rolling dung beetles steer according to directional information provided by celestial cues, which, among the most relevant are the sun and polarised skylight. Most studies regarding the use of celestial cues and their influence on the orientation system of the diurnal ball-rolling beetle have been performed on beetles of the tribe Scarabaeini living in open habitats. These beetles steer primarily according to the directional information provided by the sun. In contrast, Sisyphus fasciculatus, a species from a different dung-beetle tribe (the Sisyphini) that lives in habitats with closely spaced trees and tall grass, relies predominantly on directional information from the celestial pattern of polarised light. To investigate the influence of visual ecology on the relative weight of these cues, we studied the orientation strategy of three different tribes of dung beetles (Scarabaeini, Sisyphini and Gymnopleurini) living within the same biome, but in different habitat types. We found that species within a tribe share the same orientation strategy, but that this strategy differs across the tribes; Scarabaeini, living in open habitats, attribute the greatest relative weight to the directional information from the sun; Sisyphini, living in closed habitats, mainly relies on directional information from polarised skylight; and Gymnopleurini, also living in open habitats, appear to weight both cues equally. We conclude that, despite exhibiting different body size, eye size and morphology, dung beetles nevertheless manage to solve the challenge of straight-line orientation by weighting visual cues that are particular to the habitat in which they are found. This system is however dynamic, allowing them to operate equally well even in the absence of the cue given the greatest relative weight by the particular species.
Collapse
Affiliation(s)
- Lana Khaldy
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden; (C.T.); (M.D.)
- Correspondence:
| | - Claudia Tocco
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden; (C.T.); (M.D.)
- School of Animal, Plant and Environmental Sciences, University of the Witswatersrand, 1 Jan Smuts Avenue, Braamfontein, Johannesburg 2000, South Africa;
| | - Marcus Byrne
- School of Animal, Plant and Environmental Sciences, University of the Witswatersrand, 1 Jan Smuts Avenue, Braamfontein, Johannesburg 2000, South Africa;
| | - Marie Dacke
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden; (C.T.); (M.D.)
- School of Animal, Plant and Environmental Sciences, University of the Witswatersrand, 1 Jan Smuts Avenue, Braamfontein, Johannesburg 2000, South Africa;
| |
Collapse
|
13
|
Role of the pheromone for navigation in the group foraging ant, Veromessor pergandei. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 207:353-367. [PMID: 33677697 DOI: 10.1007/s00359-021-01471-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 02/15/2021] [Accepted: 02/19/2021] [Indexed: 10/22/2022]
Abstract
Navigation is comprised of a variety of strategies which rely on multiple external cues to shape a navigator's behavioral output. Here, we explored in the ant Veromessor pergandei, the interactions between the information provided by the pheromone trail and the home vector guided by the celestial compass. We found that a cross sensory interaction between the pheromone cue and the path integrator underlies correct orientation during the inbound journey. The celestial compass provides directional information, while the presence of the trail pheromone acts as a critical context cue, triggering distinct behaviors (vector orientation, search, and backtracking). While exposed to the pheromone, foragers orient to the vector direction regardless of vector state, while in the pheromone's absence, the current remaining vector determines the forager's navigational behavior. This interaction also occurs in foragers with no remaining path integrator, relying on the activation of a celestial compass-based memory of the previous trip. Such cue interactions maximize the foragers' return to the nest and inhibit movement off the pheromone trail. Finally, our manipulations continuously rotated foragers away from their desired heading, yet foragers were proficient at counteracting these changes, steering to maintain a correct compass heading even at rotational speeds of ~ 40°/s.
Collapse
|
14
|
Kócsi Z, Murray T, Dahmen H, Narendra A, Zeil J. The Antarium: A Reconstructed Visual Reality Device for Ant Navigation Research. Front Behav Neurosci 2020; 14:599374. [PMID: 33240057 PMCID: PMC7683616 DOI: 10.3389/fnbeh.2020.599374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022] Open
Abstract
We constructed a large projection device (the Antarium) with 20,000 UV-Blue-Green LEDs that allows us to present tethered ants with views of their natural foraging environment. The ants walk on an air-cushioned trackball, their movements are registered and can be fed back to the visual panorama. Views are generated in a 3D model of the ants’ environment so that they experience the changing visual world in the same way as they do when foraging naturally. The Antarium is a biscribed pentakis dodecahedron with 55 facets of identical isosceles triangles. The length of the base of the triangles is 368 mm resulting in a device that is roughly 1 m in diameter. Each triangle contains 361 blue/green LEDs and nine UV LEDs. The 55 triangles of the Antarium have 19,855 Green and Blue pixels and 495 UV pixels, covering 360° azimuth and elevation from −50° below the horizon to +90° above the horizon. The angular resolution is 1.5° for Green and Blue LEDs and 6.7° for UV LEDs, offering 65,536 intensity levels at a flicker frequency of more than 9,000 Hz and a framerate of 190 fps. Also, the direction and degree of polarisation of the UV LEDs can be adjusted through polarisers mounted on the axles of rotary actuators. We build 3D models of the natural foraging environment of ants using purely camera-based methods. We reconstruct panoramic scenes at any point within these models, by projecting panoramic images onto six virtual cameras which capture a cube-map of images to be projected by the LEDs of the Antarium. The Antarium is a unique instrument to investigate visual navigation in ants. In an open loop, it allows us to provide ants with familiar and unfamiliar views, with completely featureless visual scenes, or with scenes that are altered in spatial or spectral composition. In closed-loop, we can study the behavior of ants that are virtually displaced within their natural foraging environment. In the future, the Antarium can also be used to investigate the dynamics of navigational guidance and the neurophysiological basis of ant navigation in natural visual environments.
Collapse
Affiliation(s)
- Zoltán Kócsi
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Trevor Murray
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Hansjürgen Dahmen
- Department of Cognitive Neuroscience, University of Tübingen, Tübingen, Germany
| | - Ajay Narendra
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Jochen Zeil
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
15
|
Kamhi JF, Barron AB, Narendra A. Vertical Lobes of the Mushroom Bodies Are Essential for View-Based Navigation in Australian Myrmecia Ants. Curr Biol 2020; 30:3432-3437.e3. [DOI: 10.1016/j.cub.2020.06.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/21/2020] [Accepted: 06/08/2020] [Indexed: 10/23/2022]
|
16
|
Spatial cognition in the context of foraging styles and information transfer in ants. Anim Cogn 2020; 23:1143-1159. [PMID: 32840698 DOI: 10.1007/s10071-020-01423-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/13/2020] [Accepted: 08/13/2020] [Indexed: 02/08/2023]
Abstract
Ants are central-place foragers: they always return to the nest, and this requires the ability to remember relationships between features of the environment, or an individual's path through the landscape. The distribution of these cognitive responsibilities within a colony depends on a species' foraging style. Solitary foraging as well as leader-scouting, which is based on information transmission about a distant targets from scouts to foragers, can be considered the most challenging tasks in the context of ants' spatial cognition. Solitary foraging is found in species of almost all subfamilies of ants, whereas leader-scouting has been discovered as yet only in the Formica rufa group of species (red wood ants). Solitary foraging and leader-scouting ant species, although enormously different in their levels of sociality and ecological specificities, have many common traits of individual cognitive navigation, such as the primary use of visual navigation, excellent visual landmark memories, and the subordinate role of odour orientation. In leader-scouting species, spatial cognition and the ability to transfer information about a distant target dramatically differ among scouts and foragers, suggesting individual cognitive specialization. I suggest that the leader-scouting style of recruitment is closely connected with the ecological niche of a defined group of species, in particular, their searching patterns within the tree crown. There is much work to be done to understand what cognitive mechanisms underpin route planning and communication about locations in ants.
Collapse
|
17
|
Franzke M, Kraus C, Dreyer D, Pfeiffer K, Beetz MJ, Stöckl AL, Foster JJ, Warrant EJ, El Jundi B. Spatial orientation based on multiple visual cues in non-migratory monarch butterflies. J Exp Biol 2020; 223:jeb223800. [PMID: 32341174 DOI: 10.1242/jeb.223800] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/22/2020] [Indexed: 12/24/2022]
Abstract
Monarch butterflies (Danaus plexippus) are prominent for their annual long-distance migration from North America to their overwintering area in Central Mexico. To find their way on this long journey, they use a sun compass as their main orientation reference but will also adjust their migratory direction with respect to mountain ranges. This indicates that the migratory butterflies also attend to the panorama to guide their travels. Although the compass has been studied in detail in migrating butterflies, little is known about the orientation abilities of non-migrating butterflies. Here, we investigated whether non-migrating butterflies - which stay in a more restricted area to feed and breed - also use a similar compass system to guide their flights. Performing behavioral experiments on tethered flying butterflies in an indoor LED flight simulator, we found that the monarchs fly along straight tracks with respect to a simulated sun. When a panoramic skyline was presented as the only orientation cue, the butterflies maintained their flight direction only during short sequences, suggesting that they potentially use it for flight stabilization. We further found that when we presented the two cues together, the butterflies incorporate both cues in their compass. Taken together, we show here that non-migrating monarch butterflies can combine multiple visual cues for robust orientation, an ability that may also aid them during their migration.
Collapse
Affiliation(s)
- Myriam Franzke
- University of Wuerzburg, Biocenter, Zoology II, 97074 Würzburg, Germany
| | - Christian Kraus
- University of Wuerzburg, Biocenter, Zoology II, 97074 Würzburg, Germany
| | - David Dreyer
- Lund University, Department of Biology, Lund Vision Group, 22362 Lund, Sweden
| | - Keram Pfeiffer
- University of Wuerzburg, Biocenter, Zoology II, 97074 Würzburg, Germany
| | - M Jerome Beetz
- University of Wuerzburg, Biocenter, Zoology II, 97074 Würzburg, Germany
| | - Anna L Stöckl
- University of Wuerzburg, Biocenter, Zoology II, 97074 Würzburg, Germany
| | - James J Foster
- Lund University, Department of Biology, Lund Vision Group, 22362 Lund, Sweden
| | - Eric J Warrant
- Lund University, Department of Biology, Lund Vision Group, 22362 Lund, Sweden
| | - Basil El Jundi
- University of Wuerzburg, Biocenter, Zoology II, 97074 Würzburg, Germany
| |
Collapse
|
18
|
|
19
|
Multimodal interactions in insect navigation. Anim Cogn 2020; 23:1129-1141. [PMID: 32323027 PMCID: PMC7700066 DOI: 10.1007/s10071-020-01383-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 01/06/2023]
Abstract
Animals travelling through the world receive input from multiple sensory modalities that could be important for the guidance of their journeys. Given the availability of a rich array of cues, from idiothetic information to input from sky compasses and visual information through to olfactory and other cues (e.g. gustatory, magnetic, anemotactic or thermal) it is no surprise to see multimodality in most aspects of navigation. In this review, we present the current knowledge of multimodal cue use during orientation and navigation in insects. Multimodal cue use is adapted to a species’ sensory ecology and shapes navigation behaviour both during the learning of environmental cues and when performing complex foraging journeys. The simultaneous use of multiple cues is beneficial because it provides redundant navigational information, and in general, multimodality increases robustness, accuracy and overall foraging success. We use examples from sensorimotor behaviours in mosquitoes and flies as well as from large scale navigation in ants, bees and insects that migrate seasonally over large distances, asking at each stage how multiple cues are combined behaviourally and what insects gain from using different modalities.
Collapse
|
20
|
Islam M, Freas CA, Cheng K. Effect of large visual changes on the navigation of the nocturnal bull ant, Myrmecia midas. Anim Cogn 2020; 23:1071-1080. [PMID: 32270349 DOI: 10.1007/s10071-020-01377-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/30/2020] [Indexed: 11/25/2022]
Abstract
Nocturnal insects have remarkable visual capacities in dim light. They can navigate using both the surrounding panorama and celestial cues. Individual foraging ants are efficient navigators, able to accurately reach a variety of goal locations. During navigation, foragers compare the current panoramic view to previously learnt views. In this natural experiment, we observed the effects of large panorama changes, the addition of a fence and the removal of several trees near the nest site, on the navigation of the nocturnal bull ant Myrmecia midas. We examined how the ants' navigational efficiency and behaviour changed in response to changes in ~ 30% of the surrounding skyline, following them over multiple nights. Foragers were displaced locally off-route where we collected initial orientations and homing paths both before and after large panorama changes. We found that immediately after these changes, foragers were unable to initially orient correctly to the nest direction and foragers' return paths were less straight, suggesting increased navigational uncertainty. Continued testing showed rapid recovery in both initial orientation and path straightness.
Collapse
Affiliation(s)
- Muzahid Islam
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
| | - Cody A Freas
- Department of Psychology, University of Alberta, Edmonton, AB, Canada
| | - Ken Cheng
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
21
|
Buehlmann C, Aussel A, Graham P. Dynamic multimodal interactions in navigating wood ants: what do path details tell us about cue integration? J Exp Biol 2020; 223:jeb221036. [PMID: 32139472 DOI: 10.1242/jeb.221036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 02/28/2020] [Indexed: 01/24/2023]
Abstract
Ants are expert navigators, using multimodal information to navigate successfully. Here, we present the results of systematic studies of multimodal cue use in navigating wood ants, Formica rufa Ants learnt to navigate to a feeder that was defined by an olfactory cue (O), visual cue (V) and airflow (A) presented together. When the feeder, olfactory cue and airflow were all placed at the centre of the visual cue (VOACentre), ants did not directly approach the learnt feeder when either the olfactory or visual cue was removed. This confirms that some form of cue binding has taken place. However, in a visually simpler task with the feeder located at the edge of the visual cue (VOAEdge), ants still approached the feeder directly when individual cue components were removed. Hence, cue binding is flexible and depends on the navigational context. In general, cues act additively in determining the ants' path accuracy, i.e. the use of multiple cues increased navigation performance. Moreover, across different training conditions, we saw different motor patterns in response to different sensory cues. For instance, ants had more sinuous paths with more turns when they followed an odour plume but did not have any visual cues. Having visual information together with the odour enhanced performance and therefore positively impacted on plume following. Interestingly, path characteristics of ants from the different multimodal groups (VOACentre versus VOAEdge) were different, suggesting that the observed flexibility in cue binding may be a result of ants' movement characteristics.
Collapse
Affiliation(s)
| | | | - Paul Graham
- University of Sussex, School of Life Sciences, Brighton BN1 9QG, UK
| |
Collapse
|
22
|
Abstract
Continuously monitoring its position in space relative to a goal is one of the most essential tasks for an animal that moves through its environment. Species as diverse as rats, bees, and crabs achieve this by integrating all changes of direction with the distance covered during their foraging trips, a process called path integration. They generate an estimate of their current position relative to a starting point, enabling a straight-line return, following what is known as a home vector. While in theory path integration always leads the animal precisely back home, in the real world noise limits the usefulness of this strategy when operating in isolation. Noise results from stochastic processes in the nervous system and from unreliable sensory information, particularly when obtaining heading estimates. Path integration, during which angular self-motion provides the sole input for encoding heading (idiothetic path integration), results in accumulating errors that render this strategy useless over long distances. In contrast, when using an external compass this limitation is avoided (allothetic path integration). Many navigating insects indeed rely on external compass cues for estimating body orientation, whereas they obtain distance information by integration of steps or optic-flow-based speed signals. In the insect brain, a region called the central complex plays a key role for path integration. Not only does the central complex house a ring-attractor network that encodes head directions, neurons responding to optic flow also converge with this circuit. A neural substrate for integrating direction and distance into a memorized home vector has therefore been proposed in the central complex. We discuss how behavioral data and the theoretical framework of path integration can be aligned with these neural data.
Collapse
Affiliation(s)
| | | | - Allen Cheung
- The University of Queensland, Queensland Brain Institute, Upland Road, St. Lucia, Queensland, Australia
| |
Collapse
|
23
|
Freas CA, Plowes NJR, Spetch ML. Not just going with the flow: foraging ants attend to polarised light even while on the pheromone trail. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:755-767. [PMID: 31422422 DOI: 10.1007/s00359-019-01363-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/30/2019] [Accepted: 08/06/2019] [Indexed: 10/26/2022]
Abstract
The polarisation pattern of skylight serves as an orientation cue for many invertebrates. Solitary foraging ants, in particular, rely on polarised light to orient along with a number of other visual cues. Yet it is unknown, if this cue is actively used in socially foraging species that use pheromone trails to navigate. Here, we explore the use of polarised light in the presence of the pheromone cues of the foraging trail. The desert harvester ant, Veromessor pergandei, relies on pheromone cues and path integration in separate stages of their foraging ecology (column and fan, respectively). Here, we show that foragers actively orient to an altered overhead polarisation pattern, both while navigating individually in the fan and while on the pheromone-based column. These heading changes occurred during twilight, as well as in the early morning and late afternoon before sunset. Differences in shift size indicate that foragers attend to both the polarisation pattern and the sun's position when available, yet during twilight, headings are dominated by the polarisation pattern. Finally, when the sun's position was experimentally blocked before sunset, shift sizes increased similar to twilight testing. These findings show that celestial cues provide directional information on the pheromone trail.
Collapse
Affiliation(s)
- Cody A Freas
- Department of Psychology, University of Alberta, P217 Biological Sciences Building, Edmonton, AB, T6G 2E9, Canada.
| | - Nicola J R Plowes
- Department of Life Sciences, Mesa Community College, 1833 Southern Avenue, Mesa, AZ, 85202, USA
| | - Marcia L Spetch
- Department of Psychology, University of Alberta, P217 Biological Sciences Building, Edmonton, AB, T6G 2E9, Canada
| |
Collapse
|
24
|
Khaldy L, Tocco C, Byrne M, Baird E, Dacke M. Straight-line orientation in the woodland-living beetle Sisyphus fasciculatus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 206:327-335. [PMID: 30955076 PMCID: PMC7192865 DOI: 10.1007/s00359-019-01331-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/06/2019] [Accepted: 03/21/2019] [Indexed: 11/28/2022]
Abstract
To transport their balls of dung along a constant bearing, diurnal savannah-living dung beetles rely primarily on the sun for compass information. However, in more cluttered environments, such as woodlands, this solitary compass cue is frequently hidden from view by surrounding vegetation. In these types of habitats, insects can, instead, rely on surrounding landmarks, the canopy pattern, or wide-field celestial cues, such as polarised skylight, for directional information. Here, we investigate the compass orientation strategy behind straight-line orientation in the diurnal woodland-living beetle Sisyphus fasciculatus. We found that, when manipulating the direction of polarised skylight, Si. fasciculatus responded to this change with a similar change in bearing. However, when the apparent position of the sun was moved, the woodland-living beetle did not change its direction of travel. In contrast, the savannah-living beetle Scarabaeus lamarcki responded to the manipulation of the solar position with a corresponding change in bearing. These results suggest that the dominant compass cue used for straight-line orientation in dung beetles may be determined by the celestial cue that is most prominent in their preferred habitat.
Collapse
Affiliation(s)
- Lana Khaldy
- Department of Biology, Lund Vision Group, Lund University, Sölvegatan 35, 223 62, Lund, Sweden.
| | - Claudia Tocco
- School of Animal, Plant and Environmental Science, University of the Witwatersrand, Johannesburg, South Africa
| | - Marcus Byrne
- School of Animal, Plant and Environmental Science, University of the Witwatersrand, Johannesburg, South Africa
| | - Emily Baird
- Department of Biology, Lund Vision Group, Lund University, Sölvegatan 35, 223 62, Lund, Sweden.,Department of Zoology, Functional Morphology, Stockholm University, Stockholm, Sweden
| | - Marie Dacke
- Department of Biology, Lund Vision Group, Lund University, Sölvegatan 35, 223 62, Lund, Sweden.,School of Animal, Plant and Environmental Science, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
25
|
Sheehan ZBV, Kamhi JF, Seid MA, Narendra A. Differential investment in brain regions for a diurnal and nocturnal lifestyle in Australian Myrmecia ants. J Comp Neurol 2019; 527:1261-1277. [PMID: 30592041 DOI: 10.1002/cne.24617] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 12/07/2018] [Accepted: 12/22/2018] [Indexed: 12/29/2022]
Abstract
Animals are active at different times of the day. Each temporal niche offers a unique light environment, which affects the quality of the available visual information. To access reliable visual signals in dim-light environments, insects have evolved several visual adaptations to enhance their optical sensitivity. The extent to which these adaptations reflect on the sensory processing and integration capabilities within the brain of a nocturnal insect is unknown. To address this, we analyzed brain organization in congeneric species of the Australian bull ant, Myrmecia, that rely predominantly on visual information and range from being strictly diurnal to strictly nocturnal. Weighing brains and optic lobes of seven Myrmecia species, showed that after controlling for body mass, the brain mass was not significantly different between diurnal and nocturnal ants. However, the optic lobe mass, after controlling for central brain mass, differed between day- and night-active ants. Detailed volumetric analyses showed that the nocturnal ants invested relatively less in the primary visual processing regions but relatively more in both the primary olfactory processing regions and in the integration centers of visual and olfactory sensory information. We discuss how the temporal niche occupied by each species may affect cognitive demands, thus shaping brain organization among insects active in dim-light conditions.
Collapse
Affiliation(s)
- Zachary B V Sheehan
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - J Frances Kamhi
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Marc A Seid
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia.,Biology Department, Neuroscience Program, The University of Scranton, Scranton, Pennsylvania
| | - Ajay Narendra
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
26
|
Freas CA, Cheng K. Panorama similarity and navigational knowledge in the nocturnal bull ant, Myrmicia midas. J Exp Biol 2019; 222:jeb.193201. [DOI: 10.1242/jeb.193201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 05/09/2019] [Indexed: 11/20/2022]
Abstract
Nocturnal ants forage and navigate during periods of reduced light, making detection of visual cues difficult, yet they are skilled visual navigators. These foragers retain visual panoramic memories both around the nest and along known routes for later use, be it to return to previously visited food sites or to the nest. Here, we explore the navigational knowledge of the nocturnal bull ant, Myrmecia midas, by investigating differences in nest-ward homing after displacement of three forager groups based on similarities in the panoramas between the release site and previously visited locations. Foragers that travel straight up the foraging tree or to close trees around the nest show reduced navigational success in orienting and returning from displacements compared to individuals that forage further from the nest site. By analysing the cues present in the panorama, we show that multiple metrics of forager navigational performance correspond with the degree of similarity between the release site panorama and panoramas of previously visited sites. In highly cluttered environments, where panoramas change rapidly over short distances, the views acquired near the nest are only useful over a small area and memories acquired along foraging routes become critical.
Collapse
Affiliation(s)
- Cody A. Freas
- Department of Psychology, University of Alberta, Canada
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | - Ken Cheng
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
27
|
Murray T, Kocsi Z, Dahmen H, Narendra A, Le Möel F, Wystrach A, Zeil J. The role of attractive and repellent scene memories in ant homing (Myrmecia croslandi). J Exp Biol 2019; 223:jeb.210021. [DOI: 10.1242/jeb.210021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/04/2019] [Indexed: 01/20/2023]
Abstract
Solitary foraging ants rely on vision when travelling along routes and when pinpointing their nest. We tethered foragers of Myrmecia croslandi on a trackball and recorded their intended movements when the trackball was located on their normal foraging corridor (on-route), above their nest and at a location several meters away where they have never been before (off-route). We find that at on- and off-route locations, most ants walk in the nest or foraging direction and continue to do so for tens of metres in a straight line. In contrast, above the nest, ants walk in random directions and change walking direction frequently. In addition, the walking direction of ants above the nest oscillates at a fine scale, reflecting search movements that are absent from the paths of ants at the other locations. An agent-based simulation shows that the behaviour of ants at all three locations can be explained by the integration of attractive and repellent views directed towards or away from the nest, respectively. Ants are likely to acquire such views via systematic scanning movements during their learning walks. The model predicts that ants placed in a completely unfamiliar environment should behave as if at the nest, which our subsequent experiments confirmed. We conclude first, that the ants’ behaviour at release sites is exclusively driven by what they currently see and not by information on expected outcomes of their behaviour. Second, that navigating ants might continuously integrate attractive and repellent visual memories. We discuss the benefits of such a procedure.
Collapse
Affiliation(s)
- Trevor Murray
- Research School of Biology, Australian National University, Canberra, Australia
| | - Zoltan Kocsi
- Research School of Biology, Australian National University, Canberra, Australia
| | | | - Ajay Narendra
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Florent Le Möel
- Research Center on Animal Cognition, University Paul Sabatier/CNRS, Toulouse, France
| | - Antoine Wystrach
- Research Center on Animal Cognition, University Paul Sabatier/CNRS, Toulouse, France
| | - Jochen Zeil
- Research School of Biology, Australian National University, Canberra, Australia
| |
Collapse
|
28
|
Owens ACS, Lewis SM. The impact of artificial light at night on nocturnal insects: A review and synthesis. Ecol Evol 2018; 8:11337-11358. [PMID: 30519447 PMCID: PMC6262936 DOI: 10.1002/ece3.4557] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 07/14/2018] [Indexed: 02/06/2023] Open
Abstract
In recent decades, advances in lighting technology have precipitated exponential increases in night sky brightness worldwide, raising concerns in the scientific community about the impact of artificial light at night (ALAN) on crepuscular and nocturnal biodiversity. Long-term records show that insect abundance has declined significantly over this time, with worrying implications for terrestrial ecosystems. The majority of investigations into the vulnerability of nocturnal insects to artificial light have focused on the flight-to-light behavior exhibited by select insect families. However, ALAN can affect insects in other ways as well. This review proposes five categories of ALAN impact on nocturnal insects, highlighting past research and identifying key knowledge gaps. We conclude with a summary of relevant literature on bioluminescent fireflies, which emphasizes the unique vulnerability of terrestrial light-based communication systems to artificial illumination. Comprehensive understanding of the ecological impacts of ALAN on diverse nocturnal insect taxa will enable researchers to seek out methods whereby fireflies, moths, and other essential members of the nocturnal ecosystem can coexist with humans on an increasingly urbanized planet.
Collapse
Affiliation(s)
| | - Sara M. Lewis
- Department of BiologyTufts UniversityMedfordMassachusetts
| |
Collapse
|
29
|
Narendra A, Ribi WA. Ocellar structure is driven by the mode of locomotion and activity time in Myrmecia ants. ACTA ACUST UNITED AC 2018; 220:4383-4390. [PMID: 29187620 DOI: 10.1242/jeb.159392] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 09/25/2017] [Indexed: 01/09/2023]
Abstract
Insects have exquisitely adapted their compound eyes to suit the ambient light intensity in the different temporal niches they occupy. In addition to the compound eye, most flying insects have simple eyes known as ocelli, which assist in flight stabilisation, horizon detection and orientation. Among ants, typically the flying alates have ocelli while the pedestrian workers lack this structure. The Australian ant genus Myrmecia is one of the few ant genera in which both workers and alates have three ocellar lenses. Here, we studied the variation in the ocellar structure in four sympatric species of Myrmecia that are active at different times of the day. In addition, we took advantage of the walking and flying modes of locomotion in workers and males, respectively, to ask whether the type of movement influences the ocellar structure. We found that ants active in dim light had larger ocellar lenses and wider rhabdoms compared with those in bright-light conditions. In the ocellar rhabdoms of workers active in dim-light habitats, typically each retinula cell contributed microvilli in more than one direction, probably destroying polarisation sensitivity. The organisation of the ocellar retina in the day-active workers and the males suggests that in these animals some cells are sensitive to the pattern of polarised skylight. We found that the night-flying males had a tapetum that reflects light back to the rhabdom, increasing their optical sensitivity. We discuss the possible functions of ocelli to suit the different modes of locomotion and the discrete temporal niches that animals occupy.
Collapse
Affiliation(s)
- Ajay Narendra
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Willi A Ribi
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
30
|
O'Carroll DC, Warrant EJ. Vision in dim light: highlights and challenges. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0062. [PMID: 28193807 DOI: 10.1098/rstb.2016.0062] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2016] [Indexed: 11/12/2022] Open
|
31
|
Freas CA, Wystrach A, Narendra A, Cheng K. The View from the Trees: Nocturnal Bull Ants, Myrmecia midas, Use the Surrounding Panorama While Descending from Trees. Front Psychol 2018; 9:16. [PMID: 29422880 PMCID: PMC5788958 DOI: 10.3389/fpsyg.2018.00016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/08/2018] [Indexed: 01/09/2023] Open
Abstract
Solitary foraging ants commonly use visual cues from their environment for navigation. Foragers are known to store visual scenes from the surrounding panorama for later guidance to known resources and to return successfully back to the nest. Several ant species travel not only on the ground, but also climb trees to locate resources. The navigational information that guides animals back home during their descent, while their body is perpendicular to the ground, is largely unknown. Here, we investigate in a nocturnal ant, Myrmecia midas, whether foragers travelling down a tree use visual information to return home. These ants establish nests at the base of a tree on which they forage and in addition, they also forage on nearby trees. We collected foragers and placed them on the trunk of the nest tree or a foraging tree in multiple compass directions. Regardless of the displacement location, upon release ants immediately moved to the side of the trunk facing the nest during their descent. When ants were released on non-foraging trees near the nest, displaced foragers again travelled around the tree to the side facing the nest. All the displaced foragers reached the correct side of the tree well before reaching the ground. However, when the terrestrial cues around the tree were blocked, foragers were unable to orient correctly, suggesting that the surrounding panorama is critical to successful orientation on the tree. Through analysis of panoramic pictures, we show that views acquired at the base of the foraging tree nest can provide reliable nest-ward orientation up to 1.75 m above the ground. We discuss, how animals descending from trees compare their current scene to a memorised scene and report on the similarities in visually guided behaviour while navigating on the ground and descending from trees.
Collapse
Affiliation(s)
- Cody A. Freas
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Antione Wystrach
- Research Centre on Animal Cognition, Centre for Integrative Biology, CNRS, University of Toulouse, Toulouse, France
| | - Ajay Narendra
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ken Cheng
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
32
|
Buehlmann C, Fernandes ASD, Graham P. The interaction of path integration and terrestrial visual cues in navigating desert ants: what can we learn from path characteristics? ACTA ACUST UNITED AC 2018; 221:jeb.167304. [PMID: 29146769 DOI: 10.1242/jeb.167304] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/12/2017] [Indexed: 11/20/2022]
Abstract
Ant foragers make use of multiple navigational cues to navigate through the world and the combination of innate navigational strategies and the learning of environmental information is the secret to their navigational success. We present here detailed information about the paths of Cataglyphis fortis desert ants navigating by an innate strategy, namely path integration. Firstly, we observed that the ants' walking speed decreases significantly along their homing paths, such that they slow down just before reaching the goal, and maintain a slower speed during subsequent search paths. Interestingly, this drop in walking speed is independent of absolute home-vector length and depends on the proportion of the home vector that has been completed. Secondly, we found that ants are influenced more strongly by novel or altered visual cues the further along the homing path they are. These results suggest that path integration modulates speed along the homing path in a way that might help ants search for, utilise or learn environmental information at important locations. Ants walk more slowly and sinuously when encountering novel or altered visual cues and occasionally stop and scan the world; this might indicate the re-learning of visual information.
Collapse
Affiliation(s)
- Cornelia Buehlmann
- University of Sussex, School of Life Sciences, Falmer, Brighton BN1 9QG, UK
| | | | - Paul Graham
- University of Sussex, School of Life Sciences, Falmer, Brighton BN1 9QG, UK
| |
Collapse
|
33
|
Palavalli-Nettimi R, Narendra A. Miniaturisation decreases visual navigational competence in ants. J Exp Biol 2018; 221:jeb.177238. [DOI: 10.1242/jeb.177238] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/15/2018] [Indexed: 12/25/2022]
Abstract
Evolution of smaller body size in a given lineage, called miniaturisation, is commonly observed in many animals including ants. It affects various morphological features and is hypothesized to result in inferior behavioural capabilities, possibly owing to smaller sensory organs. To test this hypothesis, we studied whether reduced spatial resolution of compound eyes influences obstacle detection or obstacle avoidance in five different species of ants. We trained all ant species to travel to a sugar feeder. During their return journeys, we placed an obstacle close to the nest entrance. We found that ants with higher spatial resolution exited the corridor, the area covered between either ends of the obstacle, on average 10 cm earlier suggesting they detected the obstacle earlier in their path. Ants with the lowest spatial resolution changed their viewing directions only when they were close to the obstacle. We discuss the effects of miniaturisation on visual navigational competence in ants.
Collapse
Affiliation(s)
| | - Ajay Narendra
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
34
|
Warrant EJ. The remarkable visual capacities of nocturnal insects: vision at the limits with small eyes and tiny brains. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0063. [PMID: 28193808 DOI: 10.1098/rstb.2016.0063] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2016] [Indexed: 11/12/2022] Open
Abstract
Nocturnal insects have evolved remarkable visual capacities, despite small eyes and tiny brains. They can see colour, control flight and land, react to faint movements in their environment, navigate using dim celestial cues and find their way home after a long and tortuous foraging trip using learned visual landmarks. These impressive visual abilities occur at light levels when only a trickle of photons are being absorbed by each photoreceptor, begging the question of how the visual system nonetheless generates the reliable signals needed to steer behaviour. In this review, I attempt to provide an answer to this question. Part of the answer lies in their compound eyes, which maximize light capture. Part lies in the slow responses and high gains of their photoreceptors, which improve the reliability of visual signals. And a very large part lies in the spatial and temporal summation of these signals in the optic lobe, a strategy that substantially enhances contrast sensitivity in dim light and allows nocturnal insects to see a brighter world, albeit a slower and coarser one. What is abundantly clear, however, is that during their evolution insects have overcome several serious potential visual limitations, endowing them with truly extraordinary night vision.This article is part of the themed issue 'Vision in dim light'.
Collapse
Affiliation(s)
- Eric J Warrant
- Lund Vision Group, Department of Biology, University of Lund, Sölvegatan 35, 22362 Lund, Sweden
| |
Collapse
|
35
|
Narendra A, Ramirez-Esquivel F. Subtle changes in the landmark panorama disrupt visual navigation in a nocturnal bull ant. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0068. [PMID: 28193813 DOI: 10.1098/rstb.2016.0068] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2016] [Indexed: 11/12/2022] Open
Abstract
The ability of ants to navigate when the visual landmark information is altered has often been tested by creating large and artificial discrepancies in their visual environment. Here, we had an opportunity to slightly modify the natural visual environment around the nest of the nocturnal bull ant Myrmecia pyriformis We achieved this by felling three dead trees, two located along the typical route followed by the foragers of that particular nest and one in a direction perpendicular to their foraging direction. An image difference analysis showed that the change in the overall panorama following the removal of these trees was relatively little. We filmed the behaviour of ants close to the nest and tracked their entire paths, both before and after the trees were removed. We found that immediately after the trees were removed, ants walked slower and were less directed. Their foraging success decreased and they looked around more, including turning back to look towards the nest. We document how their behaviour changed over subsequent nights and discuss how the ants may detect and respond to a modified visual environment in the evening twilight period.This article is part of the themed issue 'Vision in dim light'.
Collapse
Affiliation(s)
- Ajay Narendra
- Department of Biological Sciences, Macquarie University, 205 Culloden Road, Sydney, New South Wales 2109, Australia
| | - Fiorella Ramirez-Esquivel
- Research School of Biology, The Australian National University, 46 Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
36
|
Lee C, Kim D. Local Homing Navigation Based on the Moment Model for Landmark Distribution and Features. SENSORS (BASEL, SWITZERLAND) 2017; 17:E2658. [PMID: 29149043 PMCID: PMC5713017 DOI: 10.3390/s17112658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/12/2017] [Accepted: 11/14/2017] [Indexed: 11/17/2022]
Abstract
[-10]For local homing navigation, an agent is supposed to return home based on the surrounding environmental information. According to the snapshot model, the home snapshot and the current view are compared to determine the homing direction. In this paper, we propose a novel homing navigation method using the moment model. The suggested moment model also follows the snapshot theory to compare the home snapshot and the current view, but the moment model defines a moment of landmark inertia as the sum of the product of the feature of the landmark particle with the square of its distance. The method thus uses range values of landmarks in the surrounding view and the visual features. The center of the moment can be estimated as the reference point, which is the unique convergence point in the moment potential from any view. The homing vector can easily be extracted from the centers of the moment measured at the current position and the home location. The method effectively guides homing direction in real environments, as well as in the simulation environment. In this paper, we take a holistic approach to use all pixels in the panoramic image as landmarks and use the RGB color intensity for the visual features in the moment model in which a set of three moment functions is encoded to determine the homing vector. We also tested visual homing or the moment model with only visual features, but the suggested moment model with both the visual feature and the landmark distance shows superior performance. We demonstrate homing performance with various methods classified by the status of the feature, the distance and the coordinate alignment.
Collapse
Affiliation(s)
- Changmin Lee
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Korea.
| | - DaeEun Kim
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
37
|
Graham P, Philippides A. Vision for navigation: What can we learn from ants? ARTHROPOD STRUCTURE & DEVELOPMENT 2017; 46:718-722. [PMID: 28751148 DOI: 10.1016/j.asd.2017.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 07/06/2017] [Accepted: 07/23/2017] [Indexed: 06/07/2023]
Abstract
The visual systems of all animals are used to provide information that can guide behaviour. In some cases insects demonstrate particularly impressive visually-guided behaviour and then we might reasonably ask how the low-resolution vision and limited neural resources of insects are tuned to particular behavioural strategies. Such questions are of interest to both biologists and to engineers seeking to emulate insect-level performance with lightweight hardware. One behaviour that insects share with many animals is the use of learnt visual information for navigation. Desert ants, in particular, are expert visual navigators. Across their foraging life, ants can learn long idiosyncratic foraging routes. What's more, these routes are learnt quickly and the visual cues that define them can be implemented for guidance independently of other social or personal information. Here we review the style of visual navigation in solitary foraging ants and consider the physiological mechanisms that underpin it. Our perspective is to consider that robust navigation comes from the optimal interaction between behavioural strategy, visual mechanisms and neural hardware. We consider each of these in turn, highlighting the value of ant-like mechanisms in biomimetic endeavours.
Collapse
Affiliation(s)
- Paul Graham
- Centre for Computational Neuroscience and Robotics, University of Sussex, Brighton, BN1 9QG, UK.
| | - Andrew Philippides
- Centre for Computational Neuroscience and Robotics, University of Sussex, Brighton, BN1 9QG, UK
| |
Collapse
|
38
|
Lee C, Yu SE, Kim D. Landmark-Based Homing Navigation Using Omnidirectional Depth Information. SENSORS (BASEL, SWITZERLAND) 2017; 17:E1928. [PMID: 28829387 PMCID: PMC5580246 DOI: 10.3390/s17081928] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/16/2017] [Accepted: 08/18/2017] [Indexed: 11/16/2022]
Abstract
A number of landmark-based navigation algorithms have been studied using feature extraction over the visual information. In this paper, we apply the distance information of the surrounding environment in a landmark navigation model. We mount a depth sensor on a mobile robot, in order to obtain omnidirectional distance information. The surrounding environment is represented as a circular form of landmark vectors, which forms a snapshot. The depth snapshots at the current position and the target position are compared to determine the homing direction, inspired by the snapshot model. Here, we suggest a holistic view of panoramic depth information for homing navigation where each sample point is taken as a landmark. The results are shown in a vector map of homing vectors. The performance of the suggested method is evaluated based on the angular errors and the homing success rate. Omnidirectional depth information about the surrounding environment can be a promising source of landmark homing navigation. We demonstrate the results that a holistic approach with omnidirectional depth information shows effective homing navigation.
Collapse
Affiliation(s)
- Changmin Lee
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| | - Seung-Eun Yu
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| | - DaeEun Kim
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| |
Collapse
|
39
|
Narendra A, Kamhi JF, Ogawa Y. Moving in Dim Light: Behavioral and Visual Adaptations in Nocturnal Ants. Integr Comp Biol 2017; 57:1104-1116. [DOI: 10.1093/icb/icx096] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
40
|
Freas CA, Narendra A, Lemesle C, Cheng K. Polarized light use in the nocturnal bull ant, Myrmecia midas. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170598. [PMID: 28879002 PMCID: PMC5579118 DOI: 10.1098/rsos.170598] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/02/2017] [Indexed: 06/07/2023]
Abstract
Solitary foraging ants have a navigational toolkit, which includes the use of both terrestrial and celestial visual cues, allowing individuals to successfully pilot between food sources and their nest. One such celestial cue is the polarization pattern in the overhead sky. Here, we explore the use of polarized light during outbound and inbound journeys and with different home vectors in the nocturnal bull ant, Myrmecia midas. We tested foragers on both portions of the foraging trip by rotating the overhead polarization pattern by ±45°. Both outbound and inbound foragers responded to the polarized light change, but the extent to which they responded to the rotation varied. Outbound ants, both close to and further from the nest, compensated for the change in the overhead e-vector by about half of the manipulation, suggesting that outbound ants choose a compromise heading between the celestial and terrestrial compass cues. However, ants returning home compensated for the change in the e-vector by about half of the manipulation when the remaining home vector was short (1-2 m) and by more than half of the manipulation when the remaining vector was long (more than 4 m). We report these findings and discuss why weighting on polarization cues change in different contexts.
Collapse
|
41
|
Xu Y, Regier T, Newcombe NS. An adaptive cue combination model of human spatial reorientation. Cognition 2017; 163:56-66. [PMID: 28285237 DOI: 10.1016/j.cognition.2017.02.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 02/17/2017] [Accepted: 02/28/2017] [Indexed: 11/30/2022]
Abstract
Previous research has proposed an adaptive cue combination view of the development of human spatial reorientation (Newcombe & Huttenlocher, 2006), whereby information from multiple sources is combined in a weighted fashion in localizing a target, as opposed to being modular and encapsulated (Hermer & Spelke, 1996). However, no prior work has formalized this proposal and tested it against existing empirical data. We propose a computational model of human spatial reorientation that is motivated by probabilistic approaches to optimal perceptual cue integration (e.g. Ernst & Banks, 2002) and to spatial location coding (Huttenlocher, Hedges, & Duncan, 1991). We show that this model accounts for data from a variety of human reorientation experiments, providing support for the adaptive combination view of reorientation.
Collapse
Affiliation(s)
- Yang Xu
- Department of Linguistics, Cognitive Science Program, University of California, Berkeley, CA 94720-2650, USA.
| | - Terry Regier
- Department of Linguistics, Cognitive Science Program, University of California, Berkeley, CA 94720-2650, USA
| | - Nora S Newcombe
- Department of Psychology, 318 Weiss Hall, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
42
|
Abstract
Despite their tiny eyes and brains, nocturnal insects have evolved a remarkable capacity to visually navigate at night. Whereas some use moonlight or the stars as celestial compass cues to maintain a straight-line course, others use visual landmarks to navigate to and from their nest. These impressive abilities rely on highly sensitive compound eyes and specialized visual processing strategies in the brain.
Collapse
Affiliation(s)
- Eric Warrant
- Department of Biology, Lund Vision Group, University of Lund, Lund, Sweden
| | - Marie Dacke
- Department of Biology, Lund Vision Group, University of Lund, Lund, Sweden
| |
Collapse
|
43
|
Freas CA, Narendra A, Cheng K. Compass cues used by a nocturnal bull ant, Myrmecia midas. ACTA ACUST UNITED AC 2017; 220:1578-1585. [PMID: 28183865 DOI: 10.1242/jeb.152967] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/05/2017] [Indexed: 11/20/2022]
Abstract
Ants use both terrestrial landmarks and celestial cues to navigate to and from their nest location. These cues persist even as light levels drop during the twilight/night. Here, we determined the compass cues used by a nocturnal bull ant, Myrmecia midas, in which the majority of individuals begin foraging during the evening twilight period. Myrmecia midas foragers with vectors of ≤5 m when displaced to unfamiliar locations did not follow the home vector, but instead showed random heading directions. Foragers with larger home vectors (≥10 m) oriented towards the fictive nest, indicating a possible increase in cue strength with vector length. When the ants were displaced locally to create a conflict between the home direction indicated by the path integrator and terrestrial landmarks, foragers oriented using landmark information exclusively and ignored any accumulated home vector regardless of vector length. When the visual landmarks at the local displacement site were blocked, foragers were unable to orient to the nest direction and their heading directions were randomly distributed. Myrmecia midas ants typically nest at the base of the tree and some individuals forage on the same tree. Foragers collected on the nest tree during evening twilight were unable to orient towards the nest after small lateral displacements away from the nest. This suggests the possibility of high tree fidelity and an inability to extrapolate landmark compass cues from information collected on the tree and at the nest site to close displacement sites.
Collapse
Affiliation(s)
- Cody A Freas
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Ajay Narendra
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Ken Cheng
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
44
|
How Ants Use Vision When Homing Backward. Curr Biol 2017; 27:401-407. [DOI: 10.1016/j.cub.2016.12.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/10/2016] [Accepted: 12/09/2016] [Indexed: 01/11/2023]
|
45
|
Bingman VP, Graving JM, Hebets EA, Wiegmann DD. Importance of the antenniform legs, but not vision, for homing by the neotropical whip spider Paraphrynus laevifrons. ACTA ACUST UNITED AC 2016; 220:885-890. [PMID: 28011820 DOI: 10.1242/jeb.149823] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/19/2016] [Indexed: 11/20/2022]
Abstract
Amblypygids, or whip spiders, are nocturnal, predatory arthropods that display a robust ability to navigate to their home refuge. Prior field observations and displacement studies in amblypygids demonstrated an ability to home from distances as far away as 10 m. In the current study, micro-transmitters were used to take morning position fixes of individual Paraphrynus laevifrons following an experimental displacement of 10 m from their home refuge. The intention was to assess the relative importance of vision compared with sensory input acquired from the antenniform legs for navigation as well as other aspects of their spatial behavior. Displaced individuals were randomly assigned to three treatment groups: (i) control individuals; (ii) vision-deprived individuals, VD; and (iii) individuals with sensory input from the tips of their antenniform legs compromised, AD. Control and VD subjects were generally successful in returning home, and the direction of their movement on the first night following displacement was homeward oriented. By contrast, AD subjects experienced a complete loss of navigational ability, and movement on the first night indicated no hint of homeward orientation. The data strongly support the hypothesis that sensory input from the tips of the antenniform legs is necessary for successful homing in amblypygids following displacement to an unfamiliar location, and we hypothesize an essential role of olfaction for this navigational ability.
Collapse
Affiliation(s)
- Verner P Bingman
- Department of Psychology and J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, USA
| | - Jacob M Graving
- Department of Biological Sciences and J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, USA
| | - Eileen A Hebets
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
| | - Daniel D Wiegmann
- Department of Biological Sciences and J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, USA
| |
Collapse
|
46
|
Narendra A, Greiner B, Ribi WA, Zeil J. Light and dark adaptation mechanisms in the compound eyes of Myrmecia ants that occupy discrete temporal niches. J Exp Biol 2016; 219:2435-42. [DOI: 10.1242/jeb.142018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/31/2016] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Ants of the Australian genus Myrmecia partition their foraging niche temporally, allowing them to be sympatric with overlapping foraging requirements. We used histological techniques to study the light and dark adaptation mechanisms in the compound eyes of diurnal (Myrmecia croslandi), crepuscular (M. tarsata, M. nigriceps) and nocturnal ants (M. pyriformis). We found that, except in the day-active species, all ants have a variable primary pigment cell pupil that constricts the crystalline cone in bright light to control for light flux. We show for the nocturnal M. pyriformis that the constriction of the crystalline cone by the primary pigment cells is light dependent whereas the opening of the aperture is regulated by an endogenous rhythm. In addition, in the light-adapted eyes of all species, the retinular cell pigment granules radially migrate towards the rhabdom, a process that in both the day-active M. croslandi and the night-active M. pyriformis is driven by ambient light intensity. Visual system properties thus do not restrict crepuscular and night-active ants to their temporal foraging niche, while day-active ants require high light intensities to operate. We discuss the ecological significance of these adaptation mechanisms and their role in temporal niche partitioning.
Collapse
Affiliation(s)
- Ajay Narendra
- Department of Biological Sciences, Macquarie University, 205 Culloden Road, Sydney, NSW 2109, Australia
- Research School of Biology, The Australian National University, 46 Sullivans Creek Road, Canberra, ACT 2601, Australia
| | - Birgit Greiner
- Research School of Biology, The Australian National University, 46 Sullivans Creek Road, Canberra, ACT 2601, Australia
| | - Willi A. Ribi
- Research School of Biology, The Australian National University, 46 Sullivans Creek Road, Canberra, ACT 2601, Australia
- Department of Biology, University of Lund, Lund S-22362, Sweden
| | - Jochen Zeil
- Research School of Biology, The Australian National University, 46 Sullivans Creek Road, Canberra, ACT 2601, Australia
| |
Collapse
|
47
|
Abstract
In situations with redundant or competing sensory information, humans have been shown to perform cue integration, weighting different cues according to their certainty in a quantifiably optimal manner. Ants have been shown to merge the directional information available from their path integration (PI) and visual memory, but as yet it is not clear that they do so in a way that reflects the relative certainty of the cues. In this study, we manipulate the variance of the PI home vector by allowing ants (Cataglyphis velox) to run different distances and testing their directional choice when the PI vector direction is put in competition with visual memory. Ants show progressively stronger weighting of their PI direction as PI length increases. The weighting is quantitatively predicted by modelling the expected directional variance of home vectors of different lengths and assuming optimal cue integration. However, a subsequent experiment suggests ants may not actually compute an internal estimate of the PI certainty, but are using the PI home vector length as a proxy.
Collapse
Affiliation(s)
- Antoine Wystrach
- School of Informatics, University of Edinburgh, 10 Crichton Street, Edinburgh EH8 9AB, UK
| | - Michael Mangan
- School of Informatics, University of Edinburgh, 10 Crichton Street, Edinburgh EH8 9AB, UK
| | - Barbara Webb
- School of Informatics, University of Edinburgh, 10 Crichton Street, Edinburgh EH8 9AB, UK
| |
Collapse
|
48
|
Steering intermediate courses: desert ants combine information from various navigational routines. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2016; 202:459-72. [DOI: 10.1007/s00359-016-1094-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/12/2016] [Accepted: 05/12/2016] [Indexed: 10/21/2022]
|
49
|
Webb B, Wystrach A. Neural mechanisms of insect navigation. CURRENT OPINION IN INSECT SCIENCE 2016; 15:27-39. [PMID: 27436729 DOI: 10.1016/j.cois.2016.02.011] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/16/2016] [Accepted: 02/22/2016] [Indexed: 06/06/2023]
Abstract
We know more about the ethology of insect navigation than the neural substrates. Few studies have shown direct effects of brain manipulation on navigational behaviour; or measure brain responses that clearly relate to the animal's current location or spatial target, independently of specific sensory cues. This is partly due to the methodological problems of obtaining neural data in a naturally behaving animal. However, substantial indirect evidence, such as comparative anatomy and knowledge of the neural circuits that provide relevant sensory inputs provide converging arguments for the role of some specific brain areas: the mushroom bodies; and the central complex. Finally, modelling can help bridge the gap by relating the computational requirements of a given navigational task to the type of computation offered by different brain areas.
Collapse
Affiliation(s)
- Barbara Webb
- School of Informatics, University of Edinburgh, 10 Crichton St, Edinburgh EH8 9AB, UK.
| | - Antoine Wystrach
- Centre de Recherches sur la Cognition Animale, Centre National de la Recherche Scientifique, Universite Paul Sabatier, Toulouse, France
| |
Collapse
|
50
|
Similarities and differences in path integration and search in two species of desert ants inhabiting a visually rich and a visually barren habitat. Behav Ecol Sociobiol 2016. [DOI: 10.1007/s00265-016-2140-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|