1
|
Carrizo MC, Zenuto RR, Luna F, Cutrera AP. Varying intensity of simulated infection partially affects the magnitude of the acute-phase immune response in the subterranean rodent Ctenomys talarum. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:253-268. [PMID: 36479923 DOI: 10.1002/jez.2675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022]
Abstract
The acute phase response (APR), coordinated by a complex network of components of the immune and neuroendocrine systems, plays a key role in early immune defense. This response can be elicited by a wide variety of pathogens at different intensities (frequencies and doses), hence experimental immune challenges with antigen gradients makes it possible to evaluate sickness progression with a better representation of what occurs in natural systems. However, how infection intensity could shape the APR magnitude in wild species is still poorly understood. Here, the immune response was activated in the subterranean rodent Ctenomys talarum with a gradient of lipopolysaccharide (LPS) doses (0.5, 1, 1.5, and 2 mg/kg of body mass). Changes in body temperature, body mass, and energetic costs were evaluated over time. We also assessed cortisol levels, white blood cells counts and neutrophil: lymphocyte ratios, before and after injection. Results indicated that during the APR, C. talarum shows a hyperthermic response, which is maintained for 6 h, with slight differences among antigen doses in the pattern of thermal response and body mass change. A maximum increase in body temperature of 0.83°C to 1.63°C was observed during the first hour, associated with a metabolic cost that ranged from 1.25 to 1.41 ml O2 /gh. Although no clear effects of treatment were detected on leukocyte abundance, we found increments in neutrophil: lymphocyte ratios and gradual increases in cortisol levels corresponding to the intensity of simulated infection, which may indicate redistribution of immune cells and enhancement of immune function. An evident sickness syndrome was observed even at the lowest LPS dose that was characterized by an increase in body temperature, energy expenditure, and N: L ratio, as well as a dose-dependent increase in cortisol levels. Although in nature, other constraints and challenges could affect the magnitude and costs of immune responses, C. talarum mounts an effective APR with a low increase in their daily energy expenditure, regardless of LPS dose.
Collapse
Affiliation(s)
- María C Carrizo
- Grupo de Ecología Fisiológica y del Comportamiento, Instituto de Investigaciones Marinas y Costeras (IIMyC), CONICET - Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Roxana R Zenuto
- Grupo de Ecología Fisiológica y del Comportamiento, Instituto de Investigaciones Marinas y Costeras (IIMyC), CONICET - Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Facundo Luna
- Grupo de Ecología Fisiológica y del Comportamiento, Instituto de Investigaciones Marinas y Costeras (IIMyC), CONICET - Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Ana P Cutrera
- Grupo de Ecología Fisiológica y del Comportamiento, Instituto de Investigaciones Marinas y Costeras (IIMyC), CONICET - Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| |
Collapse
|
2
|
Fuad MTI, Shi W, Liao X, Li Y, Sharifuzzaman S, Zhang X, Liu X, Xu Q. Transcriptomic response of intertidal brittle star Ophiothrix exigua to seasonal variation. Mar Genomics 2022; 64:100957. [DOI: 10.1016/j.margen.2022.100957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 11/28/2022]
|
3
|
Cutrera AP, Luna F, Zenuto RR. Acute-Phase Immune Response Involves Fever, Sickness Behavior, and an Elevated Metabolic Rate in the Subterranean Rodent Ctenomys talarum. Physiol Biochem Zool 2022; 95:183-199. [PMID: 35148257 DOI: 10.1086/718409] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
AbstractThe acute-phase response (APR) is an induced innate response and may involve pronounced physiological and behavioral changes. One of the most common assays to study the APR involves the use of a lypopolysaccharide (LPS) from the cell wall of gram-negative bacteria. In this study, we determined the energetic costs of the APR in the subterranean rodent Ctenomys talarum, as well as the effects of the exposure to LPS on body temperature, body mass loss, and behavior in this species. Furthermore, we monitored levels of circulating endotoxin after LPS exposure. Our results suggest that in C. talarum, the APR is energetically costly, resulting in a 14% increase in metabolic rate. Animals exposed to LPS experienced a short-term thermal response, weight loss, and changes in their behavior that included more time spent resting and with their eyes totally or partially closed. However, the magnitude of the effects of LPS exposure varied between sexes and among animals. Also, there was a clear peak in circulating endotoxin levels in plasma 3 h postinjection (hpi) and a significant decrease of these levels 24 hpi, but peak endotoxin concentration values recorded were highly variable among animals. In light of these results, ecological determinants of immune function variation in tuco-tucos are discussed considering the roles of pace of life, habitat, and degree of pathogen exposure in these subterranean rodents.
Collapse
|
4
|
Rathor R, Suryakumar G, Singh SN. Diet and redox state in maintaining skeletal muscle health and performance at high altitude. Free Radic Biol Med 2021; 174:305-320. [PMID: 34352371 DOI: 10.1016/j.freeradbiomed.2021.07.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 01/07/2023]
Abstract
High altitude exposure leads to compromised physical performance with considerable weight loss. The major stressor at high altitude is hypobaric hypoxia which leads to disturbance in redox homeostasis. Oxidative stress is a well-known trigger for many high altitude illnesses and regulates several key signaling pathways under stressful conditions. Altered redox homeostasis is considered the prime culprit of high altitude linked skeletal muscle atrophy. Hypobaric hypoxia disturbs redox homeostasis through increased RONS production and compromised antioxidant system. Increased RONS disturbs the cellular homeostasis via multiple ways such as inflammation generation, altered protein anabolic pathways, redox remodeling of RyR1 that contributed to dysregulated calcium homeostasis, enhanced protein degradation pathways via activation calcium-regulated protein, calpain, and apoptosis. Ultimately, all the cellular signaling pathways aggregately result in skeletal muscle atrophy. Dietary supplementation of phytochemicals could become a safe and effective intervention to ameliorate skeletal muscle atrophy and enhance the physical performance of the personnel who are staying at high altitude regions. The present evidence-based review explores few dietary supplementations which regulate several signaling mechanisms and ameliorate hypobaric hypoxia induced muscle atrophy and enhances physical performance. However, a clinical research trial is required to establish proof-of-concept.
Collapse
Affiliation(s)
- Richa Rathor
- Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, New Delhi, 110054, India.
| | - Geetha Suryakumar
- Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, New Delhi, 110054, India
| | - Som Nath Singh
- Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, New Delhi, 110054, India
| |
Collapse
|
5
|
Pham K, Parikh K, Heinrich EC. Hypoxia and Inflammation: Insights From High-Altitude Physiology. Front Physiol 2021; 12:676782. [PMID: 34122145 PMCID: PMC8188852 DOI: 10.3389/fphys.2021.676782] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 04/26/2021] [Indexed: 12/19/2022] Open
Abstract
The key regulators of the transcriptional response to hypoxia and inflammation (hypoxia inducible factor, HIF, and nuclear factor-kappa B, NF-κB, respectively) are evolutionarily conserved and share significant crosstalk. Tissues often experience hypoxia and inflammation concurrently at the site of infection or injury due to fluid retention and immune cell recruitment that ultimately reduces the rate of oxygen delivery to tissues. Inflammation can induce activity of HIF-pathway genes, and hypoxia may modulate inflammatory signaling. While it is clear that these molecular pathways function in concert, the physiological consequences of hypoxia-induced inflammation and how hypoxia modulates inflammatory signaling and immune function are not well established. In this review, we summarize known mechanisms of HIF and NF-κB crosstalk and highlight the physiological consequences that can arise from maladaptive hypoxia-induced inflammation. Finally, we discuss what can be learned about adaptive regulation of inflammation under chronic hypoxia by examining adaptive and maladaptive inflammatory phenotypes observed in human populations at high altitude. We aim to provide insight into the time domains of hypoxia-induced inflammation and highlight the importance of hypoxia-induced inflammatory sensitization in immune function, pathologies, and environmental adaptation.
Collapse
Affiliation(s)
| | | | - Erica C. Heinrich
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
6
|
Khosravi R, Ramachandra AB, Szafron JM, Schiavazzi DE, Breuer CK, Humphrey JD. A computational bio-chemo-mechanical model of in vivo tissue-engineered vascular graft development. Integr Biol (Camb) 2021; 12:47-63. [PMID: 32222759 DOI: 10.1093/intbio/zyaa004] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 01/26/2020] [Accepted: 02/04/2020] [Indexed: 12/15/2022]
Abstract
Stenosis is the primary complication of current tissue-engineered vascular grafts used in pediatric congenital cardiac surgery. Murine models provide considerable insight into the possible mechanisms underlying this situation, but they are not efficient for identifying optimal changes in scaffold design or therapeutic strategies to prevent narrowing. In contrast, computational modeling promises to enable time- and cost-efficient examinations of factors leading to narrowing. Whereas past models have been limited by their phenomenological basis, we present a new mechanistic model that integrates molecular- and cellular-driven immuno- and mechano-mediated contributions to in vivo neotissue development within implanted polymeric scaffolds. Model parameters are inferred directly from in vivo measurements for an inferior vena cava interposition graft model in the mouse that are augmented by data from the literature. By complementing Bayesian estimation with identifiability analysis and simplex optimization, we found optimal parameter values that match model outputs with experimental targets and quantify variability due to measurement uncertainty. Utility is illustrated by parametrically exploring possible graft narrowing as a function of scaffold pore size, macrophage activity, and the immunomodulatory cytokine transforming growth factor beta 1 (TGF-β1). The model captures salient temporal profiles of infiltrating immune and synthetic cells and associated secretion of cytokines, proteases, and matrix constituents throughout neovessel evolution, and parametric studies suggest that modulating scaffold immunogenicity with early immunomodulatory therapies may reduce graft narrowing without compromising compliance.
Collapse
Affiliation(s)
- Ramak Khosravi
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | | | - Jason M Szafron
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Daniele E Schiavazzi
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN, USA
| | - Christopher K Breuer
- Center for Regenerative Medicine, Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.,Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
7
|
Li YX, Long DL, Liu J, Qiu D, Wang J, Cheng X, Yang X, Li RM, Wang G. Gestational diabetes mellitus in women increased the risk of neonatal infection via inflammation and autophagy in the placenta. Medicine (Baltimore) 2020; 99:e22152. [PMID: 33019392 PMCID: PMC7535644 DOI: 10.1097/md.0000000000022152] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) produces numerous problems for maternal and fetal outcomes. However, the precise molecular mechanisms of GDM are not clear. METHODS In our study, we randomly assigned 22 pregnant women with fasting glucose concentrations, 1 hour oral glucose tolerance test (1H-OGTT) and 2 hour oral glucose tolerance test (2H-OGTT), different than 28 normal pregnant women from a sample of 107 pregnant women at the First Affiliated Hospital of Jinan University in China. Lipopolysaccharide (LPS), interleukin 1 alpha (IL-1α), interleukin-6 (IL-6), interleukin-8 (IL-8) and tumor necrosis factor alpha (TNF-α) were measured from blood plasma of pregnant women and umbilical arteries using ultraviolet spectrophotometry. Hematoxylin & Eosin (H&E), Periodic acid-Schiff (PAS) or Masson staining were performed to examine whether diabetes mellitus altered the morphology of placenta. Quantitative PCR (Q-PCR), western blotting and immunofluorescent staining were performed to examine whether diabetes mellitus and autophagy altered the gene expressions of the placental tissue. RESULTS We found that women with GDM exhibited increased placental weight and risk of neonatal infection. The concentrations of IL-6 protein and IL-8 protein in GDM were increased in both maternal and umbilical arterial blood. H&E, Masson and PAS staining results showed an increased number of placental villi and glycogen deposition in patients with GDM, but no placental sclerosis was found. Q-PCR results suggested that the expression levels of HIF-1α and the toll like receptor 4 (TLR4)/ myeloid differential protein-88 (MyD88)/ nuclear factor kappa-B (NF-κB) pathway were increased in the GDM placenta. Through Western Blotting, we found that the expression of NF-kappa-B inhibitor alpha (IKBα) and Nuclear factor-κB p65 (NF-κB p65) in GDM placenta was significantly enhanced. We also showed that the key autophagy-related genes, autophagy-related 7 (ATG7) and microtubule-associated protein 1A/1B-light chain 3 (LC3), were increased in GDM compared with normal pregnant women. CONCLUSIONS Our results suggest that women with GDM exhibit an increased risk of neonatal infection via inflammation and autophagy in the placenta.
Collapse
Affiliation(s)
- Yi-xiao Li
- The First Affiliate Hospital of Jinan University
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, Medical College
| | - Deng-lu Long
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, Medical College
| | - Jia Liu
- The First Affiliate Hospital of Jinan University
| | - Di Qiu
- The First Affiliate Hospital of Jinan University
| | - Jingyun Wang
- The First Affiliate Hospital of Jinan University
| | - Xin Cheng
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, Medical College
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
| | - Xuesong Yang
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, Medical College
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
| | - Rui-man Li
- The First Affiliate Hospital of Jinan University
| | - Guang Wang
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, Medical College
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
| |
Collapse
|
8
|
Brusch GA, Mills AM, Walman RM, Masuda G, Byeon A, DeNardo DF, Stahlschmidt ZR. Dehydration enhances cellular and humoral immunity in a mesic snake community. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:306-315. [PMID: 32277742 DOI: 10.1002/jez.2358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 12/21/2022]
Abstract
The immunocompetence of a community of free-living animals can be affected by seasonality, sex, and parasite burden. However, each of these factors is often examined independently. Recent studies have also found that dehydration can enhance aspects of immunocompetence in drought-adapted species. To explore how all of these factors interact, and their effect on the immune system in mesic-adapted species, we collected blood samples from a community of free-ranging snakes in coastal South Carolina, United States, across 2 years. We specifically examined (a) how sex and seasonality influence humoral and cellular immunocompetence and parasite burden, (b) the dynamics among hydration state, parasite burden, and immunocompetence, and (c) whether mesic-adapted species also show enhanced innate immunity with dehydration. Consistent with previous work on drought-adapted species, we found that dehydration enhances multiple aspects of humoral immunity in mesic species, and we are the first to report that dehydration also enhances aspects of cellular immunocompetence. Contrary to previous results in other squamates, sex and season did not impact immunocompetence or parasite prevalence. Our results also reveal complex interactions among parasite prevalence, immunocompetence, and hydration state demonstrating that hydration state and parasitism are two ubiquitous factors that should continue to be considered in future studies examining ecoimmunological variation.
Collapse
Affiliation(s)
- George A Brusch
- School of Life Sciences, Arizona State University, Tempe, Arizona.,Centre d'Etudies Biologiques de Chizé, CNRS, Villiers en Bois, France
| | | | | | - Garrett Masuda
- Department of Biological Sciences, University of the Pacific, Stockton, California
| | - Andy Byeon
- Department of Biological Sciences, University of the Pacific, Stockton, California
| | - Dale F DeNardo
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | | |
Collapse
|
9
|
Huo D, Sun L, Storey KB, Zhang L, Liu S, Sun J, Yang H. The regulation mechanism of lncRNAs and mRNAs in sea cucumbers under global climate changes: Defense against thermal and hypoxic stresses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:136045. [PMID: 31905562 PMCID: PMC7144348 DOI: 10.1016/j.scitotenv.2019.136045] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/18/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
The aquatic environment can be greatly impacted by thermal and hypoxic stresses, particularly caused by intensified global warming. Hence, there is an urgency to understand the response mechanisms of marine organisms to adverse environment. Although long non-coding RNAs (lncRNAs) are involved in many biological processes, their roles in stress responses still remain unclear. Here, differentially expressed (DE) lncRNAs and mRNAs were identified as responses to environmental stresses in the economically important sea cucumber, Apostichopus japonicus, and their potential roles were explored. Based on a total of 159, 355 and 495 significantly upregulated genes and 230, 518 and 647 significantly downregulated genes identified in the thermal, hypoxic and combination thermal + hypoxic stress treatments, respectively, we constructed DE-lncRNA-mRNA coexpression networks. Among the networks, eight shared pairs were identified from the three treatments, and based on the connectivity degree, MSTRG.27265, MSTRG.19729 and MSTRG.95524 were shown to be crucial lncRNAs. Among all the significantly changed lncRNAs identified by RT-qPCR and sequencing data, binding sites were found in four other lncRNAs (MSTRG.34610, MSTRG.10941, MSTRG.81281 and MSTRG.93731) with Aja-miR-2013-3p, a key miRNA that responds to hypoxia in sea cucumbers. The hypoxia-inducible factor (HIF-1α) was also shown as the possible targeted mRNA of Aja-miR-2013-3p. As indicated by a dual-luciferase reporter assay system, "HIF-1α gene/Aja-miR-2013-3p/MSTRG.34610" network and the "HIF-1α gene/Aja-miR-2013-3p/MSTRG.10941" network may play important roles in sea cucumbers under environmental stresses. Moreover, environmental stress altered the expression of multiple lncRNAs and mRNAs, thus affecting various biological processes in A. japonicus, including immunity, energy metabolism and the cell cycle. At the molecular level, more comprehensive responses were elicited by the combined thermal/hypoxic stress treatment than by individual stresses alone in sea cucumbers. This study lays the groundwork for future research on molecular mechanisms of echinoderm responses to thermal and hypoxic stress in the context of global climate changes.
Collapse
Affiliation(s)
- Da Huo
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Kenneth B Storey
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Shilin Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jingchun Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
10
|
Huo D, Sun L, Zhang L, Yang H, Liu S, Sun J, Su F. Time course analysis of immunity-related gene expression in the sea cucumber Apostichopus japonicus during exposure to thermal and hypoxic stress. FISH & SHELLFISH IMMUNOLOGY 2019; 95:383-390. [PMID: 31585241 DOI: 10.1016/j.fsi.2019.09.073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
Temperature and dissolved oxygen concentration are important abiotic factors that can limit the growth and survival of sea cucumbers by affecting their immune systems. As global warming intensifies, sea cucumbers are increasingly exposed to adverse environmental conditions, which can cause severe economic losses and limit the sustainable development of sea cucumber aquaculture. It is therefore important to better understand how sea cucumbers respond to environmental stress, especially with regard to its effects on immunity. In the present study, the time series of immunity-related gene expression in sea cucumbers under thermal and hypoxic stresses were analyzed separately. The expression trends of 17 genes related to the nuclear factor κB (NF-κB) pathway, the protease family, the complement system, heat shock proteins (HSPs) and the transferrin family during exposure to two stresses at eight time points were concluded. These genes have interconnected roles in stress defense. The expression levels of genes relating to the NF-κB pathways and HSPs were strongly affected in the sea cucumber thermal stress response, while melanotransferrin (Mtf), ferritin (Ft) and mannan-binding C-type lectin (MBCL) were affected by hypoxia. In contrast, complement factor B (Bf), myosin V (Mys) and serine protease inhibitor (SPI) were not that sensitive during the initial period of environmental stress. Similar expression patterns under both thermal and hypoxic stress for certain genes, including an increase in Hsp90 and decreases in lysozyme (Lys), major yolk protein (MYP) and cathepsin C (CTLC) were observed in sea cucumbers. Conversely, NF-κB and Hsp70 were differentially affected by the two stress treatments. Lysozyme-induced immune defense was inconstant in sea cucumbers coping with stress. A gene ontology (GO) analysis of the selected genes revealed that the most co-involved terms related to immunity and iron ion. Our analysis suggests that sea cucumbers demonstrate complex and varied immune responses to different types of stresses. This dynamic image of the immune responses and stress tolerance of sea cucumbers provides new insights into the adaptive strategies of holothurians in adverse environments.
Collapse
Affiliation(s)
- Da Huo
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Shilin Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jingchun Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Fang Su
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| |
Collapse
|
11
|
Kiers D, Wielockx B, Peters E, van Eijk LT, Gerretsen J, John A, Janssen E, Groeneveld R, Peters M, Damen L, Meneses AM, Krüger A, Langereis JD, Zomer AL, Blackburn MR, Joosten LA, Netea MG, Riksen NP, van der Hoeven JG, Scheffer GJ, Eltzschig HK, Pickkers P, Kox M. Short-Term Hypoxia Dampens Inflammation in vivo via Enhanced Adenosine Release and Adenosine 2B Receptor Stimulation. EBioMedicine 2018; 33:144-156. [PMID: 29983349 PMCID: PMC6085583 DOI: 10.1016/j.ebiom.2018.06.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/18/2018] [Accepted: 06/18/2018] [Indexed: 01/18/2023] Open
Abstract
Hypoxia and inflammation are closely intertwined phenomena. Critically ill patients often suffer from systemic inflammatory conditions and concurrently experience short-lived hypoxia. We evaluated the effects of short-term hypoxia on systemic inflammation, and show that it potently attenuates pro-inflammatory cytokine responses during murine endotoxemia. These effects are independent of hypoxia-inducible factors (HIFs), but involve augmented adenosine levels, in turn resulting in an adenosine 2B receptor-mediated post-transcriptional increase of interleukin (IL)-10 production. We translated our findings to humans using the experimental endotoxemia model, where short-term hypoxia resulted in enhanced plasma concentrations of adenosine, augmentation of endotoxin-induced circulating IL-10 levels, and concurrent attenuation of the pro-inflammatory cytokine response. Again, HIFs were shown not to be involved. Taken together, we demonstrate that short-term hypoxia dampens the systemic pro-inflammatory cytokine response through enhanced purinergic signaling in mice and men. These effects may contribute to outcome and provide leads for immunomodulatory treatment strategies for critically ill patients.
Collapse
Affiliation(s)
- Dorien Kiers
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Anesthesiology, Radboud University Medical Centre, Nijmegen, the Netherlands; Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ben Wielockx
- Heisenberg Research Group, Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Esther Peters
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lucas T van Eijk
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jelle Gerretsen
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Aaron John
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Emmy Janssen
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rianne Groeneveld
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mara Peters
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lars Damen
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ana M Meneses
- Heisenberg Research Group, Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Anja Krüger
- Heisenberg Research Group, Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Jeroen D Langereis
- Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands; Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Aldert L Zomer
- Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands; Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud University Medical Center, Nijmegen, the Netherlands; Centre for Molecular and Biomolecular Informatics (CMBI) Bacterial Genomics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Michael R Blackburn
- Department of Biochemistry & Molecular Biology, McGovern Medical School, University of Texas, USA
| | - Leo A Joosten
- Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Mihai G Netea
- Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Niels P Riksen
- Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Johannes G van der Hoeven
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Gert-Jan Scheffer
- Department of Anesthesiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Holger K Eltzschig
- Center for Perioperative Medicine, Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center, Houston, USA
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Matthijs Kox
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
12
|
Cabrera-Martínez LV, Herrera M. LG, Cruz-Neto AP. The energetic cost of mounting an immune response for Pallas's long-tongued bat ( Glossophaga soricina). PeerJ 2018; 6:e4627. [PMID: 29888121 PMCID: PMC5993019 DOI: 10.7717/peerj.4627] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/27/2018] [Indexed: 12/16/2022] Open
Abstract
The acute phase response (APR) is the first line of defense of the vertebrate immune system against pathogens. Mounting an immune response is believed to be energetically costly but direct measures of metabolic rate during immune challenges contradict this assumption. The energetic cost of APR for birds is higher than for rodents, suggesting that this response is less expensive for mammals. However, the particularly large increase in metabolic rate after APR activation for a piscivorous bat (Myotis vivesi) suggests that immune response might be unusually costly for bats. Here we quantified the energetic cost and body mass change associated with APR for the nectarivorous Pallas's long-tongued bat (Glossophaga soricina). Activation of the APR resulted in a short-term decrease in body mass and an increase in resting metabolic rate (RMR) with a total energy cost of only 2% of the total energy expenditure estimated for G. soricina. This increase in RMR was far from the large increase measured for piscivorous bats; rather, it was similar to the highest values reported for birds. Overall, our results suggest that the costs of APR for bats may vary interspecifically. Measurement of the energy cost of vertebrate immune response is limited to a few species and further work is warranted to evaluate its significance for an animal's energy budget.
Collapse
Affiliation(s)
- Lucia V. Cabrera-Martínez
- Departamento de Zoologia, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho, Rio Claro, São Paulo, Brasil
| | - L. Gerardo Herrera M.
- Estacion de Biologia Chamela, Instituto de Biología, Universidad Nacional Autónoma de México, San Patricio, Jalisco, México
| | - Ariovaldo P. Cruz-Neto
- Departamento de Zoologia, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho, Rio Claro, São Paulo, Brasil
| |
Collapse
|
13
|
Otálora-Ardila A, Herrera M. LG, Flores-Martínez JJ, Welch KC. Metabolic Cost of the Activation of Immune Response in the Fish-Eating Myotis (Myotis vivesi): The Effects of Inflammation and the Acute Phase Response. PLoS One 2016; 11:e0164938. [PMID: 27792729 PMCID: PMC5085018 DOI: 10.1371/journal.pone.0164938] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/04/2016] [Indexed: 01/09/2023] Open
Abstract
Inflammation and activation of the acute phase response (APR) are energetically demanding processes that protect against pathogens. Phytohaemagglutinin (PHA) and lipopolysaccharide (LPS) are antigens commonly used to stimulate inflammation and the APR, respectively. We tested the hypothesis that the APR after an LPS challenge was energetically more costly than the inflammatory response after a PHA challenge in the fish-eating Myotis bat (Myotis vivesi). We measured resting metabolic rate (RMR) after bats were administered PHA and LPS. We also measured skin temperature (Tskin) after the LPS challenge and skin swelling after the PHA challenge. Injection of PHA elicited swelling that lasted for several days but changes in RMR and body mass were not significant. LPS injection produced a significant increase in Tskin and in RMR, and significant body mass loss. RMR after LPS injection increased by 140–185% and the total cost of the response was 6.50 kJ. Inflammation was an energetically low-cost process but the APR entailed a significant energetic investment. Examination of APR in other bats suggests that the way in which bats deal with infections might not be uniform.
Collapse
Affiliation(s)
- Aída Otálora-Ardila
- Posgrado en Ciencias Biológicas, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - L. Gerardo Herrera M.
- Estación de Biología Chamela, Instituto de Biología, Universidad Nacional Autónoma de México, San Patricio, Jalisco, México
- * E-mail:
| | - José Juan Flores-Martínez
- Laboratorio de Sistemas de Información Geográfica, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Kenneth C. Welch
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada
| |
Collapse
|
14
|
Anantha RV, Shaler CR, Meilleur CE, Parfitt J, Haeryfar SMM, Hernandez-Alejandro R. The Future Liver Remnant in Patients Undergoing the Associating Liver Partition with Portal Vein Ligation for Staged Hepatectomy (ALPPS) Maintains the Immunological Components of a Healthy Organ. Front Med (Lausanne) 2016; 3:32. [PMID: 27556025 PMCID: PMC4972819 DOI: 10.3389/fmed.2016.00032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/22/2016] [Indexed: 12/29/2022] Open
Abstract
Background and Aims A short-interval, two-stage approach termed associating liver partition and portal vein ligation for staged hepatectomy (ALPPS) increases the number of patients with extensive malignant disease of the liver and a small future liver remnant (FLR) that can undergo liver resection. While this approach results in accelerated liver hypertrophy of the FLR, it remains unknown whether this phenomenon is restricted to liver parenchymal cells. In the current study, we evaluated whether ALPPS alters the immunological composition of the deportalized lobe (DL) and the FLR. Methods In this prospective, single-center study, liver tissue from the DL and the FLR were collected intra-operatively from adult patients undergoing ALPPS for their liver metastases. The extent of hypertrophy of the FLR was determined by volumetric helical computed tomography. Flow cytometry and histological analyses were conducted on liver tissues to compare the frequency of several immune cell subsets, and the architecture of the liver parenchyma between both stages of ALPPS. Results A total of 12 patients completed the study. Histologically, we observed a patchy peri-portal infiltration of lymphocytes within the DL, and a significant widening of the liver cords within the FLR. Within the DL, there was a significantly higher proportion of B cells and CD4+ T cells as well innate-like lymphocytes, namely mucosa-associated invariant T (MAIT) cells and natural killer T (NKT) cells following ALPPS. In contrast, the frequency of all evaluated immune cell types remained relatively constant in the FLR. Conclusion Our results provide the first description of the immunological composition of the human liver following ALPPS. We show that following the ALPPS procedure, while the immune composition of the FLR remains relatively unchanged, there is a moderate increase in several immune cell populations in DL. Overall, our results support the continued utilization of the ALPPS procedure.
Collapse
Affiliation(s)
- Ram Venkatesh Anantha
- Department of Surgery, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Christopher Ryan Shaler
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University , London, ON , Canada
| | - Courtney Erin Meilleur
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University , London, ON , Canada
| | - Jeremy Parfitt
- Department of Pathology, Schulich School of Medicine and Dentistry, Western University , London, ON , Canada
| | - S M Mansour Haeryfar
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Division of Clinical Immunology and Allergy, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Roberto Hernandez-Alejandro
- Department of Surgery, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Division of Transplantation, University of Rochester, Rochester, NY, USA
| |
Collapse
|
15
|
Kiers HD, Scheffer GJ, van der Hoeven JG, Eltzschig HK, Pickkers P, Kox M. Immunologic Consequences of Hypoxia during Critical Illness. Anesthesiology 2016; 125:237-49. [PMID: 27183167 PMCID: PMC5119461 DOI: 10.1097/aln.0000000000001163] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hypoxia and immunity are highly intertwined at clinical, cellular, and molecular levels. The prevention of tissue hypoxia and modulation of systemic inflammation are cornerstones of daily practice in the intensive care unit. Potentially, immunologic effects of hypoxia may contribute to outcome and represent possible therapeutic targets. Hypoxia and activation of downstream signaling pathways result in enhanced innate immune responses, aimed to augment pathogen clearance. On the other hand, hypoxia also exerts antiinflammatory and tissue-protective effects in lymphocytes and other tissues. Although human data on the net immunologic effects of hypoxia and pharmacologic modulation of downstream pathways are limited, preclinical data support the concept of tailoring the immune response through modulation of the oxygen status or pharmacologic modulation of hypoxia-signaling pathways in critically ill patients.
Collapse
Affiliation(s)
- Harmke D. Kiers
- Department of Intensive Care Medicine, Radboud university medical center, Nijmegen, The Netherlands
- Department of Anesthesiology, Radboud university medical center, Nijmegen, The Netherlands
- Radboud Centre for Infectious Diseases (RCI), Nijmegen, The Netherlands
| | - Gert-Jan Scheffer
- Department of Anesthesiology, Radboud university medical center, Nijmegen, The Netherlands
| | - Johannes G. van der Hoeven
- Department of Intensive Care Medicine, Radboud university medical center, Nijmegen, The Netherlands
- Radboud Centre for Infectious Diseases (RCI), Nijmegen, The Netherlands
| | - Holger K. Eltzschig
- Organ Protection Program; Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud university medical center, Nijmegen, The Netherlands
- Radboud Centre for Infectious Diseases (RCI), Nijmegen, The Netherlands
| | - Matthijs Kox
- Department of Intensive Care Medicine, Radboud university medical center, Nijmegen, The Netherlands
- Department of Anesthesiology, Radboud university medical center, Nijmegen, The Netherlands
- Radboud Centre for Infectious Diseases (RCI), Nijmegen, The Netherlands
| |
Collapse
|
16
|
Expression of hypoxia inducible factor-1α and vascular endothelial growth factor-C in human chronic periodontitis. J Dent Sci 2015. [DOI: 10.1016/j.jds.2014.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
17
|
Bashir-Tanoli S, Tinsley MC. Immune response costs are associated with changes in resource acquisition and not resource reallocation. Funct Ecol 2014. [DOI: 10.1111/1365-2435.12236] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | - Matthew C. Tinsley
- Biological and Environmental Sciences; University of Stirling; Stirling FK9 4LA UK
| |
Collapse
|
18
|
Meitern R, Sild E, Lind MA, Männiste M, Sepp T, Karu U, Hõrak P. Effects of Endotoxin and Psychological Stress on Redox Physiology, Immunity and Feather Corticosterone in Greenfinches. PLoS One 2013; 8:e67545. [PMID: 23805316 PMCID: PMC3689720 DOI: 10.1371/journal.pone.0067545] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 05/20/2013] [Indexed: 12/24/2022] Open
Abstract
Assessment of costs accompanying activation of immune system and related neuroendocrine pathways is essential for understanding the selective forces operating on these systems. Here we attempted to detect such costs in terms of disruption to redox balance and interference between different immune system components in captive wild-caught greenfinches (Carduelis chloris). Study birds were subjected to an endotoxin-induced inflammatory challenge and temporary exposure to a psychological stressor (an image of a predator) in a 2*2 factorial experiment. Injection of bacterial endotoxin resulted in up-regulation of two markers of antioxidant protection – erythrocyte glutathione, and plasma oxygen radical absorbance (OXY). These findings suggest that inflammatory responses alter redox homeostasis. However, no effect on markers of oxidative damage to proteins or DNA in erythrocytes could be detected. We found no evidence that the endotoxin injection interfered with antibody production against Brucella abortus antigen or the intensity of chronic coccidiosis. The hypothesis of within-immune system trade-offs as a cost of immunity was thus not supported in our model system. We showed for the first time that administration of endotoxin can reduce the level of corticosterone deposited into feathers. This finding suggests a down-regulation of the corticosterone secretion cascade due to an endotoxin-induced immune response, a phenomenon that has not been reported previously. Exposure to the predator image did not affect any of the measured physiological parameters.
Collapse
Affiliation(s)
- Richard Meitern
- Department of Zoology, Institute of Ecology and Earth Sciences, Tartu University, Tartu, Estonia
| | | | | | | | | | | | | |
Collapse
|
19
|
Downs CJ, Brown JL, Wone B, Donovan ER, Hunter K, Hayes JP. Selection for increased mass-independent maximal metabolic rate suppresses innate but not adaptive immune function. Proc Biol Sci 2013; 280:20122636. [PMID: 23303541 DOI: 10.1098/rspb.2012.2636] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Both appropriate metabolic rates and sufficient immune function are essential for survival. Consequently, eco-immunologists have hypothesized that animals may experience trade-offs between metabolic rates and immune function. Previous work has focused on how basal metabolic rate (BMR) may trade-off with immune function, but maximal metabolic rate (MMR), the upper limit to aerobic activity, might also trade-off with immune function. We used mice artificially selected for high mass-independent MMR to test for trade-offs with immune function. We assessed (i) innate immune function by quantifying cytokine production in response to injection with lipopolysaccharide and (ii) adaptive immune function by measuring antibody production in response to injection with keyhole limpet haemocyanin. Selection for high mass-independent MMR suppressed innate immune function, but not adaptive immune function. However, analyses at the individual level also indicate a negative correlation between MMR and adaptive immune function. By contrast BMR did not affect immune function. Evolutionarily, natural selection may favour increasing MMR to enhance aerobic performance and endurance, but the benefits of high MMR may be offset by impaired immune function. This result could be important in understanding the selective factors acting on the evolution of metabolic rates.
Collapse
Affiliation(s)
- Cynthia J Downs
- Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV 89557, USA.
| | | | | | | | | | | |
Collapse
|