1
|
Tosetto L, Williamson JE, White TE, Hart NS. Can the Dynamic Colouration and Patterning of Bluelined Goatfish (Mullidae; Upeneichthys lineatus) Be Perceived by Conspecifics? BRAIN, BEHAVIOR AND EVOLUTION 2021; 96:103-123. [PMID: 34856558 DOI: 10.1159/000519894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Bluelined goatfish (Upeneichthys lineatus) exhibit dynamic body colour changes and transform rapidly from a pale, buff/white, horizontally banded pattern to a conspicuous, vertically striped, red pattern when foraging. This red pattern is potentially an important foraging signal for communication with conspecifics, provided that U. lineatus can detect and discriminate the pattern. Using both physiological and behavioural experiments, we first examined whether U. lineatus possess visual pigments with sensitivity to long ("red") wavelengths of light, and whether they can discriminate the colour red. Microspectrophotometric measurements of retinal photoreceptors showed that while U. lineatuslack visual pigments dedicated to the red part of the spectrum, their pigments likely confer some sensitivity in this spectral band. Behavioural colour discrimination experiments suggested that U. lineatuscan distinguish a red reward stimulus from a grey distractor stimulus of variable brightness. Furthermore, when presented with red stimuli of varying brightness they could mostly discriminate the darker and lighter reds from the grey distractor. We also obtained anatomical estimates of visual acuity, which suggest that U. lineatus can resolve the contrasting bands of conspecifics approximately 7 m away in clear waters. Finally, we measured the spectral reflectance of the red and white colouration on the goatfish body. Visual models suggest that U. lineatus can discriminate both chromatic and achromatic differences in body colouration where longer wavelength light is available. This study demonstrates that U. lineatus have the capacity for colour vision and can likely discriminate colours in the long-wavelength region of the spectrum where the red body pattern reflects light strongly. The ability to see red may therefore provide an advantage in recognising visual signals from conspecifics. This research furthers our understanding of how visual signals have co-evolved with visual abilities, and the role of visual communication in the marine environment.
Collapse
Affiliation(s)
- Louise Tosetto
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Jane E Williamson
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
- Sydney Institute of Marine Science, Mosman, New South Wales, Australia
| | - Thomas E White
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Nathan S Hart
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Schluessel V, Rick IP, Seifert FD, Baumann C, Lee Davies WI. Not just shades of grey: life is full of colour for the ocellate river stingray (Potamotrygon motoro). J Exp Biol 2021; 224:237826. [PMID: 33771913 DOI: 10.1242/jeb.226142] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 03/19/2021] [Indexed: 12/14/2022]
Abstract
Previous studies have shown that marine stingrays have the anatomical and physiological basis for colour vision, with cone spectral sensitivity in the blue to green range of the visible spectrum. Behavioural studies on Glaucostegus typus also showed that blue and grey can be perceived and discriminated. The present study is the first to assess visual opsin genetics in the ocellate river stingray (Potamotrygon motoro) and test whether individuals perceive colour in two alternative forced choice experiments. Retinal transcriptome profiling using RNA-Seq and quantification demonstrated the presence of lws and rh2 cone opsin genes and a highly expressed single rod (rh1) opsin gene. Spectral tuning analysis predicted these vitamin A1-based visual photopigments to exhibit spectral absorbance maxima at 461 nm (rh2), 496 nm (rh1) and 555 nm (lws); suggesting the presence of dichromacy in this species. Indeed, P. motoro demonstrates the potential to be equally sensitive to wavelengths from 380 to 600 nm of the visible spectrum. Behavioural results showed that red and green plates, as well as blue and yellow plates, were readily discriminated based on colour; however, brightness differences also played a part in the discrimination of blue and yellow. Red hues of different brightness were distinguished significantly above chance level from one another. In conclusion, the genetic and behavioural results support prior data on marine stingrays. However, this study suggests that freshwater stingrays of the family Potamotrygonidae may have a visual colour system that has ecologically adapted to a riverine habitat.
Collapse
Affiliation(s)
- Vera Schluessel
- Institute of Zoology, Rheinische Friedrich-Wilhelms-Universität Bonn, Poppelsdorfer Schloss, Meckenheimer Allee 169, 53115 Bonn, Germany
| | - Ingolf P Rick
- Institute of Zoology, Rheinische Friedrich-Wilhelms-Universität Bonn, Poppelsdorfer Schloss, Meckenheimer Allee 169, 53115 Bonn, Germany
| | - Friederike Donata Seifert
- Institute of Zoology, Rheinische Friedrich-Wilhelms-Universität Bonn, Poppelsdorfer Schloss, Meckenheimer Allee 169, 53115 Bonn, Germany
| | - Christina Baumann
- Institute of Zoology, Rheinische Friedrich-Wilhelms-Universität Bonn, Poppelsdorfer Schloss, Meckenheimer Allee 169, 53115 Bonn, Germany
| | - Wayne Iwan Lee Davies
- Institute of Zoology, Rheinische Friedrich-Wilhelms-Universität Bonn, Poppelsdorfer Schloss, Meckenheimer Allee 169, 53115 Bonn, Germany.,Umeå Centre for Molecular Medicine (UCMM), Umeå University, 901 87 Umeå, Sweden.,School of Life Sciences, College of Science, Health and Engineering, La Trobe University, Melbourne Campus, Melbourne, VIC 3086, Australia
| |
Collapse
|
3
|
Mäthger LM, Zhao K, Herbst L. Photoreceptors in skate are arranged to allow for a broad horizontal field of view. J Comp Neurol 2021; 529:1184-1197. [PMID: 32840869 DOI: 10.1002/cne.25014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/27/2020] [Accepted: 08/05/2020] [Indexed: 11/10/2022]
Abstract
Studying retinal specializations offers insights into eye functionality and visual ecology. Using light microscopic techniques, including retinal whole-mounts, we investigated photoreceptor densities in the retina of the skate Leucoraja erinacea. We show that photoreceptors are not sized or oriented in the same way, and that they are not evenly distributed across the retina. There was a dorsally located horizontal visual streak with increased photoreceptor density, with additional local maxima in which densities were highest. Photoreceptors were longest and thinnest inside this visual streak, becoming shorter and thicker toward the periphery and toward the ventral retina. Furthermore, in the peripheral retinal parts, photoreceptors (particularly the outer segments) were noticeably tilted with respect to the retinal long axis. In order to understand how photoreceptors are tilted inside the eye, we used computerized tomography (CT) and micro-CT, to obtain geometrical dimensions of the whole skate eye. These CT/micro-CT data provided us with the outlines of the skate eye and the location of the retina and this enabled us to reconstruct how photoreceptors tilt in an intact eye. Findings were analyzed relative to previously published ganglion cell distributions in this species, showing a posteriorly located retinal area with photoreceptor: ganglion cell convergence as low as 39:1. Some peripheral areas showed ratios as high as 391:1. We frame our findings in terms of the animal's anatomy: body and eye shape, specifically the location of the tapetum, as well as the visual demands associated with lifestyle and habitat type. A speculative function in polarization sensitivity is discussed.
Collapse
Affiliation(s)
- Lydia M Mäthger
- Marine Biological Laboratory, Bell Center, Woods Hole, Massachusetts, USA
| | - Kevin Zhao
- Marine Biological Laboratory, Bell Center, Woods Hole, Massachusetts, USA.,Biological Sciences Division, University of Chicago, Chicago, Illinois, USA
| | - Lena Herbst
- Marine Biological Laboratory, Bell Center, Woods Hole, Massachusetts, USA.,Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
4
|
Perryman RJ, Carpenter M, Lie E, Sofronov G, Marshall AD, Brown C. Reef manta ray cephalic lobe movements are modulated during social interactions. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-02973-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
5
|
Visual discrimination and resolution in freshwater stingrays (Potamotrygon motoro). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 207:43-58. [PMID: 33263813 PMCID: PMC7875849 DOI: 10.1007/s00359-020-01454-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/30/2020] [Accepted: 10/27/2020] [Indexed: 10/26/2022]
Abstract
Potamotrygon motoro has been shown to use vision to orient in a laboratory setting and has been successfully trained in cognitive behavioral studies using visual stimuli. This study explores P. motoro's visual discrimination abilities in the context of two-alternative forced-choice experiments, with a focus on shape and contrast, stimulus orientation, and visual resolution. Results support that stingrays are able to discriminate stimulus-presence and -absence, overall stimulus contrasts, two forms, horizontal from vertical stimulus orientations, and different colors that also vary in brightness. Stingrays tested in visual resolution experiments demonstrated a range of visual acuities from < 0.13 to 0.23 cpd under the given experimental conditions. Additionally, this report includes the first evidence for memory retention in this species.
Collapse
|
6
|
Hart NS, Lamb TD, Patel HR, Chuah A, Natoli RC, Hudson NJ, Cutmore SC, Davies WIL, Collin SP, Hunt DM. Visual Opsin Diversity in Sharks and Rays. Mol Biol Evol 2020; 37:811-827. [PMID: 31770430 DOI: 10.1093/molbev/msz269] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The diversity of color vision systems found in extant vertebrates suggests that different evolutionary selection pressures have driven specializations in photoreceptor complement and visual pigment spectral tuning appropriate for an animal's behavior, habitat, and life history. Aquatic vertebrates in particular show high variability in chromatic vision and have become important models for understanding the role of color vision in prey detection, predator avoidance, and social interactions. In this study, we examined the capacity for chromatic vision in elasmobranch fishes, a group that have received relatively little attention to date. We used microspectrophotometry to measure the spectral absorbance of the visual pigments in the outer segments of individual photoreceptors from several ray and shark species, and we sequenced the opsin mRNAs obtained from the retinas of the same species, as well as from additional elasmobranch species. We reveal the phylogenetically widespread occurrence of dichromatic color vision in rays based on two cone opsins, RH2 and LWS. We also confirm that all shark species studied to date appear to be cone monochromats but report that in different species the single cone opsin may be of either the LWS or the RH2 class. From this, we infer that cone monochromacy in sharks has evolved independently on multiple occasions. Together with earlier discoveries in secondarily aquatic marine mammals, this suggests that cone-based color vision may be of little use for large marine predators, such as sharks, pinnipeds, and cetaceans.
Collapse
Affiliation(s)
- Nathan S Hart
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Trevor D Lamb
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Hardip R Patel
- Department of Genome Sciences, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Aaron Chuah
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Riccardo C Natoli
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.,ANU Medical School, The Australian National University, Canberra, ACT, Australia
| | - Nicholas J Hudson
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Scott C Cutmore
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Wayne I L Davies
- Umeå Centre for Molecular Medicine (UCMM), Umeå University, Umeå, Sweden
| | - Shaun P Collin
- School of Life Sciences, La Trobe University, Bundoora, VIC, Australia
| | - David M Hunt
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia.,Centre for Ophthalmology and Visual Science, Lions Eye Institute, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
7
|
Carleton KL, Escobar-Camacho D, Stieb SM, Cortesi F, Marshall NJ. Seeing the rainbow: mechanisms underlying spectral sensitivity in teleost fishes. J Exp Biol 2020; 223:jeb193334. [PMID: 32327561 PMCID: PMC7188444 DOI: 10.1242/jeb.193334] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Among vertebrates, teleost eye diversity exceeds that found in all other groups. Their spectral sensitivities range from ultraviolet to red, and the number of visual pigments varies from 1 to over 40. This variation is correlated with the different ecologies and life histories of fish species, including their variable aquatic habitats: murky lakes, clear oceans, deep seas and turbulent rivers. These ecotopes often change with the season, but fish may also migrate between ecotopes diurnally, seasonally or ontogenetically. To survive in these variable light habitats, fish visual systems have evolved a suite of mechanisms that modulate spectral sensitivities on a range of timescales. These mechanisms include: (1) optical media that filter light, (2) variations in photoreceptor type and size to vary absorbance and sensitivity, and (3) changes in photoreceptor visual pigments to optimize peak sensitivity. The visual pigment changes can result from changes in chromophore or changes to the opsin. Opsin variation results from changes in opsin sequence, opsin expression or co-expression, and opsin gene duplications and losses. Here, we review visual diversity in a number of teleost groups where the structural and molecular mechanisms underlying their spectral sensitivities have been relatively well determined. Although we document considerable variability, this alone does not imply functional difference per se. We therefore highlight the need for more studies that examine species with known sensitivity differences, emphasizing behavioral experiments to test whether such differences actually matter in the execution of visual tasks that are relevant to the fish.
Collapse
Affiliation(s)
- Karen L Carleton
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | | - Sara M Stieb
- Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland
- Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
- Queensland Brain Institute, University of Queensland, Brisbane 4072 QLD, Australia
| | - Fabio Cortesi
- Queensland Brain Institute, University of Queensland, Brisbane 4072 QLD, Australia
| | - N Justin Marshall
- Queensland Brain Institute, University of Queensland, Brisbane 4072 QLD, Australia
| |
Collapse
|
8
|
Vision in sharks and rays: Opsin diversity and colour vision. Semin Cell Dev Biol 2020; 106:12-19. [PMID: 32331993 DOI: 10.1016/j.semcdb.2020.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 01/11/2023]
Abstract
The visual sense of elasmobranch fishes is poorly studied compared to their bony cousins, the teleosts. Nevertheless, the elasmobranch eye features numerous specialisations that have no doubt facilitated the diversification and evolutionary success of this fascinating taxon. In this review, I highlight recent discoveries on the nature and phylogenetic distribution of visual pigments in sharks and rays. Whereas most rays appear to be cone dichromats, all sharks studied to date are cone monochromats and, as a group, have likely abandoned colour vision on multiple occasions. This situation in sharks mirrors that seen in other large marine predators, the pinnipeds and cetaceans, which leads us to reassess the costs and benefits of multiple cone pigments and wavelength discrimination in the marine environment.
Collapse
|
9
|
Marshall NJ, Cortesi F, de Busserolles F, Siebeck UE, Cheney KL. Colours and colour vision in reef fishes: Past, present and future research directions. JOURNAL OF FISH BIOLOGY 2019; 95:5-38. [PMID: 30357835 DOI: 10.1111/jfb.13849] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/22/2018] [Indexed: 06/08/2023]
Abstract
Many fishes, both freshwater or marine, have colour vision that may outperform humans. As a result, to understand the behavioural tasks that vision enables; including mate choice, feeding, agonistic behaviour and camouflage, we need to see the world through a fish's eye. This includes quantifying the variable light environment underwater and its various influences on vision. As well as rapid loss of light with depth, light attenuation underwater limits visual interaction to metres at most and in many instances, less than a metre. We also need to characterize visual sensitivities, fish colours and behaviours relative to both these factors. An increasingly large set of techniques over the past few years, including improved photography, submersible spectrophotometers and genetic sequencing, have taken us from intelligent guesswork to something closer to sensible hypotheses. This contribution to the special edition on the Ecology of Fish Senses under a shifting environment first reviews our knowledge of fish colour vision and visual ecology, past, present and very recent, and then goes on to examine how climate change may impinge on fish visual capability. The review is limited to mostly colour vision and to mostly reef fishes. This ignores a large body of work, both from other marine environments and freshwater systems, but the reef contains examples of many of the challenges to vision from the aquatic environment. It is also a concentrate of life, perhaps the most specious and complex on earth, suffering now catastrophically from the consequences of our lack of action on climate change. A clear course of action to prevent destruction of this habitat is the need to spend more time in it, in the study of it and sharing it with those not fortunate enough to see coral reefs first-hand. Sir David Attenborough on The Great Barrier Reef: "Do we really care so little about the Earth upon which we live that we don't wish to protect one of its greatest wonders from the consequences of our behaviours?"
Collapse
Affiliation(s)
- N Justin Marshall
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Fabio Cortesi
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Fanny de Busserolles
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Uli E Siebeck
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Karen L Cheney
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
- School of Biology, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
10
|
Immediate early gene expression related to learning and retention of a visual discrimination task in bamboo sharks (Chiloscyllium griseum). Brain Struct Funct 2018; 223:3975-4003. [PMID: 30109492 DOI: 10.1007/s00429-018-1728-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 08/02/2018] [Indexed: 12/11/2022]
Abstract
Using the expression of the immediate early gene (IEG) egr-1 as a neuronal activity marker, brain regions potentially involved in learning and long-term memory functions in the grey bamboo shark were assessed with respect to selected visual discrimination abilities. Immunocytochemistry revealed a significant up-regulation of egr-1 expression levels in a small region of the telencephalon of all trained sharks (i.e., 'early' and 'late learners', 'recallers') when compared to three control groups (i.e., 'controls', 'undisturbed swimmers', 'constant movers'). There was also a well-defined difference in egr-1 expression patterns between the three control groups. Additionally, some staining was observed in diencephalic and mesencephalic sections; however, staining here was weak and occurred only irregularly within and between groups. Therefore, it could have either resulted from unintentional cognitive or non-cognitive inducements (i.e., relating to the mental processes of perception, learning, memory, and judgment, as contrasted with emotional and volitional processes) rather than being a training effect. Present findings emphasize a relationship between the training conditions and the corresponding egr-1 expression levels found in the telencephalon of Chiloscyllium griseum. Results suggest important similarities in the neuronal plasticity and activity-dependent IEG expression of the elasmobranch brain with other vertebrate groups. The presence of the egr-1 gene seems to be evolutionarily conserved and may therefore be particularly useful for identifying functional neural responses within this group.
Collapse
|
11
|
Collin SP. Scene through the eyes of an apex predator: a comparative analysis of the shark visual system. Clin Exp Optom 2018; 101:624-640. [PMID: 30066959 DOI: 10.1111/cxo.12823] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 12/15/2022] Open
Abstract
The eyes of apex predators, such as the shark, have fascinated comparative visual neuroscientists for hundreds of years with respect to how they perceive the dark depths of their ocean realm or the visual scene in search of prey. As the earliest representatives of the first stage in the evolution of jawed vertebrates, sharks have an important role to play in our understanding of the evolution of the vertebrate eye, including that of humans. This comprehensive review covers the structure and function of all the major ocular components in sharks and how they are adapted to a range of underwater light environments. A comparative approach is used to identify: species-specific diversity in the perception of clear optical images; photoreception for various visual behaviours; the trade-off between image resolution and sensitivity; and visual processing under a range of levels of illumination. The application of this knowledge is also discussed with respect to the conservation of this important group of cartilaginous fishes.
Collapse
Affiliation(s)
- Shaun P Collin
- The Oceans Institute and the Oceans Graduate School, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
12
|
The Ebbinghaus illusion in the gray bamboo shark (Chiloscyllium griseum) in comparison to the teleost damselfish (Chromis chromis). ZOOLOGY 2017; 123:16-29. [PMID: 28712674 DOI: 10.1016/j.zool.2017.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 05/18/2017] [Accepted: 05/18/2017] [Indexed: 11/22/2022]
Abstract
This is the first study to comparatively assess the perception of the Ebbinghaus-Titchener circles and variations of the Delboeuf illusion in four juvenile bamboo sharks (Chiloscyllium griseum) and five damselfish (Chromis chromis) using identical training paradigms. We aimed to investigate whether these two species show similarities in the perceptual integration of local elements into the global context. The Ebbinghaus-Titchener circles consist of two equally sized central test circles surrounded by smaller or larger circles of different size, number and/or distance. During training, sharks and damselfish learned to distinguish a large circle from a small circle, regardless (i) of its gray level and (ii) of the presence of surrounding circles arranged along an outer semi-circle. During the subsequent transfer period, individuals were presented with variations of the Ebbinghaus-Titchener circles and the Delboeuf illusion. Similar to adult humans, dolphins, or some birds, damselfish tended to judge the test circle surrounded by smaller inducers as larger than the one surrounded by larger inducers (contrast effect). However, sharks significantly preferred the overall larger figure or chose indifferently between both alternatives (assimilation effect). These contrasting responses point towards potential differences in perceptual processing mechanisms, such as 'filling-in' or '(a)modal completion', 'perceptual grouping', and 'local' or 'global' visual perception. The present study provides intriguing insights into the perceptual abilities of phylogenetically distant taxa separated in evolutionary time by 200 million years.
Collapse
|
13
|
Marshall J, Carleton KL, Cronin T. Colour vision in marine organisms. Curr Opin Neurobiol 2015; 34:86-94. [PMID: 25725325 DOI: 10.1016/j.conb.2015.02.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 02/02/2015] [Accepted: 02/05/2015] [Indexed: 12/18/2022]
Abstract
Colour vision in the marine environment is on average simpler than in terrestrial environments with simple or no colour vision through monochromacy or dichromacy. Monochromacy is found in marine mammals and elasmobranchs, including whales and sharks, but not some rays. Conversely, there is also a greater diversity of colour vision in the ocean than on land, examples being the polyspectral stomatopods and the many colour vision solutions found among reef fish. Recent advances in sequencing reveal more opsin (visual pigment) types than functionally useful at any one time. This diversity arises through opsin duplication and conversion. Such mechanisms allow pick-and-mix adaptation that tunes colour vision on a variety of very short non-evolutionary timescales. At least some of the diversity in marine colour vision is best explained as unconventional colour vision or as neutral drift.
Collapse
Affiliation(s)
- Justin Marshall
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4070, Australia.
| | - Karen L Carleton
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Thomas Cronin
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|
14
|
Kalb N, Schneider RF, Sprenger D, Michiels NK. The Red‐Fluorescing Marine Fish
Tripterygion delaisi
can Perceive its Own Red Fluorescent Colour. Ethology 2015. [DOI: 10.1111/eth.12367] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nadine Kalb
- Animal Evolutionary Ecology Group Institute for Evolution and Ecology Faculty of Science University of Tübingen Tübingen Germany
| | - Ralf F. Schneider
- Animal Evolutionary Ecology Group Institute for Evolution and Ecology Faculty of Science University of Tübingen Tübingen Germany
| | - Dennis Sprenger
- Animal Evolutionary Ecology Group Institute for Evolution and Ecology Faculty of Science University of Tübingen Tübingen Germany
| | - Nico K. Michiels
- Animal Evolutionary Ecology Group Institute for Evolution and Ecology Faculty of Science University of Tübingen Tübingen Germany
| |
Collapse
|
15
|
Affiliation(s)
- Nathan S. HART
- School of Animal Biology and the Oceans Institute; The University of Western Australia; Crawley Perth Australia
| | - Shaun P. COLLIN
- School of Animal Biology and the Oceans Institute; The University of Western Australia; Crawley Perth Australia
| |
Collapse
|
16
|
|
17
|
Schluessel V, Rick IP, Plischke K. No rainbow for grey bamboo sharks: evidence for the absence of colour vision in sharks from behavioural discrimination experiments. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 200:939-47. [DOI: 10.1007/s00359-014-0940-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/08/2014] [Accepted: 09/09/2014] [Indexed: 11/28/2022]
|
18
|
Newport C, Wallis G, Siebeck UE. Concept learning and the use of three common psychophysical paradigms in the archerfish (Toxotes chatareus). Front Neural Circuits 2014; 8:39. [PMID: 24795572 PMCID: PMC4006028 DOI: 10.3389/fncir.2014.00039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 04/04/2014] [Indexed: 11/13/2022] Open
Abstract
Archerfish are well known for their specialized hunting technique of spitting water at prey located above the water line. This unique ability has made them a popular focus of study as researchers try to understand the mechanisms involved in targeting and spitting. In more recent years, archerfish have also become an increasingly popular model for studying visual discrimination and learning in general. Until now, only the alternative forced-choice (AFC) task has been used with archerfish, however, they may be capable of learning other classical discrimination tasks. As well as providing alternative, and potentially more efficient, means for testing their visual capabilities, these other tasks may also provide deeper insight into the extent to which an organism with no cortex can grasp the concepts underlying these tasks. In this paper, we consider both the matched-to-sample (MTS) and the odd-one-out (OOO) tasks as they require the subject to learn relatively sophisticated concepts rather than a straight, stimulus-reward relationship, of the kind underlying AFC tasks. A variety of line drawings displayed on a monitor were used as stimuli. We first determined if archerfish could complete the MTS and OOO test and then evaluated their ability to be retrained to new stimuli using a 4-AFC test. We found that archerfish were unable to learn the MTS and had only a limited capacity for learning the OOO task. We conclude that the MTS and OOO are impractical as paradigms for behavioral experiments with archerfish. However, the archerfish could rapidly learn to complete an AFC test and select the conditioned stimulus with a high degree of accuracy when faced with four stimuli, making this a powerful test for behavioral studies testing visual discrimination. In addition, the fish were able to learn the concept of oddity under particular training circumstances. This paper adds to the growing evidence that animals without a cortex are capable of learning some higher order concepts.
Collapse
Affiliation(s)
- Cait Newport
- Laboratory for Visual Neuroethology, School of Biomedical Sciences, The University of Queensland Brisbane, QLD, Australia
| | - Guy Wallis
- Centre for Sensorimotor Neuroscience, School of Human Movement Studies, The University of Queensland Brisbane, QLD, Australia ; Queensland Brain Institute, The University of Queensland Brisbane, QLD, Australia
| | - Ulrike E Siebeck
- Laboratory for Visual Neuroethology, School of Biomedical Sciences, The University of Queensland Brisbane, QLD, Australia
| |
Collapse
|
19
|
Fuss T, Bleckmann H, Schluessel V. Visual discrimination abilities in the gray bamboo shark (Chiloscyllium griseum). ZOOLOGY 2014; 117:104-11. [DOI: 10.1016/j.zool.2013.10.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 10/24/2013] [Accepted: 10/24/2013] [Indexed: 10/25/2022]
|
20
|
Sparks JS, Schelly RC, Smith WL, Davis MP, Tchernov D, Pieribone VA, Gruber DF. The covert world of fish biofluorescence: a phylogenetically widespread and phenotypically variable phenomenon. PLoS One 2014; 9:e83259. [PMID: 24421880 PMCID: PMC3885428 DOI: 10.1371/journal.pone.0083259] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 10/31/2013] [Indexed: 12/30/2022] Open
Abstract
The discovery of fluorescent proteins has revolutionized experimental biology. Whereas the majority of fluorescent proteins have been identified from cnidarians, recently several fluorescent proteins have been isolated across the animal tree of life. Here we show that biofluorescence is not only phylogenetically widespread, but is also phenotypically variable across both cartilaginous and bony fishes, highlighting its evolutionary history and the possibility for discovery of numerous novel fluorescent proteins. Fish biofluorescence is especially common and morphologically variable in cryptically patterned coral-reef lineages. We identified 16 orders, 50 families, 105 genera, and more than 180 species of biofluorescent fishes. We have also reconstructed our current understanding of the phylogenetic distribution of biofluorescence for ray-finned fishes. The presence of yellow long-pass intraocular filters in many biofluorescent fish lineages and the substantive color vision capabilities of coral-reef fishes suggest that they are capable of detecting fluoresced light. We present species-specific emission patterns among closely related species, indicating that biofluorescence potentially functions in intraspecific communication and evidence that fluorescence can be used for camouflage. This research provides insight into the distribution, evolution, and phenotypic variability of biofluorescence in marine lineages and examines the role this variation may play.
Collapse
Affiliation(s)
- John S. Sparks
- Department of Ichthyology, American Museum of Natural History, Division of Vertebrate Zoology, New York, New York United States of America
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York, United States of America
| | - Robert C. Schelly
- Department of Ichthyology, American Museum of Natural History, Division of Vertebrate Zoology, New York, New York United States of America
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York, United States of America
| | - W. Leo Smith
- Biodiversity Institute, University of Kansas, Lawrence, Kansas, United States of America
| | - Matthew P. Davis
- Biodiversity Institute, University of Kansas, Lawrence, Kansas, United States of America
| | - Dan Tchernov
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Mount Carmel, Haifa, Israel
| | - Vincent A. Pieribone
- Department of Ichthyology, American Museum of Natural History, Division of Vertebrate Zoology, New York, New York United States of America
- Department of Cellular and Molecular Physiology, The John B. Pierce Laboratory, Inc., Yale University, New Haven, Connecticut, United States of America
| | - David F. Gruber
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York, United States of America
- Department of Natural Sciences, Baruch College, City University of New York, New York, New York, United States of America
| |
Collapse
|
21
|
Pérez i de Lanuza G, Font E. Ultraviolet vision in lacertid lizards: evidence from retinal structure, eye transmittance, SWS1 visual pigment genes, and behaviour. J Exp Biol 2014; 217:2899-909. [DOI: 10.1242/jeb.104281] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Abstract
Ultraviolet (UV) vision and UV colour patches have been reported in a wide range of taxa and are increasingly appreciated as an integral part of vertebrate visual perception and communication systems. Previous studies with Lacertidae, a lizard family with diverse and complex coloration, have revealed the existence of UV-reflecting patches that may function as social signals. However, confirmation of the signalling role of UV coloration requires demonstrating that the lizards are capable of vision in the UV waveband. Here we use a multidisciplinary approach to characterize the visual sensitivity of a diverse sample of lacertid species. Spectral transmission measurements of the ocular media show that wavelengths down to 300 nm are transmitted in all the species sampled. Four retinal oil droplet types can be identified in the lacertid retina. Two types are pigmented and two are colourless. Fluorescence microscopy reveals that a type of colourless droplet is UV-transmitting and may thus be associated with UV-sensitive cones. DNA sequencing shows that lacertids have a functional SWS1 opsin, very similar at 13 critical sites to that in the presumed ancestral vertebrate (which was UV-sensitive) and other UV-sensitive lizards. Finally, males of Podarcis muralis are capable of discriminating between two views of the same stimulus that differ only in the presence/absence of UV radiance. Taken together, these results provide convergent evidence of UV vision in lacertids, very likely by means of an independent photopigment. Moreover, the presence of four oil droplet types suggests that lacertids have a four-cone colour vision system.
Collapse
|
22
|
Bedore CN, Loew ER, Frank TM, Hueter RE, McComb DM, Kajiura SM. A physiological analysis of color vision in batoid elasmobranchs. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 199:1129-41. [DOI: 10.1007/s00359-013-0855-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/18/2013] [Accepted: 09/11/2013] [Indexed: 11/30/2022]
|
23
|
Jordan LK, Mandelman JW, McComb DM, Fordham SV, Carlson JK, Werner TB. Linking sensory biology and fisheries bycatch reduction in elasmobranch fishes: a review with new directions for research. CONSERVATION PHYSIOLOGY 2013; 1:cot002. [PMID: 27293586 PMCID: PMC4732448 DOI: 10.1093/conphys/cot002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 02/18/2013] [Accepted: 02/19/2013] [Indexed: 05/08/2023]
Abstract
Incidental capture, or bycatch, in fisheries represents a substantial threat to the sustainability of elasmobranch populations worldwide. Consequently, researchers are increasingly investigating elasmobranch bycatch reduction methods, including some focused on these species' sensory capabilities, particularly their electrosensory systems. To guide this research, we review current knowledge of elasmobranch sensory biology and feeding ecology with respect to fishing gear interactions and include examples of bycatch reduction methods used for elasmobranchs as well as other taxonomic groups. We discuss potential elasmobranch bycatch reduction strategies for various fishing gear types based on the morphological, physiological, and behavioural characteristics of species within this diverse group. In select examples, we indicate how an understanding of the physiology and sensory biology of vulnerable, bycatch-prone, non-target elasmobranch species can help in the identification of promising options for bycatch reduction. We encourage collaboration among researchers studying bycatch reduction across taxa to provide better understanding of the broad effects of bycatch reduction methods.
Collapse
Affiliation(s)
- Laura K. Jordan
- Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Corresponding author: Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA. Tel: +1 909 240 9703.
| | - John W. Mandelman
- John H. Prescott Marine Laboratory, New England Aquarium, Boston, MA 02110, USA
| | | | - Sonja V. Fordham
- Shark Advocates International, a project of The Ocean Foundation, Washington, DC 20036, USA
| | - John K. Carlson
- Southeast Fisheries Science Center, NOAA Fisheries Service, Panama City, FL 32408, USA
| | - Timothy B. Werner
- Consortium for Wildlife Bycatch Reduction, New England Aquarium, Boston, MA 02110, USA
| |
Collapse
|
24
|
Lisney TJ, Theiss SM, Collin SP, Hart NS. Vision in elasmobranchs and their relatives: 21st century advances. JOURNAL OF FISH BIOLOGY 2012; 80:2024-54. [PMID: 22497415 DOI: 10.1111/j.1095-8649.2012.03253.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This review identifies a number of exciting new developments in the understanding of vision in cartilaginous fishes that have been made since the turn of the century. These include the results of studies on various aspects of the visual system including eye size, visual fields, eye design and the optical system, retinal topography and spatial resolving power, visual pigments, spectral sensitivity and the potential for colour vision. A number of these studies have covered a broad range of species, thereby providing valuable information on how the visual systems of these fishes are adapted to different environmental conditions. For example, oceanic and deep-sea sharks have the largest eyes amongst elasmobranchs and presumably rely more heavily on vision than coastal and benthic species, while interspecific variation in the ratio of rod and cone photoreceptors, the topographic distribution of the photoreceptors and retinal ganglion cells in the retina and the spatial resolving power of the eye all appear to be closely related to differences in habitat and lifestyle. Multiple, spectrally distinct cone photoreceptor visual pigments have been found in some batoid species, raising the possibility that at least some elasmobranchs are capable of seeing colour, and there is some evidence that multiple cone visual pigments may also be present in holocephalans. In contrast, sharks appear to have only one cone visual pigment. There is evidence that ontogenetic changes in the visual system, such as changes in the spectral transmission properties of the lens, lens shape, focal ratio, visual pigments and spatial resolving power, allow elasmobranchs to adapt to environmental changes imposed by habitat shifts and niche expansion. There are, however, many aspects of vision in these fishes that are not well understood, particularly in the holocephalans. Therefore, this review also serves to highlight and stimulate new research in areas that still require significant attention.
Collapse
Affiliation(s)
- T J Lisney
- Department of Psychology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada.
| | | | | | | |
Collapse
|
25
|
Collin SP. The Neuroecology of Cartilaginous Fishes: Sensory Strategies for Survival. BRAIN, BEHAVIOR AND EVOLUTION 2012; 80:80-96. [DOI: 10.1159/000339870] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
26
|
Knight K. SHOVELNOSE RAYS SEE IN COLOUR. J Exp Biol 2011. [DOI: 10.1242/jeb.068031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|