1
|
Konno N, Togashi A, Miyanishi H, Azuma M, Nakamachi T, Matsuda K. Regulation of Branchial Anoctamin 1 Expression in Freshwater- and Seawater-Acclimated Japanese Medaka, Oryzias latipes. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024. [PMID: 39718083 DOI: 10.1002/jez.2894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/25/2024]
Abstract
In euryhaline teleosts, the cystic fibrosis transmembrane conductance regulator (CFTR) in seawater (SW)-type chloride cells facilitates apical Cl- secretion for SW adaptation, while alternative Cl- excretion pathways remain understudied. This study investigates the role of the calcium-activated chloride channel, Anoctamin 1 (ANO1), in the gills of the euryhaline Japanese medaka (Oryzias latipes) under hyperosmolality and cortisol (CORT) influence. Acclimation to artificial SW, NaCl, mannitol, or glucose significantly upregulated ANO1 and CFTR mRNA expression in gills, unlike urea treatment. In situ hybridization revealed ANO1 mRNA in chloride cells co-expressing CFTR and Na+, K+-ATPase under hyperosmotic conditions. ANO1 inhibition elevated plasma Cl- concentration, indicating impaired Cl- excretion. CORT or dexamethasone administration in freshwater (FW) fish significantly increased branchial ANO1 and CFTR mRNA expression, an effect attenuated by the glucocorticoid receptor (GR) antagonist RU486. Hyperosmotic treatment of isolated gill tissues rapidly induced ANO1 mRNA expression independent of CFTR mRNA changes, and this induction was unaffected by RU486. These findings highlight the dual regulation of ANO1 expression via hyperosmolality-induced cellular response and the CORT-GR system. Thus, branchial ANO1 may likely complement CFTR in Cl⁻ excretion, playing a key role in the hyperosmotic adaptation of euryhaline teleosts.
Collapse
Affiliation(s)
- Norifumi Konno
- Departement of Biology, Faculty of Science, Academic Assembly, University of Toyama, Gofuku, Toyama, Japan
| | - Ayane Togashi
- Departement of Biology, Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama, Japan
| | - Hiroshi Miyanishi
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Morio Azuma
- Division of Molecular Pharmacology, Department of Pharmacology, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Tomoya Nakamachi
- Departement of Biology, Faculty of Science, Academic Assembly, University of Toyama, Gofuku, Toyama, Japan
| | - Kouhei Matsuda
- Departement of Biology, Faculty of Science, Academic Assembly, University of Toyama, Gofuku, Toyama, Japan
| |
Collapse
|
2
|
Colby RS, McCormick SD, Velotta JP, Jockusch E, Schultz ET. Paralog switching facilitates diadromy: ontogenetic, microevolutionary and macroevolutionary evidence. Oecologia 2024; 205:571-586. [PMID: 39012384 DOI: 10.1007/s00442-024-05588-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 07/01/2024] [Indexed: 07/17/2024]
Abstract
Identifying how the demands of migration are met at the level of gene expression is critical for understanding migratory physiology and can potentially reveal how migratory forms evolve from nonmigratory forms and vice versa. Among fishes, migration between freshwater and seawater (diadromy) requires considerable osmoregulatory adjustments, powered by the ion pump Na+, K+-ATPase (NKA) in the gills. Paralogs of the catalytic α-subunit of the pump (NKA α1a and α1b) are reciprocally upregulated in fresh- and seawater, a response known as paralog-switching, in gills of some diadromous species. We tested ontogenetic changes in NKA α-subunit paralog expression patterns, comparing pre-migrant and migrant alewife (Alosa pseudoharengus) sampled in their natal freshwater environment and after 24 h in seawater. In comparison to pre-migrants, juvenile out-migrants exhibited stronger paralog switching via greater downregulation of NKA α1a in seawater. We also tested microevolutionary changes in the response, exposing juvenile diadromous and landlocked alewife to freshwater (0 ppt) and seawater (30 ppt) for 2, 5, and 15 days. Diadromous and landlocked alewife exhibited salinity-dependent paralog switching, but levels of NKA α1b transcription were higher and the decrease in NKA α1a was greater after seawater exposure in diadromous alewife. Finally, we placed alewife α-subunit NKA paralogs in a macroevolutionary context. Molecular phylogenies show alewife paralogs originated independently of paralogs in salmonids and other teleosts. This study demonstrated that NKA paralog switching is tied to halohabitat profile and that duplications of the NKA gene provided the substrate for multiple, independent molecular solutions that support a diadromous life history.
Collapse
Affiliation(s)
- Rebecca S Colby
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
- Institutional Research and Planning, Fitchburg State University, Fitchburg, MA, USA
| | - Stephen D McCormick
- Department of Biology, University of Massachusetts, Amherst, MA, USA
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA, USA
| | - Jonathan P Velotta
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Elizabeth Jockusch
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Eric T Schultz
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
3
|
Montoya XC, Thompson WA, Smith CM, Wilson JM, Vijayan MM. Exposure to Total Suspended Solids (TSS) Impacts Gill Structure and Function in Adult Zebrafish. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 113:14. [PMID: 39012477 DOI: 10.1007/s00128-024-03922-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/20/2024] [Indexed: 07/17/2024]
Abstract
Total suspended solids (TSS) are a major contributor of anthropogenic impacts to aquatic systems. TSS exposure have been shown to affect the function of gills, but the mode of action is unclear. Zebrafish (Danio rerio) is emerging as an excellent model for mechanistic toxicology, and as there are no baseline studies on TSS effects in zebrafish gills, we tested the hypothesis that environmental concentrations of TSS damages gill structure and function in this species. Adult zebrafish were exposed to either 0, 10, 100, 500, 1000, or 2000 mg/L TSS for 4 days to assess the gill morphology. The minimal concentration that affected the gill structure was further tested for the distribution of key ion transporters, including Na+/K+- ATPase (NKA) and vacuolar-type H+-ATPase (VHA), using confocal microscopy. Our results reveal that TSS concentration as low as 100 mg/L alters the morphology of gills, including greater filament thickness, lamellae thickness, and epithelial lifting. This was also associated with a reduction in NKA immunoreactive (IR) cell count and intensity in the 100 mg/L TSS group, while there was neither a change in the VHA-IR cell count or expression nor the transcript abundance of atp6v1a and atp1a1a4 in the gills. Markers of stress response in these animals, including levels of cortisol, glucose, lactate, and glycogen were not altered after 4 days of TSS exposure. Overall, environmentally relevant concentrations of TSS can damage the gill structure and function in zebrafish and has the potential to enhance the toxicity of contaminants acting via the gills.
Collapse
Affiliation(s)
- Xena C Montoya
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - W Andrew Thompson
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Courtney M Smith
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Jonathan M Wilson
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Mathilakath M Vijayan
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
4
|
Tresguerres M, Kwan GT, Weinrauch A. Evolving views of ionic, osmotic and acid-base regulation in aquatic animals. J Exp Biol 2023; 226:jeb245747. [PMID: 37522267 DOI: 10.1242/jeb.245747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
The regulation of ionic, osmotic and acid-base (IOAB) conditions in biological fluids is among the most fundamental functions in all organisms; being surrounded by water uniquely shapes the IOAB regulatory strategies of water-breathing animals. Throughout its centennial history, Journal of Experimental Biology has established itself as a premier venue for publication of comparative, environmental and evolutionary studies on IOAB regulation. This Review provides a synopsis of IOAB regulation in aquatic animals, some of the most significant research milestones in the field, and evolving views about the underlying cellular mechanisms and their evolutionary implications. It also identifies promising areas for future research and proposes ideas for enhancing the impact of aquatic IOAB research.
Collapse
Affiliation(s)
- Martin Tresguerres
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92037, USA
| | - Garfield T Kwan
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, Davis, CA 95616, USA
| | - Alyssa Weinrauch
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2M5, Canada
| |
Collapse
|
5
|
Kwan GT, Frable BW, Thompson AR, Tresguerres M. Optimizing immunostaining of archival fish samples to enhance museum collection potential. Acta Histochem 2022; 124:151952. [PMID: 36099745 DOI: 10.1016/j.acthis.2022.151952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/31/2022] [Accepted: 09/04/2022] [Indexed: 11/18/2022]
Abstract
Immunohistochemistry (IHC) is a powerful biochemical technique that uses antibodies to specifically label and visualize proteins of interests within biological samples. However, fluid-preserved specimens within natural history collection often use fixatives and protocols that induce high background signal (autofluorescence), which hampers IHC as it produces low signal-to-noise ratio. Here, we explored techniques to reduce autofluorescence using sodium borohydride (SBH), citrate buffer, and their combination on fish tissue preserved with paraformaldehyde, formaldehyde, ethanol, and glutaraldehyde. We found SBH was the most effective quenching technique, and applied this pretreatment to the gill or skin of 10 different archival fishes - including specimens that had been preserved in formaldehyde or ethanol for up to 65 and 37 years, respectively. The enzyme Na+/K+-ATPase (NKA) was successfully immunostained and imaged using confocal fluorescence microscopy, allowing for the identification and characterization of NKA-rich ionocytes essential for fish ionic and acid-base homeostasis. Altogether, our SBH-based method facilitates the use of IHC on archival samples, and unlocks the historical record on fish biological responses to environmental factors (such as climate change) using specimens from natural history collections that were preserved decades to centuries ago.
Collapse
Affiliation(s)
- Garfield T Kwan
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, USA; NOAA Fisheries Service, Southwest Fisheries Science Center, La Jolla, CA, USA.
| | - Benjamin W Frable
- Marine Vertebrate Collection, Scripps Institution of Oceanography, University of California San Diego, USA
| | - Andrew R Thompson
- NOAA Fisheries Service, Southwest Fisheries Science Center, La Jolla, CA, USA
| | - Martin Tresguerres
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, USA
| |
Collapse
|
6
|
L E E CE, Downey K, Colby RS, Freire CA, Nichols S, Burgess MN, Judy KJ. Recognizing salinity threats in the climate crisis. Integr Comp Biol 2022; 62:441-460. [PMID: 35640911 DOI: 10.1093/icb/icac069] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 11/14/2022] Open
Abstract
Climate change is causing habitat salinity to transform at unprecedented rates across the globe. While much of the research on climate change has focused on rapid shifts in temperature, far less attention has focused on the effects of changes in environmental salinity. Consequently, predictive studies on the physiological, evolutionary, and migratory responses of organisms and populations to the threats of salinity change are relatively lacking. This omission represents a major oversight, given that salinity is among the most important factors that define biogeographic boundaries in aquatic habitats. In this perspective, we briefly touch on responses of organisms and populations to rapid changes in salinity occurring on contemporary time scales. We then discuss factors that might confer resilience to certain taxa, enabling them to survive rapid salinity shifts. Next, we consider approaches for predicting how geographic distributions will shift in response to salinity change. Finally, we identify additional data that are needed to make better predictions in the future. Future studies on climate change should account for the multiple environmental factors that are rapidly changing, especially habitat salinity.
Collapse
Affiliation(s)
- Carol Eunmi L E E
- Department of Integrative Biology, University of Wisconsin, Madison, WI, USA
| | - Kala Downey
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Rebecca Smith Colby
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Carolina A Freire
- Department of Physiology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Sarah Nichols
- Edward Grey Institute of Field Ornithology, Department of Zoology, University of Oxford, Oxford, UK.,Department of Life Sciences, Natural History Museum, London, UK
| | - Michael N Burgess
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Kathryn J Judy
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
7
|
Mauduit O, Aure MH, Delcroix V, Basova L, Srivastava A, Umazume T, Mays JW, Bellusci S, Tucker AS, Hajihosseini MK, Hoffman MP, Makarenkova HP. A mesenchymal to epithelial switch in Fgf10 expression specifies an evolutionary-conserved population of ionocytes in salivary glands. Cell Rep 2022; 39:110663. [PMID: 35417692 PMCID: PMC9113928 DOI: 10.1016/j.celrep.2022.110663] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/21/2022] [Accepted: 03/21/2022] [Indexed: 12/21/2022] Open
Abstract
Fibroblast growth factor 10 (FGF10) is well established as a mesenchyme-derived growth factor and a critical regulator of fetal organ development in mice and humans. Using a single-cell RNA sequencing (RNA-seq) atlas of salivary gland (SG) and a tamoxifen inducible Fgf10CreERT2:R26-tdTomato mouse, we show that FGF10pos cells are exclusively mesenchymal until postnatal day 5 (P5) but, after P7, there is a switch in expression and only epithelial FGF10pos cells are observed after P15. Further RNA-seq analysis of sorted mesenchymal and epithelial FGF10pos cells shows that the epithelial FGF10pos population express the hallmarks of ancient ionocyte signature Forkhead box i1 and 2 (Foxi1, Foxi2), Achaete-scute homolog 3 (Ascl3), and the cystic fibrosis transmembrane conductance regulator (Cftr). We propose that epithelial FGF10pos cells are specialized SG ionocytes located in ducts and important for the ionic modification of saliva. In addition, they maintain FGF10-dependent gland homeostasis via communication with FGFR2bpos ductal and myoepithelial cells.
Collapse
Affiliation(s)
- Olivier Mauduit
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Marit H Aure
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vanessa Delcroix
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Liana Basova
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Amrita Srivastava
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Takeshi Umazume
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jacqueline W Mays
- Oral Immunobiology Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Saverio Bellusci
- Cardio-Pulmonary Institute (CPI) and Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), The German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Abigail S Tucker
- Centre for Craniofacial and Regenerative Biology, King's College London, London WC2R 2LS, UK
| | | | - Matthew P Hoffman
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Helen P Makarenkova
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
8
|
Montgomery DW, Kwan GT, Davison WG, Finlay J, Berry A, Simpson SD, Engelhard GH, Birchenough SNR, Tresguerres M, Wilson RW. Rapid blood acid-base regulation by European sea bass (Dicentrarchus labrax) in response to sudden exposure to high environmental CO2. J Exp Biol 2022; 225:jeb242735. [PMID: 35005768 PMCID: PMC8917447 DOI: 10.1242/jeb.242735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 12/20/2021] [Indexed: 11/22/2022]
Abstract
Fish in coastal ecosystems can be exposed to acute variations in CO2 of between 0.2 and 1 kPa CO2 (2000-10,000 µatm). Coping with this environmental challenge will depend on the ability to rapidly compensate for the internal acid-base disturbance caused by sudden exposure to high environmental CO2 (blood and tissue acidosis); however, studies about the speed of acid-base regulatory responses in marine fish are scarce. We observed that upon sudden exposure to ∼1 kPa CO2, European sea bass (Dicentrarchus labrax) completely regulate erythrocyte intracellular pH within ∼40 min, thus restoring haemoglobin-O2 affinity to pre-exposure levels. Moreover, blood pH returned to normal levels within ∼2 h, which is one of the fastest acid-base recoveries documented in any fish. This was achieved via a large upregulation of net acid excretion and accumulation of HCO3- in blood, which increased from ∼4 to ∼22 mmol l-1. While the abundance and intracellular localisation of gill Na+/K+-ATPase (NKA) and Na+/H+ exchanger 3 (NHE3) remained unchanged, the apical surface area of acid-excreting gill ionocytes doubled. This constitutes a novel mechanism for rapidly increasing acid excretion during sudden blood acidosis. Rapid acid-base regulation was completely prevented when the same high CO2 exposure occurred in seawater with experimentally reduced HCO3- and pH, probably because reduced environmental pH inhibited gill H+ excretion via NHE3. The rapid and robust acid-base regulatory responses identified will enable European sea bass to maintain physiological performance during large and sudden CO2 fluctuations that naturally occur in coastal environments.
Collapse
Affiliation(s)
| | - Garfield T. Kwan
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- National Oceanic and Atmospheric Administration Fisheries Service, Southwest Fisheries Science Center, 8901 La Jolla Shores Drive, La Jolla, CA 92037, USA
| | - William G. Davison
- Biosciences, Geoffrey Pope Building, University of Exeter, Exeter, EX4 4QD, UK
| | - Jennifer Finlay
- Biosciences, Geoffrey Pope Building, University of Exeter, Exeter, EX4 4QD, UK
| | - Alex Berry
- Biosciences, Geoffrey Pope Building, University of Exeter, Exeter, EX4 4QD, UK
| | - Stephen D. Simpson
- Biosciences, Geoffrey Pope Building, University of Exeter, Exeter, EX4 4QD, UK
| | - Georg H. Engelhard
- Centre for Environment, Fisheries & Aquaculture Science (Cefas), Pakefield Road, Lowestoft, NR330HT, UK
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Silvana N. R. Birchenough
- Centre for Environment, Fisheries & Aquaculture Science (Cefas), Pakefield Road, Lowestoft, NR330HT, UK
| | - Martin Tresguerres
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Rod W. Wilson
- Biosciences, Geoffrey Pope Building, University of Exeter, Exeter, EX4 4QD, UK
| |
Collapse
|
9
|
Immunohistochemical characterization and change in location of branchial ionocytes after transfer from freshwater to seawater in the euryhaline obscure puffer, Takifugu obscurus. J Comp Physiol B 2020; 190:585-596. [PMID: 32715333 DOI: 10.1007/s00360-020-01298-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/21/2020] [Accepted: 07/10/2020] [Indexed: 10/24/2022]
Abstract
The obscure puffer Takifugu obscurus is a euryhaline fish species suitable for studying the molecular mechanism of osmoregulation. The distributional changes of branchial ionocytes were detected following the transfer from freshwater (FW) to seawater (SW) based on two main ion transporters, Na+/K+-ATPase (NKA) and Na+/K+/ 2Cl- cotransporter 1 (NKCC1). The mRNA and protein expression levels of NKA and NKCC1 in the gills all increased rapidly in the first four days after transfer to SW. Double immunofluorescence staining showed that NKCC1 and NKA were colocalized in the branchial ionocytes and the immunoreaction of NKCC1 was stronger after transfer. Moreover, following transfer to SW, the number of lamellar ionocytes in the gills is reduced and the number of filament ionocytes is increased significantly. Taken together, these findings indicated that SW transfer of obscure puffer promotes the changes of distribution, function and size of branchial ionocytes.
Collapse
|
10
|
Malakpour Kolbadinezhad S, Coimbra J, Wilson JM. Is the dendritic organ of the striped eel catfish Plotosus lineatus an ammonia excretory organ? Comp Biochem Physiol A Mol Integr Physiol 2019; 241:110640. [PMID: 31870932 DOI: 10.1016/j.cbpa.2019.110640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 11/24/2022]
Abstract
The dendritic organ (DO) is a salt secretory organ in the Plotosidae marine catfishes. The potential role of the DO in ammonia excretion was investigated by examining the effects of salinity [brackishwater (BW 3‰), seawater (SW 34‰) and hypersaline water (HSW 60‰)] acclimation and DO ligation on ammonia excretion and ammonia transporter expression by immunohistochemistry (IHC), immunoblotting (IB) and qPCR. Ammonia flux rates (JAmm) were significantly lower in BW compared to SW and HSW. DO ligation resulted in a significantly lower JAmm in SW but not BW fish. IHC demonstrated apical and basolateral localization of Rhesus-associated glycoprotein (Rhag-like) and Rhbg-like proteins, respectively, in parenchymal cells of the DO acini. In the gills, which are the primary site of ammonia excretion in teleost fishes, IHC showed an apical localization of Rhag-like protein in some Na+/K+-ATPase (NKA) immunoreactive (IR) cells limited to a few interlamellar regions of the filament and, in both apical and basolateral membranes of pillar cells irrespective of treatment group. In gills, the distribution of NKA-IR cells showed no salinity and/or ligation dependency. IB of Rhag and Rhbg-like proteins was found only in the gills and expression levels did not change with salinity but ligation in BW decreased Rhbg-like levels. Although Rhcg was not detected with heterologous antibodies, rhcg1 mRNA expression was detected in both gills and DO. HSW was associated with the lowest expression in DO and ligations in SW and BW were without effect on branchial expression levels. Taken together these results indicate the DO potentially has a physiological role in ammonia excretion under SW conditions.
Collapse
Affiliation(s)
- Salman Malakpour Kolbadinezhad
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal; Coldwater Fisheries Research Center (CFRC), Iranian Fisheries Sciences Research Institute (IFSRI), Agricultural Research, Education and Extension Organization, Tonekabon, Iran.
| | - João Coimbra
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.
| | - Jonathan M Wilson
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal; Department of Biology, Wilfrid Laurier University, Waterloo, Canada.
| |
Collapse
|
11
|
Lou F, Gao T, Han Z. Effect of salinity fluctuation on the transcriptome of the Japanese mantis shrimp Oratosquilla oratoria. Int J Biol Macromol 2019; 140:1202-1213. [PMID: 31470058 DOI: 10.1016/j.ijbiomac.2019.08.223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/25/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022]
Abstract
Salinity fluctuation may detrimentally affect the composition and biological processes of crustaceans. As a euryhaline crustacean, Oratosquilla oratoria can survive at salinities ranging from 20 psu to 40 psu. Therefore, we designed five salinity gradients (20, 25, 30, 35, and 40 psu) and 66.39 Gb clean transcriptome data were obtained after O. oratorias were exposed to each gradient for 24 h. All clean data were spliced into 50,482 unigenes and 17,035 unigenes were annotated in at least one database. Compared with 30 psu, 1010, 851, 1733 and 2188 differentially expressed genes were obtained at 20, 25, 35 and 40 psu, respectively. Results also showed that the osmoregulation of O. oratoria is primarily regulated by lipid and amino acid metabolism, amongst others. No significant up-regulated pathways were enriched at 25 psu and 35 psu, although more significant down-regulated pathways were obtained at 35 psu. Therefore, we assumed that the optimum survival salinity of O. oratoria may range from 25 psu to 35 psu. However, 35 psu may be more suitable for O. oratoria. In addition, 55 unigenes that encode putative inorganic ion exchanges were identified. This study aims to provide fundamental information for understanding the osmoregulation mechanisms of crustaceans.
Collapse
Affiliation(s)
- Fangrui Lou
- Fishery College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China; Fishery College, Ocean University of China, Qingdao, Shandong 266003, China
| | - Tianxiang Gao
- Fishery College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China.
| | - Zhiqiang Han
- Fishery College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China.
| |
Collapse
|
12
|
Wong MKS, Nobata S, Hyodo S. Enhanced osmoregulatory ability marks the smoltification period in developing chum salmon (Oncorhynchus keta). Comp Biochem Physiol A Mol Integr Physiol 2019; 238:110565. [PMID: 31493553 DOI: 10.1016/j.cbpa.2019.110565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 11/29/2022]
Abstract
The freshwater (FW) life of chum salmon is short, as they migrate to the ocean soon after emergence from the substrate gravel of natal waters. The alevins achieve seawater (SW) acclimating ability at an early developmental stage and the details of smoltification are not clear. We examined the stage-dependent SW acclimating ability in chum salmon alevins and found a sharp increase in SW tolerance during development that resembles the physiological parr-smolt transformation seen in other salmonids. Perturbation of plasma Na+ after SW exposure was prominent from the hatched embryo stage to emerged alevins, but the plasma Na+ became highly stable and more resistant to perturbation soon after complete absorption of yolk. Marker gene expression for SW-ionocytes including Na/K-ATPase (NKA α1b), Na-K-Cl cotransporter 1a (NKCC1a), Na/H exchanger 3a (NHE3a), cystic fibrosis transmembrane conductance regulators (CFTR I and CFTR II) were all upregulated profoundly at the same stage when the alevins were challenged by SW, suggesting that the stability of plasma Na+ concentration was partly a result of elevated osmoregulatory capability. FW-ionocyte markers including NKA α1a and NHE3b were consistently downregulated independent of stage by SW exposure, suggesting that embryos at all stages respond to salinity challenge, but the increase in SW osmoregulatory capability is restricted to the developmental stage after emergence. We propose that the "smoltification period" is condensed and integrated into the early development of chum salmon, and our results can be extrapolated to the future studies on hormonal controls and developmental triggers for smoltification in salmonids.
Collapse
Affiliation(s)
- Marty Kwok-Shing Wong
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan.
| | - Shigenori Nobata
- International Coastal Research Center, Atmosphere and Ocean Research Institute, the University of Tokyo, Otsuchi, Iwate, Japan
| | - Susumu Hyodo
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan
| |
Collapse
|
13
|
Ion uptake pathways in European sea bass Dicentrarchus labrax. Gene 2019; 692:126-137. [DOI: 10.1016/j.gene.2019.01.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/12/2018] [Accepted: 01/02/2019] [Indexed: 01/20/2023]
|
14
|
Copatti CE, Baldisserotto B, Souza CDF, Monserrat JM, Garcia L. Water pH and hardness alter ATPases and oxidative stress in the gills and kidney of pacu ( Piaractus mesopotamicus ). NEOTROPICAL ICHTHYOLOGY 2019. [DOI: 10.1590/1982-0224-20190032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
ABSTRACT This study aimed to assess the effects of low and high water hardness in interaction with different water pH in pacu (Piaractus mesopotamicus). Pacu juveniles were subjected to low (50 mg CaCO3 L-1 - LWH) or high water hardness (120 mg CaCO3 L-1 - HWH) at water pH of 5.5 (acidic), 7.5 (circumneutral) or 9.0 (alkaline) for 15 days. Gills and kidneys were collected (days 1, 5 and 15). Gill Na+/K+-ATPase (NKA) and vacuolar-type H+-ATPase (V-ATPase) activities were higher in alkaline pH with HWH on day 1. Gill and kidney NKA and V-ATPase activities were higher in acidic pH with LWH on day 15. Gill NKA activity of pacus under alkaline pH with LWH was higher than those exposed to HWH. Reduced antioxidant capacity in the gills and kidney and enhanced thiobarbituric acid reactive substances (TBARS) levels were demonstrated in fish exposed to acidic or alkaline pH, mainly with LWH. HWH increased glutathione-S-transferase (GST) activity and reduced TBARS levels in the gills and kidney. On day 15, GST activity was increased at acidic pH with LWH. In conclusion, circumneutral pH presents less oxidative stress and fewer variations in ATPases and HWH reduced deleterious effects in fish exposed to acidic or alkaline pH.
Collapse
|
15
|
Alteration in branchial NKA and NKCC ion-transporter expression and ionocyte distribution in adult hilsa during up-river migration. J Comp Physiol B 2018; 189:69-80. [PMID: 30483930 DOI: 10.1007/s00360-018-1193-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/08/2018] [Accepted: 11/22/2018] [Indexed: 01/17/2023]
Abstract
Hilsa (Tenualosa ilisha) is a clupeid that migrates from the off-shore area through the freshwater river for spawning. The purpose of this study was to investigate the involvement of branchial Na+/K+-ATPase (NKA) and Na+/K+/2Cl- cotransporter (NKCC) in maintaining ionic homeostasis in hilsa while moving across the salt barriers. Hilsa, migrating through marine and brackish waters, did not show any significant decline in NKA activity, plasma osmolality, and plasma ionic concentration. In contrast, all the parameters declined significantly, after the fish reached in freshwater zone of the river. Immunoblotting with NKA α antibody recognized two bands in gill homogenates. The intensity of the higher molecular NKA band decreased, while the other band subsequently increased accompanying the movement of hilsa from marine water (MW) to freshwater. Nevertheless, total NKA expression in marine water did not change prior to freshwater entry. NKCC expression was down-regulated in gill, parallel with NKA activity, as the fish approached to the freshwater stretch of river. The NKA α-1 and NKCC1 protein abundance decreased in freshwater individuals by 40% and 31%, respectively, compared to MW. NKA and NKCC1 were explicitly localized to branchial ionocytes and immunoreactive signal appeared throughout the cytoplasm except for the nucleus and the most apical region indicates a basolateral/tubular distribution. Immunoreactive ionocytes were distributed on the filaments and lamellae; lamellar ionocytes were more in number irrespective of habitat salinity. The decrease in salinity caused a slight reduction in ionocyte number, but not in size and the underlying distribution pattern did not alter. The overall results support previously proposed models that both the ion transporters are involved in maintaining ionic homeostasis and lamellar ionocytes may have the function in hypo-osmoregulation in migrating hilsa, unlike other anadromous teleosts.
Collapse
|
16
|
Martin KE, Ehrman JM, Wilson JM, Wright PA, Currie S. Skin ionocyte remodeling in the amphibious mangrove rivulus fish (Kryptolebias marmoratus
). JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2018; 331:128-138. [DOI: 10.1002/jez.2247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 10/24/2018] [Accepted: 10/25/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Keri E. Martin
- Department of Biology, Mount Allison University; Sackville New Brunswick Canada
| | - James M. Ehrman
- Department of Biology, Mount Allison University; Sackville New Brunswick Canada
| | - Jonathan M. Wilson
- Department of Biology, Wilfrid Laurier University; Waterloo Ontario Canada
| | - Patricia A. Wright
- Department of Integrative Biology, University of Guelph; Guelph Ontario Canada
| | - Suzanne Currie
- Department of Biology, Mount Allison University; Sackville New Brunswick Canada
| |
Collapse
|
17
|
Malakpour Kolbadinezhad S, Coimbra J, Wilson JM. Osmoregulation in the Plotosidae Catfish: Role of the Salt Secreting Dendritic Organ. Front Physiol 2018; 9:761. [PMID: 30018560 PMCID: PMC6037869 DOI: 10.3389/fphys.2018.00761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/30/2018] [Indexed: 01/14/2023] Open
Abstract
Unlike other marine teleosts, the Plotosidae catfishes reportedly have an extra-branchial salt secreting dendritic organ (DO). Salinity acclimation [brackishwater (BW) 3aaa, seawater (SWcontrol) 34aaa, and hypersaline water (HSW) 60aaa] for 14 days was used to investigate the osmoregulatory abilities of Plotosus lineatus through measurements of blood chemistry, muscle water content (MWC), Na+/K+-ATPase (NKA) specific activity and ion transporter expression in gills, DO, kidney and intestine. Ion transporter expression was determined using immunoblotting, immunohistochemistry (IHC) and quantitative polymerase chain reaction (qPCR). HSW elevated mortality, plasma osmolality and ions, and hematocrit, and decreased MWC indicating an osmoregulatory challenge. NKA specific activity and protein levels were significantly higher in DO compared to gill, kidney and intestine at all salinities. NKA specific activity increased in kidney and posterior intestine with HSW but only kidney showed correspondingly higher NKA α-subunit protein levels. Since DO mass was greater in HSW, the total amount of DO NKA activity expressed per gram fish was greater indicating higher overall capacity. Gill NKA and V-ATPase protein levels were greater with HSW acclimation but this was not reflected in NKA activity, mRNA or ionocyte abundance. BW acclimation resulted in lower NKA activity in gill, kidney and DO. Cl- levels were better regulated and the resulting strong ion ratio in BW suggests a metabolic acidosis. Elevated DO heat shock protein 70 levels in HSW fish indicate a cellular stress. Strong NKA and NKCC1 (Na+:K+:2Cl- cotransporter1) co-localization was observed in DO parenchymal cells, which was rare in gill ionocytes. NKCC1 immunoblot expression was only detected in DO, which was highest at HSW. Cystic fibrosis transmembrane regulator Cl- channel (CFTR) localize apically to DO NKA immunoreactive cells. Taken together, the demonstration of high NKA activity in DO coexpressed with NKCC1 and CFTR indicates the presence of the conserved secondary active Cl- secretion mechanism found in other ion transporting epithelia suggesting a convergent evolution with other vertebrate salt secreting organs. However, the significant osmoregulatory challenge of HSW indicates that the DO may be of limited use under more extreme salinity conditions in contrast to the gill based ionoregulatory strategy of marine teleosts.
Collapse
Affiliation(s)
- Salman Malakpour Kolbadinezhad
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - João Coimbra
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Jonathan M Wilson
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal.,Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| |
Collapse
|
18
|
Chen XL, Zhang B, Chng YR, Ong JLY, Chew SF, Wong WP, Lam SH, Ip YK. Na +/H + Exchanger 3 Is Expressed in Two Distinct Types of Ionocyte, and Probably Augments Ammonia Excretion in One of Them, in the Gills of the Climbing Perch Exposed to Seawater. Front Physiol 2017; 8:880. [PMID: 29209224 PMCID: PMC5701670 DOI: 10.3389/fphys.2017.00880] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/18/2017] [Indexed: 01/22/2023] Open
Abstract
The freshwater climbing perch, Anabas testudineus, is an euryhaline teleost and an obligate air-breather with the ability to actively excrete ammonia. Members of the Na+/H+ exchanger (NHE) family help maintain intracellular pH homeostasis and ionic balance through the electroneutral exchange of Na+ and H+. This study aimed to obtain, from the gills of A. testudineus, the full cDNA coding sequence of nhe3, and to determine the effects of exposure to seawater or 100 mmol l-1 of NH4Cl in fresh water on its mRNA and protein expression levels. Efforts were also made to elucidate the type of ionocyte that Nhe3 was associated with in the branchial epithelium of A. testudineus. The transcript level and protein abundance of nhe3/Nhe3 were very low in the gills of freshwater A. testudineus, but they increased significantly in the gills of fish acclimated to seawater. In the gills of fish exposed to seawater, Nhe3 was expressed in two distinct types of seawater-inducible Na+/K+-ATPase (Nka)-immunoreactive ionocytes. In Nkaα1b-immunoreactive ionocytes, Nhe3 had an apical localization. As these ionocytes also expressed apical Rhcg1 and basolateral Rhcg2, which are known to transport ammonia, they probably participated in proton-facilitated ammonia excretion in A. testudineus during seawater acclimation. In Nkaα1c-immunoreactive ionocytes, Nhe3 was atypically expressed in the basolateral membrane, and its physiological function is uncertain. For A. testudineus exposed to NH4Cl in fresh water, the transcript and protein expression levels of nhe3/Nhe3 remained low. In conclusion, the branchial Nhe3 of A. testudineus plays a greater physiological role in passive ammonia transport and acid-base balance during seawater acclimation than in active ammonia excretion during environmental ammonia exposure.
Collapse
Affiliation(s)
- Xiu L. Chen
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Biyan Zhang
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - You R. Chng
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Jasmine L. Y. Ong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Shit F. Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Wai P. Wong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Siew H. Lam
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore
| | - Yuen K. Ip
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
19
|
Velotta JP, Wegrzyn JL, Ginzburg S, Kang L, Czesny S, O'Neill RJ, McCormick SD, Michalak P, Schultz ET. Transcriptomic imprints of adaptation to fresh water: parallel evolution of osmoregulatory gene expression in the Alewife. Mol Ecol 2017; 26:831-848. [DOI: 10.1111/mec.13983] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 11/15/2016] [Accepted: 11/18/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Jonathan P. Velotta
- Department of Ecology and Evolutionary Biology; University of Connecticut; Storrs CT 06269-3043 USA
| | - Jill L. Wegrzyn
- Department of Ecology and Evolutionary Biology; University of Connecticut; Storrs CT 06269-3043 USA
| | - Samuel Ginzburg
- Department of Ecology and Evolutionary Biology; University of Connecticut; Storrs CT 06269-3043 USA
| | - Lin Kang
- Department of Biological Sciences; Virginia Bioinformatics Institute; Virginia Tech; Blacksburg VA 24061 USA
| | - Sergiusz Czesny
- Lake Michigan Biological Station; Illinois Natural History Survey; University of Illinois; Zion IL 60099 USA
| | - Rachel J. O'Neill
- Department of Molecular and Cell Biology; University of Connecticut; Storrs CT 06269-3125 USA
| | - Stephen D. McCormick
- Conte Anadromous Fish Research Center; U.S. Geological Survey; Turners Falls MA 01376 USA
| | - Pawel Michalak
- Department of Biological Sciences; Virginia Bioinformatics Institute; Virginia Tech; Blacksburg VA 24061 USA
| | - Eric T. Schultz
- Department of Ecology and Evolutionary Biology; University of Connecticut; Storrs CT 06269-3043 USA
| |
Collapse
|
20
|
Inokuchi M, Nakamura M, Miyanishi H, Hiroi J, Kaneko T. Functional classification of gill ionocytes and spatiotemporal changes in their distribution after transfer from seawater to fresh water in Japanese seabass. J Exp Biol 2017; 220:4720-4732. [DOI: 10.1242/jeb.167320] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/24/2017] [Indexed: 01/26/2023]
Abstract
Spatiotemporal changes in branchial ionocyte distribution were investigated following transfer from seawater (SW) to fresh water (FW) in Japanese seabass. The mRNA expression levels of cystic fibrosis transmembrane conductance regulator (CFTR) and Na+/K+/2Cl− cotransporter 1a (NKCC1a) in the gills rapidly decreased after transfer to FW, whereas Na+/H+ exchanger 3 (NHE3) and Na+/Cl− cotransporter 2 (NCC2) expressions were upregulated following the transfer. By quadruple-color whole-mount immunofluorescence staining with anti-Na+/K+-ATPase, anti-NHE3, anti-CFTR and T4 (anti-NKCC1a/NCC2) antibodies, we classified ionocytes into one SW-type and two FW-types; NHE3 cell and NCC2 cell. Time-course observation after transfer revealed an intermediate type between SW-type and FW-type NHE3 ionocytes, suggesting functional plasticity of ionocytes. Finally, on the basis of the ionocyte classification of Japanese seabass, we observed the location of ionocyte subtypes on frozen sections of the gill filaments stained by triple-color immunofluorescence staining. Our observation indicated that SW-type ionocytes transformed into FW-type NHE3 ionocytes and at the same time shifted their distribution from filaments to lamellae. On the other hand, FW-specific NCC2 ionocytes appeared mainly in the filaments. Taken together, these findings indicated that ionocytes originated from undifferentiated cells in the filaments and expanded their distribution to the lamellae during FW acclimation.
Collapse
Affiliation(s)
- Mayu Inokuchi
- Department of Life Sciences, Toyo University, Itakura, Gunma 374-0193, Japan
| | - Masahiro Nakamura
- National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research Agency, Imabari, Ehime 794-2305, Japan
| | - Hiroshi Miyanishi
- Faculty of Agriculture, University of Miyazaki, Gakuen-kibanadai-nishi, Miyazaki 889-2192, Japan
| | - Junya Hiroi
- Department of Anatomy, St. Marianna University School of Medicine, Kawasaki, Kanagawa 216-8511, Japan
| | - Toyoji Kaneko
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| |
Collapse
|
21
|
Synergic stress in striped catfish (Pangasianodon hypophthalmus, S.) exposed to chronic salinity and bacterial infection: Effects on kidney protein expression profile. J Proteomics 2016; 142:91-101. [DOI: 10.1016/j.jprot.2016.04.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/28/2016] [Accepted: 04/28/2016] [Indexed: 12/14/2022]
|
22
|
Velotta JP, McCormick SD, Schultz ET. Trade-offs in osmoregulation and parallel shifts in molecular function follow ecological transitions to freshwater in the Alewife. Evolution 2015; 69:2676-88. [DOI: 10.1111/evo.12774] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 08/30/2015] [Accepted: 09/04/2015] [Indexed: 01/09/2023]
Affiliation(s)
- Jonathan P. Velotta
- Department of Ecology and Evolutionary Biology; University of Connecticut; Storrs Connecticut 06269-3043
| | | | - Eric T. Schultz
- Department of Ecology and Evolutionary Biology; University of Connecticut; Storrs Connecticut 06269-3043
| |
Collapse
|
23
|
Sundh H, Nilsen TO, Lindström J, Hasselberg-Frank L, Stefansson SO, McCormick SD, Sundell K. Development of intestinal ion-transporting mechanisms during smoltification and seawater acclimation in Atlantic salmon Salmo salar. JOURNAL OF FISH BIOLOGY 2014; 85:1227-52. [PMID: 25263190 DOI: 10.1111/jfb.12531] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 08/11/2014] [Indexed: 05/13/2023]
Abstract
This study investigated the expression of ion transporters involved in intestinal fluid absorption and presents evidence for developmental changes in abundance and tissue distribution of these transporters during smoltification and seawater (SW) acclimation of Atlantic salmon Salmo salar. Emphasis was placed on Na(+) , K(+) -ATPase (NKA) and Na(+) , K(+) , Cl(-) co-transporter (NKCC) isoforms, at both transcriptional and protein levels, together with transcription of chloride channel genes. The nka α1c was the dominant isoform at the transcript level in both proximal and distal intestines; also, it was the most abundant isoform expressed in the basolateral membrane of enterocytes in the proximal intestine. This isoform was also abundantly expressed in the distal intestine in the lower part of the mucosal folds. The protein expression of intestinal Nkaα1c increased during smoltification. Immunostaining was localized to the basal membrane of the enterocytes in freshwater (FW) fish, and re-distributed to a lateral position after SW entry. Two other Nka isoforms, α1a and α1b, were expressed in the intestine but were not regulated to the same extent during smoltification and subsequent SW transfer. Their localization in the intestinal wall indicates a house-keeping function in excitatory tissues. The absorptive form of the NKCC-like isoform (sub-apically located NKCC2 and/or Na(+) , Cl(-) co-transporter) increased during smoltification and further after SW transfer. The cellular distribution changed from a diffuse expression in the sub-apical regions during smoltification to clustering of the transporters closer to the apical membrane after entry to SW. Furthermore, transcript abundance indicates that the mechanisms necessary for exit of chloride ions across the basolateral membrane and into the lateral intercellular space are present in the form of one or more of three different chloride channels: cystic fibrosis transmembrane conductance regulator I and II and chloride channel 3.
Collapse
Affiliation(s)
- H Sundh
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, 40530 Gothenburg, Sweden
| | | | | | | | | | | | | |
Collapse
|
24
|
Velotta JP, McCormick SD, O'Neill RJ, Schultz ET. Relaxed selection causes microevolution of seawater osmoregulation and gene expression in landlocked Alewives. Oecologia 2014; 175:1081-92. [PMID: 24859345 DOI: 10.1007/s00442-014-2961-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 05/05/2014] [Indexed: 11/25/2022]
Abstract
Ecological transitions from marine to freshwater environments have been important in the creation of diversity among fishes. Evolutionary changes associated with these transitions likely involve modifications of osmoregulatory function. In particular, relaxed selection on hypo-osmoregulation should strongly affect animals that transition into novel freshwater environments. We used populations of the Alewife (Alosa pseudoharengus) to study evolutionary shifts in hypo-osmoregulatory capacity and ion regulation associated with freshwater transitions. Alewives are ancestrally anadromous, but multiple populations in Connecticut have been independently restricted to freshwater lakes; these landlocked populations complete their entire life cycle in freshwater. Juvenile landlocked and anadromous Alewives were exposed to three salinities (1, 20 and 30 ppt) in small enclosures within the lake. We detected strong differentiation between life history forms: landlocked Alewives exhibited reduced seawater tolerance and hypo-osmoregulatory performance compared to anadromous Alewives. Furthermore, gill Na(+)/K(+)-ATPase activity and transcription of genes for seawater osmoregulation (NKCC-Na(+)/K(+)/2Cl(-) cotransporter and CFTR-cystic fibrosis transmembrane conductance regulator) exhibited reduced responsiveness to seawater challenge. Our study demonstrates that adaptations of marine-derived species to completely freshwater life cycles involve partial loss of seawater osmoregulatory performance mediated through changes to ion regulation in the gill.
Collapse
Affiliation(s)
- Jonathan P Velotta
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Unit 3043, Storrs, CT, 06269, USA,
| | | | | | | |
Collapse
|
25
|
L. Pollock N, Moran O, Baroni D, Zegarra-Moran O, C. Ford R. Characterisation of the salmon cystic fibrosis transmembrane conductance regulator protein for structural studies. AIMS MOLECULAR SCIENCE 2014. [DOI: 10.3934/molsci.2014.4.141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
26
|
Seo MY, Mekuchi M, Teranishi K, Kaneko T. Expression of ion transporters in gill mitochondrion-rich cells in Japanese eel acclimated to a wide range of environmental salinity. Comp Biochem Physiol A Mol Integr Physiol 2013; 166:323-32. [DOI: 10.1016/j.cbpa.2013.07.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 07/02/2013] [Accepted: 07/02/2013] [Indexed: 01/16/2023]
|
27
|
Effects of potassium ion supplementation on survival and ion regulation in Gulf killifish Fundulus grandis larvae reared in ion deficient saline waters. Comp Biochem Physiol A Mol Integr Physiol 2013; 164:572-8. [PMID: 23319161 DOI: 10.1016/j.cbpa.2013.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Revised: 01/04/2013] [Accepted: 01/06/2013] [Indexed: 11/22/2022]
Abstract
Teleost fish often live in an environment in which osmoregulatory mechanisms are critical for survival and largely unknown in larval fish. The effects of a single important marine ion (K(+)) on survival and ion regulation of larval Gulf killifish, an estuarine, euryhaline teleost, were determined. A four-week study was completed in four separate recirculating systems with newly hatched larvae. Salinity in all four systems was maintained between 9.5 and 10‰. Two systems were maintained using crystal salt (99.6% NaCl) with K(+) supplementation (1.31±0.04mmol/L and 2.06±0.04mmol/L K(+); mean±SEM), one was maintained with crystal salt and no K(+) supplementation (0.33±0.05mmol/L K(+)), the fourth system was maintained using a standard marine mix salt (2.96±0.04mmol/L K(+)), the salt mix also included standard ranges of other ions such as calcium and magnesium. Larvae were sampled throughout the experiment for dry mass, Na(+)/K(+)-ATPase (NKA) activity, whole body ion composition, relative gene expression (NKA, Na(+)/K(+)/2Cl(-) cotransporter (NKCC) and cystic fibrosis transmembrane conductance regulator (CFTR)), and immunocytochemistry staining for NKA, NKCC, and CFTR. Larvae stocked into water with no K(+) supplementation resulted in 100% mortality within 24h. Mortality and dry mass were significantly influenced by K(+) concentration (P≤0.05). No differences were observed among treatment groups for NKA activity. At 1dph NKA mRNA expression was higher in the 0.3mmol [K(+)] group than in other treatment groups and at 7dph differences in intestinal NKA and CFTR staining were observed. These data indicate that the rearing of larval Gulf killifish may be possible in ion deficient water utilizing specific ion supplementation.
Collapse
|
28
|
Hiroi J, McCormick SD. New insights into gill ionocyte and ion transporter function in euryhaline and diadromous fish. Respir Physiol Neurobiol 2012; 184:257-68. [PMID: 22850177 DOI: 10.1016/j.resp.2012.07.019] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 07/19/2012] [Accepted: 07/20/2012] [Indexed: 11/29/2022]
Abstract
Teleost fishes are able to acclimatize to seawater by secreting excess NaCl by means of specialized "ionocytes" in the gill epithelium. Antibodies against Na(+)/K(+)-ATPase (NKA) have been used since 1996 as a marker for identifying branchial ionocytes. Immunohistochemistry of NKA by itself and in combination with Na(+)/K(+)/2Cl(-) cotransporter and CFTR Cl(-) channel provided convincing evidence that ionocytes are functional during seawater acclimation, and also revealed morphological variations in ionocytes among teleost species. Recent development of antibodies to freshwater- and seawater-specific isoforms of the NKA alpha-subunit has allowed functional distinction of ion absorptive and secretory ionocytes in Atlantic salmon. Cutaneous ionocytes of tilapia embryos serve as a model for branchial ionocytes, allowing identification of 4 types: two involved in ion uptake, one responsible for salt secretion and one with unknown function. Combining molecular genetics, advanced imaging techniques and immunohistochemistry will rapidly advance our understanding of both the unity and diversity of ionocyte function and regulation in fish osmoregulation.
Collapse
Affiliation(s)
- Junya Hiroi
- Department of Anatomy, St. Marianna University School of Medicine, 2-16-1 Sugao, Kawasaki 216-8511, Japan.
| | | |
Collapse
|
29
|
|