1
|
Goyal P, van Leeuwen JL, Muijres FT. Bumblebees compensate for the adverse effects of sidewind during visually guided landings. J Exp Biol 2024; 227:jeb245432. [PMID: 38506223 PMCID: PMC11112349 DOI: 10.1242/jeb.245432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/26/2024] [Indexed: 03/21/2024]
Abstract
Flying animals often encounter winds during visually guided landings. However, how winds affect their flight control strategy during landing is unknown. Here, we investigated how sidewind affects the landing performance and sensorimotor control of foraging bumblebees (Bombus terrestris). We trained bumblebees to forage in a wind tunnel, and used high-speed stereoscopic videography to record 19,421 landing maneuvers in six sidewind speeds (0 to 3.4 m s-1), which correspond to winds encountered in nature. Bumblebees landed less often in higher windspeeds, but the landing durations from free flight were not increased by wind. By testing how bumblebees adjusted their landing control to compensate for adverse effects of sidewind on landing, we showed that the landing strategy in sidewind resembled that in still air, but with important adaptations. Bumblebees landing in a sidewind tended to drift downwind, which they controlled for by performing more hover maneuvers. Surprisingly, the increased hover prevalence did not increase the duration of free-flight landing maneuvers, as these bumblebees flew faster towards the landing platform outside the hover phases. Hence, by alternating these two flight modes along their flight path, free-flying bumblebees negated the adverse effects of high windspeeds on landing duration. Using control theory, we hypothesize that bumblebees achieve this by integrating a combination of direct aerodynamic feedback and a wind-mediated mechanosensory feedback control, with their vision-based sensorimotor control loop. The revealed landing strategy may be commonly used by insects landing in windy conditions, and may inspire the development of landing control strategies onboard autonomously flying robots.
Collapse
Affiliation(s)
- Pulkit Goyal
- Experimental Zoology Group, Wageningen University and Research, 6708 WD Wageningen, The Netherlands
| | - Johan L. van Leeuwen
- Experimental Zoology Group, Wageningen University and Research, 6708 WD Wageningen, The Netherlands
| | - Florian T. Muijres
- Experimental Zoology Group, Wageningen University and Research, 6708 WD Wageningen, The Netherlands
| |
Collapse
|
2
|
Fu Q, Mitchel TW, Kim JS, Chirikjian GS, Li C. Continuous body 3-D reconstruction of limbless animals. J Exp Biol 2021; 224:jeb.220731. [PMID: 33536306 DOI: 10.1242/jeb.220731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 01/18/2021] [Indexed: 01/02/2023]
Abstract
Limbless animals such as snakes, limbless lizards, worms, eels and lampreys move their slender, long bodies in three dimensions to traverse diverse environments. Accurately quantifying their continuous body's 3-D shape and motion is important for understanding body-environment interactions in complex terrain, but this is difficult to achieve (especially for local orientation and rotation). Here, we describe an interpolation method to quantify continuous body 3-D position and orientation. We simplify the body as an elastic rod and apply a backbone optimization method to interpolate continuous body shape between end constraints imposed by tracked markers. Despite over-simplifying the biomechanics, our method achieves a higher interpolation accuracy (∼50% error) in both 3-D position and orientation compared with the widely used cubic B-spline interpolation method. Beyond snakes traversing large obstacles as demonstrated, our method applies to other long, slender, limbless animals and continuum robots. We provide codes and demo files for easy application of our method.
Collapse
Affiliation(s)
- Qiyuan Fu
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Thomas W Mitchel
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jin Seob Kim
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Gregory S Chirikjian
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.,Department of Mechanical Engineering, National University of Singapore, 117575, Singapore
| | - Chen Li
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
3
|
Doussot C, Bertrand OJN, Egelhaaf M. The Critical Role of Head Movements for Spatial Representation During Bumblebees Learning Flight. Front Behav Neurosci 2021; 14:606590. [PMID: 33542681 PMCID: PMC7852487 DOI: 10.3389/fnbeh.2020.606590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/23/2020] [Indexed: 11/20/2022] Open
Abstract
Bumblebees perform complex flight maneuvers around the barely visible entrance of their nest upon their first departures. During these flights bees learn visual information about the surroundings, possibly including its spatial layout. They rely on this information to return home. Depth information can be derived from the apparent motion of the scenery on the bees' retina. This motion is shaped by the animal's flight and orientation: Bees employ a saccadic flight and gaze strategy, where rapid turns of the head (saccades) alternate with flight segments of apparently constant gaze direction (intersaccades). When during intersaccades the gaze direction is kept relatively constant, the apparent motion contains information about the distance of the animal to environmental objects, and thus, in an egocentric reference frame. Alternatively, when the gaze direction rotates around a fixed point in space, the animal perceives the depth structure relative to this pivot point, i.e., in an allocentric reference frame. If the pivot point is at the nest-hole, the information is nest-centric. Here, we investigate in which reference frames bumblebees perceive depth information during their learning flights. By precisely tracking the head orientation, we found that half of the time, the head appears to pivot actively. However, only few of the corresponding pivot points are close to the nest entrance. Our results indicate that bumblebees perceive visual information in several reference frames when they learn about the surroundings of a behaviorally relevant location.
Collapse
Affiliation(s)
- Charlotte Doussot
- Department of Neurobiology, University of Bielefeld, Bielefeld, Germany
| | | | | |
Collapse
|
4
|
Odenthal L, Doussot C, Meyer S, Bertrand OJN. Analysing Head-Thorax Choreography During Free-Flights in Bumblebees. Front Behav Neurosci 2021; 14:610029. [PMID: 33510626 PMCID: PMC7835495 DOI: 10.3389/fnbeh.2020.610029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/14/2020] [Indexed: 01/29/2023] Open
Abstract
Animals coordinate their various body parts, sometimes in elaborate manners to swim, walk, climb, fly, and navigate their environment. The coordination of body parts is essential to behaviors such as, chasing, escaping, landing, and the extraction of relevant information. For example, by shaping the movement of the head and body in an active and controlled manner, flying insects structure their flights to facilitate the acquisition of distance information. They condense their turns into a short period of time (the saccade) interspaced by a relatively long translation (the intersaccade). However, due to technological limitations, the precise coordination of the head and thorax during insects' free-flight remains unclear. Here, we propose methods to analyse the orientation of the head and thorax of bumblebees Bombus terrestris, to segregate the trajectories of flying insects into saccades and intersaccades by using supervised machine learning (ML) techniques, and finally to analyse the coordination between head and thorax by using artificial neural networks (ANN). The segregation of flights into saccades and intersaccades by ML, based on the thorax angular velocities, decreased the misclassification by 12% compared to classically used methods. Our results demonstrate how machine learning techniques can be used to improve the analyses of insect flight structures and to learn about the complexity of head-body coordination. We anticipate our assay to be a starting point for more sophisticated experiments and analysis on freely flying insects. For example, the coordination of head and body movements during collision avoidance, chasing behavior, or negotiation of gaps could be investigated by monitoring the head and thorax orientation of freely flying insects within and across behavioral tasks, and in different species.
Collapse
Affiliation(s)
| | | | - Stefan Meyer
- Department of Informatics, University of Sussex, Brighton, United Kingdom
| | | |
Collapse
|
5
|
Burnett NP, Badger MA, Combes SA. Wind and obstacle motion affect honeybee flight strategies in cluttered environments. J Exp Biol 2020; 223:jeb222471. [PMID: 32561633 DOI: 10.1242/jeb.222471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/09/2020] [Indexed: 11/20/2022]
Abstract
Bees often forage in habitats with cluttered vegetation and unpredictable winds. Navigating obstacles in wind presents a challenge that may be exacerbated by wind-induced motions of vegetation. Although wind-blown vegetation is common in natural habitats, we know little about how the strategies of bees for flying through clutter are affected by obstacle motion and wind. We filmed honeybees Apis mellifera flying through obstacles in a flight tunnel with still air, headwinds or tailwinds. We tested how their ground speeds and centering behavior (trajectory relative to the midline between obstacles) changed when obstacles were moving versus stationary, and how their approach strategies affected flight outcome (successful transit versus collision). We found that obstacle motion affects ground speed: bees flew slower when approaching moving versus stationary obstacles in still air but tended to fly faster when approaching moving obstacles in headwinds or tailwinds. Bees in still air reduced their chances of colliding with obstacles (whether moving or stationary) by reducing ground speed, whereas flight outcomes in wind were not associated with ground speed, but rather with improvement in centering behavior during the approach. We hypothesize that in challenging flight situations (e.g. navigating moving obstacles in wind), bees may speed up to reduce the number of wing collisions that occur if they pass too close to an obstacle. Our results show that wind and obstacle motion can interact to affect flight strategies in unexpected ways, suggesting that wind-blown vegetation may have important effects on foraging behaviors and flight performance of bees in natural habitats.
Collapse
Affiliation(s)
- Nicholas P Burnett
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA 95616, USA
| | - Marc A Badger
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA 95616, USA
| | - Stacey A Combes
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
6
|
Gu M, Wu J, Zhang Y. Wing rapid responses and aerodynamics of fruit flies during headwind gust perturbations. BIOINSPIRATION & BIOMIMETICS 2020; 15:056001. [PMID: 32470950 DOI: 10.1088/1748-3190/ab97fc] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Insects are the main source of inspiration for flapping-wing micro air vehicles (FWMAVs). They frequently encounter wind gust perturbations in natural environments, and effectively cope with these perturbations. Here, we investigated the rapid gust response of flies to instruct the gust stability design of FWMAVs. A novel method to produce impulsive wind gusts that lasted less than 30 ms was designed to observe flies' rapid responses. Headwind gust perturbations were imposed on 14 tethered fruit flies, and the corresponding wing motions during perturbations were recorded by three high-speed cameras. The numerical simulation method was then applied to analyze aerodynamic forces and moments induced by the changes in wing kinematics. Results shows that flies mainly utilize three strategies against headwind gust perturbations, including decreasing the magnitude of stroke positional angle at ventral stroke reversal, delayed rotation and making the deviation angles in upstroke and downstroke closer (i.e. the wing tip trajectories of upstroke and downstroke tend be closer). Consequently, flies resist increments in lift and drag induced by the headwind gusts. However, flies seem to care little about changes in pitch moment in tethered conditions. These results provide useful suggestions for the stability control of FWMAVs during headwind gust perturbations.
Collapse
Affiliation(s)
- Mancang Gu
- School of Transportation Science and Engineering, Beihang University, 100191 Beijing, People's Republic of China
| | | | | |
Collapse
|
7
|
Crall JD, Brokaw J, Gagliardi SF, Mendenhall CD, Pierce NE, Combes SA. Wind drives temporal variation in pollinator visitation in a fragmented tropical forest. Biol Lett 2020; 16:20200103. [PMID: 32315595 DOI: 10.1098/rsbl.2020.0103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Wind is a critical factor in the ecology of pollinating insects such as bees. However, the role of wind in determining patterns of bee abundance and floral visitation rates across space and time is not well understood. Orchid bees are an important and diverse group of neotropical pollinators that harvest pollen, nectar and resin from plants. In addition, male orchid bees collect volatile scents that they store in special chambers in their hind legs, and for which the wind-based dispersal of odours may play a particularly crucial role. Here, we take advantage of this specialized scent foraging behaviour to study the effects of wind on orchid bee visitation at scent sources in a fragmented tropical forest ecosystem. Consistent with previous work, forest cover increased orchid bee visitation. In addition, we find that temporal changes in wind speed and turbulence increase visitation to scent stations within sites. These results suggest that the increased dispersal of attractive scents provided by wind and turbulence outweighs any biomechanical or energetic costs that might deter bees from foraging in these conditions. Overall, our results highlight the significance of wind in the ecology of these important pollinators in neotropical forests.
Collapse
Affiliation(s)
- James D Crall
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Julia Brokaw
- Department of Entomology, University of Minnesota, St Paul, MN, USA
| | - Susan F Gagliardi
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA, USA
| | - Chase D Mendenhall
- Section of Birds, Carnegie Museum of Natural History, Pittsburgh, PA, USA
| | - Naomi E Pierce
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Stacey A Combes
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA, USA
| |
Collapse
|
8
|
Hennessy G, Harris C, Eaton C, Wright P, Jackson E, Goulson D, Ratnieks FF. Gone with the wind: effects of wind on honey bee visit rate and foraging behaviour. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2019.12.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Badger MA, Wang H, Dudley R. Avoiding topsy-turvy: how Anna's hummingbirds ( Calypte anna) fly through upward gusts. ACTA ACUST UNITED AC 2019; 222:222/3/jeb176263. [PMID: 30718291 DOI: 10.1242/jeb.176263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 12/05/2018] [Indexed: 11/20/2022]
Abstract
Flying organisms frequently confront the challenge of maintaining stability when moving within highly dynamic airflows near the Earth's surface. Either aerodynamic or inertial forces generated by appendages and other structures, such as the tail, may be used to offset aerial perturbations, but these responses have not been well characterized. To better understand how hummingbirds modify wing and tail motions in response to individual gusts, we filmed Anna's hummingbirds as they negotiated an upward jet of fast-moving air. Birds exhibited large variation in wing elevation, tail pitch and tail fan angles among transits as they repeatedly negotiated the same gust, and often exhibited a dramatic decrease in body angle (29±6 deg) post-transit. After extracting three-dimensional kinematic features, we identified a spectrum of control strategies for gust transit, with one extreme involving continuous flapping, no tail fanning and little disruption to body posture (23±3 deg downward pitch), and the other extreme characterized by dorsal wing pausing, tail fanning and greater downward body pitch (38±4 deg). The use of a deflectable tail on a glider model transiting the same gust resulted in enhanced stability and can easily be implemented in the design of aerial robots.
Collapse
Affiliation(s)
- Marc A Badger
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hao Wang
- College of Astronautics, Nanjing University of Aeronautics & Astronautics, 29 Yudao St., 210016 Nanjing, China
| | - Robert Dudley
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
10
|
Ravi S, Bertrand O, Siesenop T, Manz LS, Doussot C, Fisher A, Egelhaaf M. Gap perception in bumblebees. ACTA ACUST UNITED AC 2019; 222:222/2/jeb184135. [PMID: 30683732 DOI: 10.1242/jeb.184135] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 10/26/2018] [Indexed: 11/20/2022]
Abstract
A number of insects fly over long distances below the natural canopy, where the physical environment is highly cluttered consisting of obstacles of varying shape, size and texture. While navigating within such environments, animals need to perceive and disambiguate environmental features that might obstruct their flight. The most elemental aspect of aerial navigation through such environments is gap identification and 'passability' evaluation. We used bumblebees to seek insights into the mechanisms used for gap identification when confronted with an obstacle in their flight path and behavioral compensations employed to assess gap properties. Initially, bumblebee foragers were trained to fly though an unobstructed flight tunnel that led to a foraging chamber. After the bees were familiar with this situation, we placed a wall containing a gap that unexpectedly obstructed the flight path on a return trip to the hive. The flight trajectories of the bees as they approached the obstacle wall and traversed the gap were analyzed in order to evaluate their behavior as a function of the distance between the gap and a background wall that was placed behind the gap. Bumblebees initially decelerated when confronted with an unexpected obstacle. Deceleration was first noticed when the obstacle subtended around 35 deg on the retina but also depended on the properties of the gap. Subsequently, the bees gradually traded off their longitudinal velocity to lateral velocity and approached the gap with increasing lateral displacement and lateral velocity. Bumblebees shaped their flight trajectory depending on the salience of the gap, indicated in our case by the optic flow contrast between the region within the gap and on the obstacle, which decreased with decreasing distance between the gap and the background wall. As the optic flow contrast decreased, the bees spent an increasing amount of time moving laterally across the obstacles. During these repeated lateral maneuvers, the bees are probably assessing gap geometry and passability.
Collapse
Affiliation(s)
- Sridhar Ravi
- Department of Neurobiology and Cluster of Excellence Cognitive Interaction Technology (CITEC), Bielefeld University, 33615 Bielefeld, Germany .,School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
| | - Olivier Bertrand
- Department of Neurobiology and Cluster of Excellence Cognitive Interaction Technology (CITEC), Bielefeld University, 33615 Bielefeld, Germany
| | - Tim Siesenop
- Department of Neurobiology and Cluster of Excellence Cognitive Interaction Technology (CITEC), Bielefeld University, 33615 Bielefeld, Germany
| | - Lea-Sophie Manz
- Department of Neurobiology and Cluster of Excellence Cognitive Interaction Technology (CITEC), Bielefeld University, 33615 Bielefeld, Germany.,Faculty of Biology, Johannes Gutenberg-Universität Mainz, 55122 Mainz, Germany
| | - Charlotte Doussot
- Department of Neurobiology and Cluster of Excellence Cognitive Interaction Technology (CITEC), Bielefeld University, 33615 Bielefeld, Germany
| | - Alex Fisher
- School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
| | - Martin Egelhaaf
- Department of Neurobiology and Cluster of Excellence Cognitive Interaction Technology (CITEC), Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
11
|
Bomphrey RJ, Godoy-Diana R. Insect and insect-inspired aerodynamics: unsteadiness, structural mechanics and flight control. CURRENT OPINION IN INSECT SCIENCE 2018; 30:26-32. [PMID: 30410869 PMCID: PMC6218012 DOI: 10.1016/j.cois.2018.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Flying insects impress by their versatility and have been a recurrent source of inspiration for engineering devices. A large body of literature has focused on various aspects of insect flight, with an essential part dedicated to the dynamics of flapping wings and their intrinsically unsteady aerodynamic mechanisms. Insect wings flex during flight and a better understanding of structural mechanics and aeroelasticity is emerging. Most recently, insights from solid and fluid mechanics have been integrated with physiological measurements from visual and mechanosensors in the context of flight control in steady airs and through turbulent conditions. We review the key recent advances concerning flight in unsteady environments and how the multi-body mechanics of the insect structure-wings and body-are at the core of the flight control question. The issues herein should be considered when applying bio-informed design principles to robotic flapping wings.
Collapse
Affiliation(s)
- Richard J Bomphrey
- Structure and Motion Laboratory, Royal Veterinary College, London, United Kingdom
| | - Ramiro Godoy-Diana
- Physique et Mécanique des Milieux Hétérogènes laboratory (PMMH), CNRS, ESPCI Paris – PSL Research University, Sorbonne Université, Université Paris Diderot, Paris, France
| |
Collapse
|
12
|
Matthews M, Sponberg S. Hawkmoth flight in the unsteady wakes of flowers. ACTA ACUST UNITED AC 2018; 221:jeb.179259. [PMID: 30291159 DOI: 10.1242/jeb.179259] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 09/26/2018] [Indexed: 02/06/2023]
Abstract
Flying animals maneuver and hover through environments where wind gusts and flower wakes produce unsteady flow. Although both flight maneuvers and aerodynamic mechanisms have been studied independently, little is known about how these interact in an environment where flow is already unsteady. Moths forage from flowers by hovering in the flower's wake. We investigated hawkmoths tracking a 3D-printed robotic flower in a wind tunnel. We visualized the flow in the wake and around the wings and compared tracking performance with previous experiments in a still-air flight chamber. As in still air, moths flying in the flower wake exhibit near-perfect tracking at the low frequencies at which natural flowers move. However, tracking in the flower wake results in a larger overshoot between 2 and 5 Hz. System identification of flower tracking reveals that moths also display reduced-order dynamics in wind compared with still air. Smoke visualization of the flower wake shows that the dominant vortex shedding corresponds to the same frequency band as the increased overshoot. Despite these large effects on tracking dynamics in wind, the leading edge vortex (LEV) remains bound to the wing throughout the wingstroke and does not burst. The LEV also maintains the same qualitative structure seen in steady air. Persistence of a stable LEV during decreased flower tracking demonstrates the interplay between hovering and maneuvering.
Collapse
Affiliation(s)
- Megan Matthews
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Simon Sponberg
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
13
|
Ortega-Jiménez VM, Combes SA. Living in a trash can: turbulent convective flows impair Drosophila flight performance. J R Soc Interface 2018; 15:rsif.2018.0636. [PMID: 30355810 DOI: 10.1098/rsif.2018.0636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/01/2018] [Indexed: 11/12/2022] Open
Abstract
Turbulent flows associated with thermal convection are common in areas where the ground is heated by solar radiation, fermentation or other processes. However, it is unknown how these flow instabilities affect the locomotion of small insects, like fruit flies, that inhabit deserts and urban landscapes where surface temperatures can reach extreme values. We quantified flight performance of fruit flies (Drosophila melanogaster) traversing a chamber through still air and turbulent Rayleigh-Bénard convection cells produced by a vertical temperature gradient. A total of 34% of individuals were unable to reach the end of the chamber in convection, although peak flow speeds were modest relative to typical outdoor airflow. Individuals that were successful in convection were faster fliers and had larger wing areas than those that failed. All flies displayed higher pitch angles and lower mean flight speeds in convection. Successful individuals took longer to cross the chamber in convection, due to lower flight speeds and greater path sinuosity. All individuals displayed higher flapping frequencies in convection, and successful individuals also reduced stroke amplitude. Our results suggest that thermal convection poses a significant challenge for small fliers, resulting in increased travel times and energetic costs, or in some cases precluding insects from traversing these environments entirely.
Collapse
Affiliation(s)
| | - Stacey A Combes
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA, USA
| |
Collapse
|
14
|
Jakobi T, Kolomenskiy D, Ikeda T, Watkins S, Fisher A, Liu H, Ravi S. Bees with attitude: the effects of directed gusts on flight trajectories. Biol Open 2018; 7:bio.034074. [PMID: 30135080 PMCID: PMC6215418 DOI: 10.1242/bio.034074] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Flight is a complicated task at the centimetre scale particularly due to unsteady air fluctuations which are ubiquitous in outdoor flight environments. Flying organisms deal with these difficulties using active and passive control mechanisms to steer their body motion. Body attitudes of flapping organisms are linked with their resultant flight trajectories and performance, yet little is understood about how isolated unsteady aerodynamic phenomena affect the interlaced dynamics of such systems. In this study, we examined freely flying bumblebees subject to a single isolated gust to emulate aerodynamic disturbances encountered in nature. Bumblebees are expert commanders of the aerial domain as they persistently forage within complex terrain elements. By tracking the three-dimensional dynamics of bees flying through gusts, we determined the sequences of motion that permit flight in three disturbance conditions: sideward, upward and downward gusts. Bees executed a series of passive impulsive maneuvers followed by active recovery maneuvers. Impulsive motion was unique in each gust direction, maintaining control by passive manipulation of the body. Bees pitched up and slowed down at the beginning of recovery in every disturbance, followed by corrective maneuvers which brought body attitudes back to their original state. Bees were displaced the most by the sideward gust, displaying large lateral translations and roll deviations. Upward gusts were easier for bees to fly through, causing only minor flight changes and minimal recovery times. Downward gusts severely impaired the control response of bees, inflicting strong adverse forces which sharply upset trajectories. Bees used a variety of control strategies when flying in each disturbance, offering new insights into insect-scale flapping flight and bio-inspired robotic systems.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Timothy Jakobi
- School of Aerospace Mechanical and Manufacturing Engineering, RMIT University, Melbourne, 3083, Australia
| | - Dmitry Kolomenskiy
- Japan Agency for Marine-Earth Science Technology (JAMSTEC), Yokohama-shi, 236-0001, Japan
| | - Teruaki Ikeda
- Graduate School of Engineering, Chiba University, Chiba-shi, 263-8522, Japan
| | - Simon Watkins
- School of Aerospace Mechanical and Manufacturing Engineering, RMIT University, Melbourne, 3083, Australia
| | - Alex Fisher
- School of Aerospace Mechanical and Manufacturing Engineering, RMIT University, Melbourne, 3083, Australia
| | - Hao Liu
- Graduate School of Engineering, Chiba University, Chiba-shi, 263-8522, Japan
| | - Sridhar Ravi
- School of Aerospace Mechanical and Manufacturing Engineering, RMIT University, Melbourne, 3083, Australia
| |
Collapse
|
15
|
Liu H, Ravi S, Kolomenskiy D, Tanaka H. Biomechanics and biomimetics in insect-inspired flight systems. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0390. [PMID: 27528780 PMCID: PMC4992714 DOI: 10.1098/rstb.2015.0390] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2016] [Indexed: 11/12/2022] Open
Abstract
Insect- and bird-size drones-micro air vehicles (MAV) that can perform autonomous flight in natural and man-made environments are now an active and well-integrated research area. MAVs normally operate at a low speed in a Reynolds number regime of 10(4)-10(5) or lower, in which most flying animals of insects, birds and bats fly, and encounter unconventional challenges in generating sufficient aerodynamic forces to stay airborne and in controlling flight autonomy to achieve complex manoeuvres. Flying insects that power and control flight by flapping wings are capable of sophisticated aerodynamic force production and precise, agile manoeuvring, through an integrated system consisting of wings to generate aerodynamic force, muscles to move the wings and a control system to modulate power output from the muscles. In this article, we give a selective review on the state of the art of biomechanics in bioinspired flight systems in terms of flapping and flexible wing aerodynamics, flight dynamics and stability, passive and active mechanisms in stabilization and control, as well as flapping flight in unsteady environments. We further highlight recent advances in biomimetics of flapping-wing MAVs with a specific focus on insect-inspired wing design and fabrication, as well as sensing systems.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'.
Collapse
Affiliation(s)
- Hao Liu
- Graduate School of Engineering, Chiba University, Chiba, Japan Shanghai-Jiao Tong University and Chiba University International Cooperative Research Centre (SJTU-CU ICRC), Shanghai, People's Republic of China
| | - Sridhar Ravi
- Graduate School of Engineering, Chiba University, Chiba, Japan School of Aerospace Mechanical and Manufacturing Engineering, RMIT University, Melbourne, Australia
| | | | - Hiroto Tanaka
- Graduate School of Science and Engineering, Tokyo Institute of Technology, Tokyo, Japan
| |
Collapse
|
16
|
Quinn DB, van Halder Y, Lentink D. Adaptive control of turbulence intensity is accelerated by frugal flow sampling. J R Soc Interface 2017; 14:rsif.2017.0621. [PMID: 29118116 DOI: 10.1098/rsif.2017.0621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/17/2017] [Indexed: 11/12/2022] Open
Abstract
The aerodynamic performance of vehicles and animals, as well as the productivity of turbines and energy harvesters, depends on the turbulence intensity of the incoming flow. Previous studies have pointed at the potential benefits of active closed-loop turbulence control. However, it is unclear what the minimal sensory and algorithmic requirements are for realizing this control. Here we show that very low-bandwidth anemometers record sufficient information for an adaptive control algorithm to converge quickly. Our online Newton-Raphson algorithm tunes the turbulence in a recirculating wind tunnel by taking readings from an anemometer in the test section. After starting at 9% turbulence intensity, the algorithm converges on values ranging from 10% to 45% in less than 12 iterations within 1% accuracy. By down-sampling our measurements, we show that very-low-bandwidth anemometers record sufficient information for convergence. Furthermore, down-sampling accelerates convergence by smoothing gradients in turbulence intensity. Our results explain why low-bandwidth anemometers in engineering and mechanoreceptors in biology may be sufficient for adaptive control of turbulence intensity. Finally, our analysis suggests that, if certain turbulent eddy sizes are more important to control than others, frugal adaptive control schemes can be particularly computationally effective for improving performance.
Collapse
Affiliation(s)
- Daniel B Quinn
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305-3030, USA
| | - Yous van Halder
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305-3030, USA
| | - David Lentink
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305-3030, USA
| |
Collapse
|
17
|
Liu P, Cheng B. Limitations of rotational manoeuvrability in insects and hummingbirds: evaluating the effects of neuro-biomechanical delays and muscle mechanical power. J R Soc Interface 2017; 14:rsif.2017.0068. [PMID: 28679665 DOI: 10.1098/rsif.2017.0068] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 06/05/2017] [Indexed: 11/12/2022] Open
Abstract
Flying animals ranging in size from fruit flies to hummingbirds are nimble fliers with remarkable rotational manoeuvrability. The degrees of manoeuvrability among these animals, however, are noticeably diverse and do not simply follow scaling rules of flight dynamics or muscle power capacity. As all manoeuvres emerge from the complex interactions of neural, physiological and biomechanical processes of an animal's flight control system, these processes give rise to multiple limiting factors that dictate the maximal manoeuvrability attainable by an animal. Here using functional models of an animal's flight control system, we investigate the effects of three such limiting factors, including neural and biomechanical (from limited flapping frequency) delays and muscle mechanical power, for two insect species and two hummingbird species, undergoing roll, pitch and yaw rotations. The results show that for animals with similar degree of manoeuvrability, for example, fruit flies and hummingbirds, the underlying limiting factors are different, as the manoeuvrability of fruit flies is only limited by neural delays and that of hummingbirds could be limited by all three factors. In addition, the manoeuvrability also appears to be the highest about the roll axis as it requires the least muscle mechanical power and can tolerate the largest neural delays.
Collapse
Affiliation(s)
- Pan Liu
- Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Bo Cheng
- Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
18
|
Chen MW, Wu JH, Sun M. Generation of the pitch moment during the controlled flight after takeoff of fruitflies. PLoS One 2017; 12:e0173481. [PMID: 28296907 PMCID: PMC5351871 DOI: 10.1371/journal.pone.0173481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 02/21/2017] [Indexed: 11/29/2022] Open
Abstract
In the present paper, the controlled flight of fruitflies after voluntary takeoff is studied. Wing and body kinematics of the insects after takeoff are measured using high-speed video techniques, and the aerodynamic force and moment are calculated by the computational fluid dynamics method based on the measured data. How the control moments are generated is analyzed by correlating the computed moments with the wing kinematics. A fruit-fly has a large pitch-up angular velocity owing to the takeoff jump and the fly controls its body attitude by producing pitching moments. It is found that the pitching moment is produced by changes in both the aerodynamic force and the moment arm. The change in the aerodynamic force is mainly due to the change in angle of attack. The change in the moment arm is mainly due to the change in the mean stroke angle and deviation angle, and the deviation angle plays a more important role than the mean stroke angle in changing the moment arm (note that change in deviation angle implies variation in the position of the aerodynamic stroke plane with respect to the anatomical stroke plane). This is unlike the case of fruitflies correcting pitch perturbations in steady free flight, where they produce pitching moment mainly by changes in mean stroke angle.
Collapse
Affiliation(s)
- Mao Wei Chen
- School of Transportation Science and Engineering, Beihang University, Beijing, China
- * E-mail:
| | - Jiang Hao Wu
- School of Transportation Science and Engineering, Beihang University, Beijing, China
| | - Mao Sun
- Institute of Fluid Mechanics, Beihang University, Beijing, China
| |
Collapse
|
19
|
Quinn DB, Watts A, Nagle T, Lentink D. A new low-turbulence wind tunnel for animal and small vehicle flight experiments. ROYAL SOCIETY OPEN SCIENCE 2017; 4:160960. [PMID: 28405384 PMCID: PMC5383841 DOI: 10.1098/rsos.160960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 03/01/2017] [Indexed: 06/07/2023]
Abstract
Our understanding of animal flight benefits greatly from specialized wind tunnels designed for flying animals. Existing facilities can simulate laminar flow during straight, ascending and descending flight, as well as at different altitudes. However, the atmosphere in which animals fly is even more complex. Flow can be laminar and quiet at high altitudes but highly turbulent near the ground, and gusts can rapidly change wind speed. To study flight in both laminar and turbulent environments, a multi-purpose wind tunnel for studying animal and small vehicle flight was built at Stanford University. The tunnel is closed-circuit and can produce airspeeds up to 50 m s-1 in a rectangular test section that is 1.0 m wide, 0.82 m tall and 1.73 m long. Seamless honeycomb and screens in the airline together with a carefully designed contraction reduce centreline turbulence intensities to less than or equal to 0.030% at all operating speeds. A large diameter fan and specialized acoustic treatment allow the tunnel to operate at low noise levels of 76.4 dB at 20 m s-1. To simulate high turbulence, an active turbulence grid can increase turbulence intensities up to 45%. Finally, an open jet configuration enables stereo high-speed fluoroscopy for studying musculoskeletal control in turbulent flow.
Collapse
Affiliation(s)
- Daniel B. Quinn
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | | | | | - David Lentink
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
20
|
Crall JD, Chang JJ, Oppenheimer RL, Combes SA. Foraging in an unsteady world: bumblebee flight performance in field-realistic turbulence. Interface Focus 2017; 7:20160086. [PMID: 28163878 DOI: 10.1098/rsfs.2016.0086] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Natural environments are characterized by variable wind that can pose significant challenges for flying animals and robots. However, our understanding of the flow conditions that animals experience outdoors and how these impact flight performance remains limited. Here, we combine laboratory and field experiments to characterize wind conditions encountered by foraging bumblebees in outdoor environments and test the effects of these conditions on flight. We used radio-frequency tags to track foraging activity of uniquely identified bumblebee (Bombus impatiens) workers, while simultaneously recording local wind flows. Despite being subjected to a wide range of speeds and turbulence intensities, we find that bees do not avoid foraging in windy conditions. We then examined the impacts of turbulence on bumblebee flight in a wind tunnel. Rolling instabilities increased in turbulence, but only at higher wind speeds. Bees displayed higher mean wingbeat frequency and stroke amplitude in these conditions, as well as increased asymmetry in stroke amplitude-suggesting that bees employ an array of active responses to enable flight in turbulence, which may increase the energetic cost of flight. Our results provide the first direct evidence that moderate, environmentally relevant turbulence affects insect flight performance, and suggest that flying insects use diverse mechanisms to cope with these instabilities.
Collapse
Affiliation(s)
- J D Crall
- Department of Organismic and Evolutionary Biology , Harvard University , Cambridge, MA , USA
| | - J J Chang
- Department of Neuroscience , Columbia University , New York, NY , USA
| | - R L Oppenheimer
- Department of Biological Sciences , University of New Hampshire , Durham, NH , USA
| | - S A Combes
- Department of Neurobiology, Physiology, and Behavior , University of California, Davis , Davis, CA , USA
| |
Collapse
|
21
|
Houot B, Gigot V, Robichon A, Ferveur JF. Free flight odor tracking in Drosophila: Effect of wing chemosensors, sex and pheromonal gene regulation. Sci Rep 2017; 7:40221. [PMID: 28067325 PMCID: PMC5220339 DOI: 10.1038/srep40221] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/05/2016] [Indexed: 12/02/2022] Open
Abstract
The evolution of powered flight in insects had major consequences for global biodiversity and involved the acquisition of adaptive processes allowing individuals to disperse to new ecological niches. Flies use both vision and olfactory input from their antennae to guide their flight; chemosensors on fly wings have been described, but their function remains mysterious. We studied Drosophila flight in a wind tunnel. By genetically manipulating wing chemosensors, we show that these structures play an essential role in flight performance with a sex-specific effect. Pheromonal systems are also involved in Drosophila flight guidance: transgenic expression of the pheromone production and detection gene, desat1, produced low, rapid flight that was absent in control flies. Our study suggests that the sex-specific modulation of free-flight odor tracking depends on gene expression in various fly tissues including wings and pheromonal-related tissues.
Collapse
Affiliation(s)
- Benjamin Houot
- Centre des Sciences du Goût et de l'Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne Franche-Comté, 6, Bd Gabriel, 21000 Dijon, France
| | - Vincent Gigot
- Centre des Sciences du Goût et de l'Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne Franche-Comté, 6, Bd Gabriel, 21000 Dijon, France
| | - Alain Robichon
- UMR INRA/CNRS/UNS 7254, Institut Sophia Agrobiotech, 400 route des Chappes, P.O. Box 167, 06903 Sophia Antipolis, France
| | - Jean-François Ferveur
- Centre des Sciences du Goût et de l'Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne Franche-Comté, 6, Bd Gabriel, 21000 Dijon, France
| |
Collapse
|
22
|
Bumblebees minimize control challenges by combining active and passive modes in unsteady winds. Sci Rep 2016; 6:35043. [PMID: 27752047 PMCID: PMC5067513 DOI: 10.1038/srep35043] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 09/01/2016] [Indexed: 11/25/2022] Open
Abstract
The natural wind environment that volant insects encounter is unsteady and highly complex, posing significant flight-control and stability challenges. It is critical to understand the strategies insects employ to safely navigate in natural environments. We combined experiments on free flying bumblebees with high-fidelity numerical simulations and lower-order modeling to identify the mechanics that mediate insect flight in unsteady winds. We trained bumblebees to fly upwind towards an artificial flower in a wind tunnel under steady wind and in a von Kármán street formed in the wake of a cylinder. Analysis revealed that at lower frequencies in both steady and unsteady winds the bees mediated lateral movement with body roll - typical casting motion. Numerical simulations of a bumblebee in similar conditions permitted the separation of the passive and active components of the flight trajectories. Consequently, we derived simple mathematical models that describe these two motion components. Comparison between the free-flying live and modeled bees revealed a novel mechanism that enables bees to passively ride out high-frequency perturbations while performing active maneuvers at lower frequencies. The capacity of maintaining stability by combining passive and active modes at different timescales provides a viable means for animals and machines to tackle the challenges posed by complex airflows.
Collapse
|
23
|
Li Y, Cao F, Thang Vo Doan T, Sato H. Controlled banked turns in coleopteran flight measured by a miniature wireless inertial measurement unit. BIOINSPIRATION & BIOMIMETICS 2016; 11:056018. [PMID: 27679933 DOI: 10.1088/1748-3190/11/5/056018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The mechanisms and principles of insect flight have long been investigated by researchers working on micro and nano air vehicles (MAVs/NAVs). However, studies of insect flight maneuvers require high speed filming and high spatial resolution in a small experimental space, or the tethering of the insect to a fixed place. Under such artificial conditions, the insects may deviate its flying behavior from that of regular flight. In this study, we mounted a tiny wireless system, or 'backpack', on live beetles (Mecynorrhina torquata; length 62 ± 8 mm; mass 7.4 ± 1.3 g) freely flying in a large laboratory space. The backpack contains a micro inertial measurement unit (IMU) that was especially designed and manufactured for this purpose. Owing to the small mass (∼1.30 g) and dimensions (∼2.3 cm2) of the backpack and the high accuracy of the IMU, we could remotely record the beetle in free flight. The free flight data revealed a strong linear correlation between the roll angle and yaw angular velocity. The strength of the correlation was quantified by the correlation coefficients and mean values. The change in roll angle preceded the change in yaw angular velocity. Moreover, there were frequent fluctuations in the roll angular velocity, which were uncorrelated with the yaw angular velocity. Apart from the strong correlation, these findings imply that Mecynorrhina torquata actively manipulates its roll rotation without coupling to the yaw rotation.
Collapse
Affiliation(s)
- Yao Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | | | | | | |
Collapse
|
24
|
Ravi S, Garcia JE, Wang C, Dyer AG. The answer is blowing in the wind: free-flying honeybees can integrate visual and mechano-sensory inputs for making complex foraging decisions. ACTA ACUST UNITED AC 2016; 219:3465-3472. [PMID: 27591315 DOI: 10.1242/jeb.142679] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/25/2016] [Indexed: 11/20/2022]
Abstract
Bees navigate in complex environments using visual, olfactory and mechano-sensorial cues. In the lowest region of the atmosphere, the wind environment can be highly unsteady and bees employ fine motor-skills to enhance flight control. Recent work reveals sophisticated multi-modal processing of visual and olfactory channels by the bee brain to enhance foraging efficiency, but it currently remains unclear whether wind-induced mechano-sensory inputs are also integrated with visual information to facilitate decision making. Individual honeybees were trained in a linear flight arena with appetitive-aversive differential conditioning to use a context-setting cue of 3 m s-1 cross-wind direction to enable decisions about either a 'blue' or 'yellow' star stimulus being the correct alternative. Colour stimuli properties were mapped in bee-specific opponent-colour spaces to validate saliency, and to thus enable rapid reverse learning. Bees were able to integrate mechano-sensory and visual information to facilitate decisions that were significantly different to chance expectation after 35 learning trials. An independent group of bees were trained to find a single rewarding colour that was unrelated to the wind direction. In these trials, wind was not used as a context-setting cue and served only as a potential distracter in identifying the relevant rewarding visual stimuli. Comparison between respective groups shows that bees can learn to integrate visual and mechano-sensory information in a non-elemental fashion, revealing an unsuspected level of sensory processing in honeybees, and adding to the growing body of knowledge on the capacity of insect brains to use multi-modal sensory inputs in mediating foraging behaviour.
Collapse
Affiliation(s)
- Sridhar Ravi
- RMIT University, School of Aerospace, Mechanical and Manufacturing Engineering, Bundoora, VIC 3083, Australia
| | - Jair E Garcia
- RMIT University, School of Media and Communication, Melbourne, VIC 3000, Australia
| | - Chun Wang
- RMIT University, School of Aerospace, Mechanical and Manufacturing Engineering, Bundoora, VIC 3083, Australia
| | - Adrian G Dyer
- RMIT University, School of Media and Communication, Melbourne, VIC 3000, Australia
| |
Collapse
|
25
|
Suriyampola PS, Sykes DJ, Khemka A, Shelton DS, Bhat A, Martins EP. Water flow impacts group behavior in zebrafish (Danio rerio). Behav Ecol 2016. [DOI: 10.1093/beheco/arw138] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
26
|
Fisher A, Ravi S, Watkins S, Watmuff J, Wang C, Liu H, Petersen P. The gust-mitigating potential of flapping wings. BIOINSPIRATION & BIOMIMETICS 2016; 11:046010. [PMID: 27481211 DOI: 10.1088/1748-3190/11/4/046010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Nature's flapping-wing flyers are adept at negotiating highly turbulent flows across a wide range of scales. This is in part due to their ability to quickly detect and counterract disturbances to their flight path, but may also be assisted by an inherent aerodynamic property of flapping wings. In this study, we subject a mechanical flapping wing to replicated atmospheric turbulence across a range of flapping frequencies and turbulence intensities. By means of flow visualization and surface pressure measurements, we determine the salient effects of large-scale freestream turbulence on the flow field, and on the phase-average and fluctuating components of pressure and lift. It is shown that at lower flapping frequencies, turbulence dominates the instantaneous flow field, and the random fluctuating component of lift contributes significantly to the total lift. At higher flapping frequencies, kinematic forcing begins to dominate and the flow field becomes more consistent from cycle to cycle. Turbulence still modulates the flapping-induced flow field, as evidenced in particular by a variation in the timing and extent of leading edge vortex formation during the early downstroke. The random fluctuating component of lift contributes less to the total lift at these frequencies, providing evidence that flapping wings do indeed provide some inherent gust mitigation.
Collapse
|
27
|
Crall JD, Ravi S, Mountcastle AM, Combes SA. Bumblebee flight performance in cluttered environments: effects of obstacle orientation, body size and acceleration. ACTA ACUST UNITED AC 2016; 218:2728-37. [PMID: 26333927 DOI: 10.1242/jeb.121293] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Locomotion through structurally complex environments is fundamental to the life history of most flying animals, and the costs associated with movement through clutter have important consequences for the ecology and evolution of volant taxa. However, few studies have directly investigated how flying animals navigate through cluttered environments, or examined which aspects of flight performance are most critical for this challenging task. Here, we examined how body size, acceleration and obstacle orientation affect the flight of bumblebees in an artificial, cluttered environment. Non-steady flight performance is often predicted to decrease with body size, as a result of a presumed reduction in acceleration capacity, but few empirical tests of this hypothesis have been performed in flying animals. We found that increased body size is associated with impaired flight performance (specifically transit time) in cluttered environments, but not with decreased peak accelerations. In addition, previous studies have shown that flying insects can produce higher accelerations along the lateral body axis, suggesting that if maneuvering is constrained by acceleration capacity, insects should perform better when maneuvering around objects laterally rather than vertically. Our data show that bumblebees do generate higher accelerations in the lateral direction, but we found no difference in their ability to pass through obstacle courses requiring lateral versus vertical maneuvering. In sum, our results suggest that acceleration capacity is not a primary determinant of flight performance in clutter, as is often assumed. Rather than being driven by the scaling of acceleration, we show that the reduced flight performance of larger bees in cluttered environments is driven by the allometry of both path sinuosity and mean flight speed. Specifically, differences in collision-avoidance behavior underlie much of the variation in flight performance across body size, with larger bees negotiating obstacles more cautiously. Thus, our results show that cluttered environments challenge the flight capacity of insects, but in surprising ways that emphasize the importance of behavioral and ecological context for understanding flight performance in complex environments.
Collapse
Affiliation(s)
- James D Crall
- Concord Field Station, Department of Organismic and Evolutionary Biology, Harvard University, 100 Old Causeway Rd, Bedford, MA 01730, USA
| | - Sridhar Ravi
- School of Aerospace Mechanical and Manufacturing Engineering, RMIT University, Melbourne, VIC 3001, Australia
| | - Andrew M Mountcastle
- Concord Field Station, Department of Organismic and Evolutionary Biology, Harvard University, 100 Old Causeway Rd, Bedford, MA 01730, USA
| | - Stacey A Combes
- Concord Field Station, Department of Organismic and Evolutionary Biology, Harvard University, 100 Old Causeway Rd, Bedford, MA 01730, USA
| |
Collapse
|
28
|
Chang JJ, Crall JD, Combes SA. Wind alters landing dynamics in bumblebees. ACTA ACUST UNITED AC 2016; 219:2819-2822. [PMID: 27436135 DOI: 10.1242/jeb.137976] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 07/10/2016] [Indexed: 11/20/2022]
Abstract
Landing is an important but understudied behavior that flying animals must perform constantly. In still air, insects decelerate smoothly prior to landing by employing the relatively simple strategy of maintaining a constant rate of image expansion during their approach. However, it is unclear whether insects employ this strategy when faced with challenging flight environments. Here, we tested the effects of wind on bumblebees (Bombus impatiens) landing on flowers. We find that bees' approach paths to flowers shift from multidirectional in still air to unidirectional in wind, regardless of flower orientation. In addition, bees landing in a 3.5 m s-1 headwind do not decelerate smoothly, but rather maintain a high flight speed until contact, resulting in higher peak decelerations upon impact. These findings suggest that wind has a strong influence on insect landing behavior and performance, with important implications for the design of micro aerial vehicles and the ecomechanics of insect flight.
Collapse
Affiliation(s)
- Jeremy J Chang
- Department of Biology, Swarthmore College, Swarthmore, PA 19081, USA Department of Organismic and Evolutionary Biology, Harvard University, Concord Field Station, Bedford, MA 01730, USA
| | - James D Crall
- Department of Organismic and Evolutionary Biology, Harvard University, Concord Field Station, Bedford, MA 01730, USA
| | - Stacey A Combes
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95616, USA
| |
Collapse
|
29
|
Shyy W, Kang CK, Chirarattananon P, Ravi S, Liu H. Aerodynamics, sensing and control of insect-scale flapping-wing flight. Proc Math Phys Eng Sci 2016; 472:20150712. [PMID: 27118897 PMCID: PMC4841661 DOI: 10.1098/rspa.2015.0712] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/04/2016] [Indexed: 11/12/2022] Open
Abstract
There are nearly a million known species of flying insects and 13 000 species of flying warm-blooded vertebrates, including mammals, birds and bats. While in flight, their wings not only move forward relative to the air, they also flap up and down, plunge and sweep, so that both lift and thrust can be generated and balanced, accommodate uncertain surrounding environment, with superior flight stability and dynamics with highly varied speeds and missions. As the size of a flyer is reduced, the wing-to-body mass ratio tends to decrease as well. Furthermore, these flyers use integrated system consisting of wings to generate aerodynamic forces, muscles to move the wings, and sensing and control systems to guide and manoeuvre. In this article, recent advances in insect-scale flapping-wing aerodynamics, flexible wing structures, unsteady flight environment, sensing, stability and control are reviewed with perspective offered. In particular, the special features of the low Reynolds number flyers associated with small sizes, thin and light structures, slow flight with comparable wind gust speeds, bioinspired fabrication of wing structures, neuron-based sensing and adaptive control are highlighted.
Collapse
Affiliation(s)
- Wei Shyy
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Chang-kwon Kang
- Department of Mechanical and Aerospace Engineering, University of Alabama in Huntsville, Huntsville, AL, USA
| | - Pakpong Chirarattananon
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Sridhar Ravi
- Graduate School of Engineering, Chiba University, Chiba, Japan
- School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Melbourne, Victoria, Australia
| | - Hao Liu
- School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Melbourne, Victoria, Australia
- Shanghai-Jiao Tong University and Chiba, University International Cooperative Research Centre (SJTU-CU ICRC), Minhang, Shanghai, China
| |
Collapse
|
30
|
Engels T, Kolomenskiy D, Schneider K, Lehmann FO, Sesterhenn J. Bumblebee Flight in Heavy Turbulence. PHYSICAL REVIEW LETTERS 2016; 116:028103. [PMID: 26824570 DOI: 10.1103/physrevlett.116.028103] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Indexed: 06/05/2023]
Abstract
High-resolution numerical simulations of a tethered model bumblebee in forward flight are performed superimposing homogeneous isotropic turbulent fluctuations to the uniform inflow. Despite tremendous variation in turbulence intensity, between 17% and 99% with respect to the mean flow, we do not find significant changes in cycle-averaged aerodynamic forces, moments, or flight power when averaged over realizations, compared to laminar inflow conditions. The variance of aerodynamic measures, however, significantly increases with increasing turbulence intensity, which may explain flight instabilities observed in freely flying bees.
Collapse
Affiliation(s)
- T Engels
- M2P2-CNRS & Aix-Marseille Université, 38 rue Joliot-Curie, 13451 Marseille cedex 20 France
- ISTA, Technische Universität Berlin, Müller-Breslau-Strasse 12, 10623 Berlin, Germany
| | - D Kolomenskiy
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-Cho, Inage-Ku, Chiba-Shi, Chiba 263-8522, Japan
| | - K Schneider
- M2P2-CNRS & Aix-Marseille Université, 38 rue Joliot-Curie, 13451 Marseille cedex 20 France
| | - F-O Lehmann
- Department of Animal Physiology, University of Rostock, Albert-Einstein-Strasse 3, 18059 Rostock, Germany
| | - J Sesterhenn
- ISTA, Technische Universität Berlin, Müller-Breslau-Strasse 12, 10623 Berlin, Germany
| |
Collapse
|
31
|
Mistick EA, Mountcastle AM, Combes SA. Wing flexibility improves bumblebee flight stability. J Exp Biol 2016; 219:3384-3390. [DOI: 10.1242/jeb.133157] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 08/17/2016] [Indexed: 11/20/2022]
Abstract
Insect wings do not contain intrinsic musculature to change shape, but rather bend and twist passively during flight. Some insect wings feature flexible joints along their veins that contain patches of resilin, a rubber-like protein. Bumblebee wings exhibit a central resilin joint (1m-cu) that has previously been shown to improve vertical force production during hovering flight. In this study, we artificially stiffened bumblebee (Bombus impatiens) wings in vivo by applying a micro-splint to the 1m-cu joint, and measured the consequences for body stability during forward flight in both laminar and turbulent airflow. In laminar flow, bees with stiffened wings exhibited significantly higher mean rotation rates and standard deviation of orientation about the roll axis. Decreasing the wing’s flexibility significantly increased its projected surface area relative to the oncoming airflow, likely increasing the drag force it experienced during particular phases of the wingstroke. We hypothesize that higher drag forces on stiffened wings decrease body stability when the left and right wings encounter different flow conditions. Wing splinting also led to a small increase in body rotation rates in turbulent airflow, but this change was not statistically significant, possibly because bees with stiffened wings changed their flight behavior in turbulent flow. Overall, we find that wing flexibility improves flight stability in bumblebees, adding to the growing appreciation that wing flexibility is not merely an inevitable liability in flapping flight, but can enhance flight performance.
Collapse
Affiliation(s)
- Emily A. Mistick
- Harvard University, Department of Organismic and Evolutionary Biology, Concord Field Station, 100 Old Causeway Road, Bedford, MA 01730, USA
| | - Andrew M. Mountcastle
- Harvard University, Department of Organismic and Evolutionary Biology, Concord Field Station, 100 Old Causeway Road, Bedford, MA 01730, USA
| | - Stacey A. Combes
- University of California, Davis, Department of Neurobiology, Physiology, and Behavior, 1 Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
32
|
Wolf S, Chittka L. Male bumblebees, Bombus terrestris, perform equally well as workers in a serial colour-learning task. Anim Behav 2016; 111:147-155. [PMID: 26877542 PMCID: PMC4712640 DOI: 10.1016/j.anbehav.2015.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The learning capacities of males and females may differ with sex-specific behavioural requirements. Bumblebees provide a useful model system to explore how different lifestyles are reflected in learning abilities, because their (female but sterile) workers and males engage in fundamentally different behaviour routines. Bumblebee males, like workers, embark on active flower foraging but in contrast to workers they have to trade off their feeding with mate search, potentially affecting their abilities to learn and utilize floral cues efficiently during foraging. We used a serial colour-learning task with freely flying males and workers to compare their ability to flexibly learn visual floral cues with reward in a foraging scenario that changed over time. Male bumblebees did not differ from workers in both their learning speed and their ability to overcome previously acquired associations, when these ceased to predict reward. In all foraging tasks we found a significant improvement in choice accuracy in both sexes over the course of the training. In both sexes, the characteristics of the foraging performance depended largely on the colour difference of the two presented feeder types. Large colour distances entailed fast and reliable learning of the rewarding feeders whereas choice accuracy on highly similar colours improved significantly more slowly. Conversely, switching from a learned feeder type to a novel one was fastest for similar feeder colours and slow for highly different ones. Overall, we show that behavioural sex dimorphism in bumblebees did not affect their learning abilities beyond the mating context. We discuss the possible drivers and limitations shaping the foraging abilities of males and workers and implications for pollination ecology. We also suggest stingless male bumblebees as an advantageous alternative model system for the study of pollinator cognition.
Collapse
Affiliation(s)
- Stephan Wolf
- Department of Experimental and Biological Psychology, School of Biological and Chemical Sciences, Queen Mary University of London, London, U.K
| | - Lars Chittka
- Department of Experimental and Biological Psychology, School of Biological and Chemical Sciences, Queen Mary University of London, London, U.K
| |
Collapse
|
33
|
Crall JD, Gravish N, Mountcastle AM, Combes SA. BEEtag: A Low-Cost, Image-Based Tracking System for the Study of Animal Behavior and Locomotion. PLoS One 2015; 10:e0136487. [PMID: 26332211 PMCID: PMC4558030 DOI: 10.1371/journal.pone.0136487] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 08/04/2015] [Indexed: 11/19/2022] Open
Abstract
A fundamental challenge common to studies of animal movement, behavior, and ecology is the collection of high-quality datasets on spatial positions of animals as they change through space and time. Recent innovations in tracking technology have allowed researchers to collect large and highly accurate datasets on animal spatiotemporal position while vastly decreasing the time and cost of collecting such data. One technique that is of particular relevance to the study of behavioral ecology involves tracking visual tags that can be uniquely identified in separate images or movie frames. These tags can be located within images that are visually complex, making them particularly well suited for longitudinal studies of animal behavior and movement in naturalistic environments. While several software packages have been developed that use computer vision to identify visual tags, these software packages are either (a) not optimized for identification of single tags, which is generally of the most interest for biologists, or (b) suffer from licensing issues, and therefore their use in the study of animal behavior has been limited. Here, we present BEEtag, an open-source, image-based tracking system in Matlab that allows for unique identification of individual animals or anatomical markers. The primary advantages of this system are that it (a) independently identifies animals or marked points in each frame of a video, limiting error propagation, (b) performs well in images with complex backgrounds, and (c) is low-cost. To validate the use of this tracking system in animal behavior, we mark and track individual bumblebees (Bombus impatiens) and recover individual patterns of space use and activity within the nest. Finally, we discuss the advantages and limitations of this software package and its application to the study of animal movement, behavior, and ecology.
Collapse
Affiliation(s)
- James D. Crall
- Concord Field Station, Organismic and Evolutionary Biology, Harvard University, Bedford, Massachusetts, United States of America
- * E-mail:
| | - Nick Gravish
- Concord Field Station, Organismic and Evolutionary Biology, Harvard University, Bedford, Massachusetts, United States of America
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
| | - Andrew M. Mountcastle
- Concord Field Station, Organismic and Evolutionary Biology, Harvard University, Bedford, Massachusetts, United States of America
| | - Stacey A. Combes
- Concord Field Station, Organismic and Evolutionary Biology, Harvard University, Bedford, Massachusetts, United States of America
| |
Collapse
|
34
|
Nectar vs. pollen loading affects the tradeoff between flight stability and maneuverability in bumblebees. Proc Natl Acad Sci U S A 2015; 112:10527-32. [PMID: 26240364 DOI: 10.1073/pnas.1506126112] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bumblebee foragers spend a significant portion of their lives transporting nectar and pollen, often carrying loads equivalent to more than half their body mass. Whereas nectar is stored in the abdomen near the bee's center of mass, pollen is carried on the hind legs, farther from the center of mass. We examine how load position changes the rotational moment of inertia in bumblebees and whether this affects their flight maneuverability and/or stability. We applied simulated pollen or nectar loads of equal mass to Bombus impatiens bumblebees and examined flight performance in a wind tunnel under three conditions: flight in unsteady flow, tracking an oscillating flower in smooth flow, and flower tracking in unsteady flow. Using an inertial model, we estimated that carrying a load on the legs rather than in the abdomen increases a bee's moment of inertia about the roll and yaw axes but not the pitch axis. Consistent with these predictions, we found that bees carrying a load on their legs displayed slower rotations about their roll and yaw axes, regardless of whether these rotations were driven by external perturbations or self-initiated steering maneuvers. This allowed pollen-loaded bees to maintain a more stable body orientation and higher median flight speed in unsteady flow but reduced their performance when tracking a moving flower, supporting the concept of a tradeoff between stability and maneuverability. These results demonstrate that the types of resources collected by bees affect their flight performance and energetics and suggest that wind conditions may influence resource selection.
Collapse
|
35
|
Beatus T, Guckenheimer JM, Cohen I. Controlling roll perturbations in fruit flies. J R Soc Interface 2015; 12:20150075. [PMID: 25762650 PMCID: PMC4387536 DOI: 10.1098/rsif.2015.0075] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 02/16/2015] [Indexed: 11/12/2022] Open
Abstract
Owing to aerodynamic instabilities, stable flapping flight requires ever-present fast corrective actions. Here, we investigate how flies control perturbations along their body roll angle, which is unstable and their most sensitive degree of freedom. We glue a magnet to each fly and apply a short magnetic pulse that rolls it in mid-air. Fast video shows flies correct perturbations up to 100° within 30 ± 7 ms by applying a stroke-amplitude asymmetry that is well described by a linear proportional-integral controller. For more aggressive perturbations, we show evidence for nonlinear and hierarchical control mechanisms. Flies respond to roll perturbations within 5 ms, making this correction reflex one of the fastest in the animal kingdom.
Collapse
Affiliation(s)
- Tsevi Beatus
- Department of Physics, Cornell University, Ithaca, NY 14853, USA
| | | | - Itai Cohen
- Department of Physics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
36
|
Ravi S, Crall JD, McNeilly L, Gagliardi SF, Biewener AA, Combes SA. Hummingbird flight stability and control in freestream turbulent winds. ACTA ACUST UNITED AC 2015; 218:1444-52. [PMID: 25767146 DOI: 10.1242/jeb.114553] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 02/23/2015] [Indexed: 11/20/2022]
Abstract
Airflow conditions close to the Earth's surface are often complex, posing challenges to flight stability and control for volant taxa. Relatively little is known about how well flying animals can contend with complex, adverse air flows, or about the flight control mechanisms used by animals to mitigate wind disturbances. Several recent studies have examined flight in the unsteady von Kármán vortex streets that form behind cylinders, generating flow disturbances that are predictable in space and time; these structures are relatively rare in nature, because they occur only the immediate, downstream vicinity of an object. In contrast, freestream turbulence is characterized by rapid, unpredictable flow disturbances across a wide range of spatial and temporal scales, and is nearly ubiquitous in natural habitats. Hummingbirds are ideal organisms for studying the influence of freestream turbulence on flight, as they forage in a variety of aerial conditions and are powerful flyers. We filmed ruby-throated hummingbirds (Archilochus colubris) maintaining position at a feeder in laminar and strongly turbulent (intensity ∼15%) airflow environments within a wind tunnel and compared their mean kinematics of the head, body, tail and wing, as well as variability in these parameters. Hummingbirds exhibited remarkably stable head position and orientation in both smooth and turbulent flow while maintaining position at the feeder. However, the hummingbird's body was less stable in turbulent flow and appeared to be most sensitive to disturbances along the mediolateral axis, displaying large lateral accelerations, translations and rolling motions during flight. The hummingbirds mitigated these disturbances by increasing mean wing stroke amplitude and stroke plane angle, and by varying these parameters asymmetrically between the wings and from one stroke to the next. They also actively varied the orientation and fan angle of the tail, maintaining a larger mean fan angle when flying in turbulent flow; this may improve their passive stability, but probably incurs an energetic cost as a result of increased drag. Overall, we observed many of the same kinematic changes noted previously for hummingbirds flying in a von Kármán vortex street, but we also observed kinematic changes associated with high force production, similar to those seen during load-lifting or high-speed flight. These findings suggest that flight may be particularly costly in fully mixed, freestream turbulence, which is the flow condition that hummingbirds are likely to encounter most frequently in natural habitats.
Collapse
Affiliation(s)
- Sridhar Ravi
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - James D Crall
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Lucas McNeilly
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Susan F Gagliardi
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Andrew A Biewener
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Stacey A Combes
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
37
|
Whitehead SC, Beatus T, Canale L, Cohen I. Pitch perfect: how fruit flies control their body pitch angle. J Exp Biol 2015; 218:3508-19. [DOI: 10.1242/jeb.122622] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 09/03/2015] [Indexed: 11/20/2022]
Abstract
Flapping insect flight is a complex and beautiful phenomenon that relies on fast, active control mechanisms to counter aerodynamic instability. To directly investigate how freely-flying D. melanogaster control their body pitch angle against such instability, we perturb them using impulsive mechanical torques and film their corrective maneuvers with high-speed video. Combining experimental observations and numerical simulation, we find that flies correct for pitch deflections of up to 40° in 29±8 ms by bilaterally modulating their wings' front-most stroke angle in a manner well-described by a linear proportional-integral (PI) controller. Flies initiate this corrective process only 10±2 ms after the perturbation onset, indicating that pitch stabilization involves a fast reflex response. Remarkably, flies can also correct for very large-amplitude pitch perturbations–greater than 150°–providing a regime in which to probe the limits of the linear-response framework. Together with previous studies regarding yaw and roll control, our results on pitch show that flies' stabilization of each of these body angles is consistent with PI control
Collapse
Affiliation(s)
| | - Tsevi Beatus
- Department of Physics, Cornell University, Ithaca, New York, 14853, USA
| | - Luca Canale
- Département de Mécanique, École Polytechnique, 911128, Palaiseau, France
| | - Itai Cohen
- Department of Physics, Cornell University, Ithaca, New York, 14853, USA
| |
Collapse
|
38
|
Ortega-Jimenez VM, Mittal R, Hedrick TL. Hawkmoth flight performance in tornado-like whirlwind vortices. BIOINSPIRATION & BIOMIMETICS 2014; 9:025003. [PMID: 24855051 DOI: 10.1088/1748-3182/9/2/025003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Vertical vortex systems such as tornadoes dramatically affect the flight control and stability of aircraft. However, the control implications of smaller scale vertically oriented vortex systems for small fliers such as animals or micro-air vehicles are unknown. Here we examined the flapping kinematics and body dynamics of hawkmoths performing hovering flights (controls) and maintaining position in three different whirlwind intensities with transverse horizontal velocities of 0.7, 0.9 and 1.2 m s(-1), respectively, generated in a vortex chamber. The average and standard deviation of yaw and pitch were respectively increased and reduced in comparison with hovering flights. Average roll orientation was unchanged in whirlwind flights but was more variable from wingbeat to wingbeat than in hovering. Flapping frequency remained unchanged. Wingbeat amplitude was lower and the average stroke plane angle was higher. Asymmetry was found in the angle of attack between right and left wings during both downstroke and upstroke at medium and high vortex intensities. Thus, hawkmoth flight control in tornado-like vortices is achieved by a suite of asymmetric and symmetric changes to wingbeat amplitude, stroke plane angle and principally angle of attack.
Collapse
Affiliation(s)
- Victor Manuel Ortega-Jimenez
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
39
|
Dyer AG, Ravi S, Garcia JE. Flying in Complex Environments: Can Insects Bind Multiple Sensory Perceptions and What Could Be the Lessons for Machine Vision? ACTA ACUST UNITED AC 2014. [DOI: 10.4236/jsea.2014.75037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Ortega-Jimenez VM, Greeter JSM, Mittal R, Hedrick TL. Hawkmoth flight stability in turbulent vortex streets. ACTA ACUST UNITED AC 2013; 216:4567-79. [PMID: 24072794 DOI: 10.1242/jeb.089672] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Shedding of vortices is a common phenomenon in the atmosphere over a wide range of spatial and temporal scales. However, it is unclear how these vortices of varying scales affect the flight performance of flying animals. In order to examine these interactions, we trained seven hawkmoths (Manduca sexta) (wingspan ~9 cm) to fly and feed in a wind tunnel under steady flow (controls) and in the von Kármán vortex street of vertically oriented cylinders (two different cylinders with diameters of 10 and 5 cm) at speeds of 0.5, 1 and 2 m s(-1). Cylinders were placed at distances of 5, 25 and 100 cm upstream of the moths. Moths exhibited large amplitude yaw oscillations coupled with modest oscillations in roll and pitch, and slight increases in wingbeat frequency when flying in both the near (recirculating) and middle (vortex dominated) wake regions. Wingbeat amplitude did not vary among treatments, except at 1 m s(-1) for the large cylinder. Yaw and roll oscillations were synchronized with the vortex shedding frequencies in moths flying in the wake of the large cylinder at all speeds. In contrast, yaw and pitch were synchronized with the shedding frequency of small vortices at speeds ≤1 m s(-1). Oscillations in body orientation were also substantially smaller in the small cylinder treatment when compared with the large cylinder, regardless of temporal or non-dimensional spatial scale. Moths flying in steady conditions reached a higher air speed than those flying into cylinder wakes. In general, flight effects produced by the cylinder wakes were qualitatively similar among the recirculating and vortex-dominated wake regions; the magnitude of those effects, however, declined gradually with downstream distance.
Collapse
|