1
|
Yan Y, Song F, Liu Y, Wang W, Zhu H, Sun J. Analysis of biomechanical passive synergistic vibration reduction inspired by the structure, morphology, nano-mechanics of the beetles' hindwing. Micron 2024; 188:103725. [PMID: 39378717 DOI: 10.1016/j.micron.2024.103725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
Using scanning electron microscopy (SEM), a small animal imaging system, and biological tissue sections, the relationships between the flapping vibrations in the hindwings of Trypoxylus dichotomus and their morphology, structure, and hemolymph dynamics were investigated. Based on these findings, a three-degree-of-freedom (3-DOF) model incorporating nano-mechanical properties was developed to investigate spanwise passive synergistic vibration reduction (PSVR) in the hindwing elements. To ensure precision, the Runge-Kutta and incremental harmonic balance (IHB) methods were employed for both solving and comparing solutions. Analysis of the spanwise force (FOX) signals confirmed the validity of the PSVR model. Parametric analysis revealed that reducing system mass and stiffness increased the resonance amplitude while shifting the resonance frequency in the opposite direction. The resonance frequency and flexible deformation amplitude of the hindwing system could be controlled by adjusting mass and stiffness within the synergistic framework. The mass and damping of the wing base, along with the stiffness of the wing membrane, were identified as critical factors in the system. This model provides valuable insights into the PSVR mechanism, potentially informing the design and manufacture of bionic flexible flapping wings.
Collapse
Affiliation(s)
- Yongwei Yan
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun 130022, China
| | - Fa Song
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun 130022, China
| | - Yuping Liu
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun 130022, China
| | - Wenzhe Wang
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun 130022, China
| | - Haochen Zhu
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun 130022, China
| | - Jiyu Sun
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun 130022, China.
| |
Collapse
|
2
|
Aracheloff C, Garrouste R, Nel A, Godoy-Diana R, Thiria B. Subtle frequency matching reveals resonant phenomenon in the flight of Odonata. J R Soc Interface 2024; 21:20240401. [PMID: 39439311 PMCID: PMC11496952 DOI: 10.1098/rsif.2024.0401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/30/2024] [Accepted: 08/30/2024] [Indexed: 10/25/2024] Open
Abstract
In this work, we investigate the connection between the flight flapping frequency and the intrinsic wing properties in Odonata (dragonflies and damselflies). For such large flying insect species, it has been noted that the wingbeat frequency is significantly lower than the structural resonance of the wing itself. However, the structural resonance mechanism is often evoked in the literature for flying and swimming animals as a means to increase locomotion performance. Here, we show that the flight of Odonata is based on a nonlinear mechanism that strongly depends on the wingbeat amplitude. For large flapping amplitudes (as observed in natural flight), the resonant frequency of the wings decreases with respect to its value at low amplitudes to eventually match the wingbeat frequency used in flight. By means of this nonlinear resonance, Odonata keep a strong wing stiffness while benefiting from a passive energy-saving mechanism based on the dynamic softening of the wing.
Collapse
Affiliation(s)
- C. Aracheloff
- Laboratoire de Physique et Mécanique des Milieux Hétérogènes (PMMH), CNRS UMR 7636, ESPCI Paris - PSL University, Sorbonne Université, Université Paris Cité, Paris75005, France
- Institut de Systématique, Evolution, Biodiversité (ISYEB), CNRS UMR 7205, MNHN, Sorbonne Université, Paris75005, France
| | - R. Garrouste
- Institut de Systématique, Evolution, Biodiversité (ISYEB), CNRS UMR 7205, MNHN, Sorbonne Université, Paris75005, France
| | - A. Nel
- Institut de Systématique, Evolution, Biodiversité (ISYEB), CNRS UMR 7205, MNHN, Sorbonne Université, Paris75005, France
| | - R. Godoy-Diana
- Laboratoire de Physique et Mécanique des Milieux Hétérogènes (PMMH), CNRS UMR 7636, ESPCI Paris - PSL University, Sorbonne Université, Université Paris Cité, Paris75005, France
| | - B. Thiria
- Laboratoire de Physique et Mécanique des Milieux Hétérogènes (PMMH), CNRS UMR 7636, ESPCI Paris - PSL University, Sorbonne Université, Université Paris Cité, Paris75005, France
| |
Collapse
|
3
|
Wold ES, Liu E, Lynch J, Gravish N, Sponberg S. The Weis-Fogh Number Describes Resonant Performance Tradeoffs in Flapping Insects. Integr Comp Biol 2024; 64:632-643. [PMID: 38816217 DOI: 10.1093/icb/icae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 06/01/2024] Open
Abstract
Dimensionless numbers have long been used in comparative biomechanics to quantify competing scaling relationships and connect morphology to animal performance. While common in aerodynamics, few relate the biomechanics of the organism to the forces produced on the environment during flight. We discuss the Weis-Fogh number, N, as a dimensionless number specific to flapping flight, which describes the resonant properties of an insect and resulting tradeoffs between energetics and control. Originally defined by Torkel Weis-Fogh in his seminal 1973 paper, N measures the ratio of peak inertial to aerodynamic torque generated by an insect over a wingbeat. In this perspectives piece, we define N for comparative biologists and describe its interpretations as a ratio of torques and as the width of an insect's resonance curve. We then discuss the range of N realized by insects and explain the fundamental tradeoffs between an insect's aerodynamic efficiency, stability, and responsiveness that arise as a consequence of variation in N, both across and within species. N is therefore an especially useful quantity for comparative approaches to the role of mechanics and aerodynamics in insect flight.
Collapse
Affiliation(s)
- Ethan S Wold
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ellen Liu
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - James Lynch
- Mechanical and Aerospace Engineering, University of California San Diego, San Diego, CA 92161, USA
| | - Nick Gravish
- Mechanical and Aerospace Engineering, University of California San Diego, San Diego, CA 92161, USA
| | - Simon Sponberg
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
4
|
Darveau CA. Insect Flight Energetics and the Evolution of Size, Form, and Function. Integr Comp Biol 2024; 64:586-597. [PMID: 38688867 PMCID: PMC11406158 DOI: 10.1093/icb/icae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/17/2024] [Accepted: 04/20/2024] [Indexed: 05/02/2024] Open
Abstract
Flying insects vary greatly in body size and wing proportions, significantly impacting their flight energetics. Generally, the larger the insect, the slower its flight wingbeat frequency. However, variation in frequency is also explained by differences in wing proportions, where larger-winged insects tend to have lower frequencies. These associations affect the energy required for flight. The correlated evolution of flight form and function can be further defined using a lineage of closely related bee species varying in body mass. The decline in flight wingbeat frequency with increasing size is paralleled by the flight mass-specific metabolic rate. The specific scaling exponents observed can be predicted from the wing area allometry, where a greater increase (hyperallometry) leads to a more pronounced effect on flight energetics, and hypoallometry can lead to no change in frequency and metabolic rate across species. The metabolic properties of the flight muscles also vary with body mass and wing proportions, as observed from the activity of glycolytic enzymes and the phospholipid compositions of muscle tissue, connecting morphological differences with muscle metabolic properties. The evolutionary scaling observed across species is recapitulated within species. The static allometry observed within the bumblebee Bombus impatiens, where the wing area is proportional and isometric, affects wingbeat frequency and metabolic rate, which is predicted to decrease with an increase in size. Intraspecific variation in flight muscle tissue properties is also related to flight metabolic rate. The role of developmental processes and phenotypic plasticity in explaining intraspecific differences is central to our understanding of flight energetics. These studies provide a framework where static allometry observed within species gives rise to evolutionary allometry, connecting the evolution of size, form, and function associated with insect flight.
Collapse
Affiliation(s)
- Charles-A Darveau
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
5
|
Wasserthal LT, Cloetens P. Functioning of unidirectional ventilation in flying hawkmoths evaluated by pressure and oxygen measurements and X-ray video and tomography. J Exp Biol 2024; 227:jeb245949. [PMID: 39287120 PMCID: PMC11418177 DOI: 10.1242/jeb.245949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 08/13/2024] [Indexed: 09/19/2024]
Abstract
Flying sphingids generate unidirectional ventilation with an inflow through the anterior thoracic spiracles and an outflow through the posterior thoracic spiracles. This phenomenon was documented by the CO2 emission and tracheal air pressure in split-chamber experiments in preceding studies. In the present study, we evaluated the function of the air pump mechanism by measuring the tracheal pressure and PO2 in the air sacs and monitoring the wing beat using photocells. Microelectrodes recorded the abdomen flexing muscles and abdominal transverse muscle septum. The crucial structure was the vertical mesophragma, with longitudinal flight muscles attached anteriorly and large fused metathoracic air sacs posteriorly, continuous to the first abdominal segment. Longitudinal flight muscles and abdomen lifting muscles contracted synchronously, producing positive pressure pulses within the mesothoracic air sacs. In the scutellar air sacs, the PO2 with starting full flight was elevated to 18-20 kPa, with a pressure increase of 35-50 Pa. In contrast, in the metathoracic air sacs, the O2 concentration during flight could rise to 10 kPa, then decline to 5±1 kPa. The metathoracic air sacs provided compliance for ventilation by the flight muscles. The initial rise and subsequent decrease of the PO2 in these posterior metathoracic air sacs indicated the unidirectional flow path of the air used. Serial X-ray frames of flying Acherontia atropos visualised the cyclic phragma movement and volume changes in the metathoracic air sacs. The results showed that the contracting dorsolongitudinal flight muscles expanded the metathoracic air sacs, acting as a suction pump.
Collapse
Affiliation(s)
- Lutz Thilo Wasserthal
- Department of Biology, University of Erlangen-Nuremberg, Staudtstr. 5, D-91056 Erlangen, Germany
| | - Peter Cloetens
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, F-38043 Grenoble, France
| |
Collapse
|
6
|
Treidel LA, Deem KD, Salcedo MK, Dickinson MH, Bruce HS, Darveau CA, Dickerson BH, Ellers O, Glass JR, Gordon CM, Harrison JF, Hedrick TL, Johnson MG, Lebenzon JE, Marden JH, Niitepõld K, Sane SP, Sponberg S, Talal S, Williams CM, Wold ES. Insect Flight: State of the Field and Future Directions. Integr Comp Biol 2024; 64:icae106. [PMID: 38982327 PMCID: PMC11406162 DOI: 10.1093/icb/icae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
Abstract
The evolution of flight in an early winged insect ancestral lineage is recognized as a key adaptation explaining the unparalleled success and diversification of insects. Subsequent transitions and modifications to flight machinery, including secondary reductions and losses, also play a central role in shaping the impacts of insects on broadscale geographic and ecological processes and patterns in the present and future. Given the importance of insect flight, there has been a centuries-long history of research and debate on the evolutionary origins and biological mechanisms of flight. Here, we revisit this history from an interdisciplinary perspective, discussing recent discoveries regarding the developmental origins, physiology, biomechanics, and neurobiology and sensory control of flight in a diverse set of insect models. We also identify major outstanding questions yet to be addressed and provide recommendations for overcoming current methodological challenges faced when studying insect flight, which will allow the field to continue to move forward in new and exciting directions. By integrating mechanistic work into ecological and evolutionary contexts, we hope that this synthesis promotes and stimulates new interdisciplinary research efforts necessary to close the many existing gaps about the causes and consequences of insect flight evolution.
Collapse
Affiliation(s)
- Lisa A Treidel
- School of Biological Sciences, University of Nebraska, Lincoln, Lincoln NE, 68588, USA
| | - Kevin D Deem
- Department of Biology, University of Rochester, Rochester NY, 14627, USA
| | - Mary K Salcedo
- Department of Biological and Environmental Engineering, Cornell University, Ithaca NY, 14853, USA
| | - Michael H Dickinson
- Department of Bioengineering, California Institute of Technology, Pasadena CA 91125, USA
| | | | - Charles-A Darveau
- Department of Biology, University of Ottawa, Ottawa Ontario, K1N 6N5, Canada
| | - Bradley H Dickerson
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Olaf Ellers
- Biology Department, Bowdoin College, Brunswick, ME 04011, USA
| | - Jordan R Glass
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY 82070, USA
| | - Caleb M Gordon
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06520-8109, USA
| | - Jon F Harrison
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Tyson L Hedrick
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Meredith G Johnson
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Jacqueline E Lebenzon
- Department of Integrative Biology, University of California, Berkeley, Berkeley CA, 94720, USA
| | - James H Marden
- Department of Biology, Pennsylvania State University, University Park, PA 16803, USA
| | | | - Sanjay P Sane
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065 India
| | - Simon Sponberg
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Stav Talal
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Caroline M Williams
- Department of Integrative Biology, University of California, Berkeley, Berkeley CA, 94720, USA
| | - Ethan S Wold
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
7
|
Xi O, Zhang S, Li J, Hu H, Bai M. Geometric Morphometrics and Genetic Diversity Analysis of Chalcidoidea ( Diglyphus and Pachyneuron) at Various Elevations. INSECTS 2024; 15:497. [PMID: 39057230 PMCID: PMC11277471 DOI: 10.3390/insects15070497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/20/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024]
Abstract
Eulophidae and Pteromalidae are parasitic wasps with a global distribution and import for the biological control of pests. They can be distributed in different altitude regions, but their morphological and genetic adaptations to different altitudes are unclear. Here, we collected specimens that belong to Eulophidae and Pteromalidae from various altitudinal gradients, based on integrated taxonomic approaches to determine the species composition, and we analyzed their body shape and size from different altitudes using geometric morphometrics. Then, we performed an analysis of the D. isaea population's haplotype genes to illustrate their genetic diversity. As a result, eight species that belong to two genera, Diglyphus Walker (Eulophidae) and Pachyneuron Walker (Pteromalidae), were identified, including two newly recorded species from China (D. chabrias and D. sabulosus). Through a geometric morphometrics analysis of body shape, we found that a narrow forewing shape and a widened thorax are the significant characteristics of adaptation to high-altitude environments in D. isaea and P. aphidis. Additionally, the body size studies showed a principal relationship between centroid size and altitude; the size of the forewings and thorax increases at higher altitudes. Next, using haplotype analysis, 32 haplotypes were found in seven geographic populations with high genetic diversity of this species. Our research provides preliminary evidence for the morphological and genetic diversity adaptation of parasitic wasps to extreme environments, and these data can provide important references for investigations on the ecological adaptability of parasitic wasps.
Collapse
Affiliation(s)
- Ouyan Xi
- College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (O.X.); (S.Z.); (J.L.)
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830017, China
| | - Shuli Zhang
- College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (O.X.); (S.Z.); (J.L.)
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830017, China
| | - Jinzhe Li
- College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (O.X.); (S.Z.); (J.L.)
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830017, China
| | - Hongying Hu
- College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (O.X.); (S.Z.); (J.L.)
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830017, China
| | - Ming Bai
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100864, China;
| |
Collapse
|
8
|
Azevedo A, Lesser E, Phelps JS, Mark B, Elabbady L, Kuroda S, Sustar A, Moussa A, Khandelwal A, Dallmann CJ, Agrawal S, Lee SYJ, Pratt B, Cook A, Skutt-Kakaria K, Gerhard S, Lu R, Kemnitz N, Lee K, Halageri A, Castro M, Ih D, Gager J, Tammam M, Dorkenwald S, Collman F, Schneider-Mizell C, Brittain D, Jordan CS, Dickinson M, Pacureanu A, Seung HS, Macrina T, Lee WCA, Tuthill JC. Connectomic reconstruction of a female Drosophila ventral nerve cord. Nature 2024; 631:360-368. [PMID: 38926570 PMCID: PMC11348827 DOI: 10.1038/s41586-024-07389-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 04/04/2024] [Indexed: 06/28/2024]
Abstract
A deep understanding of how the brain controls behaviour requires mapping neural circuits down to the muscles that they control. Here, we apply automated tools to segment neurons and identify synapses in an electron microscopy dataset of an adult female Drosophila melanogaster ventral nerve cord (VNC)1, which functions like the vertebrate spinal cord to sense and control the body. We find that the fly VNC contains roughly 45 million synapses and 14,600 neuronal cell bodies. To interpret the output of the connectome, we mapped the muscle targets of leg and wing motor neurons using genetic driver lines2 and X-ray holographic nanotomography3. With this motor neuron atlas, we identified neural circuits that coordinate leg and wing movements during take-off. We provide the reconstruction of VNC circuits, the motor neuron atlas and tools for programmatic and interactive access as resources to support experimental and theoretical studies of how the nervous system controls behaviour.
Collapse
Affiliation(s)
- Anthony Azevedo
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Ellen Lesser
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Jasper S Phelps
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Neuroengineering Laboratory, Brain Mind Institute and Institute of Bioengineering, EPFL, Lausanne, Switzerland
| | - Brandon Mark
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Leila Elabbady
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Sumiya Kuroda
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Anne Sustar
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Anthony Moussa
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Avinash Khandelwal
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Chris J Dallmann
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Sweta Agrawal
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Su-Yee J Lee
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Brandon Pratt
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Andrew Cook
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | | | - Stephan Gerhard
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- UniDesign Solutions, Zurich, Switzerland
| | - Ran Lu
- Zetta AI, Sherrill, NJ, USA
| | | | - Kisuk Lee
- Zetta AI, Sherrill, NJ, USA
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | | | | | | | | | - Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | | | | | | | - Chris S Jordan
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | | | | | | | - Wei-Chung Allen Lee
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - John C Tuthill
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
9
|
Lesser E, Azevedo AW, Phelps JS, Elabbady L, Cook A, Sakeena Syed D, Mark B, Kuroda S, Sustar A, Moussa A, Dallmann CJ, Agrawal S, Lee SYJ, Pratt B, Skutt-Kakaria K, Gerhard S, Lu R, Kemnitz N, Lee K, Halageri A, Castro M, Ih D, Gager J, Tammam M, Dorkenwald S, Collman F, Schneider-Mizell C, Brittain D, Jordan CS, Macrina T, Dickinson M, Lee WCA, Tuthill JC. Synaptic architecture of leg and wing premotor control networks in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.30.542725. [PMID: 37398440 PMCID: PMC10312524 DOI: 10.1101/2023.05.30.542725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Animal movement is controlled by motor neurons (MNs), which project out of the central nervous system to activate muscles. MN activity is coordinated by complex premotor networks that allow individual muscles to contribute to many different behaviors. Here, we use connectomics to analyze the wiring logic of premotor circuits controlling the Drosophila leg and wing. We find that both premotor networks cluster into modules that link MNs innervating muscles with related functions. Within most leg motor modules, the synaptic weights of each premotor neuron are proportional to the size of their target MNs, establishing a circuit basis for hierarchical MN recruitment. In contrast, wing premotor networks lack proportional synaptic connectivity, which may allow wing steering muscles to be recruited with different relative timing. By comparing the architecture of distinct limb motor control systems within the same animal, we identify common principles of premotor network organization and specializations that reflect the unique biomechanical constraints and evolutionary origins of leg and wing motor control.
Collapse
Affiliation(s)
- Ellen Lesser
- Department of Physiology and Biophysics, University of Washington, WA, USA
| | - Anthony W. Azevedo
- Department of Physiology and Biophysics, University of Washington, WA, USA
| | - Jasper S. Phelps
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Leila Elabbady
- Department of Physiology and Biophysics, University of Washington, WA, USA
| | - Andrew Cook
- Department of Physiology and Biophysics, University of Washington, WA, USA
| | | | - Brandon Mark
- Department of Physiology and Biophysics, University of Washington, WA, USA
| | - Sumiya Kuroda
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Anne Sustar
- Department of Physiology and Biophysics, University of Washington, WA, USA
| | - Anthony Moussa
- Department of Physiology and Biophysics, University of Washington, WA, USA
| | - Chris J. Dallmann
- Department of Physiology and Biophysics, University of Washington, WA, USA
| | - Sweta Agrawal
- Department of Physiology and Biophysics, University of Washington, WA, USA
| | - Su-Yee J. Lee
- Department of Physiology and Biophysics, University of Washington, WA, USA
| | - Brandon Pratt
- Department of Physiology and Biophysics, University of Washington, WA, USA
| | | | - Stephan Gerhard
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- UniDesign Solutions LLC, Switzerland
| | | | | | - Kisuk Lee
- Zetta AI, LLC, USA
- Princeton Neuroscience Institute, Princeton University, NJ, USA
| | | | | | | | | | | | - Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton University, NJ, USA
- Computer Science Department, Princeton University, NJ, USA
| | | | | | | | - Chris S. Jordan
- Princeton Neuroscience Institute, Princeton University, NJ, USA
| | | | | | - Wei-Chung Allen Lee
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, MA, USA
| | - John C. Tuthill
- Department of Physiology and Biophysics, University of Washington, WA, USA
| |
Collapse
|
10
|
Vallejo-Marin M, Russell AL. Harvesting pollen with vibrations: towards an integrative understanding of the proximate and ultimate reasons for buzz pollination. ANNALS OF BOTANY 2024; 133:379-398. [PMID: 38071461 PMCID: PMC11006549 DOI: 10.1093/aob/mcad189] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/08/2023] [Indexed: 04/12/2024]
Abstract
Buzz pollination, a type of interaction in which bees use vibrations to extract pollen from certain kinds of flowers, captures a close relationship between thousands of bee and plant species. In the last 120 years, studies of buzz pollination have contributed to our understanding of the natural history of buzz pollination, and basic properties of the vibrations produced by bees and applied to flowers in model systems. Yet, much remains to be done to establish its adaptive significance and the ecological and evolutionary dynamics of buzz pollination across diverse plant and bee systems. Here, we review for bees and plants the proximate (mechanism and ontogeny) and ultimate (adaptive significance and evolution) explanations for buzz pollination, focusing especially on integrating across these levels to synthesize and identify prominent gaps in our knowledge. Throughout, we highlight new technical and modelling approaches and the importance of considering morphology, biomechanics and behaviour in shaping our understanding of the adaptive significance of buzz pollination. We end by discussing the ecological context of buzz pollination and how a multilevel perspective can contribute to explain the proximate and evolutionary reasons for this ancient bee-plant interaction.
Collapse
Affiliation(s)
- Mario Vallejo-Marin
- Department of Ecology and Genetics, Uppsala University, Uppsala, 752 36, Sweden
| | - Avery L Russell
- Department of Biology, Missouri State University, Springfield, MO, 65897, USA
| |
Collapse
|
11
|
Agrawal K, Prabhakar S, Bakthavachalu B, Chaturvedi D. Distinct developmental patterns in Anopheles stephensi organ systems. Dev Biol 2024; 508:107-122. [PMID: 38272285 PMCID: PMC7615899 DOI: 10.1016/j.ydbio.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/01/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
Anatomical profiles of insects inform vector biology, comparative development and evolutionary studies with applications in forensics, agriculture and disease control. This study presents a comprehensive, high-resolution developmental profile of Anopheles stephensi, encompassing larval, pupal, and adult stages, obtained through microCT scanning. The results indicate in situ anatomical changes in most organ systems, including the central nervous system, eyes, musculature, alimentary canal, salivary glands, and ovaries, among other organ systems, except for the developing heart. We find significant differences in the mosquito gut, body-wall, and flight muscle development during metamorphosis from other dipterans like Drosophila. Specifically, indirect flight muscle specification and growth can be traced back at least to the 4th instar A. stephensi larvae, as opposed to post-puparial development in other Dipterans like Drosophila and Calliphora. Further, while Drosophila larval body-wall muscles and gut undergo histolysis, changes to these organs during mosquito metamorphosis are less pronounced. These observations, and raw data therein may serve as a reference for studies on the development and the genetics of mosquitoes. Overall, the detailed developmental profile of A. stephensi presented here illuminates the unique anatomy and developmental processes of Culicidae, with important implications for vector biology, disease control, and comparative evolutionary studies.
Collapse
Affiliation(s)
- Khushboo Agrawal
- Tata Institute for Genetics and Society Centre at inStem, Bellary Road, Bangalore, 560065, India; School of Biotechnology, Amrita University, Kollam, 690525, Kerala, India
| | - Sunil Prabhakar
- Centre for Cellular and Molecular Platforms, Bellary Road, Bangalore, 560065, India
| | - Baskar Bakthavachalu
- Tata Institute for Genetics and Society Centre at inStem, Bellary Road, Bangalore, 560065, India; School of Basic Sciences, Indian Institute of Technology, Mandi, 175005, India.
| | - Dhananjay Chaturvedi
- National Centre for Biological Sciences, TIFR, Bangalore, 560065, India; CSIR - Centre for Cellular and Molecular Biology, Hyderabad, 500007, India.
| |
Collapse
|
12
|
Melis JM, Siwanowicz I, Dickinson MH. Machine learning reveals the control mechanics of an insect wing hinge. Nature 2024; 628:795-803. [PMID: 38632396 DOI: 10.1038/s41586-024-07293-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/11/2024] [Indexed: 04/19/2024]
Abstract
Insects constitute the most species-rich radiation of metazoa, a success that is due to the evolution of active flight. Unlike pterosaurs, birds and bats, the wings of insects did not evolve from legs1, but are novel structures that are attached to the body via a biomechanically complex hinge that transforms tiny, high-frequency oscillations of specialized power muscles into the sweeping back-and-forth motion of the wings2. The hinge consists of a system of tiny, hardened structures called sclerites that are interconnected to one another via flexible joints and regulated by the activity of specialized control muscles. Here we imaged the activity of these muscles in a fly using a genetically encoded calcium indicator, while simultaneously tracking the three-dimensional motion of the wings with high-speed cameras. Using machine learning, we created a convolutional neural network3 that accurately predicts wing motion from the activity of the steering muscles, and an encoder-decoder4 that predicts the role of the individual sclerites on wing motion. By replaying patterns of wing motion on a dynamically scaled robotic fly, we quantified the effects of steering muscle activity on aerodynamic forces. A physics-based simulation incorporating our hinge model generates flight manoeuvres that are remarkably similar to those of free-flying flies. This integrative, multi-disciplinary approach reveals the mechanical control logic of the insect wing hinge, arguably among the most sophisticated and evolutionarily important skeletal structures in the natural world.
Collapse
Affiliation(s)
- Johan M Melis
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - Igor Siwanowicz
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Michael H Dickinson
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
13
|
Deora T. An exploration of how the insect-wing hinge functions. Nature 2024; 628:727-728. [PMID: 38632425 DOI: 10.1038/d41586-024-00912-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
|
14
|
Melis JM, Siwanowicz I, Dickinson MH. Machine learning reveals the control mechanics of an insect wing hinge. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.29.547116. [PMID: 37425804 PMCID: PMC10327165 DOI: 10.1101/2023.06.29.547116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Insects constitute the most species-rich radiation of metazoa, a success due to the evolution of active flight. Unlike pterosaurs, birds, and bats, the wings of insects did not evolve from legs 1 , but are novel structures attached to the body via a biomechanically complex hinge that transforms tiny, high-frequency oscillations of specialized power muscles into the sweeping back-and-forth motion of the wings 2 . The hinge consists of a system of tiny, hardened structures called sclerites that are interconnected to one another via flexible joints and regulated by the activity of specialized control muscles. Here, we imaged the activity of these muscles in a fly using a genetically encoded calcium indicator, while simultaneously tracking the 3D motion of the wings with high-speed cameras. Using machine learning approaches, we created a convolutional neural network 3 that accurately predicts wing motion from the activity of the steering muscles, and an encoder-decoder 4 that predicts the role of the individual sclerites on wing motion. By replaying patterns of wing motion on a dynamically scaled robotic fly, we quantified the effects of steering muscle activity on aerodynamic forces. A physics-based simulation that incorporates our model of the hinge generates flight maneuvers that are remarkably similar to those of free flying flies. This integrative, multi-disciplinary approach reveals the mechanical control logic of the insect wing hinge, arguably among the most sophisticated and evolutionarily important skeletal structures in the natural world.
Collapse
|
15
|
Liu SP, Yin HD, Li WJ, Qin ZH, Yang Y, Huang ZZ, Zong L, Liu XK, Du Z, Fan WL, Zhang YQ, Zhang D, Zhang YE, Liu XY, Yang D, Ge SQ. The Morphological Transformation of the Thorax during the Eclosion of Drosophila melanogaster (Diptera: Drosophilidae). INSECTS 2023; 14:893. [PMID: 37999092 PMCID: PMC10671814 DOI: 10.3390/insects14110893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
The model organism Drosophila melanogaster, as a species of Holometabola, undergoes a series of transformations during metamorphosis. To deeply understand its development, it is crucial to study its anatomy during the key developmental stages. We describe the anatomical systems of the thorax, including the endoskeleton, musculature, nervous ganglion, and digestive system, from the late pupal stage to the adult stage, based on micro-CT and 3D visualizations. The development of the endoskeleton causes original and insertional changes in muscles. Several muscles change their shape during development in a non-uniform manner with respect to both absolute and relative size; some become longer and broader, while others shorten and become narrower. Muscular shape may vary during development. The number of muscular bundles also increases or decreases. Growing muscles are probably anchored by the tissues in the stroma. Some muscles and tendons are absent in the adult stage, possibly due to the hardened sclerites. Nearly all flight muscles are present by the third day of the pupal stage, which may be due to the presence of more myofibers with enough mitochondria to support flight power. There are sexual differences in the same developmental period. In contrast to the endodermal digestive system, the functions of most thoracic muscles change in the development from the larva to the adult in order to support more complex locomotion under the control of a more structured ventral nerve cord based on the serial homology proposed herein.
Collapse
Affiliation(s)
- Si-Pei Liu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (S.-P.L.); (H.-D.Y.); (W.-J.L.); (Z.-H.Q.); (Y.Y.); (Z.-Z.H.); (L.Z.); (X.-K.L.); (Z.D.); (W.-L.F.); (Y.-Q.Z.); (D.Z.); (Y.E.Z.)
| | - Hao-Dong Yin
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (S.-P.L.); (H.-D.Y.); (W.-J.L.); (Z.-H.Q.); (Y.Y.); (Z.-Z.H.); (L.Z.); (X.-K.L.); (Z.D.); (W.-L.F.); (Y.-Q.Z.); (D.Z.); (Y.E.Z.)
- University of Chinese Academy of Sciences, Beijing 100086, China
| | - Wen-Jie Li
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (S.-P.L.); (H.-D.Y.); (W.-J.L.); (Z.-H.Q.); (Y.Y.); (Z.-Z.H.); (L.Z.); (X.-K.L.); (Z.D.); (W.-L.F.); (Y.-Q.Z.); (D.Z.); (Y.E.Z.)
- University of Chinese Academy of Sciences, Beijing 100086, China
| | - Zhuang-Hui Qin
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (S.-P.L.); (H.-D.Y.); (W.-J.L.); (Z.-H.Q.); (Y.Y.); (Z.-Z.H.); (L.Z.); (X.-K.L.); (Z.D.); (W.-L.F.); (Y.-Q.Z.); (D.Z.); (Y.E.Z.)
| | - Yi Yang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (S.-P.L.); (H.-D.Y.); (W.-J.L.); (Z.-H.Q.); (Y.Y.); (Z.-Z.H.); (L.Z.); (X.-K.L.); (Z.D.); (W.-L.F.); (Y.-Q.Z.); (D.Z.); (Y.E.Z.)
- University of Chinese Academy of Sciences, Beijing 100086, China
| | - Zheng-Zhong Huang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (S.-P.L.); (H.-D.Y.); (W.-J.L.); (Z.-H.Q.); (Y.Y.); (Z.-Z.H.); (L.Z.); (X.-K.L.); (Z.D.); (W.-L.F.); (Y.-Q.Z.); (D.Z.); (Y.E.Z.)
| | - Le Zong
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (S.-P.L.); (H.-D.Y.); (W.-J.L.); (Z.-H.Q.); (Y.Y.); (Z.-Z.H.); (L.Z.); (X.-K.L.); (Z.D.); (W.-L.F.); (Y.-Q.Z.); (D.Z.); (Y.E.Z.)
- University of Chinese Academy of Sciences, Beijing 100086, China
| | - Xiao-Kun Liu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (S.-P.L.); (H.-D.Y.); (W.-J.L.); (Z.-H.Q.); (Y.Y.); (Z.-Z.H.); (L.Z.); (X.-K.L.); (Z.D.); (W.-L.F.); (Y.-Q.Z.); (D.Z.); (Y.E.Z.)
- University of Chinese Academy of Sciences, Beijing 100086, China
| | - Zhong Du
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (S.-P.L.); (H.-D.Y.); (W.-J.L.); (Z.-H.Q.); (Y.Y.); (Z.-Z.H.); (L.Z.); (X.-K.L.); (Z.D.); (W.-L.F.); (Y.-Q.Z.); (D.Z.); (Y.E.Z.)
- University of Chinese Academy of Sciences, Beijing 100086, China
| | - Wei-Li Fan
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (S.-P.L.); (H.-D.Y.); (W.-J.L.); (Z.-H.Q.); (Y.Y.); (Z.-Z.H.); (L.Z.); (X.-K.L.); (Z.D.); (W.-L.F.); (Y.-Q.Z.); (D.Z.); (Y.E.Z.)
| | - Ya-Qiong Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (S.-P.L.); (H.-D.Y.); (W.-J.L.); (Z.-H.Q.); (Y.Y.); (Z.-Z.H.); (L.Z.); (X.-K.L.); (Z.D.); (W.-L.F.); (Y.-Q.Z.); (D.Z.); (Y.E.Z.)
- University of Chinese Academy of Sciences, Beijing 100086, China
| | - Dan Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (S.-P.L.); (H.-D.Y.); (W.-J.L.); (Z.-H.Q.); (Y.Y.); (Z.-Z.H.); (L.Z.); (X.-K.L.); (Z.D.); (W.-L.F.); (Y.-Q.Z.); (D.Z.); (Y.E.Z.)
- University of Chinese Academy of Sciences, Beijing 100086, China
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Yong E. Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (S.-P.L.); (H.-D.Y.); (W.-J.L.); (Z.-H.Q.); (Y.Y.); (Z.-Z.H.); (L.Z.); (X.-K.L.); (Z.D.); (W.-L.F.); (Y.-Q.Z.); (D.Z.); (Y.E.Z.)
| | - Xing-Yue Liu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (X.-Y.L.); (D.Y.)
| | - Ding Yang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (X.-Y.L.); (D.Y.)
| | - Si-Qin Ge
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (S.-P.L.); (H.-D.Y.); (W.-J.L.); (Z.-H.Q.); (Y.Y.); (Z.-Z.H.); (L.Z.); (X.-K.L.); (Z.D.); (W.-L.F.); (Y.-Q.Z.); (D.Z.); (Y.E.Z.)
- University of Chinese Academy of Sciences, Beijing 100086, China
| |
Collapse
|
16
|
Pons A. The self-oscillation paradox in the flight motor of Drosophila melanogaster. J R Soc Interface 2023; 20:20230421. [PMID: 37963559 PMCID: PMC10645510 DOI: 10.1098/rsif.2023.0421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/23/2023] [Indexed: 11/16/2023] Open
Abstract
Tiny flying insects, such as Drosophila melanogaster, fly by flapping their wings at frequencies faster than their brains are able to process. To do so, they rely on self-oscillation: dynamic instability, leading to emergent oscillation, arising from muscle stretch-activation. Many questions concerning this vital natural instability remain open. Does flight motor self-oscillation necessarily lead to resonance-a state optimal in efficiency and/or performance? If so, what state? And is self-oscillation even guaranteed in a motor driven by stretch-activated muscle, or are there limiting conditions? In this work, we use data-driven models of wingbeat and muscle behaviour to answer these questions. Developing and leveraging novel analysis techniques, including symbolic computation, we establish a fundamental condition for motor self-oscillation common to a wide range of motor models. Remarkably, D. melanogaster flight apparently defies this condition: a paradox of motor operation. We explore potential resolutions to this paradox, and, within its confines, establish that the D. melanogaster flight motor is probably not resonant with respect to exoskeletal elasticity: instead, the muscular elasticity plays a dominant role. Contrary to common supposition, the stiffness of stretch-activated muscle is an obstacle to, rather than an enabler of, the operation of the D. melanogaster flight motor.
Collapse
Affiliation(s)
- Arion Pons
- Division of Fluid Dynamics, Department of Mechanics and Maritime Sciences, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
17
|
Gau J, Lynch J, Aiello B, Wold E, Gravish N, Sponberg S. Bridging two insect flight modes in evolution, physiology and robophysics. Nature 2023; 622:767-774. [PMID: 37794191 PMCID: PMC10599994 DOI: 10.1038/s41586-023-06606-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/04/2023] [Indexed: 10/06/2023]
Abstract
Since taking flight, insects have undergone repeated evolutionary transitions between two seemingly distinct flight modes1-3. Some insects neurally activate their muscles synchronously with each wingstroke. However, many insects have achieved wingbeat frequencies beyond the speed limit of typical neuromuscular systems by evolving flight muscles that are asynchronous with neural activation and activate in response to mechanical stretch2-8. These modes reflect the two fundamental ways of generating rhythmic movement: time-periodic forcing versus emergent oscillations from self-excitation8-10. How repeated evolutionary transitions have occurred and what governs the switching between these distinct modes remain unknown. Here we find that, despite widespread asynchronous actuation in insects across the phylogeny3,6, asynchrony probably evolved only once at the order level, with many reversions to the ancestral, synchronous mode. A synchronous moth species, evolved from an asynchronous ancestor, still preserves the stretch-activated muscle physiology. Numerical and robophysical analyses of a unified biophysical framework reveal that rather than a dichotomy, these two modes are two regimes of the same dynamics. Insects can transition between flight modes across a bridge in physiological parameter space. Finally, we integrate these two actuation modes into an insect-scale robot11-13 that enables transitions between modes and unlocks a new self-excited wingstroke strategy for engineered flight. Together, this framework accounts for repeated transitions in insect flight evolution and shows how flight modes can flip with changes in physiological parameters.
Collapse
Affiliation(s)
- Jeff Gau
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - James Lynch
- Mechanical and Aerospace Engineering Department, University of California San Diego, San Diego, CA, USA
| | - Brett Aiello
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Biology, Seton Hill University, Greensburg, PA, USA
| | - Ethan Wold
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Quantitative Biosciences Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA
| | - Nick Gravish
- Mechanical and Aerospace Engineering Department, University of California San Diego, San Diego, CA, USA.
| | - Simon Sponberg
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA.
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
18
|
Hürkey S, Niemeyer N, Schleimer JH, Ryglewski S, Schreiber S, Duch C. Gap junctions desynchronize a neural circuit to stabilize insect flight. Nature 2023:10.1038/s41586-023-06099-0. [PMID: 37225999 DOI: 10.1038/s41586-023-06099-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/18/2023] [Indexed: 05/26/2023]
Abstract
Insect asynchronous flight is one of the most prevalent forms of animal locomotion used by more than 600,000 species. Despite profound insights into the motor patterns1, biomechanics2,3 and aerodynamics underlying asynchronous flight4,5, the architecture and function of the central-pattern-generating (CPG) neural network remain unclear. Here, on the basis of an experiment-theory approach including electrophysiology, optophysiology, Drosophila genetics and mathematical modelling, we identify a miniaturized circuit solution with unexpected properties. The CPG network consists of motoneurons interconnected by electrical synapses that, in contrast to doctrine, produce network activity splayed out in time instead of synchronized across neurons. Experimental and mathematical evidence support a generic mechanism for network desynchronization that relies on weak electrical synapses and specific excitability dynamics of the coupled neurons. In small networks, electrical synapses can synchronize or desynchronize network activity, depending on the neuron-intrinsic dynamics and ion channel composition. In the asynchronous flight CPG, this mechanism translates unpatterned premotor input into stereotyped neuronal firing with fixed sequences of cell activation that ensure stable wingbeat power and, as we show, is conserved across multiple species. Our findings prove a wider functional versatility of electrical synapses in the dynamic control of neural circuits and highlight the relevance of detecting electrical synapses in connectomics.
Collapse
Affiliation(s)
- Silvan Hürkey
- Institute of Developmental Biology and Neurobiology (iDN), Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Nelson Niemeyer
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Stefanie Ryglewski
- Institute of Developmental Biology and Neurobiology (iDN), Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Susanne Schreiber
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany.
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.
| | - Carsten Duch
- Institute of Developmental Biology and Neurobiology (iDN), Johannes Gutenberg-University Mainz, Mainz, Germany.
| |
Collapse
|
19
|
Wold ES, Lynch J, Gravish N, Sponberg S. Structural damping renders the hawkmoth exoskeleton mechanically insensitive to non-sinusoidal deformations. J R Soc Interface 2023; 20:20230141. [PMID: 37194272 PMCID: PMC10189308 DOI: 10.1098/rsif.2023.0141] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/25/2023] [Indexed: 05/18/2023] Open
Abstract
Muscles act through elastic and dissipative elements to mediate movement, which can introduce dissipation and filtering which are important for energetics and control. The high power requirements of flapping flight can be reduced by an insect's exoskeleton, which acts as a spring with frequency-independent material properties under purely sinusoidal deformation. However, this purely sinusoidal dynamic regime does not encompass the asymmetric wing strokes of many insects or non-periodic deformations induced by external perturbations. As such, it remains unknown whether a frequency-independent model applies broadly and what implications it has for control. We used a vibration testing system to measure the mechanical properties of isolated Manduca sexta thoraces under symmetric, asymmetric and band-limited white noise deformations. The asymmetric and white noise conditions represent two types of generalized, multi-frequency deformations that may be encountered during steady-state and perturbed flight. Power savings and dissipation were indistinguishable between symmetric and asymmetric conditions, demonstrating that no additional energy is required to deform the thorax non-sinusoidally. Under white noise conditions, stiffness and damping were invariant with frequency, suggesting that the thorax has no frequency-dependent filtering properties. A simple flat frequency response function fits our measured frequency response. This work demonstrates the potential of materials with frequency-independent damping to simplify motor control by eliminating any velocity-dependent filtering that viscoelastic elements usually impose between muscle and wing.
Collapse
Affiliation(s)
- Ethan S. Wold
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - James Lynch
- Mechanical and Aerospace Engineering, University of California San Diego, San Diego, CA 92161, USA
| | - Nick Gravish
- Mechanical and Aerospace Engineering, University of California San Diego, San Diego, CA 92161, USA
| | - Simon Sponberg
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
20
|
Agrawal S, Tobalske BW, Anwar Z, Luo H, Hedrick TL, Cheng B. Musculoskeletal wing-actuation model of hummingbirds predicts diverse effects of primary flight muscles in hovering flight. Proc Biol Sci 2022; 289:20222076. [PMID: 36475440 PMCID: PMC9727662 DOI: 10.1098/rspb.2022.2076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hummingbirds have evolved to hover and manoeuvre with exceptional flight control. This is enabled by their musculoskeletal system that successfully exploits the agile motion of flapping wings. Here, we synthesize existing empirical and modelling data to generate novel hypotheses for principles of hummingbird wing actuation. These may help guide future experimental work and provide insights into the evolution and robotic emulation of hummingbird flight. We develop a functional model of the hummingbird musculoskeletal system, which predicts instantaneous, three-dimensional torque produced by primary (pectoralis and supracoracoideus) and combined secondary muscles. The model also predicts primary muscle contractile behaviour, including stress, strain, elasticity and work. Results suggest that the primary muscles (i.e. the flight 'engine') function as diverse effectors, as they do not simply power the stroke, but also actively deviate and pitch the wing with comparable actuation torque. The results also suggest that the secondary muscles produce controlled-tightening effects by acting against primary muscles in deviation and pitching. The diverse effects of the pectoralis are associated with the evolution of a comparatively enormous bicipital crest on the humerus.
Collapse
Affiliation(s)
- Suyash Agrawal
- Department of Mechanical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Bret W. Tobalske
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Zafar Anwar
- Department of Mechanical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Haoxiang Luo
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Tyson L. Hedrick
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Bo Cheng
- Department of Mechanical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
21
|
Chatterjee P, Mohan U, Sane SP. Small-amplitude head oscillations result from a multimodal head stabilization reflex in hawkmoths. Biol Lett 2022; 18:20220199. [PMID: 36349580 PMCID: PMC9653261 DOI: 10.1098/rsbl.2022.0199] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2023] Open
Abstract
In flying insects, head stabilization is an essential reflex that helps to reduce motion blur during fast aerial manoeuvres. This reflex is multimodal and requires the integration of visual and antennal mechanosensory feedback in hawkmoths, each operating as a negative-feedback-control loop. As in any negative-feedback system, the head stabilization system possesses inherent oscillatory dynamics that depend on the rate at which the sensorimotor components of the reflex operate. Consistent with this expectation, we observed small-amplitude oscillations in the head motion (or head wobble) of the oleander hawkmoth, Daphnis nerii, which are accentuated when sensory feedback is aberrant. Here, we show that these oscillations emerge from the inherent dynamics of the multimodal reflex underlying gaze stabilization, and that the amplitude of head wobble is a function of both the visual feedback and antennal mechanosensory feedback from the Johnston's organs. Our data support the hypothesis that head wobble results from a multimodal, dynamically stabilized reflex loop that mediates head positioning.
Collapse
Affiliation(s)
- Payel Chatterjee
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Umesh Mohan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Sanjay P. Sane
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| |
Collapse
|
22
|
Schöck F, González-Morales N. The insect perspective on Z-disc structure and biology. J Cell Sci 2022; 135:277280. [PMID: 36226637 DOI: 10.1242/jcs.260179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myofibrils are the intracellular structures formed by actin and myosin filaments. They are paracrystalline contractile cables with unusually well-defined dimensions. The sliding of actin past myosin filaments powers contractions, and the entire system is held in place by a structure called the Z-disc, which anchors the actin filaments. Myosin filaments, in turn, are anchored to another structure called the M-line. Most of the complex architecture of myofibrils can be reduced to studying the Z-disc, and recently, important advances regarding the arrangement and function of Z-discs in insects have been published. On a very small scale, we have detailed protein structure information. At the medium scale, we have cryo-electron microscopy maps, super-resolution microscopy and protein-protein interaction networks, while at the functional scale, phenotypic data are available from precise genetic manipulations. All these data aim to answer how the Z-disc works and how it is assembled. Here, we summarize recent data from insects and explore how it fits into our view of the Z-disc, myofibrils and, ultimately, muscles.
Collapse
Affiliation(s)
- Frieder Schöck
- Department of Biology, McGill University, Montreal, Quebec, H3A 1B1, Canada
| | | |
Collapse
|
23
|
Ando N, Kono T, Ogihara N, Nakamura S, Yokota H, Kanzaki R. Modeling the musculoskeletal system of an insect thorax for flapping flight. BIOINSPIRATION & BIOMIMETICS 2022; 17:066010. [PMID: 36044880 DOI: 10.1088/1748-3190/ac8e40] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Indirect actuation of the wings via thoracic deformation is a unique mechanism widely observed in flying insect species. The physical properties of the thorax have been intensively studied in terms of their ability to efficiently generate wingbeats. The basic mechanism of indirect wing actuation is generally explained as a lever model on a cross-sectional plane, where the dorsoventral movement of the mesonotum (dorsal exoskeleton of the mesothorax) generated by contractions of indirect muscles actuates the wing. However, the model considers the mesonotum as an ideal flat plane, whereas the mesonotum is hemispherical and becomes locally deformed during flight. Furthermore, the conventional model is two-dimensional; therefore, three-dimensional wing kinematics by indirect muscles have not been studied to date. In this study, we develop structural models of the mesonotum and mesothorax of the hawkmothAgrius convolvuli, reconstructed from serial cross-sectional images. External forces are applied to the models to mimic muscle contraction, and mesonotum deformation and wing trajectories are analyzed using finite element analysis. We find that applying longitudinal strain to the mesonotum to mimic strain by depressor muscle contraction reproduces local deformation comparable to that of the thorax during flight. Furthermore, the phase difference of the forces applied to the depressor and elevator muscles changes the wing trajectory from a figure eight to a circle, which is qualitatively consistent with the tethered flight experiment. These results indicate that the local deformation of the mesonotum due to its morphology and the thoracic deformation via indirect power muscles can modulate three-dimensional wing trajectories.
Collapse
Affiliation(s)
- Noriyasu Ando
- Department of Life Engineering, Faculty of Engineering, Maebashi Institute of Technology, Maebashi, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Tokuro Kono
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Naomichi Ogihara
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | | | - Hideo Yokota
- Center for Advanced Photonics, RIKEN, Wako, Japan
| | - Ryohei Kanzaki
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
24
|
Pinto J, Magni PA, O’Brien RC, Dadour IR. Chasing Flies: The Use of Wingbeat Frequency as a Communication Cue in Calyptrate Flies (Diptera: Calyptratae). INSECTS 2022; 13:822. [PMID: 36135523 PMCID: PMC9504876 DOI: 10.3390/insects13090822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/03/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
The incidental sound produced by the oscillation of insect wings during flight provides an opportunity for species identification. Calyptrate flies include some of the fastest and most agile flying insects, capable of rapid changes in direction and the fast pursuit of conspecifics. This flight pattern makes the continuous and close recording of their wingbeat frequency difficult and limited to confined specimens. Advances in sound editor and analysis software, however, have made it possible to isolate low amplitude sounds using noise reduction and pitch detection algorithms. To explore differences in wingbeat frequency between genera and sex, 40 specimens of three-day old Sarcophaga crassipalpis, Lucilia sericata, Calliphora dubia, and Musca vetustissima were individually recorded in free flight in a temperature-controlled room. Results showed significant differences in wingbeat frequency between the four species and intersexual differences for each species. Discriminant analysis classifying the three carrion flies resulted in 77.5% classified correctly overall, with the correct classification of 82.5% of S. crassipalpis, 60% of C. dubia, and 90% of L. sericata, when both mean wingbeat frequency and sex were included. Intersexual differences were further demonstrated by male flies showing significantly higher variability than females in three of the species. These observed intergeneric and intersexual differences in wingbeat frequency start the discussion on the use of the metric as a communication signal by this taxon. The success of the methodology demonstrated differences at the genus level and encourages the recording of additional species and the use of wingbeat frequency as an identification tool for these flies.
Collapse
Affiliation(s)
- Julie Pinto
- Discipline of Medical, Molecular & Forensic Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Paola A. Magni
- Discipline of Medical, Molecular & Forensic Sciences, Murdoch University, Murdoch, WA 6150, Australia
- King’s Centre, Murdoch University Singapore, Singapore 169662, Singapore
| | - R. Christopher O’Brien
- Forensic Sciences Department, Henry C. Lee College of Criminal Justice and Forensic Sciences, University of New Haven, West Haven, CT 06516, USA
| | - Ian R. Dadour
- Discipline of Medical, Molecular & Forensic Sciences, Murdoch University, Murdoch, WA 6150, Australia
- Source Certain, Wangara DC, WA 6947, Australia
| |
Collapse
|
25
|
Gao H, Lynch J, Gravish N. Soft Molds with Micro-Machined Internal Skeletons Improve Robustness of Flapping-Wing Robots. MICROMACHINES 2022; 13:1489. [PMID: 36144112 PMCID: PMC9502397 DOI: 10.3390/mi13091489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Mobile millimeter and centimeter scale robots often use smart composite manufacturing (SCM) for the construction of body components and mechanisms. The fabrication of SCM mechanisms requires laser machining and laminating flexible, adhesive, and structural materials into small-scale hinges, transmissions, and, ultimately, wings or legs. However, a fundamental limitation of SCM components is the plastic deformation and failure of flexures. In this work, we demonstrate that encasing SCM components in a soft silicone mold dramatically improves the durability of SCM flexure hinges and provides robustness to SCM components. We demonstrate this advance in the design of a flapping-wing robot that uses an underactuated compliant transmission fabricated with an inner SCM skeleton and exterior silicone mold. The transmission design is optimized to achieve desired wingstroke requirements and to allow for independent motion of each wing. We validate these design choices in bench-top tests, measuring transmission compliance, kinematics, and fatigue. We integrate the transmission with laminate wings and two types of actuation, demonstrating elastic energy exchange and limited lift-off capabilities. Lastly, we tested collision mitigation through flapping-wing experiments that obstructed the motion of a wing. These experiments demonstrate that an underactuated compliant transmission can provide resilience and robustness to flapping-wing robots.
Collapse
|
26
|
Gorgeva E, Robertson J, Hoogewerff J. Acoustic monitoring of carrion fly activity on human remains: a preliminary study. AUST J FORENSIC SCI 2022. [DOI: 10.1080/00450618.2022.2104372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Elena Gorgeva
- National Centre for Forensic Studies, University of Canberra, Bruce, New South Wales, Australia
| | - James Robertson
- National Centre for Forensic Studies, University of Canberra, Bruce, New South Wales, Australia
| | - Jurian Hoogewerff
- National Centre for Forensic Studies, University of Canberra, Bruce, New South Wales, Australia
| |
Collapse
|
27
|
Ahmed I, Faruque IA. High speed visual insect swarm tracker (Hi-VISTA) used to identify the effects of confinement on individual insect flight. BIOINSPIRATION & BIOMIMETICS 2022; 17:046012. [PMID: 35439741 DOI: 10.1088/1748-3190/ac6849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Individual insects flying in crowded assemblies perform complex aerial maneuvers by sensing and feeding back neighbor measurements to small changes in their wing motions. To understand the individual feedback rules that permit these fast, adaptive behaviors in group flight, both experimental preparations inducing crowded flight and high-speed tracking systems capable of tracking both body motions and more subtle wing motion changes for multiple insects in simultaneous flight are needed. This measurement capability extends tracking beyond the previous focus on individual insects to multiple insects. This paper describes an experimental preparation that induces crowded insect flight in more naturalistic conditions (a laboratory-outdoor transition tunnel) and directly compares the resulting flight performance to traditional flight enclosures. Measurements are made possible via the introduction of a multi-agent high speed insect tracker called Hi-VISTA, which provides a capability to track wing and body motions of multiple insects using high speed cameras (9000-12 500 fps). Processing steps consist of automatic background identification, data association, hull reconstruction, segmentation, and feature measurement. To improve the biological relevance of laboratory experiments and develop a platform for interaction studies, this paper applies the Hi-VISTA measurement system toApis melliferaforagers habituated to transit flights through the transparent transition environment. Binary statistical analysis (Welch's t-test, Cohen's d effect size) of 95 flight trajectories is presented, quantifying the differences between flights in an unobstructed environment and in a confined tunnel volume. The results indicate that body pitch angle, heading rate, flapping frequency, and vertical speed (heave) are each affected by confinement, and other flight variables show minor or statistically insignificant changes. These results form a baseline as swarm tracking and analysis begins to isolate the effects of neighbors from environmental enclosures, and improve the connection of high speed insect laboratory experiments to outdoor field experiments.
Collapse
Affiliation(s)
- Ishriak Ahmed
- Oklahoma State University, Stillwater, OK, United States of America
| | - Imraan A Faruque
- Oklahoma State University, Stillwater, OK, United States of America
| |
Collapse
|
28
|
Gau J, Wold ES, Lynch J, Gravish N, Sponberg S. The hawkmoth wingbeat is not at resonance. Biol Lett 2022; 18:20220063. [PMID: 35611583 DOI: 10.1098/rsbl.2022.0063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Flying insects have elastic materials within their exoskeletons that could reduce the energetic cost of flight if their wingbeat frequency is matched to a mechanical resonance frequency. Flapping at resonance may be essential across flying insects because of the power demands of small-scale flapping flight. However, building up large-amplitude resonant wingbeats over many wingstrokes may be detrimental for control if the total mechanical energy in the spring-wing system exceeds the per-cycle work capacity of the flight musculature. While the mechanics of the insect flight apparatus can behave as a resonant system, the question of whether insects flap their wings at their resonant frequency remains unanswered. Using previous measurements of body stiffness in the hawkmoth, Manduca sexta, we develop a mechanical model of spring-wing resonance with aerodynamic damping and characterize the hawkmoth's resonant frequency. We find that the hawkmoth's wingbeat frequency is approximately 80% above resonance and remains so when accounting for uncertainty in model parameters. In this regime, hawkmoths may still benefit from elastic energy exchange while enabling control of aerodynamic forces via frequency modulation. We conclude that, while insects use resonant mechanics, tuning wingbeats to a simple resonance peak is not a necessary feature for all centimetre-scale flapping flyers.
Collapse
Affiliation(s)
- Jeff Gau
- Interdisciplinary Bioengineering Graduate Program and George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ethan S Wold
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - James Lynch
- Mechanical and Aerospace Engineering, University of California, San Diego, CA 92161, USA
| | - Nick Gravish
- Mechanical and Aerospace Engineering, University of California, San Diego, CA 92161, USA
| | - Simon Sponberg
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.,School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
29
|
Cai X, Xue Y, Kolomenskiy D, Xu R, Liu H. Elastic storage enables robustness of flapping wing dynamics. BIOINSPIRATION & BIOMIMETICS 2022; 17:045003. [PMID: 35504276 DOI: 10.1088/1748-3190/ac6c66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/03/2022] [Indexed: 06/14/2023]
Abstract
Flying insects could perform robust flapping-wing dynamics under various environments while minimizing the high energetic cost by using elastic flight muscles and motors. Here we propose a fluid-structure interaction model that couples unsteady flapping aerodynamics and three-torsional-spring-based elastic wing-hinge dynamics to determine passive and active mechanisms (PAM) in bumblebee hovering. The results show that a strategy of active-controlled stroke, passive-controlled wing pitch and deviation enables an optimal elastic storage. The flapping-wing dynamics is robust, which is characterized by dynamics-based passive elevation-rotation and aerodynamics-based passive feathering-rotation, capable of producing aerodynamic force while achieving high power efficiency over a broad range of wing-hinge stiffness. A force-impulse model further confirms the capability of external perturbation robustness under the PAM-based strategy.
Collapse
Affiliation(s)
- Xuefei Cai
- Shanghai Jiao Tong University and Chiba University International Cooperative Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, People's Republic of China
- Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Yujing Xue
- Shanghai Jiao Tong University and Chiba University International Cooperative Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, People's Republic of China
- Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Dmitry Kolomenskiy
- Skoltech Center for Design, Manufacturing and Materials, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Ru Xu
- Shanghai Jiao Tong University and Chiba University International Cooperative Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, People's Republic of China
- Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Hao Liu
- Shanghai Jiao Tong University and Chiba University International Cooperative Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, People's Republic of China
- Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| |
Collapse
|
30
|
Pons A, Beatus T. Distinct forms of resonant optimality within insect indirect flight motors. J R Soc Interface 2022; 19:20220080. [PMID: 35582811 DOI: 10.1098/rsif.2022.0080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Insect flight motors are extraordinary natural structures that operate efficiently at high frequencies. Structural resonance is thought to play a role in ensuring efficient motor operation, but the details of this role are elusive. While the efficiency benefits associated with resonance may be significant, a range of counterintuitive behaviours are observed. In particular, the relationship between insect wingbeat frequencies and thoracic natural frequencies is uncertain, with insects showing wingbeat frequency modulation over both short and long time scales. Here, we offer new explanations for this modulation. We show how, in linear and nonlinear models of an indirect flight motor, resonance is not a unitary state at a single frequency, but a complex cluster of distinct and mutually exclusive states, each representing a different form of resonant optimality. Additionally, by characterizing the relationship between resonance and the state of negative work absorption within the motor, we demonstrate how near-perfect resonant energetic optimality can be maintained over significant wingbeat frequency ranges. Our analysis leads to a new conceptual model of flight motor operation: one in which insects are not energetically restricted to a precise wingbeat frequency, but instead are robust to changes in thoracic and environmental properties-an illustration of the extraordinary robustness of these natural motors.
Collapse
Affiliation(s)
- Arion Pons
- The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel.,The Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Israel
| | - Tsevi Beatus
- The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel.,The Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Israel
| |
Collapse
|
31
|
Vallejo-Marín M. How and why do bees buzz? Implications for buzz pollination. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1080-1092. [PMID: 34537837 PMCID: PMC8866655 DOI: 10.1093/jxb/erab428] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Buzz pollination encompasses the evolutionary convergence of specialized floral morphologies and pollinator behaviour in which bees use vibrations (floral buzzes) to remove pollen. Floral buzzes are one of several types of vibrations produced by bees using their thoracic muscles. Here I review how bees can produce these different types of vibrations and discuss the implications of this mechanistic understanding for buzz pollination. I propose that bee buzzes can be categorized according to their mode of production and deployment into: (i) thermogenic, which generate heat with little mechanical vibration; (ii) flight buzzes which, combined with wing deployment and thoracic vibration, power flight; and (iii) non-flight buzzes in which the thorax vibrates but the wings remain mostly folded, and include floral, defence, mating, communication, and nest-building buzzes. I hypothesize that the characteristics of non-flight buzzes, including floral buzzes, can be modulated by bees via modification of the biomechanical properties of the thorax through activity of auxiliary muscles, changing the rate of activation of the indirect flight muscles, and modifying flower handling behaviours. Thus, bees should be able to fine-tune mechanical properties of their floral vibrations, including frequency and amplitude, depending on flower characteristics and pollen availability to optimize energy use and pollen collection.
Collapse
Affiliation(s)
- Mario Vallejo-Marín
- Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA, UK
| |
Collapse
|
32
|
Deora T, Sane SS, Sane SP. Wings and halteres act as coupled dual oscillators in flies. eLife 2021; 10:53824. [PMID: 34783648 PMCID: PMC8629423 DOI: 10.7554/elife.53824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 11/10/2021] [Indexed: 11/13/2022] Open
Abstract
The mechanics of Dipteran thorax is dictated by a network of exoskeletal linkages that, when deformed by the flight muscles, generate coordinated wing movements. In Diptera, the forewings power flight, whereas the hindwings have evolved into specialized structures called halteres, which provide rapid mechanosensory feedback for flight stabilization. Although actuated by independent muscles, wing and haltere motion is precisely phase-coordinated at high frequencies. Because wingbeat frequency is a product of wing-thorax resonance, any wear-and-tear of wings or thorax should impair flight ability. How robust is the Dipteran flight system against such perturbations? Here, we show that wings and halteres are independently driven, coupled oscillators. We systematically reduced the wing length in flies and observed how wing-haltere synchronization was affected. The wing-wing system is a strongly coupled oscillator, whereas the wing-haltere system is weakly coupled through mechanical linkages that synchronize phase and frequency. Wing-haltere link acts in a unidirectional manner; altering wingbeat frequency affects haltere frequency, but not vice versa. Exoskeletal linkages are thus key morphological features of the Dipteran thorax that ensure wing-haltere synchrony, despite severe wing damage.
Collapse
Affiliation(s)
- Tanvi Deora
- Department of Biology, University of Washington, Seattle, Washington, United States
| | | | - Sanjay P Sane
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
33
|
Development of the indirect flight muscles of Aedes aegypti, a main arbovirus vector. BMC DEVELOPMENTAL BIOLOGY 2021; 21:11. [PMID: 34445959 PMCID: PMC8394598 DOI: 10.1186/s12861-021-00242-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 08/08/2021] [Indexed: 11/22/2022]
Abstract
Background Flying is an essential function for mosquitoes, required for mating and, in the case of females, to get a blood meal and consequently function as a vector. Flight depends on the action of the indirect flight muscles (IFMs), which power the wings beat. No description of the development of IFMs in mosquitoes, including Aedes aegypti, is available.
Methods A. aegypti thoraces of larvae 3 and larvae 4 (L3 and L4) instars were analyzed using histochemistry and bright field microscopy. IFM primordia from L3 and L4 and IFMs from pupal and adult stages were dissected and processed to detect F-actin labelling with phalloidin-rhodamine or TRITC, or to immunodetection of myosin and tubulin using specific antibodies, these samples were analyzed by confocal microscopy. Other samples were studied using transmission electron microscopy. Results At L3–L4, IFM primordia for dorsal-longitudinal muscles (DLM) and dorsal–ventral muscles (DVM) were identified in the expected locations in the thoracic region: three primordia per hemithorax corresponding to DLM with anterior to posterior orientation were present. Other three primordia per hemithorax, corresponding to DVM, had lateral position and dorsal to ventral orientation. During L3 to L4 myoblast fusion led to syncytial myotubes formation, followed by myotendon junctions (MTJ) creation, myofibrils assembly and sarcomere maturation. The formation of Z-discs and M-line during sarcomere maturation was observed in pupal stage and, the structure reached in teneral insects a classical myosin thick, and actin thin filaments arranged in a hexagonal lattice structure. Conclusions A general description of A. aegypti IFM development is presented, from the myoblast fusion at L3 to form myotubes, to sarcomere maturation at adult stage. Several differences during IFM development were observed between A. aegypti (Nematoceran) and Drosophila melanogaster (Brachyceran) and, similitudes with Chironomus sp. were observed as this insect is a Nematoceran, which is taxonomically closer to A. aegypti and share the same number of larval stages. Supplementary Information The online version contains supplementary material available at 10.1186/s12861-021-00242-8.
Collapse
|
34
|
Chae K, Valentin C, Dawson C, Jakes E, Myles KM, Adelman ZN. A knockout screen of genes expressed specifically in Ae. aegypti pupae reveals a critical role for stretchin in mosquito flight. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 132:103565. [PMID: 33716097 DOI: 10.1016/j.ibmb.2021.103565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Aedes aegypti is a critical vector for transmitting Zika, dengue, chikungunya, and yellow fever viruses to humans. Genetic strategies to limit mosquito survival based upon sex distortion or disruption of development may be valuable new tools to control Ae. aegypti populations. We identified six genes with expression limited to pupal development; osi8 and osi11 (Osiris protein family), CPRs and CPF (cuticle protein family), and stretchin (a muscle protein). Heritable CRISPR/Cas9-mediated gene knockout of these genes did not reveal any defects in pupal development. However, stretchin-null mutations (strnΔ35/Δ41) resulted in flightless mosquitoes with an abnormal open wing posture. The inability of adult strnΔ35/Δ41 mosquitoes to fly restricted their escape from aquatic rearing media following eclosion, and substantially reduced adult survival rates. Transgenic strains which contain the EGFP marker gene under the control of strn regulatory regions (0.8 kb, 1.4 kb, and 2.2 kb upstream, respectively), revealed the gene expression pattern of strn in muscle-like tissues in the thorax during late morphogenesis from L4 larvae to young adults. We demonstrated that Ae. aegypti pupae-specific strn is critical for adult mosquito flight capability and a key late-acting lethal target for mosquito-borne disease control.
Collapse
Affiliation(s)
- Keun Chae
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Collin Valentin
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Chanell Dawson
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Emma Jakes
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Kevin M Myles
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Zach N Adelman
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
35
|
Lerch S, Zuber R, Gehring N, Wang Y, Eckel B, Klass KD, Lehmann FO, Moussian B. Resilin matrix distribution, variability and function in Drosophila. BMC Biol 2020; 18:195. [PMID: 33317537 PMCID: PMC7737337 DOI: 10.1186/s12915-020-00902-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 10/19/2020] [Indexed: 11/23/2022] Open
Abstract
Background Elasticity prevents fatigue of tissues that are extensively and repeatedly deformed. Resilin is a resilient and elastic extracellular protein matrix in joints and hinges of insects. For its mechanical properties, Resilin is extensively analysed and applied in biomaterial and biomedical sciences. However, there is only indirect evidence for Resilin distribution and function in an insect. Commonly, the presence of dityrosines that covalently link Resilin protein monomers (Pro-Resilin), which are responsible for its mechanical properties and fluoresce upon UV excitation, has been considered to reflect Resilin incidence. Results Using a GFP-tagged Resilin version, we directly identify Resilin in pliable regions of the Drosophila body, some of which were not described before. Interestingly, the amounts of dityrosines are not proportional to the amounts of Resilin in different areas of the fly body, arguing that the mechanical properties of Resilin matrices vary according to their need. For a functional analysis of Resilin matrices, applying the RNA interference and Crispr/Cas9 techniques, we generated flies with reduced or eliminated Resilin function, respectively. We find that these flies are flightless but capable of locomotion and viable suggesting that other proteins may partially compensate for Resilin function. Indeed, localizations of the potentially elastic protein Cpr56F and Resilin occasionally coincide. Conclusions Thus, Resilin-matrices are composite in the way that varying amounts of different elastic proteins and dityrosinylation define material properties. Understanding the biology of Resilin will have an impact on Resilin-based biomaterial and biomedical sciences.
Collapse
Affiliation(s)
- Steven Lerch
- Applied Zoology, Technical University of Dresden, Dresden, Germany.,Animal Genetics, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany.,Senckenberg Natural History Collections, Dresden, Germany
| | - Renata Zuber
- Applied Zoology, Technical University of Dresden, Dresden, Germany
| | - Nicole Gehring
- Animal Genetics, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany
| | - Yiwen Wang
- Animal Genetics, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany
| | - Barbara Eckel
- Applied Zoology, Technical University of Dresden, Dresden, Germany
| | | | | | - Bernard Moussian
- Applied Zoology, Technical University of Dresden, Dresden, Germany. .,Animal Genetics, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany. .,CNRS, Inserm Institute of Biology Valrose, Université Côte d'Azur, Nice, France.
| |
Collapse
|
36
|
Liu H. Simulation-based insect-inspired flight systems. CURRENT OPINION IN INSECT SCIENCE 2020; 42:105-109. [PMID: 33068784 DOI: 10.1016/j.cois.2020.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/30/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
Insects power and control their flight by flapping their wings. By controlling their aerodynamic forces and torques, they can generate precise and agile aerial manoeuvres. From an engineer's perspective, their closed-loop, flight control system depends on an overarching external mechanical 'frame' consisting of wings and thoracic shell, which is actuated by an internal system consisting of flight muscles and a complex nervous system. Insect flights are diverse but robust relying on the integration of different flexible structures including wings, exoskeletal elements, wing-hinges, musculoskeletal elements, and sensors. Computational modelling of biomechanics in insect-inspired flight systems can offer a powerful and feasible tool to unravel a passive and active mechanism (PAM) strategy, that is, how these flexible structures work interactively and complementarily to achieve a systematically efficient and robust flapping-wing dynamics and aerodynamics as well as flight control in various natural environments.
Collapse
Affiliation(s)
- Hao Liu
- Graduate School of Engineering, Chiba University, Japan.
| |
Collapse
|
37
|
Cao T, Jin JP. Evolution of Flight Muscle Contractility and Energetic Efficiency. Front Physiol 2020; 11:1038. [PMID: 33162892 PMCID: PMC7581897 DOI: 10.3389/fphys.2020.01038] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022] Open
Abstract
The powered flight of animals requires efficient and sustainable contractions of the wing muscles of various flying species. Despite their high degree of phylogenetic divergence, flight muscles in insects and vertebrates are striated muscles with similarly specialized sarcomeric structure and basic mechanisms of contraction and relaxation. Comparative studies examining flight muscles together with other striated muscles can provide valuable insights into the fundamental mechanisms of muscle contraction and energetic efficiency. Here, we conducted a literature review and data mining to investigate the independent emergence and evolution of flight muscles in insects, birds, and bats, and the likely molecular basis of their contractile features and energetic efficiency. Bird and bat flight muscles have different metabolic rates that reflect differences in energetic efficiencies while having similar contractile machinery that is under the selection of similar natural environments. The significantly lower efficiency of insect flight muscles along with minimized energy expenditure in Ca2+ handling is discussed as a potential mechanism to increase the efficiency of mammalian striated muscles. A better understanding of the molecular evolution of myofilament proteins in the context of physiological functions of invertebrate and vertebrate flight muscles can help explore novel approaches to enhance the performance and efficiency of skeletal and cardiac muscles for the improvement of human health.
Collapse
Affiliation(s)
| | - J.-P. Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
38
|
Karásek M. Good vibrations for flapping-wing flyers. Sci Robot 2020; 5:5/46/eabe4544. [PMID: 32999051 DOI: 10.1126/scirobotics.abe4544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 09/11/2020] [Indexed: 11/02/2022]
Abstract
Studies of insect flight reveal how flapping-induced vibrations augment flight stability of tailless flapping-wing flyers.
Collapse
Affiliation(s)
- Matěj Karásek
- Micro Air Vehicle Laboratory, Control and Operations Department, Faculty of Aerospace Engineering, Delft University of Technology, Netherlands.
| |
Collapse
|
39
|
Verbe A, Varennes LP, Vercher JL, Viollet S. How do hoverflies use their righting reflex? J Exp Biol 2020; 223:jeb215327. [PMID: 32527962 DOI: 10.1242/jeb.215327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 05/28/2020] [Indexed: 11/20/2022]
Abstract
When taking off from a sloping surface, flies have to reorient themselves dorsoventrally and stabilize their body by actively controlling their flapping wings. We have observed that righting is achieved solely by performing a rolling manoeuvre. How flies manage to do this has not yet been elucidated. It was observed here for the first time that hoverfly reorientation is entirely achieved within 6 wingbeats (48.8 ms) at angular roll velocities of up to 10×103 deg s-1 and that the onset of their head rotation consistently follows that of their body rotation after a time lag of 16 ms. The insects' body roll was found to be triggered by the asymmetric wing stroke amplitude, as expected. The righting process starts immediately with the first wingbeat and seems unlikely to depend on visual feedback. A dynamic model for the fly's righting reflex is presented, which accounts for the head/body movements and the time lag recorded in these experiments. This model consists of a closed-loop control of the body roll, combined with a feedforward control of the head/body angle. During the righting manoeuvre, a strong coupling seems to exist between the activation of the halteres (which measure the body's angular speed) and the gaze stabilization reflex. These findings again confirm the fundamental role played by the halteres in both body and head stabilization processes.
Collapse
Affiliation(s)
- Anna Verbe
- Institute of Movement Sciences Biorobotics Department, Aix-Marseille Université, CNRS, ISM, Marseille cedex 09, France
| | - Léandre P Varennes
- Institute of Movement Sciences Biorobotics Department, Aix-Marseille Université, CNRS, ISM, Marseille cedex 09, France
| | - Jean-Louis Vercher
- Institute of Movement Sciences Biorobotics Department, Aix-Marseille Université, CNRS, ISM, Marseille cedex 09, France
| | - Stéphane Viollet
- Institute of Movement Sciences Biorobotics Department, Aix-Marseille Université, CNRS, ISM, Marseille cedex 09, France
| |
Collapse
|
40
|
Tracy CB, Nguyen J, Abraham R, Shirangi TR. Evolution of sexual size dimorphism in the wing musculature of Drosophila. PeerJ 2020; 8:e8360. [PMID: 31988804 PMCID: PMC6970592 DOI: 10.7717/peerj.8360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/05/2019] [Indexed: 11/20/2022] Open
Abstract
Male courtship songs in Drosophila are exceedingly diverse across species. While much of this variation is understood to have evolved from changes in the central nervous system, evolutionary transitions in the wing muscles that control the song may have also contributed to song diversity. Here, focusing on a group of four wing muscles that are known to influence courtship song in Drosophila melanogaster, we investigate the evolutionary history of wing muscle anatomy of males and females from 19 Drosophila species. We find that three of the wing muscles have evolved sexual dimorphisms in size multiple independent times, whereas one has remained monomorphic in the phylogeny. These data suggest that evolutionary changes in wing muscle anatomy may have contributed to species variation in sexually dimorphic wing-based behaviors, such as courtship song. Moreover, wing muscles appear to differ in their propensity to evolve size dimorphisms, which may reflect variation in the functional constraints acting upon different wing muscles.
Collapse
Affiliation(s)
- Claire B Tracy
- Department of Biology, Villanova University, Villanova, PA, United States of America
| | - Janet Nguyen
- Department of Biology, Villanova University, Villanova, PA, United States of America
| | - Rayna Abraham
- Department of Biology, Villanova University, Villanova, PA, United States of America
| | - Troy R Shirangi
- Department of Biology, Villanova University, Villanova, PA, United States of America
| |
Collapse
|
41
|
González-Morales N, Marsh TW, Katzemich A, Marescal O, Xiao YS, Schöck F. Different Evolutionary Trajectories of Two Insect-Specific Paralogous Proteins Involved in Stabilizing Muscle Myofibrils. Genetics 2019; 212:743-755. [PMID: 31123042 PMCID: PMC6614898 DOI: 10.1534/genetics.119.302217] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/07/2019] [Indexed: 12/17/2022] Open
Abstract
Alp/Enigma family members have a unique PDZ domain followed by zero to four LIM domains, and are essential for myofibril assembly across all species analyzed so far. Drosophila melanogaster has three Alp/Enigma family members, Zasp52, Zasp66, and Zasp67. Ortholog search and phylogenetic tree analysis suggest that Zasp genes have a common ancestor, and that Zasp66 and Zasp67 arose by duplication in insects. While Zasp66 has a conserved domain structure across orthologs, Zasp67 domains and lengths are highly variable. In flies, Zasp67 appears to be expressed only in indirect flight muscles, where it colocalizes with Zasp52 at Z-discs. We generated a CRISPR null mutant of Zasp67, which is viable but flightless. We can rescue all phenotypes by re-expressing a Zasp67 transgene at endogenous levels. Zasp67 mutants show extended and broken Z-discs in adult flies, indicating that the protein helps stabilize the highly regular myofibrils of indirect flight muscles. In contrast, a Zasp66 CRISPR null mutant has limited viability, but only mild indirect flight muscle defects illustrating the diverging evolutionary paths these two paralogous genes have taken since they arose by duplication.
Collapse
Affiliation(s)
| | - Thomas W Marsh
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
| | - Anja Katzemich
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
| | - Océane Marescal
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
| | - Yu Shu Xiao
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
| | - Frieder Schöck
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
| |
Collapse
|
42
|
Chaturvedi D, Prabhakar S, Aggarwal A, Atreya KB, VijayRaghavan K. Adult Drosophila muscle morphometry through microCT reveals dynamics during ageing. Open Biol 2019; 9:190087. [PMID: 31238820 PMCID: PMC6597753 DOI: 10.1098/rsob.190087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Indirect flight muscles (IFMs) in adult Drosophila provide the key power stroke for wing beating. They also serve as a valuable model for studying muscle development. An age-dependent decline in Drosophila free flight has been documented, but its relation to gross muscle structure has not yet been explored satisfactorily. Such analyses are impeded by conventional histological preparations and imaging techniques that limit exact morphometry of flight muscles. In this study, we employ microCT scanning on a tissue preparation that retains muscle morphology under homeostatic conditions. Focusing on a subset of IFMs called the dorsal longitudinal muscles (DLMs), we find that DLM volumes increase with age, partially due to the increased separation between myofibrillar fascicles, in a sex-dependent manner. We have uncovered and quantified asymmetry in the size of these muscles on either side of the longitudinal midline. Measurements of this resolution and scale make substantive studies that test the connection between form and function possible. We also demonstrate the application of this method to other insect species making it a valuable tool for histological analysis of insect biodiversity.
Collapse
Affiliation(s)
- Dhananjay Chaturvedi
- 1 National Center for Biological Sciences, TIFR , GKVK Campus, Bellary Road, Bengaluru 560065 , India
| | - Sunil Prabhakar
- 2 microCT and EM Facility, National Center for Biological Sciences, TIFR , GKVK Campus, Bellary Road, Bengaluru 560065 , India
| | - Aman Aggarwal
- 1 National Center for Biological Sciences, TIFR , GKVK Campus, Bellary Road, Bengaluru 560065 , India.,3 Manipal Academy of Higher Education , Manipal, Karnataka 576104 , India
| | - Krishan B Atreya
- 1 National Center for Biological Sciences, TIFR , GKVK Campus, Bellary Road, Bengaluru 560065 , India
| | - K VijayRaghavan
- 1 National Center for Biological Sciences, TIFR , GKVK Campus, Bellary Road, Bengaluru 560065 , India
| |
Collapse
|
43
|
Glasheen BM, Ramanath S, Patel M, Sheppard D, Puthawala JT, Riley LA, Swank DM. Five Alternative Myosin Converter Domains Influence Muscle Power, Stretch Activation, and Kinetics. Biophys J 2019. [PMID: 29539400 DOI: 10.1016/j.bpj.2017.12.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Muscles have evolved to power a wide variety of movements. A protein component critical to varying power generation is the myosin isoform present in the muscle. However, how functional variation in muscle arises from myosin structure is not well understood. We studied the influence of the converter, a myosin structural region at the junction of the lever arm and catalytic domain, using Drosophila because its single myosin heavy chain gene expresses five alternative converter versions (11a-e). We created five transgenic fly lines, each forced to express one of the converter versions in their indirect flight muscle (IFM) fibers. Electron microscopy showed that the converter exchanges did not alter muscle ultrastructure. The four lines expressing converter versions (11b-e) other than the native IFM 11a converter displayed decreased flight ability. IFM fibers expressing converters normally found in the adult stage muscles generated up to 2.8-fold more power and displayed up to 2.2-fold faster muscle kinetics than fibers with converters found in the embryonic and larval stage muscles. Small changes to stretch-activated force generation only played a minor role in altering power output of IFM. Muscle apparent rate constants, derived from sinusoidal analysis of the chimeric converter fibers, showed a strong positive correlation between optimal muscle oscillation frequency and myosin attachment kinetics to actin, and an inverse correlation with detachment related cross-bridge kinetics. This suggests the myosin converter alters at least two rate constants of the cross-bridge cycle with changes to attachment and power stroke related kinetics having the most influence on setting muscle oscillatory power kinetics.
Collapse
Affiliation(s)
| | - Seemanti Ramanath
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York
| | - Monica Patel
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York
| | - Debra Sheppard
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York
| | - Joy T Puthawala
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York
| | - Lauren A Riley
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York
| | - Douglas M Swank
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York; Department of Biomedical Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York.
| |
Collapse
|
44
|
Liu SP, Friedrich F, Petersen DS, Büsse S, Gorb SN, Beutel RG. The thoracic anatomy of the swift louseflyCrataerina pallida(Diptera)—functional implications and character evolution in Hippoboscoidea. Zool J Linn Soc 2018. [DOI: 10.1093/zoolinnean/zly032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Si-Pei Liu
- Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Frank Friedrich
- Institut für Zoologie, Universität Hamburg, Hamburg, Germany
| | - Dennis Sebastian Petersen
- Funktionelle Morphologie und Biomechanik, Zoologisches Institut, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Sebastian Büsse
- Funktionelle Morphologie und Biomechanik, Zoologisches Institut, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Stanislav N Gorb
- Funktionelle Morphologie und Biomechanik, Zoologisches Institut, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Rolf G Beutel
- Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, Jena, Germany
| |
Collapse
|
45
|
Synchrotron Radiation X-ray Diffraction Techniques Applied to Insect Flight Muscle. Int J Mol Sci 2018; 19:ijms19061748. [PMID: 29899245 PMCID: PMC6032142 DOI: 10.3390/ijms19061748] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 01/02/2023] Open
Abstract
X-ray fiber diffraction is a powerful tool used for investigating the molecular structure of muscle and its dynamics during contraction. This technique has been successfully applied not only to skeletal and cardiac muscles of vertebrates but also to insect flight muscle. Generally, insect flight muscle has a highly ordered structure and is often capable of high-frequency oscillations. The X-ray diffraction studies on muscle have been accelerated by the advent of 3rd-generation synchrotron radiation facilities, which can generate brilliant and highly oriented X-ray beams. This review focuses on some of the novel experiments done on insect flight muscle by using synchrotron radiation X-rays. These include diffraction recordings from single myofibrils within a flight muscle fiber by using X-ray microbeams and high-speed diffraction recordings from the flight muscle during the wing-beat of live insects. These experiments have provided information about the molecular structure and dynamic function of flight muscle in unprecedented detail. Future directions of X-ray diffraction studies on muscle are also discussed.
Collapse
|
46
|
Wasserthal LT, Cloetens P, Fink RH, Wasserthal LK. X-ray computed tomography study of the flight-adapted tracheal system in the blowfly Calliphora vicina analysing the ventilation mechanism and flow-directing valves. J Exp Biol 2018; 221:jeb.176024. [DOI: 10.1242/jeb.176024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/23/2018] [Indexed: 11/20/2022]
Abstract
After the discovery of the flight-motor driven unidirectional gas exchange with rising PO2 in the blowfly, X-ray computer tomography (CT) was used to visualize the organization of the tracheal system in the anterior body with emphasis on the arrangement of the pathways for the airflows. The fly's head is preferentially supplied by cephalic tracheae originating from the ventral orifice of the mesothoracic spiracle (Sp1). The respiratory airflow during flight is a by-product of cyclic deformations of the thoracic box by the flight muscles. The air sacs below the tergal integument (scutum and scutellum) facilitate the respiratory airflow: The shortening of the thorax turns the scutellum and the wings downward and the scutum upward with a volume increase in the scutal air sacs. The resulting negative pressure sucks air from Sp1 through special tracheae towards the scutal air sacs. The airflow is directed by two valves that open alternately: (1) The hinged filter flaps of the metathoracic spiracles (Sp2) are passively pushed open during the upstroke by the increased tracheal pressure, thereby enabling expiration. (2) A newly described tracheal valve-like septum behind the regular spiracular valve lids of Sp1 opens passively and air is sucked in through Sp1 during the downstroke and prevents expiration by closing during the upstroke. This stabilizes the unidirectional airflow. The tracheal volume of the head, thorax and abdomen and their mass were determined. Despite the different anatomy in birds and flies the unidirectional airflow reveals a comparable efficiency of the temporal throughput in flies and hummingbirds.
Collapse
Affiliation(s)
- Lutz Thilo Wasserthal
- Department of Biology, University of Erlangen-Nuremberg, Staudtstr. 5, D-91058 Erlangen, Germany
| | - Peter Cloetens
- European Synchrotron Radiation Facility, 71, Avenue des Martyrs, F-38043 Grenoble, France
| | - Rainer H. Fink
- Department Chemistry and Pharmacy, University of Erlangen-Nuremberg, Egerlandstr. 3, D-91058 Erlangen, Germany
| | | |
Collapse
|