1
|
Bundgaard A, Gruszczyk AV, Prag HA, Williams C, McIntyre A, Ruhr IM, James AM, Galli GLJ, Murphy MP, Fago A. Low production of mitochondrial reactive oxygen species after anoxia and reoxygenation in turtle hearts. J Exp Biol 2023; 226:jeb245516. [PMID: 37066839 PMCID: PMC10184768 DOI: 10.1242/jeb.245516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/03/2023] [Indexed: 04/18/2023]
Abstract
Extremely anoxia-tolerant animals, such as freshwater turtles, survive anoxia and reoxygenation without sustaining tissue damage to their hearts. In contrast, for mammals, the ischemia-reperfusion (IR) injury that leads to tissue damage during a heart attack is initiated by a burst of superoxide (O2·-) production from the mitochondrial respiratory chain upon reperfusion of ischemic tissue. Whether turtles avoid oxidative tissue damage because of an absence of mitochondrial superoxide production upon reoxygenation, or because the turtle heart is particularly protected against this damage, is unclear. Here, we investigated whether there was an increase in mitochondrial O2·- production upon the reoxygenation of anoxic red-eared slider turtle hearts in vivo and in vitro. This was done by measuring the production of H2O2, the dismutation product of O2·-, using the mitochondria-targeted mass-spectrometric probe in vivo MitoB, while in parallel assessing changes in the metabolites driving mitochondrial O2·- production, succinate, ATP and ADP levels during anoxia, and H2O2 consumption and production rates of isolated heart mitochondria. We found that there was no excess production of in vivo H2O2 during 1 h of reoxygenation in turtles after 3 h anoxia at room temperature, suggesting that turtle hearts most likely do not suffer oxidative injury after anoxia because their mitochondria produce no excess O2·- upon reoxygenation. Instead, our data support the conclusion that both the low levels of succinate accumulation and the maintenance of ADP levels in the anoxic turtle heart are key factors in preventing the surge of O2·- production upon reoxygenation.
Collapse
Affiliation(s)
- Amanda Bundgaard
- CECAD, University of Cologne, 50931 Cologne, Germany
- Department of Biology, Aarhus University, DK-8000 Aarhus, Denmark
| | - Anja V. Gruszczyk
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Hiran A. Prag
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | | | - Angela McIntyre
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Ilan M. Ruhr
- Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Andrew M. James
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Gina L. J. Galli
- Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Michael P. Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Angela Fago
- Department of Biology, Aarhus University, DK-8000 Aarhus, Denmark
| |
Collapse
|
2
|
Ponganis PJ. A Physio-Logging Journey: Heart Rates of the Emperor Penguin and Blue Whale. Front Physiol 2021; 12:721381. [PMID: 34413792 PMCID: PMC8369151 DOI: 10.3389/fphys.2021.721381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/08/2021] [Indexed: 11/23/2022] Open
Abstract
Physio-logging has the potential to explore the processes that underlie the dive behavior and ecology of marine mammals and seabirds, as well as evaluate their adaptability to environmental change and other stressors. Regulation of heart rate lies at the core of the physiological processes that determine dive capacity and performance. The bio-logging of heart rate in unrestrained animals diving at sea was infeasible, even unimaginable in the mid-1970s. To provide a historical perspective, I review my 40-year experience in the development of heart rate physio-loggers and the evolution of a digital electrocardiogram (ECG) recorder that is still in use today. I highlight documentation of the ECG and the interpretation of heart rate profiles in the largest of avian and mammalian divers, the emperor penguin and blue whale.
Collapse
Affiliation(s)
- Paul J Ponganis
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
3
|
Harrison XA. A brief introduction to the analysis of time-series data from biologging studies. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200227. [PMID: 34176325 PMCID: PMC8237163 DOI: 10.1098/rstb.2020.0227] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2021] [Indexed: 12/24/2022] Open
Abstract
Recent advances in tagging and biologging technology have yielded unprecedented insights into wild animal physiology. However, time-series data from such wild tracking studies present numerous analytical challenges owing to their unique nature, often exhibiting strong autocorrelation within and among samples, low samples sizes and complicated random effect structures. Gleaning robust quantitative estimates from these physiological data, and, therefore, accurate insights into the life histories of the animals they pertain to, requires careful and thoughtful application of existing statistical tools. Using a combination of both simulated and real datasets, I highlight the key pitfalls associated with analysing physiological data from wild monitoring studies, and investigate issues of optimal study design, statistical power, and model precision and accuracy. I also recommend best practice approaches for dealing with their inherent limitations. This work will provide a concise, accessible roadmap for researchers looking to maximize the yield of information from complex and hard-won biologging datasets. This article is part of the theme issue 'Measuring physiology in free-living animals (Part II)'.
Collapse
Affiliation(s)
- Xavier A. Harrison
- Centre for Ecology and Conservation, University of Exeter, Penryn TR10 9FE, UK
| |
Collapse
|
4
|
Hawkes LA, Fahlman A, Sato K. What is physiologging? Introduction to the theme issue, part 2. Philos Trans R Soc Lond B Biol Sci 2021; 376:20210028. [PMID: 34176329 PMCID: PMC8237167 DOI: 10.1098/rstb.2021.0028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2021] [Indexed: 01/05/2023] Open
Abstract
The physiological mechanisms by which animals regulate energy expenditure, respond to stimuli and stressors, and maintain homeostasis at the tissue, organ and whole organism levels can be described by 'physiologging'-that is, the use of onboard miniature electronic devices to record physiological metrics of animals in captivity or free-living in the wild. Despite its origins in the 1960s, physiologging has evolved more slowly than its umbrella field of biologging. However, the recording of physiological metrics in free-living animals will be key to solving some of the greatest challenges in biodiversity conservation, issues pertaining to animal health and welfare, and for inspiring future therapeutic strategies for human health. Current physiologging technologies encompass the measurement of physiological variables such as heart rate, brain activity, body temperature, muscle stimulation and dynamic movement, yet future developments will allow for onboard logging of metrics relating to organelle, molecular and genetic function. This article is part of the theme issue 'Measuring physiology in free-living animals (Part II)'.
Collapse
Affiliation(s)
- L. A. Hawkes
- University of Exeter, Hatherly Laboratories, Prince of Wales Road, Exeter, EX4 4PS, UK
| | - A. Fahlman
- Global Diving Research Inc. Ottawa ON K2J 5E8, USA
| | - K. Sato
- Atmosphere and Ocean Research Institute, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba Prefecture 277-8564, Japan
| |
Collapse
|
5
|
Williams CL, Hindle AG. Field Physiology: Studying Organismal Function in the Natural Environment. Compr Physiol 2021; 11:1979-2015. [PMID: 34190338 DOI: 10.1002/cphy.c200005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Continuous physiological measurements collected in field settings are essential to understand baseline, free-ranging physiology, physiological range and variability, and the physiological responses of organisms to disturbances. This article presents a current summary of the available technologies to continuously measure the direct physiological parameters in the field at high-resolution/instantaneous timescales from freely behaving animals. There is a particular focus on advantages versus disadvantages of available methods as well as emerging technologies "on the horizon" that may have been validated in captive or laboratory-based scenarios but have yet to be applied in the wild. Systems to record physiological variables from free-ranging animals are reviewed, including radio (VHF/UFH) telemetry, acoustic telemetry, and dataloggers. Physiological parameters that have been continuously measured in the field are addressed in seven sections including heart rate and electrocardiography (ECG); electromyography (EMG); electroencephalography (EEG); body temperature; respiratory, blood, and muscle oxygen; gastric pH and motility; and blood pressure and flow. The primary focal sections are heart rate and temperature as these can be, and have been, extensively studied in free-ranging organisms. Predicted aspects of future innovation in physiological monitoring are also discussed. The article concludes with an overview of best practices and points to consider regarding experimental designs, cautions, and effects on animals. © 2021 American Physiological Society. Compr Physiol 11:1979-2015, 2021.
Collapse
Affiliation(s)
- Cassondra L Williams
- National Marine Mammal Foundation, San Diego, California, USA.,Department of Ecology and Evolutionary Biology, School of Biological Science, University of California Irvine, Irvine, California, USA
| | - Allyson G Hindle
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| |
Collapse
|
6
|
Burggren W, Filogonio R, Wang T. Cardiovascular shunting in vertebrates: a practical integration of competing hypotheses. Biol Rev Camb Philos Soc 2019; 95:449-471. [PMID: 31859458 DOI: 10.1111/brv.12572] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 10/30/2019] [Accepted: 11/07/2019] [Indexed: 12/20/2022]
Abstract
This review explores the long-standing question: 'Why do cardiovascular shunts occur?' An historical perspective is provided on previous research into cardiac shunts in vertebrates that continues to shape current views. Cardiac shunts and when they occur is then described for vertebrates. Nearly 20 different functional reasons have been proposed as specific causes of shunts, ranging from energy conservation to improved gas exchange, and including a plethora of functions related to thermoregulation, digestion and haemodynamics. It has even been suggested that shunts are merely an evolutionary or developmental relic. Having considered the various hypotheses involving cardiovascular shunting in vertebrates, this review then takes a non-traditional approach. Rather than attempting to identify the single 'correct' reason for the occurrence of shunts, we advance a more holistic, integrative approach that embraces multiple, non-exclusive suites of proposed causes for shunts, and indicates how these varied functions might at least co-exist, if not actually support each other as shunts serve multiple, concurrent physiological functions. It is argued that deposing the 'monolithic' view of shunting leads to a more nuanced view of vertebrate cardiovascular systems. This review concludes by suggesting new paradigms for testing the function(s) of shunts, including experimentally placing organ systems into conflict in terms of their perfusion needs, reducing sources of variation in physiological experiments, measuring possible compensatory responses to shunt ablation, moving experiments from the laboratory to the field, and using cladistics-related approaches in the choice of experimental animals.
Collapse
Affiliation(s)
- Warren Burggren
- Department of Biological Sciences, Developmental Integrative Biology Cluster, University of North Texas, Denton, TX, 76203-5220, U.S.A
| | - Renato Filogonio
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Tobias Wang
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus C, 8000, Denmark.,Aarhus Institute of Advanced Sciences (AIAS), Aarhus University, Aarhus C, 8000, Denmark
| |
Collapse
|
7
|
Kirby AR, Smith B, Crossley DA. Regulation of blood flow in the pulmonary and systemic circuits during submerged swimming in common snapping turtle ( Chelydra serpentina). ACTA ACUST UNITED AC 2019; 222:jeb.205211. [PMID: 31331940 DOI: 10.1242/jeb.205211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/18/2019] [Indexed: 11/20/2022]
Abstract
Blood flow patterns and heart rate have rarely been investigated in freely swimming turtles and their regulation during swimming is unknown. In this study, we investigated the blood flow patterns and heart rate in surfacing and during graded, submerged swimming activity in common snapping turtles. We further investigated the effects of beta-adrenergic and cholinergic receptor blockade on blood flow and heart rate during these activities. Our findings illustrate that surfacing is accompanied by an increase in heart rate that is primarily due to beta-adrenergic stimulation. During swimming, this mechanism also increases heart rate while vagal withdrawal facilitates a systemic to pulmonary (left to right) shunt. The results indicate there may be important taxonomic effects on the responses of cardiac function to activity in turtle species.
Collapse
Affiliation(s)
- Amanda Reynolds Kirby
- Developmental and Integrative Biology Division, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Brandt Smith
- Developmental and Integrative Biology Division, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Dane A Crossley
- Developmental and Integrative Biology Division, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| |
Collapse
|
8
|
Gattinoni L, Vassalli F, Romitti F, Vasques F, Pasticci I, Duscio E, Quintel M. Extracorporeal gas exchange: when to start and how to end? CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2019; 23:203. [PMID: 31200746 PMCID: PMC6570632 DOI: 10.1186/s13054-019-2437-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 12/18/2022]
Affiliation(s)
- L Gattinoni
- Department of Anesthesiology, Emergency and Intensive Care Medicine, University of Göttingen (UMG), Robert-Koch-Straße 40, 37075, Göttingen, Germany.
| | - F Vassalli
- Department of Anesthesiology, Emergency and Intensive Care Medicine, University of Göttingen (UMG), Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - F Romitti
- Department of Anesthesiology, Emergency and Intensive Care Medicine, University of Göttingen (UMG), Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - F Vasques
- Department of Adult Critical Care, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - I Pasticci
- Department of Anesthesiology, Emergency and Intensive Care Medicine, University of Göttingen (UMG), Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - E Duscio
- Department of Anesthesiology, Emergency and Intensive Care Medicine, University of Göttingen (UMG), Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - M Quintel
- Department of Anesthesiology, Emergency and Intensive Care Medicine, University of Göttingen (UMG), Robert-Koch-Straße 40, 37075, Göttingen, Germany
| |
Collapse
|
9
|
Williams CL, Sato K, Ponganis PJ. Activity, not submergence, explains diving heart rates of captive loggerhead sea turtles. ACTA ACUST UNITED AC 2019; 222:jeb.200824. [PMID: 30936271 DOI: 10.1242/jeb.200824] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/26/2019] [Indexed: 11/20/2022]
Abstract
Marine turtles spend their life at sea and can rest on the seafloor for hours. As air-breathers, the breath-hold capacity of marine turtles is a function of oxygen (O2) stores, O2 consumption during dives and hypoxia tolerance. However, some physiological adaptations to diving observed in mammals are absent in marine turtles. This study examined cardiovascular responses in loggerhead sea turtles, which have even fewer adaptations to diving than other marine turtles, but can dive for extended durations. Heart rates (f H) of eight undisturbed loggerhead turtles in shallow tanks were measured using self-contained ECG data loggers under five conditions: spontaneous dives, resting motionless on the tank bottom, resting in shallow water with their head out of water, feeding on squid, and swimming at the surface between dives. There was no significant difference between resting f H while resting on the bottom of the tank, diving or resting in shallow water with their head out of water. f H rose as soon as turtles began to move and was highest between dives when turtles were swimming at the surface. These results suggest cardiovascular responses in captive loggerhead turtles are driven by activity and apneic f H is not reduced by submergence under these conditions.
Collapse
Affiliation(s)
- Cassondra L Williams
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 8655 Kennel Way, La Jolla, CA 92037, USA
| | - Katsufumi Sato
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| | - Paul J Ponganis
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 8655 Kennel Way, La Jolla, CA 92037, USA
| |
Collapse
|
10
|
Bundgaard A, James AM, Joyce W, Murphy MP, Fago A. Suppression of reactive oxygen species generation in heart mitochondria from anoxic turtles: the role of complex I S-nitrosation. J Exp Biol 2018; 221:jeb174391. [PMID: 29496783 PMCID: PMC5963835 DOI: 10.1242/jeb.174391] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/26/2018] [Indexed: 12/12/2022]
Abstract
Freshwater turtles (Trachemys scripta) are among the very few vertebrates capable of tolerating severe hypoxia and re-oxygenation without suffering from damage to the heart. As myocardial ischemia and reperfusion causes a burst of mitochondrial reactive oxygen species (ROS) in mammals, the question arises as to whether, and if so how, this ROS burst is prevented in the turtle heart. We find that heart mitochondria isolated from turtles acclimated to anoxia produce less ROS than mitochondria from normoxic turtles when consuming succinate. As succinate accumulates in the hypoxic heart and is oxidized when oxygen returns, this suggests an adaptation to lessen ROS production. Specific S-nitrosation of complex I can lower ROS in mammals and here we show that turtle complex I activity and ROS production can also be strongly depressed in vitro by S-nitrosation. We detect in vivo endogenous S-nitrosated complex I in turtle heart mitochondria, but these levels are unaffected upon anoxia acclimation. Thus, while heart mitochondria from anoxia-acclimated turtles generate less ROS and have a lower aerobic capacity than those from normoxic turtles, this is not due to decreases in complex I activity or expression levels. Interestingly, in-gel activity staining reveals that most complex I of heart mitochondria from normoxic and anoxic turtles forms stable super-complexes with other respiratory enzymes and, in contrast to mammals, these are not disrupted by dodecyl maltoside. Taken together, these results show that although S-nitrosation of complex I is a potent mechanism to prevent ROS formation upon re-oxygenation after anoxia in vitro, this is not a major cause of the suppression of ROS production by anoxic turtle heart mitochondria.
Collapse
Affiliation(s)
- Amanda Bundgaard
- Department of Biosciences, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Andrew M James
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - William Joyce
- Department of Biosciences, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Angela Fago
- Department of Biosciences, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|