1
|
Leavey A, Richards CT, Porro LB. Frog Fibres: What Muscle Architecture Can Tell Us About Anuran Locomotor Function. J Morphol 2025; 286:e70016. [PMID: 39690478 DOI: 10.1002/jmor.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/24/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024]
Abstract
Muscle fibre architecture is an important aspect of anatomy to consider when estimating muscle properties. How fibre architecture varies across species specialising in different locomotor functions is not well understood in anurans, due to difficulties associated with fibre extraction in small animals using traditional methods. This paper presents the first digital analysis of fibre architecture in frogs using an automated fibre-tracking algorithm and contrast-enhanced µCT scans. We find differences in hindlimb muscle fibre architecture between frogs specialising in different locomotor modes, as well as examples of many-to-one mapping of form to function. The trade-off between fibre length and muscle physiological cross-sectional area, and therefore contractile speed, range of motion and muscle force output, differs significantly between jumpers and swimmers, but not walker-hoppers. Where species place on this functional spectrum of fibre architecture largely depends on the muscle being examined. There is also some evidence that fibre length may be adjusted to increase contractile speed without undertaking the metabolically expensive process of growing and maintaining larger muscles. Finally, we make a detailed outline of the remaining gaps in our understanding of anuran fibre architecture that can now be addressed with this valuable digital method in future research.
Collapse
Affiliation(s)
- Alice Leavey
- Centre for Integrative Anatomy, Cell and Developmental Biology, University College London, Bloomsbury, London, UK
- Structure and Motion Laboratory, Royal Veterinary College-Camden Campus, Comparative Biomedical Sciences, London, UK
| | - Christopher T Richards
- Structure and Motion Laboratory, Royal Veterinary College-Camden Campus, Comparative Biomedical Sciences, London, UK
| | - Laura B Porro
- Centre for Integrative Anatomy, Cell and Developmental Biology, University College London, Bloomsbury, London, UK
| |
Collapse
|
2
|
Leavey A, Richards CT, Porro LB. Comparative muscle anatomy of the anuran pelvis and hindlimb in relation to locomotor mode. J Anat 2024; 245:751-774. [PMID: 39119773 PMCID: PMC11470798 DOI: 10.1111/joa.14122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
Frogs have a highly conserved body plan, yet they employ a diverse array of locomotor modes, making them ideal organisms for investigating the relationships between morphology and locomotor function, in particular whether anatomical complexity is a prerequisite for functional complexity. We use diffusible iodine contrast-enhanced microCT (diceCT) imaging to digitally dissect the gross muscle anatomy of the pelvis and hindlimbs for 30 species of frogs representing five primary locomotor modes, including the first known detailed dissection for some of the world's smallest frogs, forming the largest digital comparative analysis of musculoskeletal structure in any vertebrate clade to date. By linking musculoskeletal dissections and phylogenetic comparative methods, we then quantify and compare relationships between anatomy and function across over 160 million years of anuran evolution. In summary, we have found that bone lengths and pelvic crest sizes are generally not reliable predictors of muscle sizes, which highlights important implications for future palaeontological studies. Our investigation also presents previously unreported differences in muscle anatomy between frogs specialising in different locomotor modes, including several of the smallest frog hindlimb muscles, which are extremely difficult to extract and measure using traditional approaches. Furthermore, we find evidence of many-to-one and one-to-many mapping of form to function across the phylogeny. Additionally, we perform the first quantitative analysis of how the degree of muscle separation can differ between frogs. We find evidence that phylogenetic history is the key contributing factor to muscle separation in the pelvis and thigh, while the separation of shank muscles is influenced more strongly by locomotor mode. Finally, our anatomical 3D reconstructions are published alongside this manuscript to contribute towards future research and serve as educational materials.
Collapse
Affiliation(s)
- Alice Leavey
- Centre for Integrative Anatomy, Cell and Developmental BiologyUniversity College LondonLondonUK
- Structure and Motion LaboratoryRoyal Veterinary College—Camden Campus, Comparative Biomedical SciencesLondonUK
| | - Christopher T. Richards
- Structure and Motion LaboratoryRoyal Veterinary College—Camden Campus, Comparative Biomedical SciencesLondonUK
| | - Laura B. Porro
- Centre for Integrative Anatomy, Cell and Developmental BiologyUniversity College LondonLondonUK
| |
Collapse
|
3
|
Tingle JL, Garner KL, Astley HC. Functional diversity of snake locomotor behaviors: A review of the biological literature for bioinspiration. Ann N Y Acad Sci 2024; 1533:16-37. [PMID: 38367220 DOI: 10.1111/nyas.15109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Organismal solutions to natural challenges can spark creative engineering applications. However, most engineers are not experts in organismal biology, creating a potential barrier to maximally effective bioinspired design. In this review, we aim to reduce that barrier with respect to a group of organisms that hold particular promise for a variety of applications: snakes. Representing >10% of tetrapod vertebrates, snakes inhabit nearly every imaginable terrestrial environment, moving with ease under many conditions that would thwart other animals. To do so, they employ over a dozen different types of locomotion (perhaps well over). Lacking limbs, they have evolved axial musculoskeletal features that enable their vast functional diversity, which can vary across species. Different species also have various skin features that provide numerous functional benefits, including frictional anisotropy or isotropy (as their locomotor habits demand), waterproofing, dirt shedding, antimicrobial properties, structural colors, and wear resistance. Snakes clearly have much to offer to the fields of robotics and materials science. We aim for this review to increase knowledge of snake functional diversity by facilitating access to the relevant literature.
Collapse
Affiliation(s)
| | - Kelsey L Garner
- Department of Biology, University of Akron, Akron, Ohio, USA
| | - Henry C Astley
- Department of Biology, University of Akron, Akron, Ohio, USA
| |
Collapse
|
4
|
Morinaga G, Wiens JJ, Moen DS. The radiation continuum and the evolution of frog diversity. Nat Commun 2023; 14:7100. [PMID: 37925440 PMCID: PMC10625520 DOI: 10.1038/s41467-023-42745-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 10/19/2023] [Indexed: 11/06/2023] Open
Abstract
Most of life's vast diversity of species and phenotypes is often attributed to adaptive radiation. Yet its contribution to species and phenotypic diversity of a major group has not been examined. Two key questions remain unresolved. First, what proportion of clades show macroevolutionary dynamics similar to adaptive radiations? Second, what proportion of overall species richness and phenotypic diversity do these adaptive-radiation-like clades contain? We address these questions with phylogenetic and morphological data for 1226 frog species across 43 families (which represent >99% of all species). Less than half of frog families resembled adaptive radiations (with rapid diversification and morphological evolution). Yet, these adaptive-radiation-like clades encompassed ~75% of both morphological and species diversity, despite rapid rates in other clades (e.g., non-adaptive radiations). Overall, we support the importance of adaptive-radiation-like evolution for explaining diversity patterns and provide a framework for characterizing macroevolutionary dynamics and diversity patterns in other groups.
Collapse
Affiliation(s)
- Gen Morinaga
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, 74078, USA
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Daniel S Moen
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, 74078, USA.
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
5
|
Mendoza E, Martinez M, Olberding JP, Azizi E. The effects of temperature on elastic energy storage and release in a system with a dynamic mechanical advantage latch. J Exp Biol 2023; 226:jeb245805. [PMID: 37727106 PMCID: PMC10617612 DOI: 10.1242/jeb.245805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023]
Abstract
Changes in temperature alter muscle kinetics and in turn affect whole-organism performance. Some organisms use the elastic recoil of biological springs, structures which are far less temperature sensitive, to power thermally robust movements. For jumping frogs, the use of elastic energy in tendons is facilitated through a geometric latching mechanism that operates through dynamic changes in the mechanical advantage (MA) of the hindlimb. Despite the well-documented use of elastic energy storage, frog jumping is a locomotor behavior that is significantly affected by changes in temperature. Here, we used an in vitro muscle preparation interacting in real time with an in silico model of a legged jumper to understand how changes in temperature affect the flow of energy in a system using a MA latch. We used the plantaris longus muscle-tendon unit (MTU) to power a virtual limb with changing MA and a mass being accelerated through a real-time feedback controller. We quantified the amount of energy stored in and recovered from elastic structures and the additional contribution of direct muscle work after unlatching. We found that temperature altered the duration of the energy loading and recovery phase of the in vitro/in silico experiments. We found that the early phase of loading was insensitive to changes in temperature. However, an increase in temperature did increase the rate of force development, which in turn allowed for increased energy storage in the second phase of loading. We also found that the contribution of direct muscle work after unlatching was substantial and increased significantly with temperature. Our results show that the thermal robustness achieved by an elastic mechanism depends strongly on the nature of the latch that mediates energy flow, and that the relative contribution of elastic and direct muscle energy likely shapes the thermal sensitivity of locomotor systems.
Collapse
Affiliation(s)
- Elizabeth Mendoza
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Maya Martinez
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, USA
- Biomedical Engineering Department, California State University, Long Beach, CA 90840, USA
| | - Jeffrey P. Olberding
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, USA
- Department of Biological Science, California State University, Fullerton, CA 92831, USA
| | - Emanuel Azizi
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
6
|
Juarez BH, Moen DS, Adams DC. Ecology, sexual dimorphism, and jumping evolution in anurans. J Evol Biol 2023; 36:829-841. [PMID: 37129372 DOI: 10.1111/jeb.14171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/30/2022] [Accepted: 02/06/2023] [Indexed: 05/03/2023]
Abstract
Sexual dimorphism (SD) is a common feature of animals, and selection for sexually dimorphic traits may affect both functional morphological traits and organismal performance. Trait evolution through natural selection can also vary across environments. However, whether the evolution of organismal performance is distinct between the sexes is rarely tested in a phylogenetic comparative context. Anurans commonly exhibit sexual size dimorphism, which may affect jumping performance given the effects of body size on locomotion. They also live in a wide variety of microhabitats. Yet the relationships among dimorphism, performance, and ecology remain underexamined in anurans. Here, we explore relationships between microhabitat use, body size, and jumping performance in males and females to determine the drivers of dimorphic patterns in jumping performance. Using methods for predicting jumping performance through anatomical measurements, we describe how fecundity selection and natural selection associated with body size and microhabitat have likely shaped female jumping performance. We found that the magnitude of sexual size dimorphism (where females are about 14% larger than males) was much lower than dimorphism in muscle volume, where females had 42% more muscle than males (after accounting for body size). Despite these sometimes-large averages, phylogenetic t-tests failed to show the statistical significance of SD for any variable, indicating sexually dimorphic species tend to be closely related. While SD of jumping performance did not vary among microhabitats, we found female jumping velocity and energy differed across microhabitats. Overall, our findings indicate that differences in sex-specific reproductive roles, size, jumping-related morphology, and performance are all important determinants in how selection has led to the incredible ecophenotypic diversity of anurans.
Collapse
Affiliation(s)
- Bryan H Juarez
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA
- Departments of Biology and Earth System Science, Stanford University, Stanford, California, USA
| | - Daniel S Moen
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Dean C Adams
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
7
|
Vera MC, Ferretti JL, Cointry GR, Abdala V. Hind limb muscles influence the architectural properties of long bones in frogs. J Anat 2022; 241:702-715. [PMID: 35834300 PMCID: PMC9358750 DOI: 10.1111/joa.13710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/30/2022] Open
Abstract
The Mechanostat Theory states that osteocytes sense both the intensity and directionality of the strains induced by mechanical usage and modulate the bone design accordingly. In long bones, this process may adapt anterior-posterior and lateral-medial strength to their mechanical environment showing regional specificity. Anuran species are ideal for analyzing the muscle-bone relationships related to the different mechanical stresses induced by their many locomotor modes and habitat uses. This work aimed to explore the relationships between indicators of the force of the most relevant muscles to locomotion and the mechanical properties of femur and tibia fibula in preserved samples of three anuran species with different habitat use (aquatic, arboreal) and locomotion modes (swimmer, jumper, walker/climber). For that purpose, we measured the anatomical cross-sectional area of each dissected muscle and correlated it with the moments of inertia and bone strength indices. Significant, species-specific covariations between muscle and bone parameters were observed. Pseudis platensis, the aquatic swimmer, showed the largest muscles, followed by Boana faber, the jumper and Phyllomedusa sauvagii, the walker/climber. As we expected, bigger muscles correlate with bone parameters in all the species. Nevertheless, smaller muscles also play an important role in bone design. In aquatic species, muscle interaction enhances mostly lateral bending strength throughout the femur and lateral and antero-posterior bending strength in the tibia fibula. In the jumper species, muscles affected the femur and tibia fibula mostly in anterior-posterior bending. In the walker/climber species, responses involving both antero-posterior and lateral bending strengths were observed in the femur and tibia fibula. These results show that bones will be more or less resistant to lateral and antero-posterior bending according to the different mechanical challenges of locomotion in aquatic vs. arboreal habitats. This study provides new evidence of the muscle-bone relationships in three frog species associated with their different locomotion and habitat uses, highlighting the crucial role of muscle in determining the architectural properties of bones.
Collapse
Affiliation(s)
- Miriam Corina Vera
- Laboratorio de Genética EvolutivaInstituto de Biología Subtropical, Universidad Nacional de Misiones‐CONICETMisionesArgentina
| | - José Luis Ferretti
- Facultad de Ciencias MédicasCentro de Estudios de Metabolismo Fosfocálcico, Universidad Nacional de Rosario‐CONICETSanta FeArgentina
| | - Gustavo Roberto Cointry
- Facultad de Ciencias MédicasCentro de Estudios de Metabolismo Fosfocálcico, Universidad Nacional de Rosario‐CONICETSanta FeArgentina
| | - Virginia Abdala
- Instituto de Biodiversidad Neotropical, Universidad Nacional de Tucumán‐CONICETTucumánArgentina
- Cátedra de Biología General, Facultad de Ciencias Naturales e IMLUniversidad Nacional de TucumánTucumánArgentina
| |
Collapse
|
8
|
Why link diverse citizen science surveys? Widespread arboreal habits of a terrestrial amphibian revealed by mammalian tree surveys in Britain. PLoS One 2022; 17:e0265156. [PMID: 35793361 PMCID: PMC9258833 DOI: 10.1371/journal.pone.0265156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/17/2022] [Indexed: 11/19/2022] Open
Abstract
Terrestrial anurans, with their typically short limbs, heavy-set bodies and absent claws or toe pads are incongruous tree climbers, but even occasional arboreal locomotion could offer substantial advantages for evading predators or accessing new shelter or food resources. Despite recent interest, arboreal behaviour remains rarely and unsystematically described for terrestrial amphibians in Europe, likely due to fundamental differences in survey methods and therefore a lack of field data. However, other taxa surveys specifically target trees and tree cavities. We undertook collaborations and large-scale data searches with two major citizen science projects surveying for arboreal mammals in Britain to investigate potential tree climbing by amphibians at a national scale. Remarkably, we found widespread arboreal usage by amphibians in England and Wales, with occupancy of hazel dormouse (Muscardinus avellenarius) nest boxes, tree cavities investigated as potential bat roosts and even a bird nest, by common toads (Bufo bufo), but few additional records of frogs or newts. Of the 277–400 sites surveyed annually for dormice since 2009 at least 18 sites had amphibians recorded in nest boxes while of the 1388 trees surveyed for bats a total 1.4% (19 trees) had toads present. Common toads were found using cavities in seven tree species and especially goat willow (Salix caprea). Toads are potentially attracted to tree cavities and arboreal nests because they provide safe and damp microenvironments which can support an abundance of invertebrate prey but the importance of such tree microhabitats for toad conservation remains unknown and our results should be interpreted cautiously. We encourage expanding and linking of unrelated biodiversity monitoring surveys and citizen science initiatives as valuable tools for investigating ecological traits and interactions.
Collapse
|
9
|
Mendoza E, Azizi E. Tuned muscle and spring properties increase elastic energy storage. J Exp Biol 2021; 224:jeb243180. [PMID: 34821932 PMCID: PMC10658917 DOI: 10.1242/jeb.243180] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/19/2021] [Indexed: 12/17/2022]
Abstract
Elastic recoil drives some of the fastest and most powerful biological movements. For effective use of elastic recoil, the tuning of muscle and spring force capacity is essential. Although studies of invertebrate organisms that use elastic recoil show evidence of increased force capacity in their energy loading muscle, changes in the fundamental properties of such muscles have yet to be documented in vertebrates. Here, we used three species of frogs (Cuban tree frogs, bullfrogs and cane toads) that differ in jumping power to investigate functional shifts in muscle-spring tuning in systems using latch-mediated spring actuation (LaMSA). We hypothesized that variation in jumping performance would result from increased force capacity in muscles and relatively stiffer elastic structures, resulting in greater energy storage. To test this, we characterized the force-length property of the plantaris longus muscle-tendon unit (MTU), and quantified the maximal amount of energy stored in elastic structures for each species. We found that the plantaris longus MTU of Cuban tree frogs produced higher mass-specific energy and mass-specific forces than the other two species. Moreover, we found that the plantaris longus MTU of Cuban tree frogs had higher pennation angles than the other species, suggesting that muscle architecture was modified to increase force capacity through packing of more muscle fibers. Finally, we found that the elastic structures were relatively stiffer in Cuban tree frogs. These results provide a mechanistic link between the tuned properties of LaMSA components, energy storage capacity and whole-system performance.
Collapse
Affiliation(s)
- Elizabeth Mendoza
- Department of Ecology and Evolutionary Biology, 321 Steinhaus Hall, University of California Irvine, Irvine, CA 92617, USA
| | - Emanuel Azizi
- Department of Ecology and Evolutionary Biology, 321 Steinhaus Hall, University of California Irvine, Irvine, CA 92617, USA
| |
Collapse
|
10
|
Howe S, Bryant K, Duff A, Astley H. Testing the effects of body depth on fish maneuverability via robophysical models. BIOINSPIRATION & BIOMIMETICS 2021; 17:016002. [PMID: 34706361 DOI: 10.1088/1748-3190/ac33c1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Fish show a wide diversity of body shapes which affect many aspects of their biology, including swimming and feeding performance, and defense from predators. Deep laterally compressed bodies are particularly common, and have evolved multiple times in different families. Functional hypotheses that explain these trends include predator defense and increased maneuverability. While there is strong evidence that increasing body depth helps fish avoid gape-limited predators, the evidence that body shape increases a fish's maneuverability is ambiguous. We used a two-pronged approach to explore the effects of body shape on the control of maneuvers using both live fish and a robotic model that allowed us to independently vary body shape. We captured ventral video of two tetra species (Gymnocorymbus ternetziandAphyocharax anisitsi) performing a wide range of maneuvers to confirm that both species of live fish utilize fundamentally similar body deformations to execute a turn, despite their different body depths. Both species use a propagating 'pulse' of midline curvature that is qualitatively similar to prior studies and displayed similar trends in the relationships between body kinematics and performance. We then tested the robotic model's maneuverability, defined as the total heading change and maximum centripetal acceleration generated during a single pulse, at a range of different input kinematics across three body shapes. We found that deepening bodies increase the robot's ability to change direction and centripetal acceleration, though centripetal acceleration exhibits diminishing returns beyond a certain body depth. By using a robotic model, we were able to isolate the effects of body shape on maneuverability and clarify this confounded relationship. Studying the functional morphology of complex traits such as body shape and their interaction with complex behavior like maneuverability benefits from both the broad view provided by comprehensive comparative studies, and the control of variables enabled by robophysical experiments.
Collapse
Affiliation(s)
- Stephen Howe
- University of Akron Ohio, United States of America
| | - Kelly Bryant
- University of Akron Ohio, United States of America
| | - Andrew Duff
- University of Akron Ohio, United States of America
| | - Henry Astley
- University of Akron Ohio, United States of America
| |
Collapse
|
11
|
Juarez BH, Adams DC. Evolutionary allometry of sexual dimorphism of jumping performance in anurans. Evol Ecol 2021. [DOI: 10.1007/s10682-021-10132-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Moen DS, Ravelojaona RN, Hutter CR, Wiens JJ. Testing for adaptive radiation: A new approach applied to Madagascar frogs. Evolution 2021; 75:3008-3025. [PMID: 34396527 DOI: 10.1111/evo.14328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 07/17/2021] [Indexed: 11/27/2022]
Abstract
Adaptive radiation is a key topic at the intersection of ecology and evolutionary biology. Yet the definition and identification of adaptive radiation both remain contentious. Here, we introduce a new approach for identifying adaptive radiations that combines key aspects of two widely used definitions. Our approach compares evolutionary rates in morphology, performance, and diversification between the candidate radiation and other clades. We then apply this approach to a putative adaptive radiation of frogs from Madagascar (Mantellidae). We present new data on morphology and performance from mantellid frogs, then compare rates of diversification and multivariate evolution of size, shape, and performance between mantellids and other frogs. We find that mantellids potentially pass our test for accelerated rates of evolution for shape, but not for size, performance, or diversification. Our results demonstrate that clades can have accelerated phenotypic evolution without rapid diversification (dubbed "adaptive non-radiation"). We also highlight general issues in testing for adaptive radiation, including taxon sampling and the problem of including another adaptive radiation among the comparison clades. Finally, we suggest that similar tests should be conducted on other putative adaptive radiations on Madagascar, comparing their evolutionary rates to those of related clades outside Madagascar. Based on our results, we speculate that older Madagascar clades may show evolutionary patterns more similar to those on a continent than an island.
Collapse
Affiliation(s)
- Daniel S Moen
- Department of Integrative Biology, 501 Life Sciences West, Oklahoma State University, Stillwater, Oklahoma, 74078, USA
| | - Rojo N Ravelojaona
- Mention Zoologie et Biodiversité Animale, Faculté des Sciences, Université d'Antananarivo, Antananarivo, Madagascar
| | - Carl R Hutter
- Museum of Natural Science and Department of Biological Sciences, Lousiana State University, Baton Rouge, Louisiana, 70803, USA
| | - John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, 85721, USA
| |
Collapse
|
13
|
Shu Y, He J, Zhang H, Liu G, Li S, Deng S, Wu H. Dynamic transcriptome and histomorphology analysis of developmental traits of hindlimb thigh muscle from Odorrana tormota and its adaptability to different life history stages. BMC Genomics 2021; 22:369. [PMID: 34016051 PMCID: PMC8138932 DOI: 10.1186/s12864-021-07677-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 05/05/2021] [Indexed: 11/10/2022] Open
Abstract
Background Systematic studies on the development and adaptation of hindlimb muscles in anura amphibians are rare. Here, we integrated analysis of transcriptome and histomorphological data for the hindlimb thigh muscle of Odorrana tormota (concave-eared torrent frog) at different developmental stages, to uncover the developmental traits of hindlimb thigh muscle from O. tormota and its adaptability to different life history stages. Results The development of hindlimb thigh muscle from O. tormota has the following characteristics. Before metamorphosis, myogenous cells proliferate and differentiate into myotubes, and form 11 muscle groups at G41; Primary myofibers and secondary myofibers appeared during metamorphosis; 11 muscle groups differentiated continuously to form myofibers, accompanied by myofibers hypertrophy after metamorphosis; During the growth process of O. tormota from G42 to G46, there were differences between the sexes in the muscle groups that differentiate into muscle fibers, indicating that there was sexual dimorphism in the hindlimb thigh muscles of O. tormota at the metamorphosis stages. Some genes and pathways related to growth, development, and movement ability of O. tormota at different developmental stages were obtained. In addition, some pathways associated with adaptation to metamorphosis and hibernation also were enriched. Furthermore, integrated analysis of the number of myofibers and transcriptome data suggested that myofibers of specific muscle groups in the hindlimbs may be degraded through lysosome and ubiquitin pathways to transform into energy metabolism and other energy-related substances to meet the physiological needs of hibernation. Conclusions These results provide further understanding the hindlimb thigh muscle development pattern of frogs and their adaption to life history stages. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07677-0.
Collapse
Affiliation(s)
- Yilin Shu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, China.,Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, Wuhu, China
| | - Jun He
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, China.,Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, Wuhu, China
| | - Huijuan Zhang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, China.,Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, Wuhu, China
| | - Guangxuan Liu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, China.,Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, Wuhu, China
| | - Shikun Li
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, China.,Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, Wuhu, China
| | - Shuaitao Deng
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, China.,Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, Wuhu, China
| | - Hailong Wu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, China. .,Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, Wuhu, China.
| |
Collapse
|
14
|
Petrović TG, Vukov T, Tomašević Kolarov N. Patterns of correlations and locomotor specialization in anuran limbs: association with phylogeny and ecology. ZOOLOGY 2020; 144:125864. [PMID: 33220626 DOI: 10.1016/j.zool.2020.125864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 10/26/2020] [Accepted: 11/01/2020] [Indexed: 11/30/2022]
Abstract
As anuran saltatory locomotion has specific functional requirements achieved through certain intra- and inter-limb proportions, we analyzed pattern and degree of morphological integration in limbs of ten anuran species to reveal the relationship of shared developmental programs of serially homologous structures and locomotor specialization. Our main objectives were (1) to examine if morphological and functional differences in forelimb and hindlimb were associated with reduced covariation between limbs, (2) and to reveal patterns of correlation between species and the roles played by evolutionary history (phylogeny) and ecology (lifestyle and habitat use). Species with different locomotor behaviours (walking, jumping, hopping, running, climbing, swimming and burrowing) were used. Partial correlations showed that species shared similar patterns of functionally based morphological integration, with increased correlations in elements within limbs and reduced correlations between limbs. This was mainly based on strong correlations between proximal elements, humerus-radioulna and femur-tibiofibula. To test the influence of phylogenetic relationships and ecological demands we used different matrices (correlation similarity matrix, ecological similarity matrix, matrices of phylogenetic distance and morphological distance). The changes in correlation patterns are shown to be dissociated from phylogeny. On the other hand, they are to some extent shaped by habitat use and locomotion, as the species with similar locomotor behaviour also tend to have stronger similarity in integration patterns. The results from this study provide insight into the processes underlying the evolutionary change of anuran limbs, highlighting function as the main factor that shaped morphological integration of the examined species.
Collapse
Affiliation(s)
- Tamara G Petrović
- Department of Physiology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| | - Tanja Vukov
- Department of Evolutionary biology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Nataša Tomašević Kolarov
- Department of Evolutionary biology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| |
Collapse
|
15
|
Engelkes K, Kath L, Kleinteich T, Hammel JU, Beerlink A, Haas A. Ecomorphology of the pectoral girdle in anurans (Amphibia, Anura): Shape diversity and biomechanical considerations. Ecol Evol 2020; 10:11467-11487. [PMID: 33144978 PMCID: PMC7593145 DOI: 10.1002/ece3.6784] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 11/18/2022] Open
Abstract
Frogs and toads (Lissamphibia: Anura) show a diversity of locomotor modes that allow them to inhabit a wide range of habitats. The different locomotor modes are likely to be linked to anatomical specializations of the skeleton within the typical frog Bauplan. While such anatomical adaptations of the hind limbs and the pelvic girdle are comparably well understood, the pectoral girdle received much less attention in the past. We tested for locomotor-mode-related shape differences in the pectoral girdle bones of 64 anuran species by means of micro-computed-tomography-based geometric morphometrics. The pectoral girdles of selected species were analyzed with regard to the effects of shape differences on muscle moment arms across the shoulder joint and stress dissipation within the coracoid. Phylogenetic relationships, size, and locomotor behavior have an effect on the shape of the pectoral girdle in anurans, but there are differences in the relative impact of these factors between the bones of this skeletal unit. Remarkable shape diversity has been observed within locomotor groups indicating many-to-one mapping of form onto function. Significant shape differences have mainly been related to the overall pectoral girdle geometry and the shape of the coracoid. Most prominent shape differences have been found between burrowing and nonburrowing species with headfirst and backward burrowing species significantly differing from one another and from the other locomotor groups. The pectoral girdle shapes of burrowing species have generally larger moment arms for (simulated) humerus retractor muscles across the shoulder joint, which might be an adaptation to the burrowing behavior. The mechanisms of how the moment arms were enlarged differed between species and were associated with differences in the reaction of the coracoid to simulated loading by physiologically relevant forces.
Collapse
Affiliation(s)
- Karolin Engelkes
- Center of Natural History (CeNak)Universität HamburgHamburgGermany
| | - Lena Kath
- Center of Natural History (CeNak)Universität HamburgHamburgGermany
| | | | - Jörg U. Hammel
- Institute of Materials ResearchHelmholtz‐Zentrum GeesthachtGeesthachtGermany
- Institut für Zoologie und Evolutionsforschung mit Phyletischem Museum, Ernst‐Hackel‐Haus und BiologiedidaktikFriedrich‐Schiller‐Universität JenaJenaGermany
| | | | - Alexander Haas
- Center of Natural History (CeNak)Universität HamburgHamburgGermany
| |
Collapse
|
16
|
A Morphological Method to Approximate Jumping Performance in Anurans for Macroevolutionary Studies. Evol Biol 2020. [DOI: 10.1007/s11692-020-09509-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Buttimer SM, Stepanova N, Womack MC. Evolution of the Unique Anuran Pelvic and Hind limb Skeleton in Relation to Microhabitat, Locomotor Mode, and Jump Performance. Integr Comp Biol 2020; 60:1330-1345. [PMID: 32437511 DOI: 10.1093/icb/icaa043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Anurans (frogs and toads) have a unique pelvic and hind limb skeleton among tetrapods. Although their distinct body plan is primarily associated with saltation, anuran species vary in their primary locomotor mode (e.g., walkers, hoppers, jumpers, and swimmers) and are found in a wide array of microhabitats (e.g., burrowing, terrestrial, arboreal, and aquatic) with varying functional demands. Given their largely conserved body plan, morphological adaptation to these diverse niches likely results from more fine-scale morphological change. Our study determines how shape differences in Anura's unique pelvic and hind limb skeletal structures vary with microhabitat, locomotor mode, and jumping ability. Using microCT scans of preserved specimens from museum collections, we added 3D landmarks to the pelvic and hind limb skeleton of 230 anuran species. In addition, we compiled microhabitat and locomotor data from the literature for these species that span 52 of the 55 families of frogs and ∼210 million years of anuran evolution. Using this robust dataset, we examine the relationship between pelvic and hind limb morphology and phylogenetic history, allometry, microhabitat, and locomotor mode. We find pelvic and hind limb changes associated with shifts in microhabitat ("ecomorphs") and locomotor mode ("locomorphs") and directly relate those morphological changes to the jumping ability of individual species. We also reveal how individual bones vary in evolutionary rate and their association with phylogeny, body size, microhabitat, and locomotor mode. Our findings uncover previously undocumented morphological variation related to anuran ecological and locomotor diversification and link that variation to differences in jumping ability among species.
Collapse
Affiliation(s)
- Shannon M Buttimer
- Museum of Vertebrate Zoology, University of California at Berkeley, 3101 Valley Life Sciences Building, Berkeley, CA 94720, USA
| | - Natasha Stepanova
- Department of Biology, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, USA
| | - Molly C Womack
- Department of Biology, Utah State University, Logan, UT, 84322, USA.,Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| |
Collapse
|
18
|
Richards CT, Eberhard EA. In vitro virtual reality: an anatomically explicit musculoskeletal simulation powered by in vitro muscle using closed-loop tissue-software interaction. J Exp Biol 2020; 223:jeb210054. [PMID: 32253284 DOI: 10.1242/jeb.210054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 03/20/2020] [Indexed: 11/20/2022]
Abstract
Muscle force-length dynamics are governed by intrinsic contractile properties, motor stimulation and mechanical load. Although intrinsic properties are well characterised, physiologists lack in vitro instrumentation to account for combined effects of limb inertia, musculoskeletal architecture and contractile dynamics. We introduce in vitro virtual reality (in vitro-VR) which enables in vitro muscle tissue to drive a musculoskeletal jumping simulation. In hardware, muscle force from a frog plantaris was transmitted to a software model where joint torques, inertia and ground reaction forces were computed to advance the simulation at 1 kHz. To close the loop, simulated muscle strain was returned to update in vitro length. We manipulated (1) stimulation timing and (2) the virtual muscle's anatomical origin. This influenced interactions among muscular, inertial, gravitational and contact forces dictating limb kinematics and jump performance. We propose that in vitro-VR can be used to illustrate how neuromuscular control and musculoskeletal anatomy influence muscle dynamics and biomechanical performance.
Collapse
|
19
|
Sutton GP, Mendoza E, Azizi E, Longo SJ, Olberding JP, Ilton M, Patek SN. Why do Large Animals Never Actuate Their Jumps with Latch-Mediated Springs? Because They can Jump Higher Without Them. Integr Comp Biol 2020; 59:1609-1618. [PMID: 31399734 PMCID: PMC6907395 DOI: 10.1093/icb/icz145] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
As animals get smaller, their ability to generate usable work from muscle contraction is decreased by the muscle's force-velocity properties, thereby reducing their effective jump height. Very small animals use a spring-actuated system, which prevents velocity effects from reducing available energy. Since force-velocity properties reduce the usable work in even larger animals, why don't larger animals use spring-actuated jumping systems as well? We will show that muscle length-tension properties limit spring-actuated systems to generating a maximum one-third of the possible work that a muscle could produce-greatly restricting the jumping height of spring-actuated jumpers. Thus a spring-actuated jumping animal has a jumping height that is one-third of the maximum possible jump height achievable were 100% of the possible muscle work available. Larger animals, which could theoretically use all of the available muscle energy, have a maximum jumping height that asymptotically approaches a value that is about three times higher than that of spring-actuated jumpers. Furthermore, a size related "crossover point" is evident for these two jumping mechanisms: animals smaller than this point can jump higher with a spring-actuated mechanism, while animals larger than this point can jump higher with a muscle-actuated mechanism. We demonstrate how this limit on energy storage is a consequence of the interaction between length-tension properties of muscles and spring stiffness. We indicate where this crossover point occurs based on modeling and then use jumping data from the literature to validate that larger jumping animals generate greater jump heights with muscle-actuated systems than spring-actuated systems.
Collapse
Affiliation(s)
| | - Elizabeth Mendoza
- School of Biological Sciences, University of California, Irvine, CA, USA
| | - Emanuel Azizi
- School of Biological Sciences, University of California, Irvine, CA, USA
| | | | | | - Mark Ilton
- Department of Physics, Harvey Mudd College, Claremont, CA
| | | |
Collapse
|
20
|
Mendoza E, Azizi E, Moen DS. What explains vast differences in jumping power within a clade? Diversity, ecology and evolution of anuran jumping power. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Elizabeth Mendoza
- Department of Ecology and Evolutionary Biology University of California Irvine CA USA
- Department of Integrative Biology Oklahoma State University Stillwater OK USA
| | - Emanuel Azizi
- Department of Ecology and Evolutionary Biology University of California Irvine CA USA
| | - Daniel S. Moen
- Department of Integrative Biology Oklahoma State University Stillwater OK USA
| |
Collapse
|
21
|
Fratani J, Ponssa ML, Rada M, Abdala V. The influence of locomotion and habitat use on tendo-muscular units of an anuran clade (Anura, Diphyabatrachia). ZOOL ANZ 2020. [DOI: 10.1016/j.jcz.2019.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Moen DS. What Determines the Distinct Morphology of Species with a Particular Ecology? The Roles of Many-to-One Mapping and Trade-Offs in the Evolution of Frog Ecomorphology and Performance. Am Nat 2019; 194:E81-E95. [DOI: 10.1086/704736] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Rebelo AD, Measey J. Locomotor performance constrained by morphology and habitat in a diverse clade of African frogs (Anura: Pyxicephalidae). Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Alexander D Rebelo
- Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Matieland, South Africa
| | - John Measey
- Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Matieland, South Africa
| |
Collapse
|
24
|
Zamora‐Camacho FJ, Aragón P. Failed predator attacks have detrimental effects on antipredatory capabilities through developmental plasticity inPelobates cultripestoads. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Pedro Aragón
- Museo Nacional de Ciencias Naturales (MNCN‐CSIC) Madrid Spain
| |
Collapse
|
25
|
A novel kinematics analysis method using quaternion interpolation-a case study in frog jumping. J Theor Biol 2018; 454:410-424. [PMID: 29913132 DOI: 10.1016/j.jtbi.2018.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 05/18/2018] [Accepted: 06/06/2018] [Indexed: 11/24/2022]
Abstract
Spherical Linear Interpolation (SLERP) has long been used in computer animation to interpolate movements between two 3D orientations. We developed a forward kinematics (FK) approach using quaternions and SLERP to predict how frogs modulate jump kinematics between start posture and takeoff. Frog limb kinematics have been studied during various activities, yet the causal link between differences in joint kinematics and locomotor variation remains unknown. We varied 1) takeoff angle from 8 to 60°; 2) turn angle from 0 to 18°; and 3) initial body pitch from 0 to 70°. Simulations were similar to experimentally observed frog kinematics. Findings suggest a fundamental mechanism whereby limb elevation is modulated by thigh and shank adduction. Forward thrust is produced by thigh and proximal foot retraction with little contribution from the shank except to induce asymmetries for turning. Kinematic shifts causing turns were subtle, marked only by slight counter-rotation of the left versus right shank as well as a 10% timing offset in proximal foot adduction. Additionally, inclining initial body tilt influenced the centre of mass trajectory to determine direction of travel at takeoff. Most importantly, our theory suggests firstly that the convergence of leg segment rotation axes toward a common orientation is crucial both for limb extension and for coordinating jump direction; and, secondly, the challenge of simulating 3D kinematics is simplified using SLERP because frog limbs approximately follow linear paths in unit quaternion space. Our methodology can be applied more broadly to study living and fossil frog taxa as well as to inspire new control algorithms for robotic limbs.
Collapse
|
26
|
Reynaga CM, Astley HC, Azizi E. Morphological and kinematic specializations of walking frogs. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2018; 329:87-98. [DOI: 10.1002/jez.2182] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 05/07/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Crystal M. Reynaga
- Department of Ecology and Evolutionary Biology University of California, Irvine Irvine California
| | - Henry C. Astley
- Biomimicry Research & Innovation Center Departments of Biology and Polymer Science University of Akron Akron Ohio
| | - Emanuel Azizi
- Department of Ecology and Evolutionary Biology University of California, Irvine Irvine California
| |
Collapse
|
27
|
Abdala V, Ponssa ML, Tulli MJ, Fabre AC, Herrel A. Frog tendon structure and its relationship with locomotor modes. J Morphol 2018; 279:895-903. [PMID: 29570838 DOI: 10.1002/jmor.20819] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/14/2018] [Accepted: 02/22/2018] [Indexed: 01/01/2023]
Abstract
Tendon collagen fibrils are the basic force-transmitting units of the tendon. Yet, surprisingly little is known about the diversity in tendon anatomy and ultrastructure, and the possible relationships between this diversity and locomotor modes utilized. Our main objectives were to investigate: (a) the ultra-structural anatomy of the tendons in the digits of frogs; (b) the diversity of collagen fibril diameters across frogs with different locomotor modes; (c) the relationship between morphology, as expressed by the morphology of collagen fibrils and tendons, and locomotor modes. To assess the relationship between morphology and the locomotor modes of the sampled taxa we performed a principal component analysis considering body length, fibrillar cross sectional area (CSA) and tendon CSA. A MANOVA showed that differences between species with different locomotor modes were significant with collagen fibril diameter being the discriminating factor. Overall, our data related the greatest collagen fibril diameter to the most demanding locomotor modes, conversely, the smallest collagen fibril CSA and the highest tendon CSA were observed in animals showing a hopping locomotion requiring likely little absorption of landing forces given the short jump distances.
Collapse
Affiliation(s)
- Virginia Abdala
- Instituto de Biodiversidad Neotropical UNT-CONICET, Cátedra de Biología General. Universidad Nacional de Tucumán, Tucumán, Argentina
| | - María Laura Ponssa
- Unidad Ejecutora Lillo, Fundación Miguel Lillo-CONICET, Tucumán, Argentina
| | - María José Tulli
- Unidad Ejecutora Lillo, Fundación Miguel Lillo-CONICET, Tucumán, Argentina
| | - Anne-Claire Fabre
- Département d'Ecologie et de Gestion de la Biodiversité, 55 rue Buffon, Bat Anatomie Comparee, CP 55, Paris Cedex 5, 75005, France
| | - Anthony Herrel
- Département d'Ecologie et de Gestion de la Biodiversité, 55 rue Buffon, Bat Anatomie Comparee, CP 55, Paris Cedex 5, 75005, France
| |
Collapse
|
28
|
Ponssa ML, Fratani J, Abdala V. Phylogenetic patterns and correlation of key structures for jumping: bone crests and cross-sectional areas of muscles in Leptodactylus (Anura, Leptodactylidae). J Anat 2018. [PMID: 29520773 DOI: 10.1111/joa.12801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Anurans are characterized by their saltatory mode of locomotion, which is associated with a specific morphology. The coordinated action of the muscles and bones of the pelvic girdle is key to the transmission of the force of the hindlimbs to the axial skeleton during jumping. Two features are critical for optimal locomotory performance: the cross-sectional area of muscle and the bone crest attachment sites. The first character is a proxy of the force exerted by the muscle, whereas the crests are muscle attachments sites related to muscle force. The provisory relationship between these features has previously been identified and bone crest size can be used to infer the magnitude and, therefore, muscle force in fossils records. In this work, we explore the correlation between the cross-sectional area of essential muscles to the jumping mechanism (longissimus dorsi, extensor iliotibialis B, tenuissimus, puboischiofemoralis internus B, coccygeo-sacralis and coccygeo-iliacus) and the bone crests where these muscles are inserted (dorsal tubercle, dorsal crest and urostylar crest) in species of the genus Leptodactylus. This genus, along with other leptodactylids, exhibits a diversity of locomotor modes, including jumping, hopping, swimming and burrowing. We therefore analyzed the morphometric variation in the two features, cross-sectional area and bone crest area, expecting a correlation with different locomotor types. Our results showed: (i) a correlation between the urostylar crest and the cross-sectional area of the related muscles; (ii) that the bone crest surface area of urostyle and ilium and the cross-sectional area of the corresponding muscles can be utilized to infer locomotor faculties in leptodactylid frogs; and (iii) that the evolution of both characters demonstrates a general tendency from lower values in leptodactylid ancestors to higher values in the Leptodactylus genus. The results attest to the importance of the comparison of current ecological and phylogenetic analogues as they allow us to infer functionality and behavior in fossil and extant groups based on skeletal evidence. Phylogenetic patterns in character evolution and their correlation with locomotory types could imply that functional restrictions are also inherited in leptodactylid.
Collapse
Affiliation(s)
- María Laura Ponssa
- Unidad Ejecutora Lillo, UEL CONICET-FML, San Miguel de Tucumán, Argentina
| | - Jéssica Fratani
- Unidad Ejecutora Lillo, UEL CONICET-FML, San Miguel de Tucumán, Argentina
| | - Virginia Abdala
- Instituto de Biodiversidad Neotropical, IBN CONICET-UNT, Facultad de Ciencias Naturales e IML, San Miguel de Tucumán, Argentina
| |
Collapse
|
29
|
Fratani J, Ponssa ML, Abdala V. Tendinous framework of anurans reveals an all-purpose morphology. ZOOLOGY 2017; 126:172-184. [PMID: 29310934 DOI: 10.1016/j.zool.2017.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 01/14/2023]
Abstract
Tendons are directly associated with movement, amplifying power and reducing muscular work. Taking into account habitat and locomotor challenges faced by anurans, we identify the more conspicuous superficial tendons of a neotropical anuran group and investigate their relation to the former factors. We show that tendons can be visualized as an anatomical framework connected through muscles and/or fascia, and describe the most superficial tendinous layer of the postcranium of Leptodactylus latinasus. To analyze the relation between tendon morphology and ecological characters, we test the relative length ratio of 10 tendon-muscle (t-m) elements in 45 leptodactylid species while taking phylogeny into account. We identify the evolutionary model that best explains our variables. Additionally, we optimize t-m ratio values, and the shape of the longissimus dorsi insertion onto a selected phylogeny of the species. Our data show the existence of an all-purpose morphology that seems to have evolved independently of ecology and functional requirements. This is indicated by no significant relation between morphometric data of the analyzed tendons and habitat use or locomotion, a strong phylogenetic component to most of the analyzed variables, and a generalized pattern of intermediate values for ancestral states. Ornstein-Uhlenbeck is the model that best explains most t-m variables, indicating that stabilizing selection or selective optima might be driving shifts in tendon length within Leptodactylidae. Herein, we show the substantial influence that phylogeny has on tendon morphology, demonstrating that a generalized and stable morphological configuration of tendons is adequate to enable versatile locomotor modes and habitat use. This is an attempt to present the tendinous system as a framework to body support in vertebrates, and can be considered a starting point for further ecomorphological research of this anatomical system in anurans.
Collapse
Affiliation(s)
- Jéssica Fratani
- Unidad Ejecutora Lillo (CONICET-Fundación Miguel Lillo), Tucumán, Argentina; Departamento de Vertebrados, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - María Laura Ponssa
- Unidad Ejecutora Lillo (CONICET-Fundación Miguel Lillo), Tucumán, Argentina.
| | - Virginia Abdala
- Instituto de Biodiversidad Neotropical UNT-CONICET, Universidad Nacional de Tucumán, Tucumán, Argentina.
| |
Collapse
|
30
|
Porro LB, Collings AJ, Eberhard EA, Chadwick KP, Richards CT. Inverse dynamic modelling of jumping in the red-legged running frog, Kassina maculata. ACTA ACUST UNITED AC 2017; 220:1882-1893. [PMID: 28275003 DOI: 10.1242/jeb.155416] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/02/2017] [Indexed: 11/20/2022]
Abstract
Although the red-legged running frog, Kassina maculata, is secondarily a walker/runner, it retains the capacity for multiple locomotor modes, including jumping at a wide range of angles (nearly 70 deg). Using simultaneous hind limb kinematics and single-foot ground reaction forces, we performed inverse dynamics analyses to calculate moment arms and torques about the hind limb joints during jumping at different angles in K. maculata. We show that forward thrust is generated primarily at the hip and ankle, while body elevation is primarily driven by the ankle. Steeper jumps are achieved by increased thrust at the hip and ankle and greater downward rotation of the distal limb segments. Because of its proximity to the GRF vector, knee posture appears to be important in controlling torque directions about this joint and, potentially, torque magnitudes at more distal joints. Other factors correlated with higher jump angles include increased body angle in the preparatory phase, faster joint openings and increased joint excursion, higher ventrally directed force, and greater acceleration and velocity. Finally, we demonstrate that jumping performance in K. maculata does not appear to be compromised by presumed adaptation to walking/running. Our results provide new insights into how frogs engage in a wide range of locomotor behaviours and the multi-functionality of anuran limbs.
Collapse
Affiliation(s)
- Laura B Porro
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hawkshead Lane, Hatfield AL9 7TA, UK
| | - Amber J Collings
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hawkshead Lane, Hatfield AL9 7TA, UK
| | - Enrico A Eberhard
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hawkshead Lane, Hatfield AL9 7TA, UK
| | - Kyle P Chadwick
- Children's Hospital Los Angeles, University of Southern California, 4650 Sunset Boulevard, Los Angeles, CA 90027, USA
| | - Christopher T Richards
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hawkshead Lane, Hatfield AL9 7TA, UK
| |
Collapse
|