1
|
Hu L, Zhang G, Tong X, Wang L, Qiu X, Yang H, Liu X, Huang H. Characterization of a novel adipose tissue located between abdominal lymph nodes and cervix/prostate in mice. Am J Physiol Endocrinol Metab 2024; 327:E134-E144. [PMID: 38747899 DOI: 10.1152/ajpendo.00110.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/15/2024] [Accepted: 05/01/2024] [Indexed: 07/18/2024]
Abstract
Perigonadal adipose tissue is a homogeneous white adipose tissue (WAT) in adult male mice without any brown adipose tissue (BAT). However, there are congenital differences in the gonads between male and female mice. Whether heterogeneity existed in perigonadal adipose tissues (ATs) in female mice remains unknown. This study reported a perigonadal brown-like AT located between abdominal lymph nodes and the uterine cervix in female mice, termed lymph node-cervical adipose tissue (LNCAT). Its counterpart, lymph node-prostatic adipose tissue (LNPAT), exhibited white phenotype in adult virgin male mice. When exposed to cold, LNCAT/LNPAT increased uncoupling protein 1 (UCP1) expression via activation of tyrosine hydroxylase (TH), in which abdominal lymph nodes were involved. Interestingly, the UCP1 expression in LNCAT/LNPAT varied under different reproductive stages. The UCP1 expression in LNCAT was upregulated at early pregnancy, declined at midlate pregnancy, and reverted in weaning dams. Mating behavior stimulated LNPAT browning in male mice. We found that androgen but not estrogen or progesterone inhibited UCP1 expression in LNCAT. Androgen administration reversed the castration-induced LNPAT browning. Our results identified a perigonadal brown-like AT in female mice and characterized its UCP1 expression patterns under various conditions.NEW & NOTEWORTHY A novel perigonadal brown-like AT (LNCAT) of female mice was identified. Abdominal lymph nodes were involved in cold-induced browning in this newly discovered adipose tissue. The UCP1 expression in LNCAT/LNPAT was also related to ages, sexes, and reproductive stages, in which androgen acted as an inhibitor role.
Collapse
Affiliation(s)
- Lihao Hu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, People's Republic of China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, People's Republic of China
| | - Gaochen Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, People's Republic of China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, People's Republic of China
| | - Xiaoyu Tong
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institute of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, People's Republic of China
| | - Lulu Wang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, People's Republic of China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, People's Republic of China
| | - Xiang Qiu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, People's Republic of China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, People's Republic of China
| | - Hongbo Yang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, People's Republic of China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, People's Republic of China
| | - Xinmei Liu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, People's Republic of China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, People's Republic of China
| | - Hefeng Huang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, People's Republic of China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, People's Republic of China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| |
Collapse
|
2
|
Huang Y, Wang A, Zhou W, Li B, Zhang L, Rudolf AM, Jin Z, Hambly C, Wang G, Speakman JR. Maternal dietary fat during lactation shapes single nucleus transcriptomic profile of postnatal offspring hypothalamus in a sexually dimorphic manner in mice. Nat Commun 2024; 15:2382. [PMID: 38493217 PMCID: PMC10944494 DOI: 10.1038/s41467-024-46589-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/01/2024] [Indexed: 03/18/2024] Open
Abstract
Maternal overnutrition during lactation predisposes offspring to develop metabolic diseases and exacerbates the relevant syndromes in males more than females in later life. The hypothalamus is a heterogenous brain region that regulates energy balance. Here we combined metabolic trait quantification of mother and offspring mice under low and high fat diet (HFD) feeding during lactation, with single nucleus transcriptomic profiling of their offspring hypothalamus at peak lacation to understand the cellular and molecular alterations in response to maternal dietary pertubation. We found significant expansion in neuronal subpopulations including histaminergic (Hdc), arginine vasopressin/retinoic acid receptor-related orphan receptor β (Avp/Rorb) and agouti-related peptide/neuropeptide Y (AgRP/Npy) in male offspring when their mothers were fed HFD, and increased Npy-astrocyte interactions in offspring responding to maternal overnutrition. Our study provides a comprehensive offspring hypothalamus map at the peak lactation and reveals how the cellular subpopulations respond to maternal dietary fat in a sex-specific manner during development.
Collapse
Affiliation(s)
- Yi Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Broad Institute of MIT and Harvard, Metabolism Program, Cambridge, MA, 02142, USA
| | - Anyongqi Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Wenjiang Zhou
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Centre for Evolutionary Biology, Fudan University, Shanghai, 200438, China
| | - Baoguo Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Linshan Zhang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Centre for Evolutionary Biology, Fudan University, Shanghai, 200438, China
| | - Agata M Rudolf
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zengguang Jin
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Catherine Hambly
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 3FX, UK
| | - Guanlin Wang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Centre for Evolutionary Biology, Fudan University, Shanghai, 200438, China.
| | - John R Speakman
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 3FX, UK.
- China Medical University, Shenyang, Liaoning, 110122, China.
| |
Collapse
|
3
|
Huang Y, Osorio Mendoza J, Li M, Jin Z, Li B, Wu Y, Togo J, Speakman JR. Impact of graded maternal dietary fat content on offspring susceptibility to high-fat diet in mice. Obesity (Silver Spring) 2021; 29:2055-2067. [PMID: 34813173 DOI: 10.1002/oby.23270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/19/2021] [Accepted: 07/15/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Maternal high-fat diet (HFD) increases offspring obesity, yet the impacts of different levels of maternal dietary fat have seldom been addressed. In mice, the impact of graded maternal dietary fat on offspring adiposity and offspring's later susceptibility to HFD were assessed. METHODS Lactating mice were fed diets with graded fat content from 8.3% to 66.6%. One male and one female pup from each litter were weaned onto a low-fat diet for 15 weeks. HFD (41.7%) was then introduced to half of the offspring for 12 weeks. RESULTS Offspring body weight and adiposity were positively related to maternal dietary fat content and were higher when mothers were exposed to HFD. The maternal diet effect was nonlinear and sex dependent. A maternal dietary fat of 41.7% and above exaggerated the offspring body weight gain in males but was not significant in females. Maternal 8.3% fat and 25% fat diets led to the highest daily energy expenditure and respiratory exchange ratio in offspring. Offspring fed a low-fat diet had higher daily energy expenditure and respiratory exchange ratio than those fed an HFD. CONCLUSIONS Increasing maternal dietary fat during lactation, and HFD in later life, had significant and interacting impacts on offspring obesity. Maternal diet had a bigger impact on male offspring. The effects of maternal dietary fat content were nonlinear.
Collapse
Affiliation(s)
- Yi Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | - Min Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zengguang Jin
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- School of Basic Medical Science, Dali University, Dali, Yunnan, China
| | - Baoguo Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yingga Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jacques Togo
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - John R Speakman
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- CAS Center for Excellence in Animal Evolution and Genetics, Kunming, Yunnan, China
| |
Collapse
|
4
|
Deng GM, Yu JX, Xu JQ, Bao YF, Chen Q, Cao J, Zhao ZJ. Exposure to artificial wind increases energy intake and reproductive performance of female Swiss mice ( Mus musculus) in hot temperatures. J Exp Biol 2020; 223:jeb231415. [PMID: 32665446 DOI: 10.1242/jeb.231415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022]
Abstract
High temperatures and heatwaves are rapidly emerging as an important threat to many aspects of physiology and behavior in females during lactation. The body's capacity to dissipate heat is reduced by high ambient temperatures, increasing the risk of hyperthermia. Exposure to wind, a pervasive environmental factor for most terrestrial animals, is known to increase heat loss, but its effects on the reproductive performance of small mammals remains unclear. In the present study, the effects of wind on the energy budgets, resting metabolic rate and milk energy output (MEO) were measured in lactating Swiss mice at 21 and 32.5°C. Females kept at 32.5°C had a significantly lower resting metabolic rate, food intake and MEO, and lighter offspring, than those kept at 21°C. However, exposure to wind increased the asymptotic food intake of females kept at 32.5°C by 22.5% (P<0.01), their MEO by 20.7% (P<0.05) and their litter mass by 17.6% (P<0.05). The body temperature of females kept at 32.5°C was significantly higher during lactation than that of females kept at 21°C, but this difference was reduced by exposure to wind. These findings suggest that exposure to wind considerably improves reproductive performance, increasing the fitness of small mammals while undergoing hot temperatures during heatwaves.
Collapse
Affiliation(s)
- Guang-Min Deng
- Department of Biology, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jing-Xin Yu
- Department of Biology, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jia-Qi Xu
- Department of Biology, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yu-Fan Bao
- Department of Biology, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Qian Chen
- Department of Biology, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jing Cao
- Department of Biology, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Zhi-Jun Zhao
- Department of Biology, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
5
|
Huang Y, Mendoza JO, Hambly C, Li B, Jin Z, Li L, Madizi M, Hu S, Speakman JR. Limits to sustained energy intake. XXXI. Effect of graded levels of dietary fat on lactation performance in Swiss mice. J Exp Biol 2020; 223:jeb221911. [PMID: 32291324 DOI: 10.1242/jeb.221911] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/04/2020] [Indexed: 08/26/2023]
Abstract
The heat dissipation limit theory predicts that lactating female mice consuming diets with lower specific dynamic action (SDA) should have enhanced lactation performance. Dietary fat has lower SDA than other macronutrients. Here we tested the effects of graded dietary fat levels on lactating Swiss mice. We fed females five diets varying in fat content from 8.3 to 66.6%. Offspring of mothers fed diets of 41.7% fat and above were heavier and fatter at weaning compared with those of 8.3 and 25% fat diets. Mice on dietary fat contents of 41.7% and above had greater metabolizable energy intake at peak lactation (8.3%: 229.4±39.6; 25%: 278.8±25.8; 41.7%: 359.6±51.5; 58.3%: 353.7±43.6; 66.6%: 346±44.7 kJ day-1), lower daily energy expenditure (8.3%: 128.5±16; 25%: 131.6±8.4; 41.7%: 124.4±10.8; 58.3%: 115.1±10.5; 66.6%: 111.2±11.5 kJ day-1) and thus delivered more milk energy to their offspring (8.3%: 100.8±27.3; 25%: 147.2±25.1; 41.7%: 225.1±49.6; 58.3%: 238.6±40.1; 66.6%: 234.8±41.1 kJ day-1). Milk fat content (%) was unrelated to dietary fat content, indicating that females on higher fat diets (>41.7%) produced more rather than richer milk. Mothers consuming diets with 41.7% fat or above enhanced their lactation performance compared with those on 25% or less, probably by diverting dietary fat directly into the milk, thereby avoiding the costs of lipogenesis. At dietary fat contents above 41.7% they were either unable to transfer more dietary fat to the milk, or they chose not to do so, potentially because of a lack of benefit to the offspring that were increasingly fatter as maternal dietary fat increased.
Collapse
Affiliation(s)
- Yi Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Catherine Hambly
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Baoguo Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Zengguang Jin
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- School of Basic Medical Science, Dali University, Dali, Yunnan 671000, China
| | - Li Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Moshen Madizi
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Sumei Hu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - John R Speakman
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
- CAS Center for Excellence in Animal Evolution and Genetics, Kunming, Yunnan 650223, China
| |
Collapse
|
6
|
Bao MH, Chen LB, Hambly C, Speakman JR, Zhao ZJ. Exposure to hot temperatures during lactation stunted offspring growth and decreased the future reproductive performance of female offspring. J Exp Biol 2020:jeb.223560. [PMID: 34005557 DOI: 10.1242/jeb.223560] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 03/31/2020] [Indexed: 12/15/2022]
Abstract
Among the important aspects of climate change, exposure to high temperatures (heat waves) is rapidly emerging as an important issue, in particular for female mammals during lactation. High temperatures adversely impact ability to dissipate heat, which has negative effects on reproductive output. The cumulative effects on growth of F1 offspring after weaning and future reproductive performance of offspring remain uncertain. In this study, the F1 mice that weaned from mothers lactating at 21°C and 32.5°C were housed at 21°C from day 19 till 56 of age; during which food intake and body mass were measured. The F1 adult females that had been weaned at the two temperatures were bred and then both exposed to 32.5°C during lactation. Energy intake, milk output and litter size and mass were determined. The F1 adults weaned at 32.5°C consumed less food and had lower body mass than their counterparts weaned at 21°C. Several visceral organs or reproductive tissues were significantly lower in mass in F1 weaned at 32.5°C than at 21°C. The exposure to 32.5°C significantly decreased energy intake, milk output and litter mass in F1 adult females during lactation. The F1 adult females weaned at 32.5°C produced less milk and raised lighter pups than those previously weaned at 21°C. The data suggest that transient exposure to hot temperature during lactation has long-lasting impacts on the offspring, including stunted growth and decreases in future reproductive performance when adult. This indicates that the offspring of females previously experiencing hot temperatures have a significant fitness disadvantage.
Collapse
Affiliation(s)
- Meng-Huan Bao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Li-Bing Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Catherine Hambly
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - John R Speakman
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
- State Key Laboratory of Molecular Developmental Biology, Chinese Academy of Sciences, Bei Chen Xi Lu, Chaoyang, Beijing 100101, People's Republic of China
- CAS Center of Excellence in Animal Evolution and Genetics, Kunming, People's Republic of China
| | - Zhi-Jun Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
7
|
Switching off the furnace: brown adipose tissue and lactation. Mol Aspects Med 2019; 68:18-41. [DOI: 10.1016/j.mam.2019.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/12/2019] [Indexed: 12/31/2022]
|