1
|
Chen RS, Paulson ET, Schartup AT, Choy CA. Diet shifts drive mercury bioaccumulation and distribution in tissues of the longnose lancetfish (Alepisaurus ferox). MARINE POLLUTION BULLETIN 2025; 213:117590. [PMID: 39970789 DOI: 10.1016/j.marpolbul.2025.117590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 02/21/2025]
Abstract
Monitoring the impacts of global efforts to reduce mercury (Hg) emissions is limited by the collection of biological samples at appropriate spatiotemporal scales. This is especially true in the deep sea, a vast region with food webs that cycle bioaccumulative methylmercury (MeHg). Within a species, understanding the distribution of Hg across tissue types can reveal how Hg accumulates in the body and inform how useful a species is for biomonitoring geographic regions or vertical habitats of the ocean. We focus on a globally distributed deep-sea fish, the longnose lancetfish (Alepisaurus ferox, n = 69 individuals), and measure total mercury (THg) and MeHg concentrations in 10 tissue types (brain, caudal white muscle, dorsal white muscle, gallbladder, gill filament, gonad, heart, intestine, liver, and stomach lining). Across all tissue types, THg and MeHg concentrations were higher in large lancetfish (≥1.8 kg) than small lancetfish (<1.8 kg), but concentrations were relatively stable within size classes. THg levels were highest in liver, intestine, and heart, followed by caudal white muscle, dorsal white muscle, stomach lining, and gill filament, then by gonad and gallbladder. We describe how ontogenetic diet shifts explain Hg bioaccumulation in pelagic predators inhabiting similar waters to lancetfish. We hypothesize that diet shifts to deeper-dwelling prey and fishes drive increases in THg and MeHg concentrations in large lancetfish. We propose lancetfish as a strong candidate for monitoring spatiotemporal variability of Hg in the deep pelagic - they are commonly captured in global fisheries and may reflect Hg sources in two distinct vertical habitats of the ocean.
Collapse
Affiliation(s)
- Rachel S Chen
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States of America.
| | - Erik T Paulson
- Geosciences Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States of America
| | - Amina T Schartup
- Geosciences Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States of America
| | - C Anela Choy
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States of America.
| |
Collapse
|
2
|
Arostegui MC. Cranial endothermy in mobulid rays: Evolutionary and ecological implications of a thermogenic brain. J Anim Ecol 2025; 94:11-19. [PMID: 39434239 DOI: 10.1111/1365-2656.14200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/27/2024] [Indexed: 10/23/2024]
Abstract
The large, metabolically expensive brains of manta and devil rays (Mobula spp.) may act as a thermogenic organ representing a unique mechanistic basis for cranial endothermy among fishes that improves central nervous system function in cold waters. Whereas early hominids in hot terrestrial environments may have experienced a thermal constraint to evolving larger brain size, cetaceans and mobulids in cold marine waters may have experienced a thermal driver for enlargement of a thermogenic brain. The potential for brain enlargement to yield the dual outcomes of cranial endothermy and enhanced cognition in mobulids suggests one may be an evolutionary by-product of selection for the mechanisms underlying the other, and highlights the need to account for non-cognitive functions when translating brain size into cognitive capacity. Computational scientific imaging offers promising avenues for addressing the pressing mechanistic and phylogenetic questions needed to assess the theory that cranial endothermy in mobulids is the result of temperature-driven selection for a brain with augmented thermogenic potential.
Collapse
Affiliation(s)
- M C Arostegui
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| |
Collapse
|
3
|
Arostegui MC, Shero MR, Frank LR, Berquist RM, Braun CD. An enigmatic pelagic fish with internalized red muscle: A future regional endotherm or forever an ectotherm? JOURNAL OF FISH BIOLOGY 2023; 102:1311-1326. [PMID: 36911991 DOI: 10.1111/jfb.15375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/08/2023] [Indexed: 06/09/2023]
Abstract
Ectothermy and endothermy in extant fishes are defined by distinct integrated suites of characters. Although only ⁓0.1% of fishes are known to have endothermic capacity, recent discoveries suggest that there may still be uncommon pelagic fish species with yet to be discovered endothermic traits. Among the most rarely encountered marine fishes, the louvar Luvarus imperialis is a remarkable example of adaptive evolution as the only extant pelagic species in the order Acanthuriformes (including surgeonfishes, tangs, unicornfishes and Moorish idol). Magnetic resonance imaging and gross necropsy did not yield evidence of cranial or visceral endothermy but revealed a central-posterior distribution of myotomal red muscle that is a mixture of the character states typifying ectotherms (lateral-posterior) and red muscle endotherms (central-anterior). Dissection of a specimen confirmed, and an osteological proxy supported, that L. imperialis has not evolved the vascular rete that is vital to retaining heat in the red muscle. The combination of presumably relying on caudal propulsion while exhibiting internal red muscle without associated retia is unique to L. imperialis among all extant fishes, raising the macroevolutionary question of whether this species - in geologic timescales - will remain an ectotherm or evolve red muscle endothermy.
Collapse
Affiliation(s)
- Martin C Arostegui
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Michelle R Shero
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Lawrence R Frank
- Center for Scientific Computation in Imaging, University of California San Diego, La Jolla, CA, USA
| | - Rachel M Berquist
- Center for Scientific Computation in Imaging, University of California San Diego, La Jolla, CA, USA
| | - Camrin D Braun
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| |
Collapse
|
4
|
Stoehr AA, Donley JM, Aalbers SA, Syme DA, Sepulveda C, Bernal D. Thermal effects on red muscle contractile performance in deep-diving, large-bodied fishes. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1833-1845. [PMID: 32588156 DOI: 10.1007/s10695-020-00831-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Bigeye thresher sharks (Alopias superciliosus) and swordfish (Xiphias gladius) are large, pelagic fishes, which make long-duration, diurnal foraging dives from warm, surface waters (18-24 °C) to cold waters beneath the thermocline (5-10 °C). In bigeye thresher sharks, the subcutaneous position of the red, aerobic swimming muscles (RM) suggests that RM temperature mirrors ambient during dives (i.e., ectothermy). In swordfish, the RM is closer to the vertebrae and its associated with vascular counter-current heat exchangers that maintain RM temperature above ambient (i.e., RM endothermy). Here, we sought to determine how exposure to a wide range of ambient temperatures (8, 16, 24 °C) impacted peak power output and optimum cycle (i.e., tailbeat) frequency (0.25, 0.5, 1 Hz) in RM isolated from both species. Bigeye thresher shark RM did not produce substantial power at high cycle frequencies, even at high temperatures; but it did produce relatively high power at slow cycle frequencies regardless of temperature. Swordfish RM produced more power when operating at a combination of fast cycle frequencies and higher temperatures. This suggests that swordfish RM benefits considerably more from warming than bigeye thresher shark RM, while the RM of both species was able to produce power at cold temperatures and slow cycle frequencies. Despite different thermal strategies (i.e., ectothermy vs. RM endothermy), the ability of the RM to power sustained swimming during foraging-related search behaviors may contribute to the unique ability of these fishes to successfully exploit food resources in deep, cold water.
Collapse
Affiliation(s)
| | | | - Scott A Aalbers
- Pfleger Institute of Environmental Research, Oceanside, CA, USA
| | | | | | - Diego Bernal
- University of Massachusetts Dartmouth, Dartmouth, MA, USA.
| |
Collapse
|
5
|
Dickson JM, Dickson KA. Ontogenetic change in the amount and position of slow-oxidative myotomal muscle in relationship to regional endothermy in juvenile yellowfin tuna Thunnus albacares. JOURNAL OF FISH BIOLOGY 2019; 95:940-951. [PMID: 31294823 DOI: 10.1111/jfb.14092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/17/2019] [Indexed: 06/09/2023]
Abstract
Myotomal slow-oxidative muscle (SM) powers continuous swimming and generates heat needed to maintain elevated locomotor muscle temperatures (regional endothermy) in tunas. This study describes how the amount and distribution of myotomal SM increases with fish size and age in juvenile yellowfin tuna Thunnus albacares in relationship to the development of regional endothermy. In T. albacares juveniles 40-74 mm fork length (LF ; n = 23) raised from fertilised eggs at the Inter-American Tropical Tuna Commission Achotines Laboratory in Panama and larger juveniles (118-344 mm LF ; n = 5) collected by hook and line off of Oahu, Hawaii, USA, SM was identified by histochemical staining for the mitochondrial enzyme succinic dehydrogenase or by colour (in the two largest individuals). The cross-sectional area of myotomal SM at 60% LF , a position with maximal percentage of SM in larger T. albacares, increased exponentially with LF . The percentage of total cross-sectional area composed of SM at 60% LF increased significantly with both LF and age, suggesting that SM growth occurs throughout the size range of T. albacares juveniles studied. In addition, the percentage of SM at 60% LF that is medial increased asymptotically with LF . The increases in amount of SM and medial SM, along with the development of the counter-current heat-exchanger blood vessels that retain heat, allow larger tuna juveniles to maintain elevated and relatively stable SM temperatures, facilitating range expansion into cooler waters.
Collapse
Affiliation(s)
- Juleen M Dickson
- Department of Biological Science, California State University Fullerton, Fullerton, California, USA
| | - Kathryn A Dickson
- Department of Biological Science, California State University Fullerton, Fullerton, California, USA
| |
Collapse
|
6
|
Ferrón HG. Regional endothermy as a trigger for gigantism in some extinct macropredatory sharks. PLoS One 2017; 12:e0185185. [PMID: 28938002 PMCID: PMC5609766 DOI: 10.1371/journal.pone.0185185] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 09/07/2017] [Indexed: 11/18/2022] Open
Abstract
Otodontids include some of the largest macropredatory sharks that ever lived, the most extreme case being Otodus (Megaselachus) megalodon. The reasons underlying their gigantism, distribution patterns and extinction have been classically linked with climatic factors and the evolution, radiation and migrations of cetaceans during the Paleogene. However, most of these previous proposals are based on the idea of otodontids as ectothermic sharks regardless of the ecological, energetic and body size constraints that this implies. Interestingly, a few recent studies have suggested the possible existence of endothermy in these sharks thus opening the door to a series of new interpretations. Accordingly, this work proposes that regional endothermy was present in otodontids and some closely related taxa (cretoxyrhinids), playing an important role in the evolution of gigantism and in allowing an active mode of live. The existence of regional endothermy in these groups is supported here by three different approaches including isotopic-based approximations, swimming speed inferences and the application of a novel methodology for assessing energetic budget and cost of swimming in extinct taxa. In addition, this finding has wider implications. It calls into question some previous paleotemperature estimates based partially on these taxa, suggests that the existing hypothesis about the evolution of regional endothermy in fishes requires modification, and provides key evidence for understanding the evolution of gigantism in active macropredators.
Collapse
Affiliation(s)
- Humberto G. Ferrón
- Institut Cavanilles de Biodiversitat I Biologia Evolutiva, University of Valencia, Burjassot, Spain
| |
Collapse
|
7
|
Comparative analyses of animal-tracking data reveal ecological significance of endothermy in fishes. Proc Natl Acad Sci U S A 2015; 112:6104-9. [PMID: 25902489 DOI: 10.1073/pnas.1500316112] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite long evolutionary separations, several sharks and tunas share the ability to maintain slow-twitch, aerobic red muscle (RM) warmer than ambient water. Proximate causes of RM endothermy are well understood, but ultimate causes are unclear. Two advantages often proposed are thermal niche expansion and elevated cruising speeds. The thermal niche hypothesis is generally supported, because fishes with RM endothermy often exhibit greater tolerance to broad temperature ranges. In contrast, whether fishes with RM endothermy cruise faster, and achieve any ecological benefits from doing so, remains unclear. Here, we compiled data recorded by modern animal-tracking tools for a variety of free-swimming marine vertebrates. Using phylogenetically informed allometry, we show that both cruising speeds and maximum annual migration ranges of fishes with RM endothermy are 2-3 times greater than fishes without it, and comparable to nonfish endotherms (i.e., penguins and marine mammals). The estimated cost of transport of fishes with RM endothermy is twice that of fishes without it. We suggest that the high energetic cost of RM endothermy in fishes is offset by the benefit of elevated cruising speeds, which not only increase prey encounter rates, but also enable larger-scale annual migrations and potentially greater access to seasonally available resources.
Collapse
|
8
|
Patterson JC, Sepulveda CA, Bernal D. The vascular morphology and in vivo muscle temperatures of thresher sharks (Alopiidae). J Morphol 2011; 272:1353-64. [DOI: 10.1002/jmor.10989] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 04/26/2011] [Accepted: 04/29/2011] [Indexed: 11/11/2022]
|
9
|
Reduced and reversed temperature dependence of blood oxygenation in an ectothermic scombrid fish: implications for the evolution of regional heterothermy? J Comp Physiol B 2009; 180:73-82. [DOI: 10.1007/s00360-009-0388-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 06/17/2009] [Accepted: 06/22/2009] [Indexed: 10/20/2022]
|
10
|
GRAHAM JEFFREYB, DICKSON KATHRYNA. The evolution of thunniform locomotion and heat conservation in scombrid fishes: New insights based on the morphology of Allothunnus fallai. Zool J Linn Soc 2008. [DOI: 10.1111/j.1096-3642.2000.tb00612.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Blank JM, Morrissette JM, Farwell CJ, Price M, Schallert RJ, Block BA. Temperature effects on metabolic rate of juvenile Pacific bluefin tunaThunnus orientalis. J Exp Biol 2007; 210:4254-61. [DOI: 10.1242/jeb.005835] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYPacific bluefin tuna inhabit a wide range of thermal environments across the Pacific ocean. To examine how metabolism varies across this thermal range,we studied the effect of ambient water temperature on metabolic rate of juvenile Pacific bluefin tuna, Thunnus thynnus, swimming in a swim tunnel. Rate of oxygen consumption(ṀO2) was measured at ambient temperatures of 8–25°C and swimming speeds of 0.75–1.75 body lengths (BL) s–1. Pacific bluefin swimming at 1 BL s–1 per second exhibited a U-shaped curve of metabolic rate vs ambient temperature, with a thermal minimum zone between 15°C to 20°C. Minimum ṀO2 of 175±29 mg kg–1 h–1 was recorded at 15°C, while both cold and warm temperatures resulted in increased metabolic rates of 331±62 mg kg–1 h–1at 8°C and 256±19 mg kg–1 h–1 at 25°C. Tailbeat frequencies were negatively correlated with ambient temperature. Additional experiments indicated that the increase in ṀO2 at low temperature occurred only at low swimming speeds. Ambient water temperature data from electronic tags implanted in wild fish indicate that Pacific bluefin of similar size to the experimental fish used in the swim tunnel spend most of their time in ambient temperatures in the metabolic thermal minimum zone.
Collapse
Affiliation(s)
- Jason M. Blank
- Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950,USA
| | | | | | | | | | - Barbara A. Block
- Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950,USA
| |
Collapse
|
12
|
Reilly CRL, Thompson SH. Temperature effects on low-light vision in juvenile rockfish (Genus Sebastes) and consequences for habitat utilization. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2007; 193:943-53. [PMID: 17598113 DOI: 10.1007/s00359-007-0247-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 05/23/2007] [Accepted: 05/26/2007] [Indexed: 10/23/2022]
Abstract
The absolute low-light sensitivity of four congeneric species of rockfish (genus Sebastes) was studied from analysis of electroretinograms measured in living fish. The purpose was: (1) to determine if temperature sensitive noise in rod photoreceptors affects the absolute limit to low-light sensitivity at environmentally realistic temperatures and light levels, and (2) to examine whether interspecific variations in habitat utilization within rockfish communities correlate with differences in visual sensitivity. It was found that the low-light sensitivity of individual retinae is inversely dependent on temperature, decreasing tenfold with a 10 degrees C increase in temperature. While in all four species, temperature had a similar effect on sensitivity, the absolute sensitivity levels were different. The four species could be divided into two groups based on measured sensitivity. Kelp and olive rockfish form a high-sensitivity group capable of responding to light levels approximately 50-fold lower than blue and black rockfish. The sensitivity groups correlated with reported diel activity patterns; the high-sensitivity group forages nocturnally, whereas members of the low-sensitivity group are quiescent during twilight and night and forage during the day.
Collapse
Affiliation(s)
- C R L Reilly
- Hopkins Marine Station of Stanford University, Pacific Grove, CA 93950, USA.
| | | |
Collapse
|
13
|
Dickson KA, Graham JB. Evolution and consequences of endothermy in fishes. Physiol Biochem Zool 2005; 77:998-1018. [PMID: 15674772 DOI: 10.1086/423743] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2004] [Indexed: 11/03/2022]
Abstract
Regional endothermy, the conservation of metabolic heat by vascular countercurrent heat exchangers to elevate the temperature of the slow-twitch locomotor muscle, eyes and brain, or viscera, has evolved independently among several fish lineages, including lamnid sharks, billfishes, and tunas. All are large, active, pelagic species with high energy demands that undertake long-distance migrations and move vertically within the water column, thereby encountering a range of water temperatures. After summarizing the occurrence of endothermy among fishes, the evidence for two hypothesized advantages of endothermy in fishes, thermal niche expansion and enhancement of aerobic swimming performance, is analyzed using phylogenetic comparisons between endothermic fishes and their ectothermic relatives. Thermal niche expansion is supported by mapping endothermic characters onto phylogenies and by combining information about the thermal niche of extant species, the fossil record, and paleoceanographic conditions during the time that endothermic fishes radiated. However, it is difficult to show that endothermy was required for niche expansion, and adaptations other than endothermy are necessary for repeated diving below the thermocline. Although the convergent evolution of the ability to elevate slow-twitch, oxidative locomotor muscle temperatures suggests a selective advantage for that trait, comparisons of tunas and their ectothermic sister species (mackerels and bonitos) provide no direct support of the hypothesis that endothermy results in increased aerobic swimming speeds, slow-oxidative muscle power, or energetic efficiency. Endothermy is associated with higher standard metabolic rates, which may result from high aerobic capacities required by these high-performance fishes to conduct many aerobic activities simultaneously. A high standard metabolic rate indicates that the benefits of endothermy may be offset by significant energetic costs.
Collapse
Affiliation(s)
- Kathryn A Dickson
- Department of Biological Science, California State University, Fullerton, CA 92834-6850, USA.
| | | |
Collapse
|
14
|
Bernal D, Sepulveda CA. Evidence for Temperature Elevation in the Aerobic Swimming Musculature of the Common Thresher Shark, Alopias vulpinus. COPEIA 2005. [DOI: 10.1643/cp-04-180r1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Abstract
SUMMARY
The mako shark (Isurus oxyrinchus) has specialized vascular networks (retia mirabilia) forming counter-current heat exchangers that allow metabolic heat retention in certain regions of the body, including the aerobic, locomotor red muscle and the viscera. Red muscle, white muscle and stomach temperatures were measured in juvenile (5–13.6 kg) makos swimming steadily in a water tunnel and exposed to stepwise square-wave changes in ambient temperature (Ta) to estimate the rates of heat transfer and to determine their capacity for the activity-independent control of heat balance. The rates of heat gain of red muscle during warming were significantly higher than the rates of heat loss during cooling, and neither the magnitude of the change in Ta nor the direction of change in Ta had a significant effect on red muscle latency time. Our findings for mako red muscle are similar to those recorded for tunas and suggest modulation of retial heat-exchange efficiency as the underlying mechanism controlling heat balance. However, the red muscle temperatures measured in swimming makos (0.3–3°C above Ta) are cooler than those measured previously in larger decked makos. Also, the finding of non-stable stomach temperatures contrasts with the predicted independence from Ta recorded in telemetry studies of mako and white sharks. Our studies on live makos provide new evidence that, in addition to the unique convergent morphological properties between makos and tunas, there is a strong functional similarity in the mechanisms used to regulate heat transfer.
Collapse
Affiliation(s)
- D Bernal
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0204, USA.
| | | | | |
Collapse
|
16
|
|
17
|
Graham JB, Dickson KA. Anatomical and physiological specializations for endothermy. FISH PHYSIOLOGY 2001. [DOI: 10.1016/s1546-5098(01)19005-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Korsmeyer K, Dewar H, Lai N, Graham J. Tuna aerobic swimming performance: Physiological and environmental limits based on oxygen supply and demand. Comp Biochem Physiol B Biochem Mol Biol 1996. [DOI: 10.1016/0305-0491(95)02044-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
19
|
Dickson KA. Locomotor muscle of high-performance fishes: What do comparisons of tunas with ectothermic sister taxa reveal? ACTA ACUST UNITED AC 1996. [DOI: 10.1016/0300-9629(95)02056-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|