1
|
Ali MA, Al-Farga A, Seddik MA. The positive impact of honeybee activity on fennel crop production and sustainability. Sci Rep 2024; 14:14869. [PMID: 38937513 PMCID: PMC11211493 DOI: 10.1038/s41598-024-64283-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/06/2024] [Indexed: 06/29/2024] Open
Abstract
This study investigates the ecological interaction between honeybees (Apis mellifera) and fennel (Foeniculum vulgare) plants, examining the mutual benefits of this relationship. Field experiments conducted in Egypt from December 2022 to May 2023 recorded diverse insect pollinators attracted to fennel flowers, especially honeybees. Assessing honeybee colonies near fennel fields showed improvements in sealed brood (357.5-772.5 cells), unsealed brood (176.3-343.8 cells), pollen collection (53.25-257.5 units), honey accumulation (257.5-877.5 units), and colony strength (7.75-10) over three weeks. Fennel exposure explained 88-99% of variability in foraging metrics. Comparing open versus self-pollinated fennel revealed enhanced attributes with bee pollination, including higher flower age (25.67 vs 19.67 days), more seeds per umbel (121.3 vs 95.33), bigger seeds (6.533 vs 4.400 mm), heavier seeds (0.510 vs 0.237 g/100 seeds), and increased fruit weight per umbel (0.619 vs 0.226 g). Natural variation in seed color and shape also occurred. The outcomes demonstrate the integral role of honeybees in fennel agroecosystems through efficient pollination services that improve crop productivity and quality. Fennel provides abundant nutritional resources that bolster honeybee colony health. This research elucidates the symbiotic bee-fennel relationship, underscoring mutualistic benefits and the importance of ecological conservation for sustainable agriculture.
Collapse
Affiliation(s)
- Mahmoud Abbas Ali
- Plant Protection Department, Faculty of Agriculture, South Valley University, Qena, Egypt.
| | - Ammar Al-Farga
- Department of Biochemistry, Faculty of Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - M A Seddik
- Department of Bees Research, Agricultural Research Center, Plant Protection Research Institute, Giza, Egypt
| |
Collapse
|
2
|
Vallejo-Marin M, Field DL, Fornoni J, Montesinos D, Dominguez CA, Hernandez I, Vallejo GC, Woodrow C, Ayala Barajas R, Jafferis N. Biomechanical properties of non-flight vibrations produced by bees. J Exp Biol 2024; 227:jeb247330. [PMID: 38773949 DOI: 10.1242/jeb.247330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/10/2024] [Indexed: 05/24/2024]
Abstract
Bees use thoracic vibrations produced by their indirect flight muscles for powering wingbeats in flight, but also during mating, pollination, defence and nest building. Previous work on non-flight vibrations has mostly focused on acoustic (airborne vibrations) and spectral properties (frequency domain). However, mechanical properties such as the vibration's acceleration amplitude are important in some behaviours, e.g. during buzz pollination, where higher amplitude vibrations remove more pollen from flowers. Bee vibrations have been studied in only a handful of species and we know very little about how they vary among species. In this study, we conducted the largest survey to date of the biomechanical properties of non-flight bee buzzes. We focused on defence buzzes as they can be induced experimentally and provide a common currency to compare among taxa. We analysed 15,000 buzzes produced by 306 individuals in 65 species and six families from Mexico, Scotland and Australia. We found a strong association between body size and the acceleration amplitude of bee buzzes. Comparison of genera that buzz-pollinate and those that do not suggests that buzz-pollinating bees produce vibrations with higher acceleration amplitude. We found no relationship between bee size and the fundamental frequency of defence buzzes. Although our results suggest that body size is a major determinant of the amplitude of non-flight vibrations, we also observed considerable variation in vibration properties among bees of equivalent size and even within individuals. Both morphology and behaviour thus affect the biomechanical properties of non-flight buzzes.
Collapse
Affiliation(s)
- Mario Vallejo-Marin
- Department of Ecology and Genetics, Uppsala University, SE-752 36 Uppsala, Sweden
| | - David L Field
- Applied Biosciences, Macquarie University, Sydney, NSW 2109, Australia
- School of Science, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Juan Fornoni
- Instituto de Ecología, National Autonomous University of Mexico (UNAM), 04510 Mexico City, Mexico
| | - Daniel Montesinos
- Australian Tropical Herbarium, James Cook University, Cairns, QLD 4870, Australia
- College of Science and Engineering, James Cook University, Cairns, QLD 4870, Australia
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Cesar A Dominguez
- Instituto de Ecología, National Autonomous University of Mexico (UNAM), 04510 Mexico City, Mexico
| | - Ivan Hernandez
- Independent researcher, San Felipe del Agua, Oaxaca, Mexico
| | | | - Charlie Woodrow
- Department of Ecology and Genetics, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Ricardo Ayala Barajas
- Estación de Biología Chamela, National Autonomous University of Mexico (UNAM), Jalisco, Mexico
| | - Noah Jafferis
- Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA
| |
Collapse
|
3
|
Vallejo-Marin M, Russell AL. Harvesting pollen with vibrations: towards an integrative understanding of the proximate and ultimate reasons for buzz pollination. ANNALS OF BOTANY 2024; 133:379-398. [PMID: 38071461 PMCID: PMC11006549 DOI: 10.1093/aob/mcad189] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/08/2023] [Indexed: 04/12/2024]
Abstract
Buzz pollination, a type of interaction in which bees use vibrations to extract pollen from certain kinds of flowers, captures a close relationship between thousands of bee and plant species. In the last 120 years, studies of buzz pollination have contributed to our understanding of the natural history of buzz pollination, and basic properties of the vibrations produced by bees and applied to flowers in model systems. Yet, much remains to be done to establish its adaptive significance and the ecological and evolutionary dynamics of buzz pollination across diverse plant and bee systems. Here, we review for bees and plants the proximate (mechanism and ontogeny) and ultimate (adaptive significance and evolution) explanations for buzz pollination, focusing especially on integrating across these levels to synthesize and identify prominent gaps in our knowledge. Throughout, we highlight new technical and modelling approaches and the importance of considering morphology, biomechanics and behaviour in shaping our understanding of the adaptive significance of buzz pollination. We end by discussing the ecological context of buzz pollination and how a multilevel perspective can contribute to explain the proximate and evolutionary reasons for this ancient bee-plant interaction.
Collapse
Affiliation(s)
- Mario Vallejo-Marin
- Department of Ecology and Genetics, Uppsala University, Uppsala, 752 36, Sweden
| | - Avery L Russell
- Department of Biology, Missouri State University, Springfield, MO, 65897, USA
| |
Collapse
|
4
|
Rands SA, Whitney HM, Hempel de Ibarra N. Multimodal floral recognition by bumblebees. CURRENT OPINION IN INSECT SCIENCE 2023; 59:101086. [PMID: 37468044 DOI: 10.1016/j.cois.2023.101086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023]
Abstract
Flowers present information to their insect visitors in multiple simultaneous sensory modalities. Research has commonly focussed on information presented in visual and olfactory modalities. Recently, focus has shifted towards additional 'invisible' information, and whether information presented in multiple modalities enhances the interaction between flowers and their visitors. In this review, we highlight work that addresses how multimodality influences behaviour, focussing on work conducted on bumblebees (Bombus spp.), which are often used due to both their learning abilities and their ability to use multiple sensory modes to identify and differentiate between flowers. We review the evidence for bumblebees being able to use humidity, electrical potential, surface texture and temperature as additional modalities, and consider how multimodality enhances their performance. We consider mechanisms, including the cross-modal transfer of learning that occurs when bees are able to transfer patterns learnt in one modality to an additional modality without additional learning.
Collapse
Affiliation(s)
- Sean A Rands
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, United Kingdom.
| | - Heather M Whitney
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, United Kingdom
| | - Natalie Hempel de Ibarra
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter EX4 4QG, United Kingdom
| |
Collapse
|
5
|
Fitzgerald JL, Ogilvie JE, CaraDonna PJ. Ecological Drivers and Consequences of Bumble Bee Body Size Variation. ENVIRONMENTAL ENTOMOLOGY 2022; 51:1055-1068. [PMID: 36373400 DOI: 10.1093/ee/nvac093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Indexed: 06/16/2023]
Abstract
Body size is arguably one of the most important traits influencing the physiology and ecology of animals. Shifts in animal body size have been observed in response to climate change, including in bumble bees (Bombus spp. [Hymenoptera: Apidae]). Bumble bee size shifts have occurred concurrently with the precipitous population declines of several species, which appear to be related, in part, to their size. Body size variation is central to the ecology of bumble bees, from their social organization to the pollination services they provide to plants. If bumble bee size is shifted or constrained, there may be consequences for the pollination services they provide and for our ability to predict their responses to global change. Yet, there are still many aspects of the breadth and role of bumble bee body size variation that require more study. To this end, we review the current evidence of the ecological drivers of size variation in bumble bees and the consequences of that variation on bumble bee fitness, foraging, and species interactions. In total we review: (1) the proximate determinants and physiological consequences of size variation in bumble bees; (2) the environmental drivers and ecological consequences of size variation; and (3) synthesize our understanding of size variation in predicting how bumble bees will respond to future changes in climate and land use. As global change intensifies, a better understanding of the factors influencing the size distributions of bumble bees, and the consequences of those distributions, will allow us to better predict future responses of these pollinators.
Collapse
Affiliation(s)
- Jacquelyn L Fitzgerald
- Plant Biology and Conservation, Northwestern University, Evanston, IL 60201, USA
- Chicago Botanic Garden, Negaunee Institute for Plant Conservation Science & Action, Glencoe, IL 60022, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
| | - Jane E Ogilvie
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
| | - Paul J CaraDonna
- Plant Biology and Conservation, Northwestern University, Evanston, IL 60201, USA
- Chicago Botanic Garden, Negaunee Institute for Plant Conservation Science & Action, Glencoe, IL 60022, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
| |
Collapse
|
6
|
Nevard L, Vallejo‐Marín M. Floral orientation affects outcross-pollen deposition in buzz-pollinated flowers with bilateral symmetry. AMERICAN JOURNAL OF BOTANY 2022; 109:1568-1578. [PMID: 36193950 PMCID: PMC9828177 DOI: 10.1002/ajb2.16078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 05/28/2023]
Abstract
PREMISE Floral orientation is central to plant-pollinator interactions and is commonly associated with floral symmetry. Bilaterally symmetrical flowers are often oriented horizontally for optimal pollinator positioning and pollen transfer efficiency, while the orientation of radially symmetrical flowers is variable. Buzz-pollinated species (pollinated by vibration-producing bees) include bilateral, horizontally oriented flowers, and radial, pendant flowers. The effect of floral orientation on pollen transfer has never been tested in buzz-pollinated species. METHODS Here, we examined the effect of floral orientation on bumblebee-mediated pollen deposition in three buzz-pollinated Solanum species with different floral symmetry and natural orientations: S. lycopersicum and S. seaforthianum (radial, pendant), and S. rostratum (bilateral, horizontal). We tested whether orientation affects total stigmatic pollen deposition (both self and outcross pollen) when all flowers have the same orientation (either pendant or horizontal). In a second experiment, we evaluated whether different orientations of donor and recipient flowers affects the receipt of outcross pollen by S. rostratum. RESULTS For the three Solanum species studied, there was no effect of floral orientation on total pollen deposition (both self and outcross) when flowers shared the same orientation. In contrast, in our experiment with S. rostratum, we found that pendant flowers received fewer outcross-pollen grains when paired with pendant donors. CONCLUSIONS We suggest that floral orientation influences the quality of pollen transferred, with more outcross pollen transferred to horizontally oriented recipients in the bilaterally symmetrical S. rostratum. Whether other bilaterally symmetrical, buzz-pollinated flowers also benefit from increased cross-pollination when presented horizontally remains to be established.
Collapse
Affiliation(s)
- Lucy Nevard
- Biological & Environmental SciencesUniversity of StirlingStirlingUKFK9 4LA
| | | |
Collapse
|
7
|
Carpenter bee thorax vibration and force generation inform pollen release mechanisms during floral buzzing. Sci Rep 2022; 12:12654. [PMID: 35931708 PMCID: PMC9355986 DOI: 10.1038/s41598-022-16859-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022] Open
Abstract
Approximately 10% of flowering plant species conceal their pollen within tube-like poricidal anthers. Bees extract pollen from poricidal anthers via floral buzzing, a behavior during which they apply cyclic forces by biting the anther and rapidly contracting their flight muscles. The success of pollen extraction during floral buzzing relies on the direction and magnitude of the forces applied by the bees, yet these forces and forcing directions have not been previously quantified. In this work, we developed an experiment to simultaneously measure the directional forces and thorax kinematics produced by carpenter bees (Xylocopa californica) during defensive buzzing, a behavior regulated by similar physiological mechanisms as floral buzzing. We found that the buzzing frequencies averaged about 130 Hz and were highly variable within individuals. Force amplitudes were on average 170 mN, but at times reached nearly 500 mN. These forces were 30–80 times greater than the weight of the bees tested. The two largest forces occurred within a plane formed by the bees’ flight muscles. Force amplitudes were moderately correlated with thorax displacement, velocity and acceleration amplitudes but only weakly correlated with buzzing frequency. Linear models developed through this work provide a mechanism to estimate forces produced during non-flight behaviors based on thorax kinematic measurements in carpenter bees. Based on the buzzing frequencies, individual bee’s capacity to vary buzz frequency and predominant forcing directions, we hypothesize that carpenter bees leverage vibration amplification to increase the deformation of poricidal anthers, and hence the amount of pollen ejected.
Collapse
|
8
|
Vallejo‐Marín M, Pereira Nunes CE, Russell AL. Anther cones increase pollen release in buzz-pollinated Solanum flowers. Evolution 2022; 76:931-945. [PMID: 35324004 PMCID: PMC9313847 DOI: 10.1111/evo.14485] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 02/21/2022] [Accepted: 03/13/2022] [Indexed: 01/22/2023]
Abstract
The widespread evolution of tube-like anthers releasing pollen from apical pores is associated with buzz pollination, in which bees vibrate flowers to remove pollen. The mechanical connection among anthers in buzz-pollinated species varies from loosely held conformations, to anthers tightly held together with trichomes or bioadhesives forming a functionally joined conical structure (anther cone). Joined anther cones in buzz-pollinated species have evolved independently across plant families and via different genetic mechanisms, yet their functional significance remains mostly untested. We used experimental manipulations to compare vibrational and functional (pollen release) consequences of joined anther cones in three buzz-pollinated species of Solanum (Solanaceae). We applied bee-like vibrations to focal anthers in flowers with ("joined") and without ("free") experimentally created joined anther cones, and characterized vibrations transmitted to other anthers and the amount of pollen released. We found that joined anther architectures cause nonfocal anthers to vibrate at higher amplitudes than free architectures. Moreover, in the two species with naturally loosely held anthers, anther fusion increases pollen release, whereas in the species with a free but naturally compact architecture it does not. We discuss hypotheses for the adaptive significance of the convergent evolution of joined anther cones.
Collapse
Affiliation(s)
- Mario Vallejo‐Marín
- Biological and Environmental SciencesUniversity of StirlingStirlingFK9 4LAUnited Kingdom
- Department of BiologyMissouri State UniversitySpringfieldMissouri65897
| | | | | |
Collapse
|
9
|
Jankauski M, Ferguson R, Russell A, Buchmann S. Structural dynamics of real and modelled Solanum stamens: implications for pollen ejection by buzzing bees. J R Soc Interface 2022; 19:20220040. [PMID: 35259960 PMCID: PMC8905162 DOI: 10.1098/rsif.2022.0040] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
An estimated 10% of flowering plant species conceal their pollen within tube-like anthers that dehisce through small apical pores (poricidal anthers). Bees extract pollen from poricidal anthers through a complex motor routine called floral buzzing, whereby the bee applies vibratory forces to the flower stamen by rapidly contracting its flight muscles. The resulting deformation depends on the stamen's natural frequencies and vibration mode shapes, yet for most poricidal species, these properties have not been sufficiently characterized. We performed experimental modal analysis on Solanum elaeagnifolium stamens to quantify their natural frequencies and vibration modes. Based on morphometric and dynamic measurements, we developed a finite-element model of the stamen to identify how variable material properties, geometry and bee weight could affect its dynamics. In general, stamen natural frequencies fell outside the reported floral buzzing range, and variations in stamen geometry and material properties were unlikely to bring natural frequencies within this range. However, inclusion of bee mass reduced natural frequencies to within the floral buzzing frequency range and gave rise to an axial-bending vibration mode. We hypothesize that floral buzzing bees exploit the large vibration amplification factor of this mode to increase anther deformation, which may facilitate pollen ejection.
Collapse
Affiliation(s)
- Mark Jankauski
- Department of Mechanical and Industrial Engineering, Montana State University, Bozeman, MT, USA
| | - Riggs Ferguson
- Department of Mechanical and Industrial Engineering, Montana State University, Bozeman, MT, USA
| | - Avery Russell
- Department of Biology, Missouri State University, Springfield, MO, USA
| | - Stephen Buchmann
- Department of Ecology and Evolutionary Biology,, University of Arizona, Tucson, AZ, USA.,Department of Entomology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
10
|
Vallejo-Marín M. How and why do bees buzz? Implications for buzz pollination. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1080-1092. [PMID: 34537837 PMCID: PMC8866655 DOI: 10.1093/jxb/erab428] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Buzz pollination encompasses the evolutionary convergence of specialized floral morphologies and pollinator behaviour in which bees use vibrations (floral buzzes) to remove pollen. Floral buzzes are one of several types of vibrations produced by bees using their thoracic muscles. Here I review how bees can produce these different types of vibrations and discuss the implications of this mechanistic understanding for buzz pollination. I propose that bee buzzes can be categorized according to their mode of production and deployment into: (i) thermogenic, which generate heat with little mechanical vibration; (ii) flight buzzes which, combined with wing deployment and thoracic vibration, power flight; and (iii) non-flight buzzes in which the thorax vibrates but the wings remain mostly folded, and include floral, defence, mating, communication, and nest-building buzzes. I hypothesize that the characteristics of non-flight buzzes, including floral buzzes, can be modulated by bees via modification of the biomechanical properties of the thorax through activity of auxiliary muscles, changing the rate of activation of the indirect flight muscles, and modifying flower handling behaviours. Thus, bees should be able to fine-tune mechanical properties of their floral vibrations, including frequency and amplitude, depending on flower characteristics and pollen availability to optimize energy use and pollen collection.
Collapse
Affiliation(s)
- Mario Vallejo-Marín
- Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA, UK
| |
Collapse
|
11
|
Tayal M, Kariyat R. Examining the Role of Buzzing Time and Acoustics on Pollen Extraction of Solanum elaeagnifolium. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122592. [PMID: 34961064 PMCID: PMC8709443 DOI: 10.3390/plants10122592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/16/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
Buzz pollination is a specialized pollination syndrome that requires vibrational energy to extract concealed pollen grains from poricidal anthers. Although a large body of work has examined the ecology of buzz pollination, whether acoustic properties of buzz pollinators affect pollen extraction is less understood, especially in weeds and invasive species. We examined the pollination biology of Silverleaf nightshade (Solanum elaeagnifolium), a worldwide invasive weed, in its native range in the Lower Rio Grande Valley (LRGV) in south Texas. Over two years, we documented the floral visitors on S. elaeagnifolium, their acoustic parameters (buzzing amplitude, frequency, and duration of buzzing) and estimated the effects of the latter two factors on pollen extraction. We found five major bee genera: Exomalopsis, Halictus, Megachile, Bombus, and Xylocopa, as the most common floral visitors on S. elaeagnifolium in the LRGV. Bee genera varied in their duration of total buzzing time, duration of each visit, and mass. While we did not find any significant differences in buzzing frequency among different genera, an artificial pollen collection experiment using an electric toothbrush showed that the amount of pollen extracted is significantly affected by the duration of buzzing. We conclude that regardless of buzzing frequency, buzzing duration is the most critical factor in pollen removal in this species.
Collapse
Affiliation(s)
- Mandeep Tayal
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA;
| | - Rupesh Kariyat
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
- School of Earth, Environment and Marine Sciences, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| |
Collapse
|
12
|
Ribeiro AP, da Silva NFF, Mesquita FN, Araújo PDCS, Rosa TC, Mesquita-Neto JN. Machine learning approach for automatic recognition of tomato-pollinating bees based on their buzzing-sounds. PLoS Comput Biol 2021; 17:e1009426. [PMID: 34529654 PMCID: PMC8478199 DOI: 10.1371/journal.pcbi.1009426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/28/2021] [Accepted: 09/06/2021] [Indexed: 11/18/2022] Open
Abstract
Bee-mediated pollination greatly increases the size and weight of tomato fruits. Therefore, distinguishing between the local set of bees–those that are efficient pollinators–is essential to improve the economic returns for farmers. To achieve this, it is important to know the identity of the visiting bees. Nevertheless, the traditional taxonomic identification of bees is not an easy task, requiring the participation of experts and the use of specialized equipment. Due to these limitations, the development and implementation of new technologies for the automatic recognition of bees become relevant. Hence, we aim to verify the capacity of Machine Learning (ML) algorithms in recognizing the taxonomic identity of visiting bees to tomato flowers based on the characteristics of their buzzing sounds. We compared the performance of the ML algorithms combined with the Mel Frequency Cepstral Coefficients (MFCC) and with classifications based solely on the fundamental frequency, leading to a direct comparison between the two approaches. In fact, some classifiers powered by the MFCC–especially the SVM–achieved better performance compared to the randomized and sound frequency-based trials. Moreover, the buzzing sounds produced during sonication were more relevant for the taxonomic recognition of bee species than analysis based on flight sounds alone. On the other hand, the ML classifiers performed better in recognizing bees genera based on flight sounds. Despite that, the maximum accuracy obtained here (73.39% by SVM) is still low compared to ML standards. Further studies analyzing larger recording samples, and applying unsupervised learning systems may yield better classification performance. Therefore, ML techniques could be used to automate the taxonomic recognition of flower-visiting bees of the cultivated tomato and other buzz-pollinated crops. This would be an interesting option for farmers and other professionals who have no experience in bee taxonomy but are interested in improving crop yields by increasing pollination. Bees are the most important pollinators of cultivated tomatoes. We also know that the distinct species of bees have different performances as pollinators, and these performances are directly related to the size and weight of the fruits. Moreover, the characteristics of the buzzing sounds tend to vary between the bee species. However, the buzzing sounds are complex and can widely vary over time, making the analysis of this data difficult using the usual statistical methods in Ecology. In the face of this problem, we proposed to automatically recognize pollinating bees of tomato flowers based on their buzzing sounds using Machine Learning (ML) tools. In fact, we found that the ML algorithms are capable of recognizing bees just based on their buzzing sounds. This could lead to automating the recognition of flower-visiting bees of the cultivated tomato, which would be a nice option for farmers and other professionals who have no experience in bee taxonomy but are interested in improving crop yields. On the other hand, this encourages the farmer to adopt sustainable agricultural practices for the conservation of native tomato pollinators. To achieve this goal, the next step is to develop applications compatible with smartphones capable of recognizing bees by their buzzing sounds.
Collapse
Affiliation(s)
| | | | | | | | - Thierson Couto Rosa
- Instituto de Informática, Universidade Federal de Goiás, Goiánia, Goiás, Brazil
| | - José Neiva Mesquita-Neto
- Centro de Investigación en Estudios Avanzados del Maule, Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile
- * E-mail:
| |
Collapse
|
13
|
González-Vanegas PA, Rös M, García-Franco JG, Aguirre-Jaimes A. Buzz-Pollination in a Tropical Montane Cloud Forest: Compositional Similarity and Plant-Pollinator Interactions. NEOTROPICAL ENTOMOLOGY 2021; 50:524-536. [PMID: 33877567 DOI: 10.1007/s13744-021-00867-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Buzz-pollinated plants are an essential source of pollen for a significant portion of local bee communities. Buzz pollination research has focused on studying the properties of bee buzzes and their implications on pollen release, morphological specialization of flowers, and the reproductive ecology of buzz-pollinated plants. In contrast, diversity patterns and ecological interactions between bees and buzz-pollinated plants have been studied less. This study analyzed the buzzing bee community of twelve tropical buzz-pollinated co-occurring plant species in a tropical montane cloud forest during the flowering periods of two consecutive years, focusing on diversity, compositional similarity, structure, and specialization (H2´) of the network. Twenty-one bee species belonging to Apidae, Colletidae, and Halictidae were recorded, fifteen species in 2014, and eighteen in 2015. Floral display and visited flowers doubled from first to second year, although the flowering period was 2 months longer in the first year. Bee compositional similarity between plants tended to be low; however, this was due rather to a high nestedness than species replacement. Temporal bee compositional similarity was also low but variable, and different plant species showed the highest similarity between years. The number of bee visits depended significantly on the number of flowers and years. Interactions between bees and plants showed a tendency to generalization. Compared to other buzz-pollinated networks, specialization (H2´) was similar, but diversity was low and the network small. In endangered ecosystems like the Mexican cloud forest, however, buzzing bees support biodiversity and provide an essential ecological service by pollinating dominant understory flora.
Collapse
Affiliation(s)
| | - Matthias Rös
- CONACYT, CIIDIR-Oaxaca, Instituto Politecnico Nacional, Xoxocotlan, Oaxaca, Mexico.
| | | | | |
Collapse
|
14
|
Bochorny T, Bacci LF, Dellinger AS, Michelangeli FA, Goldenberg R, Brito VLG. Connective appendages in Huberia bradeana (Melastomataceae) affect pollen release during buzz pollination. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:556-563. [PMID: 33550673 PMCID: PMC8252584 DOI: 10.1111/plb.13244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/31/2020] [Indexed: 05/03/2023]
Abstract
Floral structures, such as stamen appendages, play crucial roles in pollinator attraction, pollen release dynamics and, ultimately, the reproductive success of plants. The pollen-rewarding, bee buzz-pollinated flowers of Melastomataceae often bear conspicuous staminal appendages. Surprisingly, their functional role in the pollination process remains largely unclear. We use Huberia bradeana Bochorny & R. Goldenb. (Melastomataceae) with conspicuously elongated, twisted stamen appendages to investigate their functional role in the pollination process. We studied the effect of stamen appendages on pollinator behaviour and reproductive success by comparing manipulated flowers (appendages removed) with unmanipulated flowers. To assess bee pollinator behaviour, we measured three properties of buzzes (vibrations) produced by bees on Huberia flowers: frequency, duration and number of buzzes per flower visit. We measured male and female reproductive success by monitoring pollen release and deposition after single bee visits. Finally, we used artificial vibrations and laser vibrometry to assess how flower vibrational properties change with the removal of stamen appendages. Our results show that the absence of staminal appendages does not modify bee buzzing behaviour. Pollen release was higher in unmanipulated flowers, but stigmatic pollen loads differ only marginally between the two treatments. We also detected lower vibration amplitudes in intact flowers as compared to manipulated flowers in artificial vibration experiments. The presence of connective appendages are crucial in transmitting vibrations and assuring optimal pollen release. Therefore, we propose that the high diversity of colours, shapes and sizes of connective appendages in buzz-pollinated flowers may have evolved by selection through male fitness.
Collapse
Affiliation(s)
- T. Bochorny
- Programa de Pós‐Graduação em Biologia VegetalDepartamento de Biologia VegetalUniversidade Estadual de CampinasCampinas, São PauloBrazil
| | - L. F. Bacci
- Programa de Pós‐Graduação em Biologia VegetalDepartamento de Biologia VegetalUniversidade Estadual de CampinasCampinas, São PauloBrazil
| | - A. S. Dellinger
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
| | | | - R. Goldenberg
- Departamento de BotânicaUniversidade Federal do ParanáCuritiba, ParanáBrazil
| | - V. L. G. Brito
- Instituto de BiologiaUniversidade Federal de UberlândiaUberlândiaMinas GeraisBrazil
| |
Collapse
|
15
|
Nevard L, Russell AL, Foord K, Vallejo-Marín M. Transmission of bee-like vibrations in buzz-pollinated plants with different stamen architectures. Sci Rep 2021; 11:13541. [PMID: 34188153 PMCID: PMC8241880 DOI: 10.1038/s41598-021-93029-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/16/2021] [Indexed: 11/28/2022] Open
Abstract
In buzz-pollinated plants, bees apply thoracic vibrations to the flower, causing pollen release from anthers, often through apical pores. Bees grasp one or more anthers with their mandibles, and vibrations are transmitted to this focal anther(s), adjacent anthers, and the whole flower. Pollen release depends on anther vibration, and thus it should be affected by vibration transmission through flowers with distinct morphologies, as found among buzz-pollinated taxa. We compare vibration transmission between focal and non-focal anthers in four species with contrasting stamen architectures: Cyclamen persicum, Exacum affine, Solanum dulcamara and S. houstonii. We used a mechanical transducer to apply bee-like vibrations to focal anthers, measuring the vibration frequency and displacement amplitude at focal and non-focal anther tips simultaneously using high-speed video analysis (6000 frames per second). In flowers in which anthers are tightly arranged (C. persicum and S. dulcamara), vibrations in focal and non-focal anthers are indistinguishable in both frequency and displacement amplitude. In contrast, flowers with loosely arranged anthers (E. affine) including those with differentiated stamens (heterantherous S. houstonii), show the same frequency but higher displacement amplitude in non-focal anthers compared to focal anthers. We suggest that stamen architecture modulates vibration transmission, potentially affecting pollen release and bee behaviour.
Collapse
Affiliation(s)
- Lucy Nevard
- Biological & Environmental Sciences, University of Stirling, Stirling, FK9 4LA, UK.
| | - Avery L Russell
- Department of Biology, Missouri State University, Springfield, MO, 65897, USA
| | - Karl Foord
- Minnesota Extension, University of Minnesota, St Paul, MN, 55108, USA
| | - Mario Vallejo-Marín
- Biological & Environmental Sciences, University of Stirling, Stirling, FK9 4LA, UK
| |
Collapse
|
16
|
Cooley H, Vallejo-Marín M. Buzz-Pollinated Crops: A Global Review and Meta-analysis of the Effects of Supplemental Bee Pollination in Tomato. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:505-519. [PMID: 33615362 PMCID: PMC8042731 DOI: 10.1093/jee/toab009] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Indexed: 05/19/2023]
Abstract
Buzz-pollinated plants require visitation from vibration producing bee species to elicit full pollen release. Several important food crops are buzz-pollinated including tomato, eggplant, kiwi, and blueberry. Although more than half of all bee species can buzz pollinate, the most commonly deployed supplemental pollinator, Apis mellifera L. (Hymenoptera: Apidae; honey bees), cannot produce vibrations to remove pollen. Here, we provide a list of buzz-pollinated food crops and discuss the extent to which they rely on pollination by vibration-producing bees. We then use the most commonly cultivated of these crops, the tomato, Solanum lycopersicum L. (Solanales: Solanaceae), as a case study to investigate the effect of different pollination treatments on aspects of fruit quality. Following a systematic review of the literature, we statistically analyzed 71 experiments from 24 studies across different geopolitical regions and conducted a meta-analysis on a subset of 21 of these experiments. Our results show that both supplemental pollination by buzz-pollinating bees and open pollination by assemblages of bees, which include buzz pollinators, significantly increase tomato fruit weight compared to a no-pollination control. In contrast, auxin treatment, artificial mechanical vibrations, or supplemental pollination by non-buzz-pollinating bees (including Apis spp.), do not significantly increase fruit weight. Finally, we compare strategies for providing bee pollination in tomato cultivation around the globe and highlight how using buzz-pollinating bees might improve tomato yield, particularly in some geographic regions. We conclude that employing native, wild buzz pollinators can deliver important economic benefits with reduced environmental risks and increased advantages for both developed and emerging economies.
Collapse
Affiliation(s)
- Hazel Cooley
- Department of Biological and Environmental Sciences, University of Stirling. Stirling, Scotland, UK
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Mario Vallejo-Marín
- Department of Biological and Environmental Sciences, University of Stirling. Stirling, Scotland, UK
- Corresponding author, e-mail:
| |
Collapse
|
17
|
Vallejo‐Marín M, Vallejo GC. Comparison of defence buzzes in hoverflies and buzz‐pollinating bees. J Zool (1987) 2020. [DOI: 10.1111/jzo.12857] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- M. Vallejo‐Marín
- Department of Biological and Environmental Sciences University of Stirling Stirling UK
| | - G. C. Vallejo
- Natural Power Consultants Ochil House Springkerse Business Park Stirling UK
| |
Collapse
|
18
|
Prior Experience with Food Reward Influences the Behavioral Responses of the Honeybee Apis mellifera and the Bumblebee Bombus lantschouensis to Tomato Floral Scent. INSECTS 2020; 11:insects11120884. [PMID: 33327411 PMCID: PMC7764895 DOI: 10.3390/insects11120884] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 11/19/2022]
Abstract
Simple Summary Bees are important pollinators for many agricultural crops. Compared with bumblebees, honeybees are less attracted to tomato flowers. Floral scent usually plays an important role in mediating the foraging behavior of bees, and tomato flowers release special scents. However, little is known about how tomato floral scent regulates the foraging behaviors of these two bee taxa. In the current study, we investigated the foraging behaviors of the widely used pollinator honeybee Apis mellifera and a native bumblebee, Bombus lantschouensis, on tomato flowers to evaluate the potential application of these two bee species for tomato pollination in solar greenhouses. Moreover, we determined whether honeybees and bumblebees show different responses to tomato floral scent and how innate biases and prior experience influence bee choice behavior. We found that naïve bees showed no preference for tomato floral scent but could develop such a preference after learning to associate tomato floral scent with a food reward on the basis of foraging experience or scent-learning procedures. We conclude that scent-learning experiences with food reward can change the innate bias of bees and could be utilized to improve the pollination service efficiency of bees for commercial crops. Abstract Bee responses to floral scent are usually influenced by both innate biases and prior experience. Honeybees are less attracted than bumblebees to tomato flowers. However, little is known about how tomato floral scent regulates the foraging behaviors of honeybees and bumblebees. In this study, the foraging behaviors of the honeybee Apis mellifera and the bumblebee Bombus lantschouensis on tomato flowers in greenhouses were investigated. Whether the two bee species exhibit different responses to tomato floral scent and how innate biases and prior experience influence bee choice behavior were examined. In the greenhouses, honeybees failed to collect pollen from tomato flowers, and their foraging activities decreased significantly over days. Additionally, neither naïve honeybees nor naïve bumblebees showed a preference for tomato floral scent in a Y-tube olfactometer. However, foraging experience in the tomato greenhouses helped bumblebees develop a strong preference for the scent, whereas honeybees with foraging experience continued to show aversion to tomato floral scent. After learning to associate tomato floral scent with a sugar reward in proboscis extension response (PER) assays, both bee species exhibited a preference for tomato floral scent in Y-tube olfactometers. The findings indicated that prior experience with a food reward strongly influenced bee preference for tomato floral scent.
Collapse
|
19
|
Brito VLG, Nunes CEP, Resende CR, Montealegre-Zapata F, Vallejo-Marín M. Biomechanical properties of a buzz-pollinated flower. ROYAL SOCIETY OPEN SCIENCE 2020; 7:201010. [PMID: 33047057 PMCID: PMC7540744 DOI: 10.1098/rsos.201010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/28/2020] [Indexed: 05/20/2023]
Abstract
Approximately half of all bee species use vibrations to remove pollen from plants with diverse floral morphologies. In many buzz-pollinated flowers, these mechanical vibrations generated by bees are transmitted through floral tissues, principally pollen-containing anthers, causing pollen to be ejected from small openings (pores or slits) at the tip of the stamen. Despite the importance of substrate-borne vibrations for both bees and plants, few studies to date have characterized the transmission properties of floral vibrations. In this study, we use contactless laser vibrometry to evaluate the transmission of vibrations in the corolla and anthers of buzz-pollinated flowers of Solanum rostratum, and measure vibrations in three spatial axes. We found that floral vibrations conserve their dominant frequency (300 Hz) as they are transmitted throughout the flower. We also found that vibration amplitude at anthers and petals can be up to greater than 400% higher than input amplitude applied at the receptacle at the base of the flower, and that anthers vibrate with a higher amplitude velocity than petals. Together, these results suggest that vibrations travel differently through floral structures and across different spatial axes. As pollen release is a function of vibration amplitude, we conjecture that bees might benefit from applying vibrations in the axes associated with higher vibration amplification.
Collapse
Affiliation(s)
| | | | - Caique Rocha Resende
- Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, MG 38405-315Brazil
| | | | - Mario Vallejo-Marín
- Department of Biological and Environmental Sciences, University of Stirling, StirlingFK9 4LA, UK
| |
Collapse
|
20
|
Adjedj J, Picard F, Collet C, Bruneval P, Fournier S, Bize A, Sambin L, Berdeaux A, Varenne O, De Bruyne B, Ghaleh B. Intracoronary Saline-Induced Hyperemia During Coronary Thermodilution Measurements of Absolute Coronary Blood Flow: An Animal Mechanistic Study. J Am Heart Assoc 2020; 9:e015793. [PMID: 32689859 PMCID: PMC7792254 DOI: 10.1161/jaha.120.015793] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Background Absolute hyperemic coronary blood flow and microvascular resistances can be measured by continuous thermodilution with a dedicated infusion catheter. We aimed to determine the mechanisms of this hyperemic response in animal. Methods and Results Twenty open chest pigs were instrumented with flow probes on coronary arteries. The following possible mechanisms of saline‐induced hyperemia were explored compared with maximal hyperemia achieve with adenosine by testing: (1) various infusion rates; (2) various infusion content and temperature; (3) NO production inhibition with L‐arginine methyl ester and endothelial denudation; (4) effects of vibrations generated by rotational atherectomy and of infusion through one end‐hole versus side‐holes. Saline infusion rates of 5, 10 and 15 mL/min did not reach maximal hyperemia as compared with adenosine. Percentage of coronary blood flow expressed in percent of the coronary blood flow after adenosine were 48±17% at baseline, 57±18% at 5 mL/min, 65±17% at 10 mL/min, 82±26% at 15 mL/min and 107±18% at 20 mL/min. Maximal hyperemia was observed during infusion of both saline at body temperature and glucose 5%, after endothelial denudation, l‐arginine methyl ester administration, and after stent implantation. The activation of a Rota burr in the first millimeters of the epicardial artery also induced maximal hyperemia. Maximal hyperemia was achieved by infusion through lateral side‐holes but not through an end‐hole catheter. Conclusions Infusion of saline at 20 mL/min through a catheter with side holes in the first millimeters of the epicardial artery induces maximal hyperemia. The data indicate that this vasodilation is related neither to the composition/temperature of the indicator nor is it endothelial mediated. It is suggested that it could be elicited by epicardial wall vibrations.
Collapse
Affiliation(s)
- Julien Adjedj
- Department of Cardiology Institut Arnault Tzanck Saint Laurent du Var France.,Department of Cardiology Lausanne University Center Hospital Lausanne Switzerland.,U955-IMRB Equipe 03 Inserm UPEC Ecole Nationale Vétérinaire d'Alfort Maisons-Alfort France.,Université Paris Est UMR_S955 UPEC Ecole Nationale Vétérinaire d'Alfort Créteil France.,Faculté de Médecine Paris Descartes Université Paris Descartes Paris France
| | - Fabien Picard
- Faculté de Médecine Paris Descartes Université Paris Descartes Paris France.,AP-HP, Hôpital Cochin Paris France
| | - Carlos Collet
- Cardiovascular Center Aalst, OLV Clinic Aalst Belgium
| | - Patrick Bruneval
- UMR 970 Inserm Paris Cardiovascular Research Center Hôpital Européen Georges Pompidou Paris France
| | - Stephane Fournier
- Department of Cardiology Lausanne University Center Hospital Lausanne Switzerland.,Cardiovascular Center Aalst, OLV Clinic Aalst Belgium
| | - Alain Bize
- U955-IMRB Equipe 03 Inserm UPEC Ecole Nationale Vétérinaire d'Alfort Maisons-Alfort France.,Université Paris Est UMR_S955 UPEC Ecole Nationale Vétérinaire d'Alfort Créteil France
| | - Lucien Sambin
- U955-IMRB Equipe 03 Inserm UPEC Ecole Nationale Vétérinaire d'Alfort Maisons-Alfort France.,Université Paris Est UMR_S955 UPEC Ecole Nationale Vétérinaire d'Alfort Créteil France
| | - Alain Berdeaux
- U955-IMRB Equipe 03 Inserm UPEC Ecole Nationale Vétérinaire d'Alfort Maisons-Alfort France.,Université Paris Est UMR_S955 UPEC Ecole Nationale Vétérinaire d'Alfort Créteil France
| | - Olivier Varenne
- Faculté de Médecine Paris Descartes Université Paris Descartes Paris France.,AP-HP, Hôpital Cochin Paris France
| | - Bernard De Bruyne
- Department of Cardiology Lausanne University Center Hospital Lausanne Switzerland.,Cardiovascular Center Aalst, OLV Clinic Aalst Belgium
| | - Bijan Ghaleh
- U955-IMRB Equipe 03 Inserm UPEC Ecole Nationale Vétérinaire d'Alfort Maisons-Alfort France.,Université Paris Est UMR_S955 UPEC Ecole Nationale Vétérinaire d'Alfort Créteil France
| |
Collapse
|
21
|
Pritchard DJ, Vallejo-Marín M. Floral vibrations by buzz-pollinating bees achieve higher frequency, velocity and acceleration than flight and defence vibrations. J Exp Biol 2020; 223:jeb220541. [PMID: 32366691 DOI: 10.1242/jeb.220541] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/23/2020] [Indexed: 01/17/2023]
Abstract
Vibrations play an important role in insect behaviour. In bees, vibrations are used in a variety of contexts including communication, as a warning signal to deter predators and during pollen foraging. However, little is known about how the biomechanical properties of bee vibrations vary across multiple behaviours within a species. In this study, we compared the properties of vibrations produced by Bombus terrestris audax (Hymenoptera: Apidae) workers in three contexts: during flight, during defensive buzzing, and in floral vibrations produced during pollen foraging on two buzz-pollinated plants (Solanum, Solanaceae). Using laser vibrometry, we were able to obtain contactless measures of both the frequency and amplitude of the thoracic vibrations of bees across the three behaviours. Despite all three types of vibrations being produced by the same power flight muscles, we found clear differences in the mechanical properties of the vibrations produced in different contexts. Both floral and defensive buzzes had higher frequency and amplitude velocity, acceleration and displacement than the vibrations produced during flight. Floral vibrations had the highest frequency, amplitude velocity and acceleration of all the behaviours studied. Vibration amplitude, and in particular acceleration, of floral vibrations has been suggested as the key property for removing pollen from buzz-pollinated anthers. By increasing frequency and amplitude velocity and acceleration of their vibrations during vibratory pollen collection, foraging bees may be able to maximise pollen removal from flowers, although their foraging decisions are likely to be influenced by the presumably high cost of producing floral vibrations.
Collapse
Affiliation(s)
- David J Pritchard
- Department of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Mario Vallejo-Marín
- Department of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| |
Collapse
|
22
|
Tayal M, Chavana J, Kariyat RR. Efficiency of using electric toothbrush as an alternative to a tuning fork for artificial buzz pollination is independent of instrument buzzing frequency. BMC Ecol 2020; 20:8. [PMID: 32039719 PMCID: PMC7008546 DOI: 10.1186/s12898-020-00278-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/14/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Breeding programs and research activities where artificial buzz-pollinations are required to have primarily relied upon using tuning forks, and bumble bees. However, these methods can be expensive, unreliable, and inefficient. To find an alternative, we tested the efficiency of pollen collection using electric toothbrushes and compared it with tuning forks at three vibration frequencies-low, medium, and high and two extraction times at 3 s and 16 s- from two buzz-pollinated species (Solanum lycopersicum and Solanum elaeagnifolium). RESULTS Our results show that species, and extraction time significantly influenced pollen extraction, while there were no significant differences for the different vibration frequencies and more importantly, the use of a toothbrush over tuning fork. More pollen was extracted from S. elaeagnifolium when compared to S. lycopersicum, and at longer buzzing time regardless of the instrument used. CONCLUSIONS Our results suggest that electric toothbrushes can be a viable and inexpensive alternative to tuning forks, and regardless of the instrument used and buzzing frequency, length of buzzing time is also critical in pollen extraction.
Collapse
Affiliation(s)
- Mandeep Tayal
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX, 78541, USA
| | - Jesus Chavana
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX, 78541, USA
| | - Rupesh R Kariyat
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX, 78541, USA.
| |
Collapse
|
23
|
De Luca PA, Buchmann S, Galen C, Mason AC, Vallejo‐Marín M. Does body size predict the buzz-pollination frequencies used by bees? Ecol Evol 2019; 9:4875-4887. [PMID: 31031950 PMCID: PMC6476788 DOI: 10.1002/ece3.5092] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/20/2019] [Accepted: 03/01/2019] [Indexed: 01/20/2023] Open
Abstract
Body size is an important trait linking pollinators and plants. Morphological matching between pollinators and plants is thought to reinforce pollinator fidelity, as the correct fit ensures that both parties benefit from the interaction. We investigated the influence of body size in a specialized pollination system (buzz-pollination) where bees vibrate flowers to release pollen concealed within poricidal stamens. Specifically, we explored how body size influences the frequency of buzz-pollination vibrations. Body size is expected to affect frequency as a result of the physical constraints it places on the indirect flight muscles that control the production of floral vibrations. Larger insects beat their wings less rapidly than smaller-bodied insects when flying, but whether similar scaling relationships exist with floral vibrations has not been widely explored. This is important because the amount of pollen ejected is determined by the frequency of the vibration and the displacement of a bee's thorax. We conducted a field study in three ecogeographic regions (alpine, desert, grassland) and recorded flight and floral vibrations from freely foraging bees from 27 species across four families. We found that floral vibration frequencies were significantly higher than flight frequencies, but never exceeded 400 Hz. Also, only flight frequencies were negatively correlated with body size. As a bee's size increased, its buzz ratio (floral frequency/flight frequency) increased such that only the largest bees were capable of generating floral vibration frequencies that exceeded double that of their flight vibrations. These results indicate size affects the capacity of bees to raise floral vibration frequencies substantially above flight frequencies. This may put smaller bees at a competitive disadvantage because even at the maximum floral vibration frequency of 400 Hz, their inability to achieve comparable thoracic displacements as larger bees would result in generating vibrations with lower amplitudes, and thus less total pollen ejected for the same foraging effort.
Collapse
Affiliation(s)
- Paul A. De Luca
- School of Chemistry, Environmental & Life SciencesUniversity of the BahamasNassauBahamas
| | - Stephen Buchmann
- Department of Ecology & Evolutionary BiologyUniversity of ArizonaTucsonArizona
- Department of EntomologyUniversity of ArizonaTucsonArizona
| | - Candace Galen
- Division of Biological SciencesUniversity of MissouriColumbiaMissouri
| | - Andrew C. Mason
- Department of Biological SciencesUniversity of Toronto ScarboroughTorontoOntarioCanada
| | | |
Collapse
|
24
|
Switzer CM, Russell AL, Papaj DR, Combes SA, Hopkins R. Sonicating bees demonstrate flexible pollen extraction without instrumental learning. Curr Zool 2019; 65:425-436. [PMID: 31413715 PMCID: PMC6688570 DOI: 10.1093/cz/zoz013] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/20/2019] [Indexed: 12/19/2022] Open
Abstract
Pollen collection is necessary for bee survival and important for flowering plant reproduction, yet if and how pollen extraction motor routines are modified with experience is largely unknown. Here, we used an automated reward and monitoring system to evaluate modification in a common pollen-extraction routine, floral sonication. Through a series of laboratory experiments with the bumblebee, Bombus impatiens, we examined whether variation in sonication frequency and acceleration is due to instrumental learning based on rewards, a fixed behavioral response to rewards, and/or a mechanical constraint. We first investigated whether bees could learn to adjust their sonication frequency in response to pollen rewards given only for specified frequency ranges and found no evidence of instrumental learning. However, we found that absence versus receipt of a pollen reward did lead to a predictable behavioral response, which depended on bee size. Finally, we found some evidence of mechanical constraints, in that flower mass affected sonication acceleration (but not frequency) through an interaction with bee size. In general, larger bees showed more flexibility in sonication frequency and acceleration, potentially reflecting a size-based constraint on the range over which smaller bees can modify frequency and acceleration. Overall, our results show that although bees did not display instrumental learning of sonication frequency, their sonication motor routine is nevertheless flexible.
Collapse
Affiliation(s)
- Callin M Switzer
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.,Arnold Arboretum, Harvard University, Boston, MA, USA
| | - Avery L Russell
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Daniel R Papaj
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Stacey A Combes
- Department of Neurobiology, Physiology, and Behavior, University of California at Davis, Davis, CA, USA
| | - Robin Hopkins
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.,Arnold Arboretum, Harvard University, Boston, MA, USA
| |
Collapse
|
25
|
Knight K. How buzzing helps bees to pollinate plants. J Exp Biol 2019. [DOI: 10.1242/jeb.201236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|