1
|
Polinski JM, O’Donnell TP, Bodnar AG. Chromosome-level reference genome for the Jonah crab, Cancer borealis. G3 (BETHESDA, MD.) 2025; 15:jkae254. [PMID: 39501747 PMCID: PMC11708212 DOI: 10.1093/g3journal/jkae254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/22/2024] [Indexed: 01/11/2025]
Abstract
The Jonah crab, Cancer borealis, is integral to marine ecosystems and supports a rapidly growing commercial fishery in the northwest Atlantic Ocean. This species also has a long history as a model for neuroscience that has expanded our understanding of central pattern generators, neuromodulation, synaptic plasticity, and the connectivity of neural circuits. Here, we present a highly contiguous reference genome for the Jonah crab that will provide an essential resource to advance fisheries, conservation, and biomedical research. Using a combination of PacBio long-read sequencing and Omni-C scaffolding, we generated a final genome assembly spanning 691 Mb covering 51 chromosome-length scaffolds and 106 additional contigs. Benchmarking Universal Single-Copy Ortholog (BUSCO) analysis indicated a high-quality assembly with a completeness score of 90.8%. Repeat annotation identified 1,649 repeat families making up 48.27% of the Jonah crab genome. Gene model predictions annotated 24,830 protein coding genes with a 92.3% BUSCO score. Gene family evolution analysis revealed the expansion of gene families associated with nervous system function, and targeted analysis revealed an extensive repertoire of neural genes. The Jonah crab genome will not only provide a resource for neuroscience research but will also serve as a foundation to investigate adaptation to stress and population structure to support sustainable fisheries management during this time of rapidly changing environmental conditions in the northwest Atlantic Ocean.
Collapse
Affiliation(s)
| | | | - Andrea G Bodnar
- Gloucester Marine Genomics Institute, Gloucester, MA 01930, USA
| |
Collapse
|
2
|
Calabrese RL, Marder E. Degenerate neuronal and circuit mechanisms important for generating rhythmic motor patterns. Physiol Rev 2025; 105:95-135. [PMID: 39453990 DOI: 10.1152/physrev.00003.2024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 10/27/2024] Open
Abstract
In 1996, we published a review article (Marder E, Calabrese RL. Physiol Rev 76: 687-717, 1996) describing the state of knowledge about the structure and function of the central pattern-generating circuits important for producing rhythmic behaviors. Although many of the core questions persist, much has changed since 1996. Here, we focus on newer studies that reveal ambiguities that complicate understanding circuit dynamics, despite the enormous technical advances of the recent past. In particular, we highlight recent studies of animal-to-animal variability and our understanding that circuit rhythmicity may be supported by multiple state-dependent mechanisms within the same animal and that robustness and resilience in the face of perturbation may depend critically on the presence of modulators and degenerate circuit mechanisms. Additionally, we highlight the use of computational models to ask whether there are generalizable principles about circuit motifs that can be found across rhythmic motor systems in different animal species.
Collapse
Affiliation(s)
| | - Eve Marder
- Brandeis University, Waltham, Massachusetts, United States
| |
Collapse
|
3
|
McGaw IJ, Ebrahim RA. Cardiovascular physiology of decapod crustaceans: from scientific inquiry to practical applications. J Exp Biol 2024; 227:jeb247456. [PMID: 39036825 DOI: 10.1242/jeb.247456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Until recently, the decapod crustacean heart was regarded as a simple, single ventricle, contraction of which forces haemolymph out into seven arteries. Differential tissue perfusion is achieved by contraction and relaxation of valves at the base of each artery. In this Review, we discuss recent work that has shown that the heart is bifurcated by muscular sheets that may effectively divide the single ventricle into 'chambers'. Preliminary research shows that these chambers may contract differentially; whether this enables selective tissue perfusion remains to be seen. Crustaceans are unusual in that they can stop their heart for extended periods. These periods of cardiac arrest can become remarkably rhythmic, accounting for a significant portion of the cardiac repertoire. As we discuss in this Review, in crustaceans, changes in heart rate have been used extensively as a measurement of stress and metabolism. We suggest that the periods of cardiac pausing should also be quantified in this context. In the past three decades, an exponential increase in crustacean aquaculture has occurred and heart rate (and changes thereof) is being used to understand the stress responses of farmed crustaceans, as well as providing an indicator of disease progression. Furthermore, as summarized in this Review, heart rate is now being used as an effective indicator of humane methods to anaesthetize, stun or euthanize crustaceans destined for the table or for use in scientific research. We believe that incorporation of new biomedical technology and new animal welfare policies will guide future research directions in this field.
Collapse
Affiliation(s)
- Iain J McGaw
- Department of Ocean Sciences, Memorial University of Newfoundland, 0 Marine Lab Road, St John's, NL, Canada, A1B 0C4
| | - Rahana A Ebrahim
- Department of Ocean Sciences, Memorial University of Newfoundland, 0 Marine Lab Road, St John's, NL, Canada, A1B 0C4
| |
Collapse
|
4
|
Hampton D, Kedia S, Marder E. Alterations in network robustness upon simultaneous temperature and pH perturbations. J Neurophysiol 2024; 131:509-515. [PMID: 38264774 PMCID: PMC11305631 DOI: 10.1152/jn.00483.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 01/25/2024] Open
Abstract
Nervous systems have evolved to function consistently in the face of the normal environmental fluctuations experienced by animals. The stomatogastric nervous system (STNS) of the crab, Cancer borealis, produces a motor output that has been studied for its remarkable robustness in response to single global perturbations. Changes in environments, however, are often complex and multifactorial. Therefore, we studied the robustness of the pyloric network in the stomatogastric ganglion (STG) in response to simultaneous perturbations of temperature and pH. We compared the effects of elevated temperatures on the pyloric rhythm at control, acid, or base pHs. In each pH recordings were made at 11°C, and then the temperature was increased until the rhythms became disorganized ("crashed"). Pyloric burst frequencies and phase relationships showed minor differences between pH groups until reaching close to the crash temperatures. However, the temperatures at which the rhythms were disrupted were lower in the two extreme pH conditions. This indicates that one environmental stress can make an animal less resilient to a second stressor.NEW & NOTEWORTHY Resilience to environmental fluctuations is important for all animals. It is common that animals encounter multiple stressful events at the same time, the cumulative impacts of which are largely unknown. This study examines the effects of temperature and pH on the nervous system of crabs that live in the fluctuating environments of the Northern Atlantic Ocean. The ranges of tolerance to one perturbation, temperature, are reduced under the influence of a second, pH.
Collapse
Affiliation(s)
- David Hampton
- Biology Department and Volen Center, Brandeis University, Waltham, Massachusetts, United States
| | - Sonal Kedia
- Biology Department and Volen Center, Brandeis University, Waltham, Massachusetts, United States
| | - Eve Marder
- Biology Department and Volen Center, Brandeis University, Waltham, Massachusetts, United States
| |
Collapse
|
5
|
Powell DJ, Owens E, Bergsund MM, Cooper M, Newstein P, Berner E, Janmohamed R, Dickinson PS. The role of feedback and modulation in determining temperature resiliency in the lobster cardiac nervous system. Front Neurosci 2023; 17:1113843. [PMID: 36968508 PMCID: PMC10034192 DOI: 10.3389/fnins.2023.1113843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/23/2023] [Indexed: 03/12/2023] Open
Abstract
Changes in ambient temperature affect all biological processes. However, these effects are process specific and often vary non-linearly. It is thus a non-trivial problem for neuronal circuits to maintain coordinated, functional output across a range of temperatures. The cardiac nervous systems in two species of decapod crustaceans, Homarus americanus and Cancer borealis, can maintain function across a wide but physiologically relevant temperature range. However, the processes that underlie temperature resilience in neuronal circuits and muscle systems are not fully understood. Here, we demonstrate that the non-isolated cardiac nervous system (i.e., the whole heart: neurons, effector organs, intrinsic feedback systems) in the American lobster, H. americanus, is more sensitive to warm temperatures than the isolated cardiac ganglion (CG) that controls the heartbeat. This was surprising as modulatory processes known to stabilize the output from the CG are absent when the ganglion is isolated. One source of inhibitory feedback in the intact cardiac neuromuscular system is nitric oxide (NO), which is released in response to heart contractions. We hypothesized that the greater temperature tolerance observed in the isolated CG is due to the absence of NO feedback. Here, we demonstrate that applying an NO donor to the isolated CG reduces its temperature tolerance. Similarly, we show that the NO synthase inhibitor L-nitroarginine (LNA) increases the temperature tolerance of the non-isolated nervous system. This is sufficient to explain differences in temperature tolerance between the isolated CG and the whole heart. However, in an intact lobster, the heart and CG are modulated by an array of endogenous peptides and hormones, many of which are positive regulators of the heartbeat. Many studies have demonstrated that excitatory modulators increase temperature resilience. However, this neuromuscular system is regulated by both excitatory and inhibitory peptide modulators. Perfusing SGRNFLRFamide, a FLRFamide-like peptide, through the heart increases the non-isolated nervous system’s tolerance to high temperatures. In contrast, perfusing myosuppressin, a peptide that negatively regulates the heartbeat frequency, decreases the temperature tolerance. Our data suggest that, in this nervous system, positive regulators of neural output increase temperature tolerance of the neuromuscular system, while modulators that decrease neural output decrease temperature tolerance.
Collapse
Affiliation(s)
- Daniel J. Powell
- Department of Biology, Bowdoin College, Brunswick, ME, United States
- Program in Neuroscience, Bowdoin College, Brunswick, ME, United States
| | - Elizabeth Owens
- Program in Neuroscience, Bowdoin College, Brunswick, ME, United States
| | - Marie M. Bergsund
- Program in Neuroscience, Bowdoin College, Brunswick, ME, United States
| | - Maren Cooper
- Program in Neuroscience, Bowdoin College, Brunswick, ME, United States
| | - Peter Newstein
- Program in Neuroscience, Bowdoin College, Brunswick, ME, United States
| | - Emily Berner
- Program in Neuroscience, Bowdoin College, Brunswick, ME, United States
| | - Rania Janmohamed
- Program in Neuroscience, Bowdoin College, Brunswick, ME, United States
| | - Patsy S. Dickinson
- Department of Biology, Bowdoin College, Brunswick, ME, United States
- Program in Neuroscience, Bowdoin College, Brunswick, ME, United States
- *Correspondence: Patsy S. Dickinson,
| |
Collapse
|
6
|
Rue MCP, Baas‐Thomas N, Iyengar PS, Scaria LK, Marder E. Localization of chemical synapses and modulatory release sites in the cardiac ganglion of the crab, Cancer borealis. J Comp Neurol 2022; 530:2954-2965. [PMID: 35882035 PMCID: PMC9560961 DOI: 10.1002/cne.25385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 01/07/2023]
Abstract
The crustacean cardiac ganglion (CG) comprises nine neurons that provide rhythmic drive to the heart. The CG is the direct target of multiple modulators. Synapsin-like immunoreactivity was found clustered around the somata of the large cells (LC) and in a neuropil at the anterior branch of the CG trunk of Cancer borealis. This implicates the soma as a key site of synaptic integration, an unusual configuration in invertebrates. Proctolin is an excitatory neuromodulator of the CG, and proctolin-like immunoreactivity exhibited partial overlap with putative chemical synapses near the LCs and at the neuropil. A proctolin-like projection was also found in a pair of excitatory nerves entering the CG. GABA-like immunoreactivity was nearly completely colocalized with chemical synapses near the LCs but absent at the anterior branch neuropil. GABA-like projections were found in a pair of inhibitory nerves entering the CG. C. borealis Allatostatin B1 (CbASTB), red pigment concentrating hormone, and FLRFamide-like immunoreactivity each had a unique pattern of staining and co-localization with putative chemical synapses. These results provide morphological evidence that synaptic input is integrated at LC somata in the CG. Our findings provide a topographical organization for some of the multiple inhibitory and excitatory modulators that alter the rhythmic output of this semi-autonomous motor circuit.
Collapse
Affiliation(s)
- Mara C. P. Rue
- Biology Department and Volen CenterBrandeis UniversityWalthamMassachusettsUSA
| | - Natasha Baas‐Thomas
- Biology Department and Volen CenterBrandeis UniversityWalthamMassachusettsUSA
| | - Priya S. Iyengar
- Biology Department and Volen CenterBrandeis UniversityWalthamMassachusettsUSA
| | - Lara K. Scaria
- Biology Department and Volen CenterBrandeis UniversityWalthamMassachusettsUSA
| | - Eve Marder
- Biology Department and Volen CenterBrandeis UniversityWalthamMassachusettsUSA
| |
Collapse
|
7
|
Michaiel AM, Bernard A. Neurobiology and changing ecosystems: Toward understanding the impact of anthropogenic influences on neurons and circuits. Front Neural Circuits 2022; 16:995354. [PMID: 36569799 PMCID: PMC9769128 DOI: 10.3389/fncir.2022.995354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2022] Open
Abstract
Rapid anthropogenic environmental changes, including those due to habitat contamination, degradation, and climate change, have far-reaching effects on biological systems that may outpace animals' adaptive responses. Neurobiological systems mediate interactions between animals and their environments and evolved over millions of years to detect and respond to change. To gain an understanding of the adaptive capacity of nervous systems given an unprecedented pace of environmental change, mechanisms of physiology and behavior at the cellular and biophysical level must be examined. While behavioral changes resulting from anthropogenic activity are becoming increasingly described, identification and examination of the cellular, molecular, and circuit-level processes underlying those changes are profoundly underexplored. Hence, the field of neuroscience lacks predictive frameworks to describe which neurobiological systems may be resilient or vulnerable to rapidly changing ecosystems, or what modes of adaptation are represented in our natural world. In this review, we highlight examples of animal behavior modification and corresponding nervous system adaptation in response to rapid environmental change. The underlying cellular, molecular, and circuit-level component processes underlying these behaviors are not known and emphasize the unmet need for rigorous scientific enquiry into the neurobiology of changing ecosystems.
Collapse
|
8
|
Wang M, Ge J, Ma X, Su S, Tian C, Li J, Yu F, Li H, Song C, Gao J, Xu P, Tang Y, Xu G. Exploration of the regulatory mechanisms of regeneration, anti-oxidation, anti-aging and the immune response at the post-molt stage of Eriocheir sinensis. Front Physiol 2022; 13:948511. [PMID: 36237529 PMCID: PMC9552667 DOI: 10.3389/fphys.2022.948511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/22/2022] [Indexed: 12/03/2022] Open
Abstract
Eriocheir sinensis is widely appreciated by the surrounding population due to its culinary delicacy and rich nutrients. The E. sinensis breeding industry is very prosperous and molting is one of the important growth characteristics. Research on the regulation of molting in E. sinensis is still in the initial stages. There is currently no relevant information on the regulatory mechanisms of heart development following molting. Comparative transcriptome analysis was used to study developmental regulation mechanisms in the heart of E. sinensis at the post-molt and inter-molt stages. The results indicated that many regulatory pathways and genes involved in regeneration, anti-oxidation, anti-aging and the immune response were significantly upregulated after molting in E. sinensis. Aside from cardiac development, the differentially expressed genes (DEGs) were relevant to myocardial movement and neuronal signal transduction. DEGs were also related to the regulation of glutathione homeostasis and biological rhythms in regard to anti-oxidation and anti-aging, and to the regulation of immune cell development and the immune response. This study provides a theoretical framework for understanding the regulation of molting in E. sinensis and in other economically important crustaceans.
Collapse
Affiliation(s)
- Meiyao Wang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Jiachun Ge
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
| | - Xingkong Ma
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
| | - Shengyan Su
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Can Tian
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Jianlin Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Fan Yu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Hongxia Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Changyou Song
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Jiancao Gao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Yongkai Tang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- *Correspondence: Yongkai Tang, ; Gangchun Xu,
| | - Gangchun Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- *Correspondence: Yongkai Tang, ; Gangchun Xu,
| |
Collapse
|
9
|
Approaches to Parameter Estimation from Model Neurons and Biological Neurons. ALGORITHMS 2022. [DOI: 10.3390/a15050168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Model optimization in neuroscience has focused on inferring intracellular parameters from time series observations of the membrane voltage and calcium concentrations. These parameters constitute the fingerprints of ion channel subtypes and may identify ion channel mutations from observed changes in electrical activity. A central question in neuroscience is whether computational methods may obtain ion channel parameters with sufficient consistency and accuracy to provide new information on the underlying biology. Finding single-valued solutions in particular, remains an outstanding theoretical challenge. This note reviews recent progress in the field. It first covers well-posed problems and describes the conditions that the model and data need to meet to warrant the recovery of all the original parameters—even in the presence of noise. The main challenge is model error, which reflects our lack of knowledge of exact equations. We report on strategies that have been partially successful at inferring the parameters of rodent and songbird neurons, when model error is sufficiently small for accurate predictions to be made irrespective of stimulation.
Collapse
|
10
|
Gorur-Shandilya S, Cronin EM, Schneider AC, Haddad SA, Rosenbaum P, Bucher D, Nadim F, Marder E. Mapping circuit dynamics during function and dysfunction. eLife 2022; 11:e76579. [PMID: 35302489 PMCID: PMC9000962 DOI: 10.7554/elife.76579] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Neural circuits can generate many spike patterns, but only some are functional. The study of how circuits generate and maintain functional dynamics is hindered by a poverty of description of circuit dynamics across functional and dysfunctional states. For example, although the regular oscillation of a central pattern generator is well characterized by its frequency and the phase relationships between its neurons, these metrics are ineffective descriptors of the irregular and aperiodic dynamics that circuits can generate under perturbation or in disease states. By recording the circuit dynamics of the well-studied pyloric circuit in Cancer borealis, we used statistical features of spike times from neurons in the circuit to visualize the spike patterns generated by this circuit under a variety of conditions. This approach captures both the variability of functional rhythms and the diversity of atypical dynamics in a single map. Clusters in the map identify qualitatively different spike patterns hinting at different dynamic states in the circuit. State probability and the statistics of the transitions between states varied with environmental perturbations, removal of descending neuromodulatory inputs, and the addition of exogenous neuromodulators. This analysis reveals strong mechanistically interpretable links between complex changes in the collective behavior of a neural circuit and specific experimental manipulations, and can constrain hypotheses of how circuits generate functional dynamics despite variability in circuit architecture and environmental perturbations.
Collapse
Affiliation(s)
| | - Elizabeth M Cronin
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers UniversityNewarkUnited States
| | - Anna C Schneider
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers UniversityNewarkUnited States
| | - Sara Ann Haddad
- Volen Center and Biology Department, Brandeis UniversityWalthamUnited States
| | - Philipp Rosenbaum
- Volen Center and Biology Department, Brandeis UniversityWalthamUnited States
| | - Dirk Bucher
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers UniversityNewarkUnited States
| | - Farzan Nadim
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers UniversityNewarkUnited States
| | - Eve Marder
- Volen Center and Biology Department, Brandeis UniversityWalthamUnited States
| |
Collapse
|
11
|
Morozova E, Newstein P, Marder E. Reciprocally inhibitory circuits operating with distinct mechanisms are differently robust to perturbation and modulation. eLife 2022; 11:74363. [PMID: 35103594 PMCID: PMC8884723 DOI: 10.7554/elife.74363] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
Reciprocal inhibition is a building block in many sensory and motor circuits. We studied the features that underly robustness in reciprocally inhibitory two neuron circuits. We used the dynamic clamp to create reciprocally inhibitory circuits from pharmacologically isolated neurons of the crab stomatogastric ganglion by injecting artificial graded synaptic (ISyn) and hyperpolarization-activated inward (IH) currents. There is a continuum of mechanisms in circuits that generate antiphase oscillations, with ‘release’ and ‘escape’ mechanisms at the extremes, and mixed mode oscillations between these extremes. In release, the active neuron primarily controls the off/on transitions. In escape, the inhibited neuron controls the transitions. We characterized the robustness of escape and release circuits to alterations in circuit parameters, temperature, and neuromodulation. We found that escape circuits rely on tight correlations between synaptic and H conductances to generate bursting but are resilient to temperature increase. Release circuits are robust to variations in synaptic and H conductances but fragile to temperature increase. The modulatory current (IMI) restores oscillations in release circuits but has little effect in escape circuits. Perturbations can alter the balance of escape and release mechanisms and can create mixed mode oscillations. We conclude that the same perturbation can have dramatically different effects depending on the circuits’ mechanism of operation that may not be observable from basal circuit activity.
Collapse
Affiliation(s)
| | - Peter Newstein
- Biology Department, University of Oregon, Eugene, United States
| | - Eve Marder
- Volen Center, Brandeis University, Waltham, United States
| |
Collapse
|
12
|
Kiral FR, Dutta SB, Linneweber GA, Hilgert S, Poppa C, Duch C, von Kleist M, Hassan BA, Hiesinger PR. Brain connectivity inversely scales with developmental temperature in Drosophila. Cell Rep 2021; 37:110145. [PMID: 34936868 DOI: 10.1016/j.celrep.2021.110145] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/04/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022] Open
Abstract
Variability of synapse numbers and partners despite identical genes reveals the limits of genetic determinism. Here, we use developmental temperature as a non-genetic perturbation to study variability of brain wiring and behavior in Drosophila. Unexpectedly, slower development at lower temperatures increases axo-dendritic branching, synapse numbers, and non-canonical synaptic partnerships of various neurons, while maintaining robust ratios of canonical synapses. Using R7 photoreceptors as a model, we show that changing the relative availability of synaptic partners using a DIPγ mutant that ablates R7's preferred partner leads to temperature-dependent recruitment of non-canonical partners to reach normal synapse numbers. Hence, R7 synaptic specificity is not absolute but based on the relative availability of postsynaptic partners and presynaptic control of synapse numbers. Behaviorally, movement precision is temperature robust, while movement activity is optimized for the developmentally encountered temperature. These findings suggest genetically encoded relative and scalable synapse formation to develop functional, but not identical, brains and behaviors.
Collapse
Affiliation(s)
- Ferdi Ridvan Kiral
- Division of Neurobiology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Suchetana B Dutta
- Division of Neurobiology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Gerit Arne Linneweber
- Division of Neurobiology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Selina Hilgert
- Institute of Developmental Biology and Neurobiology (iDN), Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Caroline Poppa
- Division of Neurobiology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Carsten Duch
- Institute of Developmental Biology and Neurobiology (iDN), Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Max von Kleist
- MF1 Bioinformatics, Robert Koch-Institute, 13353 Berlin, Germany
| | - Bassem A Hassan
- Division of Neurobiology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany; Institut du Cerveau - Paris Brain Institute - ICM, Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - P Robin Hiesinger
- Division of Neurobiology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany.
| |
Collapse
|
13
|
Frequency-Dependent Action of Neuromodulation. eNeuro 2021; 8:ENEURO.0338-21.2021. [PMID: 34593519 PMCID: PMC8584230 DOI: 10.1523/eneuro.0338-21.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 11/21/2022] Open
Abstract
In oscillatory circuits, some actions of neuromodulators depend on the oscillation frequency. However, the mechanisms are poorly understood. We explored this problem by characterizing neuromodulation of the lateral pyloric (LP) neuron of the crab stomatogastric ganglion (STG). Many peptide modulators, including proctolin, activate the same ionic current (IMI) in STG neurons. Because IMI is fast and non-inactivating, its peak level does not depend on the temporal properties of neuronal activity. We found, however, that the amplitude and peak time of the proctolin-activated current in LP is frequency dependent. Because frequency affects the rate of voltage change, we measured these currents with voltage ramps of different slopes and found that proctolin activated two kinetically distinct ionic currents: the known IMI, whose amplitude is independent of ramp slope or direction, and an inactivating current (IMI-T), which was only activated by positive ramps and whose amplitude increased with increasing ramp slope. Using a conductance-based model we found that IMI and IMI-T make distinct contributions to the bursting activity, with IMI increasing the excitability, and IMI-T regulating the burst onset by modifying the postinhibitory rebound in a frequency-dependent manner. The voltage dependence and partial calcium permeability of IMI-T is similar to other characterized neuromodulator-activated currents in this system, suggesting that these are isoforms of the same channel. Our computational model suggests that calcium permeability may allow this current to also activate the large calcium-dependent potassium current in LP, providing an additional mechanism to regulate burst termination. These results demonstrate a mechanism for frequency-dependent actions of neuromodulators.
Collapse
|
14
|
Powell D, Haddad SA, Gorur-Shandilya S, Marder E. Coupling between fast and slow oscillator circuits in Cancer borealis is temperature-compensated. eLife 2021; 10:60454. [PMID: 33538245 PMCID: PMC7889077 DOI: 10.7554/elife.60454] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 02/01/2021] [Indexed: 12/21/2022] Open
Abstract
Coupled oscillatory circuits are ubiquitous in nervous systems. Given that most biological processes are temperature-sensitive, it is remarkable that the neuronal circuits of poikilothermic animals can maintain coupling across a wide range of temperatures. Within the stomatogastric ganglion (STG) of the crab, Cancer borealis, the fast pyloric rhythm (~1 Hz) and the slow gastric mill rhythm (~0.1 Hz) are precisely coordinated at ~11°C such that there is an integer number of pyloric cycles per gastric mill cycle (integer coupling). Upon increasing temperature from 7°C to 23°C, both oscillators showed similar temperature-dependent increases in cycle frequency, and integer coupling between the circuits was conserved. Thus, although both rhythms show temperature-dependent changes in rhythm frequency, the processes that couple these circuits maintain their coordination over a wide range of temperatures. Such robustness to temperature changes could be part of a toolbox of processes that enables neural circuits to maintain function despite global perturbations.
Collapse
Affiliation(s)
- Daniel Powell
- Biology Department and Volen Center, Brandeis University, Waltham, United States
| | - Sara A Haddad
- Biology Department and Volen Center, Brandeis University, Waltham, United States
| | | | - Eve Marder
- Biology Department and Volen Center, Brandeis University, Waltham, United States
| |
Collapse
|
15
|
DeLaney K, Li L. Neuropeptidomic Profiling and Localization in the Crustacean Cardiac Ganglion Using Mass Spectrometry Imaging with Multiple Platforms. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2469-2478. [PMID: 33595330 PMCID: PMC7893679 DOI: 10.1021/jasms.0c00191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The crustacean cardiac neuromuscular system is a useful model for studying how neural circuits generate behavior, as it is comprised of a simple ganglion containing nine neurons, yet acts as a robust central pattern generator. The crustacean heart is neurogenic, receiving input from neuropeptides. However, the specific effects of neuropeptides on cardiac output is not fully understood, and the large degree of comodulation between multiple neuropeptides makes studying these effects more challenging. To address this challenge, matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) imaging was used to localize neuropeptides within the cardiac ganglion (CG), providing information about the identity and localization of neuropeptides being present. CG extracts were also profiled using liquid chromatography coupled to tandem mass spectrometry (MS/MS) with a data independent acquisition method, resulting in the confirmation of 316 neuropeptides. Two MS imaging (MSI) platforms were compared to provide comprehensive results, including a MALDI-Orbitrap instrument for high mass spectral resolution for accurate identifications and a MALDI TOF/TOF instrument for improved spatial resolution and sensitivity, providing more descriptive MS images. MS images for 235 putative neuropeptides were obtained, with the identification of 145 of these being confirmed by either complementary MS/MS data or accurate mass matching. The MSI studies demonstrate the sensitivity and power of this MALDI-based in situ analytical strategy for unraveling the chemical complexity present in a small nine-cell neuronal system. The results of this study will enable more informative assays of the functions of neuropeptides within this important neural circuit.
Collapse
Affiliation(s)
- Kellen DeLaney
- Department of Chemistry, University of Wisconsin-Madison, 777 Highland Ave., Madison, WI 53705
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 777 Highland Ave., Madison, WI 53705
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave., Madison, WI 53705
- Address reprint requests to Dr. Lingjun Li. Mailing Address: 5125 Rennebohm Hall, 777 Highland Avenue, Madison, WI 53705-2222. Phone: (608)265-8491, Fax: (608)262-5345.
| |
Collapse
|
16
|
Estimation of neuron parameters from imperfect observations. PLoS Comput Biol 2020; 16:e1008053. [PMID: 32673311 PMCID: PMC7386621 DOI: 10.1371/journal.pcbi.1008053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 07/28/2020] [Accepted: 06/15/2020] [Indexed: 12/21/2022] Open
Abstract
The estimation of parameters controlling the electrical properties of biological neurons is essential to determine their complement of ion channels and to understand the function of biological circuits. By synchronizing conductance models to time series observations of the membrane voltage, one may construct models capable of predicting neuronal dynamics. However, identifying the actual set of parameters of biological ion channels remains a formidable theoretical challenge. Here, we present a regularization method that improves convergence towards this optimal solution when data are noisy and the model is unknown. Our method relies on the existence of an offset in parameter space arising from the interplay between model nonlinearity and experimental error. By tuning this offset, we induce saddle-node bifurcations from sub-optimal to optimal solutions. This regularization method increases the probability of finding the optimal set of parameters from 67% to 94.3%. We also reduce parameter correlations by implementing adaptive sampling and stimulation protocols compatible with parameter identifiability requirements. Our results show that the optimal model parameters may be inferred from imperfect observations provided the conditions of observability and identifiability are fulfilled.
Collapse
|
17
|
Synaptic Strengths Dominate Phasing of Motor Circuit: Intrinsic Conductances of Neuron Types Need Not Vary across Animals. eNeuro 2019; 6:ENEURO.0417-18.2019. [PMID: 31270128 PMCID: PMC6709225 DOI: 10.1523/eneuro.0417-18.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 06/20/2019] [Accepted: 06/27/2019] [Indexed: 11/21/2022] Open
Abstract
Identified neurons and the networks they compose produce stereotypical, albeit individually unique, activity across members of a species. We propose, for a motor circuit driven by a central pattern generator (CPG), that the uniqueness derives mainly from differences in synaptic strength rather than from differences in intrinsic membrane conductances. We studied a dataset of recordings from six leech (Hirudo sp.) heartbeat control networks, containing complete spiking activity patterns from inhibitory premotor interneurons, motor output spike patterns, and synaptic strength patterns to investigate the source of uniqueness. We used a conductance-based multicompartmental motor neuron model to construct a bilateral motor circuit model, and controlled it by playing recorded input spike trains from premotor interneurons to generate output inhibitory synaptic patterns similar to experimental measurements. By generating different synaptic conductance parameter sets of this circuit model, we found that relative premotor synaptic strengths impinging onto motor neurons must be different across individuals to produce animal-specific output burst phasing. Obtaining unique outputs from each individual’s circuit model did not require different intrinsic ionic conductance parameters. Furthermore, changing intrinsic conductances failed to compensate for modified synaptic strength patterns. Thus, the pattern of synaptic strengths of motor neuron inputs is critical for the phasing of this motor circuit and can explain individual differences. When intrinsic conductances were allowed to vary, they exhibited the same conductance correlations across individuals, suggesting a motor neuron “type” required for proper network function. Our results are general and may translate to other systems and neuronal networks that control output phasing.
Collapse
|
18
|
Haley JA, Hampton D, Marder E. Two central pattern generators from the crab, Cancer borealis, respond robustly and differentially to extreme extracellular pH. eLife 2018; 7:41877. [PMID: 30592258 PMCID: PMC6328273 DOI: 10.7554/elife.41877] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 12/25/2018] [Indexed: 12/18/2022] Open
Abstract
The activity of neuronal circuits depends on the properties of the constituent neurons and their underlying synaptic and intrinsic currents. We describe the effects of extreme changes in extracellular pH – from pH 5.5 to 10.4 – on two central pattern generating networks, the stomatogastric and cardiac ganglia of the crab, Cancer borealis. Given that the physiological properties of ion channels are known to be sensitive to pH within the range tested, it is surprising that these rhythms generally remained robust from pH 6.1 to pH 8.8. The pH sensitivity of these rhythms was highly variable between animals and, unexpectedly, between ganglia. Animal-to-animal variability was likely a consequence of similar network performance arising from variable sets of underlying conductances. Together, these results illustrate the potential difficulty in generalizing the effects of environmental perturbation across circuits, even within the same animal.
Collapse
Affiliation(s)
- Jessica A Haley
- Volen Center and Biology Department, Brandeis University, Waltham, United States
| | - David Hampton
- Volen Center and Biology Department, Brandeis University, Waltham, United States
| | - Eve Marder
- Volen Center and Biology Department, Brandeis University, Waltham, United States
| |
Collapse
|